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ABSTRACT:  Today, Laser-Induced Breakdown Spectroscopy (LIBS) imaging is in full change. 17 

Indeed, always more stable instrumentations are developed, which significantly increases the signal 18 

quality and naturally the analytical potential of the technique for the characterization of complex and 19 

heterogeneous samples at the micro-scale level. Obviously, other intrinsic features such as a limit of 20 

detection in the order of ppm, a high field of view and high acquisition rate make it one of the most 21 

complete chemical imaging techniques to date. It is thus possible in these conditions to acquire sev-22 

eral million spectra from one single sample in just hours. Managing big data in LIBS imaging is the 23 

challenge ahead. In this paper, we put forward a new spectral analysis strategy, called embedded k-24 
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means clustering, for simultaneous detection of major and minor compounds and the generation of 25 

associated localization maps. A complex rock section with different phases and traces will be ex-26 

plored to demonstrate the value of this approach.   27 

INTRODUCTION 28 

Laser-induced breakdown spectroscopy (LIBS) imaging is actually becoming an essential 29 

tool to characterize complex samples in many scientific domains [1–5]. In this spectroscopic tech-30 

nique, a pulse laser beam focused on the sample surface generates a plasma from a small amount of 31 

vaporized material. Due to the electronic relaxation of excited atoms and ions, an emission spectrum 32 

characteristic of the elemental composition of the sample can be acquired using an optical spectrom-33 

eter. In LIBS imaging experiments, the sample surface is explored in a raster scanning mode (i.e. 34 

acquisition of one spectrum for each spatial position of a predefined grid) covering the region of 35 

interest. An elemental image can then be generated from the acquired data set using a simple signal 36 

integration of a given emission line. The richness of this imaging approach lies in its many ad-37 

vantages that cannot be observed simultaneously in any other spectroscopic technique. Indeed, LIBS 38 

imaging has multi-elemental capabilities, a high acquisition rate (≥100 spectra/s), full compatibility 39 

with optical microscopy and ease of use on samples without almost any size restriction (up to several 40 

tens of cm²), all under atmospheric conditions. On top of that, this technique has a high field of view 41 

and a spatial resolution around 10 μm coupled with a limit of detection in the order of weight ppm. It 42 

is thus very convenient to explore a sample at the micronic scale by acquiring several million spectra 43 

in just hours.  44 

Concerning data analysis in LIBS, we see today big differences between the two frameworks 45 

of bulk analysis and imaging. Indeed, researchers have quickly learned that multivariate data analy-46 

sis could bring valuable tools for qualitative and quantitative explorations of samples at the bulk 47 

level, for instance by developing regression or classification models [6–10]. At the imaging level, 48 

there is a relatively limited number of papers dealing with the use of multivariate data analysis in the 49 

LIBS community. Indeed, elemental images are, in general, generated from single emission wave-50 
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lengths, even though the whole spectral domain could be used. The application of chemometric ap-51 

proaches to imaging data sets is in fact more complex, both from a conceptual and practical point of 52 

view. Although a large part of the LIBS community is increasingly sensitive to the use of chemomet-53 

ric tools, understanding the concept of hyperspectral imaging, finding appropriate tools for data ex-54 

ploration, and finally interpreting their outputs represent a big task for non-expert researchers. In 55 

addition, it is clear that managing millions of spectra increases the difficulty of this task even if they 56 

know the great potential of chemometrics. This is not just about the availability of computational 57 

resources, but also, the development of new data exploration tools able to manage such big data 58 

structures.   59 

In this paper, the idea is obviously not to systematically apply a well-known unsupervised 60 

classification method to a LIBS imaging data set. Indeed, it would be totally inefficient in detecting 61 

minor compounds because most chemometric algorithms exploit explained variances. As a conse-62 

quence, we will introduce a new data processing strategy, that we call embedded k-means clustering, 63 

in order to detect and localize simultaneously major and minor compounds in a complex mineral 64 

sample from a data set of more than 2 million spectra. 65 

EXPERIMENTAL SECTION 66 

 67 

Sample description and preparation 68 

In order to demonstrate the potential of our strategy of spectroscopic exploration, we have se-69 

lected a complex mineral sample from the polymetallic W–Au–Pb–Zn–Ag (Sb–Ba) district of 70 

Tighza (Central Morocco). More specifically, it is related to the Sidi Ahmed hydrothermal event 71 

[11]. This district has been mined for centuries for Pb and Ag, Pb–Zn–Ag mineralization being 72 

formed of sulfides in gangues of carbonates. Naturally, we can expect the simultaneous presence of 73 

major and minor compounds but also traces in such mineralization [3]. The size of the selected rock 74 

section is approximately 3.2 cm x 1.6 cm and 1 cm thick. Prior to LIBS analysis, the surface of the 75 

sample has been finely polished using polisher as it is usually done in other techniques such as 76 

Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray Spectroscopy (EDS) .  77 
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Experimental setup and spectral data acquisition 78 

The LIBS instrumental setup used in this work is based on a homemade optical microscope 79 

and a Nd:YAG laser (Centurion GRM, Quantel by Lumibird) with an 8 ns pulse duration operating 80 

at 100 Hz. The laser beam is focused on the sample surface using a 15x magnification objective 81 

(LMM-15X-P01, Thorlabs). The rock section is placed on a three axes XYZ motorized stage in order 82 

to move precisely the sample during the mapping experiment. Atomic force microscopy (AFM) has 83 

been used in order to check that the crater size after ablation was smaller than the distance between 84 

two consecutives acquisition positions on the sample which is 15 µm. An autofocus system is also 85 

used during the analysis in order to keep the objective-to-sample distance from changing. Thus, we 86 

always have the same distance between the objective and the plasma emission regardless of the sam-87 

ple flatness. Every spectra in the data set have been acquired from single laser pulses at each spatial 88 

position of the sample. The plasma emission has been collected by a quartz lens and focused onto the 89 

entrance of a round-to-linear fiber bundle (19 fibers with a 200-μm core diameter) connected to a 90 

Czerny-Turner spectrometer (Shamrock 500, Andor Technology). This spectrometer is equipped 91 

with a 600 l/mm grating blazed at 300 nm and an intensified charge-coupled device (ICCD) camera 92 

(iStar, Andor Technology). The camera is synchronized with the Q-switch of the laser, and spectra 93 

are acquired with a delay of 500 ns and a gate of 3000 μs, in full vertical binning mode. Moreover, a 94 

servo control loop based on a power meter and a computer-controlled attenuator (ATT1064, Quan-95 

tum Composers) is used to control the laser power. A homemade software, developed under Lab-96 

VIEW® environment, has allowed the automation of scanning sequence as well as the spectral ac-97 

quisition. All measurements have been performed at room temperature under ambient pressure con-98 

ditions.  99 

The hyperspectral LIBS data set has been acquired considering a 15 µm spatial resolution 100 

and a 0.15 nm spectral resolution. The 251.38 -  339.99 nm spectral domain (2048 spectral channels) 101 

has been selected to cover the main emission lines of all elements of interest. In these conditions, we 102 

have obtained a data cube of size 2100 pixels x 1090 pixels x 2048 wavelengths (i.e. 2.289.000 ac-103 

quired spectra for a 515 mm2 field of view). The total acquisition time was approximately six hours, 104 
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which is finally not so long regarding the richness of the chemical information. It is then easy to un-105 

derstand that a specific data analysis strategy must be implemented if we really want to extract in-106 

formation about major and minor compounds from such a big data set.  107 

Multivariate data exploration  108 

In this work, the main idea is to propose a method able to explore megapixel LIBS data set 109 

without prior knowledge about the sample composition and to highlight simultaneously the presence 110 

of major, minor compounds, and even traces. In the multivariate data analysis framework, this task 111 

corresponds to the development of an unsupervised classification model. In other words, such tech-112 

niques try to find natural groupings of spectra in the considered data set, which will represent differ-113 

ent chemical compounds. Even if the chemometric community has developed different tools for un-114 

supervised classification of spectra, we can say without hesitation that the well-known k-means [12] 115 

clustering (KM) is certainly the most popular one. Indeed, behind the apparent simplicity of this 116 

method, it has been proved effective for many different kinds of data sets and spectroscopies. To the 117 

best of our knowledge, as this algorithm has never been used in the framework of LIBS imaging, a 118 

short description of the algorithm is provided below. Like any other chemometric method, a spec-119 

trum is considered as a point (denoted xi) in a multidimensional space. Let X = {xi, i = 1, …, n} be a 120 

dataset composed of n points (i.e. spectra) with xi ∈ ℝw, w being the number of spectral variables in 121 

a spectrum. For illustrative purposes, let's consider a small LIBS imaging data set. This data cube of 122 

size 5 pixels x 5 pixels x 2 wavelengths consists of 25 pseudo-spectra. Figure 1a illustrates the suc-123 

cessive steps of the k-means algorithm applied to this toy example. In a first step, k  initial points 124 

called centroids (in this example k=3) are randomly generated within the data domain (shown in col-125 

or in figure 1a). In the second step, one calculate distances between all points of the data set and the 126 

generated centroids. In fact, the distance is used as a measure of similarity between spectra. In this 127 

work, the cosine distance has been preferred to the Euclidean one, the latter being sensitive to global 128 

intensity changes in spectra. However if the Euclidean distance had been selected, then it would 129 

have been necessary to use a signal normalization commonly used in the LIBS community. The co-130 



 

 

6

sine distance di,j between spectra xi and xj is given in equation 1 considering a point as a vector in a 131 

multidimensional space: 132 

"#,$ = 1 − ()*.()+
‖()*‖.-()+-                                                                                                                                      133 

(1) 134 

As we can see, this distance corrects for global intensity variations by dividing each spectrum i and j 135 

by its norm. Given all the distances, each point (i.e. spectrum) is associated with the nearest centroid 136 

and now belongs to one of the k classes. In a third step, the mean spectrum of each class is calculated 137 

and will represent the k new centroids. In the fourth step, spectra in the data set are again unassigned. 138 

Then steps 1–3 are repeated in a loop in order to refine the position of the k centroids. Calculations 139 

are stopped when convergence is observed, i.e. when no further changes are observed in the spectra 140 

class memberships. In the last step, the knowledge of the class membership of each spectrum and its 141 

localization in the pixel space allow us to generate a clustering map using a color-coding. At the 142 

same time, the centroid corresponding to each class is a spectrum used for chemical interpretation.  143 

 Behind the simplicity and ease of use of KM, there is an important issue which we have to 144 

address, namely, how to select the optimal number of clusters or classes. Unfortunately far too often 145 

in the literature, authors select with a priori this value of k, which is definitely the ultimate negative 146 

choice. Indeed, no one can know the whole chemical complexity of the considered sample. In gen-147 

eral, the most reasonable way is to use a criteria called index in order to automatically choose this 148 

value. This index is a mathematical function that measures the quality of a partition. The idea is then 149 

to perform a KM clustering for different values of k (2 ≤ k ≤ kmax) and to calculate this index for each 150 

partition. The highest index value indicates the optimal number of clusters for the considered data 151 

set. One of the best index in the literature is PBM (Pakhira–Bandyopadhyay–Maulik) [13]. It is de-152 

fined as the square ratio between the largest normalized inter-cluster distance ER and the normalized 153 

sum of intra-cluster distances RA:  154 

./0123 = 456
678

9
                                                                                                                       (2) 155 
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with :; = <=(>,?@A,…,C‖D>ED?‖
F   , ;G =

∑ ∑ -I*1+3ED*-J*
+@A

C
*@A

∑ ‖I*EIK‖J
*@A

, D# the centroid of the ith cluster (i=1…k), 156 

I#1$3 the jth spectrum of the cluster i, L# the total number of spectra in the cluster i, and IK the mean 157 

point of the considered dataset. The PBM index will be used in this work in order to select the opti-158 

mal number of clusters.  159 

We could obviously explore directly the proposed data set with KM in these conditions, but 160 

we should not lose sight of our main goal, which is the simultaneous detection of major and minor 161 

compounds. Indeed, this inquiry about the intrinsic data structure is very important because KM al-162 

gorithm (and most of the clustering methods) can fall into a trap under two specific conditions (fig-163 

ure 1b). The first problematic situation is observed when classes in the data set are unbalanced, that 164 

is to say when a big difference in the number of spectra between classes is observed. This is precise-165 

ly the case for major and minor chemical compounds present in an imaging data set. As a conse-166 

quence, small populations of spectra would not be detected and wrongly associated with the nearest 167 

big clusters. The second problematic situation arises when subpopulations of spectra are observed in 168 

a given cluster. In this case, only a global cluster is generated and small spectroscopic details are lost 169 

during this exploration. To address these issues, we have developed a new strategy, which we call 170 

embedded k-means clustering (EKM). We were inspired by the way our brain works when we are 171 

looking at a picture. We first extract the main features of the image (i.e. the main classes of objects) 172 

and, then, we extract details about sub-zones of it. Thus, in the EKM strategy, a first k-means clus-173 

tering will be applied to the whole data set and the second round of clusterings will be applied to 174 

each previously calculated cluster (figure 1c). Obviously, the PBM index will be used at each step of 175 

the way.  176 

All calculations in this work have been performed under the Matlab 2016b environment (The 177 

Mathworks, Inc., Natick, Massachusetts) using homemade codes. 178 

RESULTS AND DISCUSSION 179 

To better understand the strengths of our data analysis strategy, it is essential to open this sec-180 

tion with the exploration of the considered imaging data set using the state-of-the-art method to gen-181 
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erate chemical maps [4,14]. First, a single emission line is selected for an element of interest. Then a 182 

baseline correction is applied on every single spectrum of the data set in order to extract correspond-183 

ing net intensities at the given wavelength. Lastly, color-coding is used in order to generate a colored 184 

elemental map from these extracted values, the intensity of the chosen color being correlated with 185 

abundance. Of course, this procedure can be successively repeated for all elements of interest in the 186 

sample, with the possibility to observe them simultaneously in overlay mode on the same image. 187 

Nevertheless, despite this operational simplicity, this traditional method imposes two constraints 188 

which should be considered for the generation of unbiased chemical maps. First, each selected emis-189 

sion line should be the strongest one in the spectral domain for each element. But what is more im-190 

portant, a selected emission line should not present potential interferences with other lines. Due to 191 

the natural complexity of the samples we usually explore, we quickly see that it is a strong hypothe-192 

sis, which,  for each element of interest, could be difficult to hold in relation to the very high number 193 

of lines in a spectrum. Figure 2 illustrates the use of this conventional approach to the rock section. 194 

More specifically, figure 2a shows the mean spectrum calculated from all spectra of the imaging data 195 

set. From this spectrum, it is always simple and fast to identify major elements by matching the ob-196 

served emission lines with an atomic spectra database. Thus it is easy to see, without being exhaus-197 

tive, the presence of different elements such as Pb, Ag, Fe, Ca, Mg, Mn, Cu, and Si. Figure 2b pre-198 

sents the global intensity image of the sample generated from the integration of the emission signal 199 

for each pixel on the whole spectral domain. Of course, we are losing elemental information with 200 

this observation but different zones of the samples can nevertheless be highlighted in this image. It is 201 

even possible to observe different levels of homogeneity, textures, and sub-structures on the sample. 202 

By contrast, figures 2c and 2d give elemental images generated with the conventional approach us-203 

ing single integrations described above. At first glance, we notice that many elements are localized 204 

in specific areas. Although it is possible to observe the colocalization of element pairs such as Ag/Pb, 205 

Si/Al, Si/Ti, and Zn/Cu for example, finding a correlation between all elements in this data set is a 206 

hard task. Yet, we have to remember that such correlations should allow a trace-back to molecular 207 

information i.e. mineral phases in this particular case.  A further point concerns the detection of po-208 
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tential anti-correlation between elements, which is especially difficult to achieve by just comparing 209 

elemental images. It is indeed very interesting to know if a specific element is present in a zone 210 

when another one is systematically absent or has a low concentration, and vice versa. In conclusion 211 

of this section, while the usual procedure allows us to generate consistent elemental images most of 212 

the time, we can clearly see that we are still not harnessing all the information contained in the data 213 

set, minor compounds and minor phases not being particularly highlighted.   214 

In this new section, the idea is to apply the strategy of embedded k-means clustering on the 215 

considered data set and assess its interest for the simultaneous detection of major and minors com-216 

pounds.  As explained previously, the initial step of this approach consists of the application of a first 217 

k-mean clustering on the whole data set (i.e. all spectra). Figure 3a shows the evolution of the PBM 218 

index according to the number of cluster k used in this first partitioning of pixels. Here it can be seen 219 

clearly that an optimal number of five clusters has to be considered. Using this consideration as a 220 

starting point, figure 3b provides a classification map from which we can observe the localization of 221 

the five compounds. The percentage of pixels in a class for the total number of pixels in the data set 222 

is also given. We can see, therefore, that classes 1,4 and 5 correspond to major compounds with 223 

37%, 27% and 23% of pixels respectively. Nevertheless, at this point, we cannot say that classes 2 224 

and 3 correspond to minor compounds with 3% and 10% of pixels respectively. In fact, they are only 225 

somewhat less present. As regards the dispersion of compounds in the sample, classes 1 et 2 are 226 

strictly observed in well-delimited and continuous areas. It is almost the case for class 5, which is 227 

nevertheless also located around the area of class 1. More heterogeneous distributions are observed 228 

for classes 3 and 4. Figure 3c gives the corresponding spectra of the centroids for each class. These 229 

representative spectra are naturally used for chemical interpretation. Despite the fact that LIBS spec-230 

troscopy is an elemental one, the use of the whole spectral domain and some prior knowledge about 231 

the genesis of rocks allow us to identify potential mineral phases. Thus, class 1 is associated with 232 

galena (PbS) with traces of copper, silver, antimony, and tin. The mineral phase corresponding to 233 

class 2 is calcite (CaCO3) with traces of manganese, magnesium, silicon, and aluminum. Class 3 is 234 

linked to quartz (SiO2) with traces of magnesium, aluminum, calcium, titanium and iron. The next 235 
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mineral phase with class 4, is potentially an aluminosilicate (SiO2 / Al2O3) or kinds of clays with 236 

traces of magnesium, calcium, iron, manganese and titanium. Finally, class 5 is associated with an-237 

kerite (Ca(Fe, Mg,Mn)(CO3)2) with traces of titanium.  238 

To go deeper into the exploration of previous mineral phases, we shall apply the second step 239 

of the embedded k-means strategy. Therefore, for each class, a new k-means clustering is applied 240 

only to associated spectra.  In other words, five k-means clustering are calculated in parallel consid-241 

ering the five different sub-populations of spectra contained in the five classes. Obviously, the PBM 242 

index is used again to optimize the number of clusters of each k-means clustering. The five graphs 243 

representing the evolution of the PBM index according to the number of clusters k are supplied in 244 

the supplementary material (Figure S1). We then discover that all mineral phases exhibit sub-245 

populations of spectra. The galena (class 1) contains 3 sub-classes of compounds,  the calcite (class 246 

2) has 4, the quartz (class 3) has 5,  the aluminosilicate phase (class 4) has 3 and ankerite (class 5) 247 

has 6. Figure 4 gives classification maps for each phase and corresponding spectra of sub-classes. 248 

For galena, classes 1.1 and 1.3 (in blue and red respectively) are the two major compounds of the 249 

galena phase with 64% and 26% of pixels respectively. These two sub-classes exbibit different ratios 250 

of elements such as Cu, Sb, Ag, and Sn. In this case, it is difficult to see any particular geographic 251 

locations of the two. Class 1.2 (in yellow) constitutes the minor compound of the phase with 10% of 252 

pixels for the total number of pixels in class 1. It takes the form of fine veins containing the highest 253 

concentrations of Cu, Fe and Al compared to the two other sub-classes. For the calcite phase, classes 254 

2.4 and 2.1 (respectively in blue and red) are the most abundant with 50% and 30% of pixels respec-255 

tively. They are distributed rather homogeneously and are very close in terms of element concentra-256 

tions except for Y and La. They form the purest calcites, Ca and Mn being their major elements. The 257 

situation is very different for classes 2.3 and 2.2 (respectively in yellow and green), which are con-258 

centrated in small areas mainly at the borders of class 2. These minor compounds correspond to 14% 259 

and 6% of pixels respectively. It is also remarkable that class 2.2 has the highest concentration of 260 

Mg, Si, Fe, and Mn. Moreover, very small contributions of Y and La are now particularly detected in 261 

the class 2.3, while being almost totally indectectable from the raw data set. The quartz phase is 262 
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slightly more complex with 5 sub-classes. However, a more balanced split can be observed between 263 

the percentage of pixels of sub-classes. Classes 3.1 and 3.4 (respectively in red and blue) are the 264 

most abundant. They are regularly distributed over a trapezoidal area such as class 3.3 (in yellow). 265 

For its part, class 3.5 (in grey) is spread all over the class 3 area mostly in the form of tiny clusters. 266 

This quartz is really particular because it has by far the highest concentration of Mg, Ca, Fe, Al, and 267 

Ti. Class 3.2 (in green) is a minor compound with 9% of pixels. It is mainly observed along a vein 268 

through the trapezoidal area. It contains less Si than the classes 3.1, 3.2, 3.3 and 3.4 but more Mg, 269 

Ca, Fe, Al, and Ti. The aluminosilicate phase seems less complex with 3 sub-classes. However, from 270 

a spectroscopic point of view, they are well-contrasted. Class 4.3 (in red) is the major compound 271 

with 71% of pixels, followed by class 4.1 (in blue) with 25%. They are both spread all over the class 272 

4 area. They show high concentrations of Si, Mg, Fe, and Al but also different ratios between them. 273 

Class 4.2 (in yellow) is the minor compound of this phase with only 4% of pixels. It is spread all 274 

over the area in the form of small clusters. At the same time, it has by far the highest Ti concentra-275 

tion and the lowest concentrations for all other elements. The fifth and last phase i.e. ankerite is cer-276 

tainly the most complex case with six sub-classes and the most contrasted element concentrations. 277 

Classes 5.4 (in blue), 5.1 (in green) and 5.5 (in pink) are the most abundant with 34%, 33%, and 278 

21% of pixels respectively. They are distributed rather homogeneously with rather high concentra-279 

tions of Mg, Ca, and Fe. The last three sub-classes are minor compounds. Class 5.6 (in grey) with 280 

7% of pixels is mainly located at the border of the rock section. It has medium concentrations of Ca 281 

and Si, a medium one for Mg and contains neither Fe nor Zn. Class 5.3 (in yellow) with 4% of pixels 282 

is only located on one side of the area defined by classes 5.1, 5.4, and 5.5. It has also concentrations 283 

of Fe, Mg, Ca and Si comparable to those three previous classes. However, small variations of con-284 

centration ratios are observed between them. For its part, class 5.2 (in red) is the less abundant com-285 

pound with 0.2% of pixels. It is presented in the form of a single cluster. It is the only compound 286 

containing Zn and a small concentration of Fe. The other elements are absent. Readers interested in a 287 

global representation of the 21 sub-classes in overlay mode should refer to figure S2 in the supple-288 

mentary material. As we have just seen, our strategy allows us to deeply explore LIBS data sets of 289 
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complex samples providing simultaneously the localization and the identification of major and minor 290 

compounds. Class 5.2 is certainly the perfect example of the potential of this approach because it 291 

corresponds to the detection of only 730 specific spectra of a given compound over the 2.289.000 292 

present in the considered data set. In a natural way, the PBM index was also used on each cluster of 293 

the second levels of clustering demonstrating that there was no more possible discrimination at this 294 

level thus ending the exploration of this megapixel LIBS imaging data set. 295 

CONCLUSION  296 

The main objective of this work was to evaluate an original strategy called embedded k-297 

means clustering in order to explore a big LIBS imaging data set acquired from a complex mineral 298 

sample. More specifically, the idea was to propose a simultaneous identification and localization of 299 

both major and minor compounds. From the very start of this work, we have quickly observed that 300 

while the traditional signal integration method generates unbiased elemental images most of the 301 

time, it remains especially tricky if the objective is to obtain information at the phase level, for the 302 

highest as well as the lowest concentrations. Generally speaking, we have demonstrated that multi-303 

variate data analysis is an efficient complementary tool to explore LIBS imaging data sets in this 304 

particular framework. Indeed, the k-means algorithm has allowed us to group similar pixels (i.e. 305 

spectra) without any prior knowledge of class memberships. We have also highlighted the im-306 

portance of using an index in order to select the right number of clusters, with no a priori about the 307 

considered sample, which to our knowledge has never been done in the LIBS framework. Lastly, we 308 

have shown that our approach based on successive k-means clustering provides a deeper exploration 309 

of the sample from major to minor compounds with great sensitivity, without compromise on the 310 

detection of both. 311 
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FIGURES 374 

 375 

 376 

Figure 1. a) The k-means algorithm applied to spectroscopic imaging. b) Problematic data structures 377 

hardly managed by k-means. c) The proposed method called embedded k-means clustering. 378 
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 379 

Figure 2. a) The mean spectrum of the LIBS data set. b) The global intensity image. c) and d) Ele-380 

mental images generated with the conventional approach. A high-resolution version of this image 381 

can be downloaded from supplementary materials. 382 
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 383 

Figure 3. a) Evolution of the PBM index according to the number of clusters k.  b) The classification 384 

map considering an optimal number of clusters equal to 5. c) Representative spectra of each class. 385 
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 387 

Figure 4. Classification maps obtained for each phase with corresponding spectra of sub-populations 388 

and relative concentrations of elements. 389 
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