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Bacillus subtilis spores as adjuvants 
against avian influenza H9N2 induce 
antigen-specific antibody and T cell responses 
in White Leghorn chickens
Ji Eun Lee1†, Yoon‑Chul Kye1†, Sung‑Moo Park1,2†, Byoung‑Shik Shim3, Sungsik Yoo4, Eunmi Hwang5, 
Hyungkuen Kim5, Sung‑Jo Kim5, Seung Hyun Han6, Tae Sub Park7, Byung‑Chul Park7* and Cheol‑Heui Yun1,2,7* 

Abstract 

Low‑pathogenicity avian influenza H9N2 remains an endemic disease worldwide despite continuous vaccination, 
indicating the need for an improved vaccine strategy. Bacillus subtilis (B. subtilis), a gram‑positive and endospore‑
forming bacterium, is a non‑pathogenic species that has been used in probiotic formulations for both animals and 
humans. The objective of the present study was to elucidate the effect of B. subtilis spores as adjuvants in chickens 
administered inactivated avian influenza virus H9N2. Herein, the adjuvanticity of B. subtilis spores in chickens was 
demonstrated by enhancement of H9N2 virus‑specific IgG responses. B. subtilis spores enhanced the proportion of B 
cells and the innate cell population in splenocytes from chickens administered both inactivated H9N2 and B. subtilis 
spores (Spore + H9N2). Furthermore, the H9N2 and spore administration induced significantly increased expres‑
sion of the pro‑inflammatory cytokines IL‑1β and IL‑6 compared to that in the H9N2 only group. Additionally, total 
splenocytes from chickens immunized with inactivated H9N2 in the presence or absence of B. subtilis spores were re‑
stimulated with inactivated H9N2. The subsequent results showed that the extent of antigen‑specific  CD4+ and  CD8+ 
T cell proliferation was higher in the Spore + H9N2 group than in the group administered only H9N2. Taken together, 
these data demonstrate that B. subtilis spores, as adjuvants, enhance not only H9N2 virus‑specific IgG but also  CD4+ 
and  CD8+ T cell responses, with an increase in pro‑inflammatory cytokine production. This approach to vaccination 
with inactivated H9N2 together with a B. subtilis spore adjuvant in chickens produces a significant effect on antigen‑
specific antibody and T cell responses against avian influenza virus.
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adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
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is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the 
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat iveco 
mmons .org/licen ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/publi cdoma in/
zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
Avian influenza has been a global problem not only 
because it infects wild and domestic birds but also 
because it can be transmitted to humans. One of the 

low-pathogenicity avian influenza viruses, H9N2, does 
not induce severe pathology in birds or humans com-
pared to that induced by highly pathogenic viruses; 
however, it has been focused on for decades because 
of its economic damage in the poultry industry. Since 
it was first identified in 1966 [1], H9N2 has become 
endemic worldwide, especially in Asia and Africa. 
Some countries, including China, Republic of Korea, 
and Egypt, have adopted a vaccination scheme against 
H9N2 in their poultry farms [2]. However, H9N2 out-
breaks have been continuously reported even in farm 
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animals immunized against avian influenza [3], imply-
ing that the current vaccination strategy is in need of 
advancement for improved performance. This could 
be due to the antigenic shift and drift of viruses, weak 
antigenicity of current vaccines and/or inappropriate 
vaccination strategy in poultry farms [4].

With growing interest in the importance of the gut 
microbiota, probiotics that contain beneficial bacteria 
or yeast have also been tried in the domestic animal 
industry. A large number of field studies have shown 
the positive effect of probiotics on growth performance 
or the immune system [5, 6]. In particular, Bacillus 
subtilis, a gram-positive bacterium, is a non-patho-
genic species that has also been used as a probiotic for 
both animals and humans as feed [7] or health food 
[8], respectively. It is indeed classified as a generally 
regarded as safe microorganism by the Food and Drug 
Administration. B. subtilis is an endospore-forming 
bacterium that can differentiate into a form of dormant 
spores under harsh environmental conditions, includ-
ing nutrient starvation and extreme thermal changes 
[9]. Sporulation initiates when DNA segregation is 
completed and concurrently with the asymmetric 
invagination of the membrane by forming a polar sep-
tum near one pole of the cell [10, 11]. Then, the imma-
ture spore stage (i.e., the forespore) is surrounded by a 
double membrane of the mother cell and develops into 
the mature spore [10].

In previous studies, B. subtilis spores showed poten-
tial for use as an adjuvant in mice. B. subtilis spores not 
only enhance innate immunity that protects against res-
piratory infections [12–14] but also induce an increase 
in antigen-specific antibody and T cell responses when 
co-administered with a soluble antigen [15–17]. B. sub-
tilis spore-induced cross-presentation in response to a 
co-administered antigen suggests that the spore instructs 
diverse antigen-specific adaptive immune responses [15, 
18]. Other reports also suggested that genetically modi-
fied B. subtilis spores displaying antigens on their surface 
can enhance antibacterial or antiviral immunity [16, 19–
23]. An additional advantage of B. subtilis spores as adju-
vants in influenza vaccines includes the enhanced effect 
of the vaccine and the reduced frequency of immuni-
zation required for the optimal immune response for 
full protection [24, 25]. A previous study demonstrated 
that B. subtilis spores could be a viable vaccine adjuvant 
against influenza in mice [13], with a reservation for 
safety and efficacy issues for further empirical investiga-
tion. Thus, we explored the ability of B. subtilis spores 
to influence the diversity of immune responses induced 
by inactivated H9N2 avian influenza virus in chickens. 
Specifically, we attempted to elucidate the mechanism 
for intrinsic induction of humoral and cell-mediated 

immune responses in chickens immunized with inacti-
vated H9N2 and B. subtilis spores as adjuvants.

B. subtilis spores have been suggested as probiotics 
against enteric pathogens in chickens [7, 14]. However, it 
is important to note that very few studies using B. subtilis 
spores as vaccine adjuvants have been performed in the 
poultry field. Therefore, in the present study, we exam-
ined whether the B. subtilis spores work as adjuvants 
against influenza based on the induction of B cell and T 
cell responses in chickens.

Materials and methods
Chickens
Fertile eggs from White Leghorn chickens were provided 
by University Animal Farm, College of Agriculture and 
Life Sciences, Seoul National University (Pyeongchang, 
Republic of Korea). The eggs were incubated in a 37.5–
38  °C incubator (Rcom, Gimhae, Republic of Korea) for 
21  days. Five chickens were allotted to each group. The 
care room was maintained at 23–25 °C, with 40% humid-
ity under positive pressure. Hatched chickens were raised 
under conventional conditions and were allowed free 
access to feed and water. The experiment was approved 
by the Institutional Animal Care and Use Committee of 
Seoul National University (SNU-150327-2-1).

Preparation and isolation of Bacillus subtilis spores
Bacillus subtilis strain HB3 (National Culture Collec-
tion for Pathogen, Republic of Korea) was spread on 
an agar plate containing 3% trypticase soy broth (TSB), 
0.5% yeast extract (YE) and 1.5% Bacto agar (all from BD 
Biosciences, San Jose, USA) and incubated at 37  °C for 
9  h. One colony was randomly picked and inoculated 
in 25 mL of 3% TSB and 0.5% YE liquid medium. Then, 
the culture was incubated for 5  h in a shaking incuba-
tor (BioFree, Seoul, Republic of Korea) at 37 °C until the 
OD value reached between 0.45 and 0.6. For sporulation, 
the culture was transferred to 500 mL of autoclaved 3% 
TSB and 0.5% YE medium containing 5 mL of 10% KCl, 
5 mL of 1.2%  MgSO4.7(H2O) (pH 7.6), and 0.5 mL of 1 M 
Ca(NO2)3, 0.01 M  MnCl2, and 1 mM  FeSO4. The culture 
was incubated at 37  °C for 48  h in a shaking incubator. 
The cells were collected by centrifugation at 5516 × g for 
10 min, re-suspended in distilled water, and incubated at 
4 °C for 48 h on a rocker. Then, the cells were sonicated at 
35% amplitude (1 Watt) for 90 s with a 0.5 s pulse. Spores, 
loaded on an OptiPrep density gradient (Sigma-Aldrich, 
St. Louis, USA) with layers of 35%, 25%, and 15%, were 
centrifuged at 10  000 × g for 40  min at 25  °C without 
disruption for purification. The B. subtilis spores were 
washed three times and re-suspended in PBS.
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H9N2 virus inactivation
H9N2 influenza virus (A/Chicken/Korea/01310/2001, 
strain CE20, from Prof. Jae Hong Kim, College of Vet-
erinary Medicine, Seoul National University) was 
inactivated with formalin at 37  °C for 18  h at a final 
concentration of 0.1% [26]. The formalin was neutral-
ized by the addition of  NaHSO3 solution to the inacti-
vated virus as previously described [13].

Immunization schedule
One-week-old White Leghorn chickens were immu-
nized with phosphate-buffered saline (PBS), B. subtilis 
spores, inactivated H9N2, or both B. subtilis spores and 
inactivated H9N2 in a volume of 200 μL. For vaccina-
tion, 1 × 108  EID50 of H9N2 viruses/200 μL per animal 
was administered intramuscularly. For comparison 
with a commercial vaccine, the same dose and strain 
of commercial H9N2 inactivated oil vaccine (KBNP, 
Anyang, Republic of Korea) was used in the oil-vac-
cine group. Randomly selected White Leghorn chick-
ens were allotted into five different groups (four to five 
animals per group) as follows: PBS control (Con) as a 
negative control, 2 × 109 CFU of B. subtilis spores alone 
(Spore), inactivated H9N2 alone (H9N2), inactivated 
H9N2 together with B. subtilis spores (Spore + H9N2) 
or commercial H9N2 oil vaccine (Oil vaccine). The 
immunization regimen comprised two injections via 
the intramuscular (i.m.) route at 7 and 14 days of age. 
Blood samples were collected at 7 and 14 days (i.e., 21 
and 28  days old) after the last immunization from the 
wing vein, and serum was collected with centrifugation 
at 10 000 × g for 10 min at 4 °C to analyse the antigen-
specific antibody responses. Spleens were collected and 
used for in  vitro culture and flow cytometric analysis, 
as explained below.

Serum antibody detection
Antigen-specific IgG in serum was analysed by ELISA. 
For H9N2-specific IgG, 100 μL of formalin-inactivated 
H9N2 influenza A virus  per  well was used for coating 
onto a 96-well microplate (Thermo, Waltham, USA) 
overnight at 4  °C. Serially diluted (5-fold) sera along 
with controls were incubated for 2 h at room tempera-
ture, followed by a 1 h incubation with 100 μL of rab-
bit anti-chicken IgG conjugated with HRP at a 1:50 000 
dilution (Bethyl Laboratories, Montgomery, USA). 
After incubation for 1  h at room temperature, TMB 
(Merck, Darmstadt, Germany) was added until col-
our developed, and then the reaction was stopped by 
the addition of 50 μL of 2  N  H2SO4. Absorbance was 

measured at 450 nm using an ELISA microplate reader 
(Molecular Devices, San Jose, USA).

Haemagglutination inhibition assay
The haemagglutination inhibition (HI) titre was deter-
mined by using chicken erythrocytes collected with 
Alsever’s solution (Sigma-Aldrich). Serially 2-fold diluted 
sera (25 μL/well) from each group of chickens (four to 
five animals per group) at 4  weeks old were incubated 
with 25 μL of H9N2 virus (4 HAU)/well in a U-bottom 
96-well plate (Thermo) for 30 min at room temperature. 
Chicken erythrocytes (50 μL/well) were added and incu-
bated for 30  min at room temperature. Then, the plate 
was analysed to distinguish agglutinated from non-agglu-
tinated wells, of which the highest dilution showing clear 
red dots was determined as the HI titre.

In vitro T cell receptor (TCR) stimulation
Splenocytes from 3-week-old chickens were stained with 
a mouse anti-chicken CD3 antibody (Southern Biotech-
nology, Birmingham, USA) followed by incubation with 
anti-mouse IgG beads (Miltenyi Biotec, Bergisch Glad-
bach, Germany) for 20 min.  CD3+ T cells were isolated 
by MACS magnetic bead sorting (Miltenyi Biotec) and 
stained with 1 μM CellTrace™ Violet (CTV) dye (Invitro-
gen, Waltham, USA) for 25 min at 37 °C. Then, the cells 
were washed with pre-warmed complete medium.  CD3+ 
T cells stained with CTV were cultured in anti-chicken 
CD3 and CD28 antibody-coated 96 flat-bottom plates 
(Thermo) for 2  days. For some experiments, chicken 
monocyte/macrophage cells were isolated by using 
mouse anti-chicken monocyte/macrophage (KUL01) 
antibodies followed by anti-mouse microbead (Miltenyi 
Biotec) and MACS separators. Then, the cells were stim-
ulated with inactivated H9N2 and/or B. subtilis spores, 
and the supernatants were collected after centrifugation 
at 300 × g for 10 min. The supernatant was treated with T 
cells together with anti-CD3/CD28 antibodies. The cells 
were stained with anti-chicken CD4 and CD8 antibodies, 
and proliferative activity was determined by flow cytom-
etry (FACS Canto II, BD Biosciences) and analysed using 
FlowJo software (Tree star, Ashland, USA). Division 
index scores were calculated manually according to the 
following equation suggested by FlowJo software (Tree 
Star), as adopted from the previous report [27]:

where i is the generation number and Ni is the number of 
cells in generation i.

Division index =

∑
i

0
i ×

Ni

2i

∑
i

0

Ni

2i
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Single cell dissociation
The spleen was collected, minced and filtered through a 
70-μm nylon cell strainer (Corning, New York, USA) to 
obtain a single cell suspension. The splenocytes were then 
suspended in 5 mL of RPMI 1640 containing heat-inacti-
vated 5% (vol/vol) FBS and 1% (vol/vol) antibiotics/anti-
mycotic solution (all from Invitrogen) and centrifuged at 
300 × g for 3  min at 4  °C. Then, the pellet was treated 
with 1 mL of ACK lysing buffer (Thermo) incubated for 
3 min at room temperature and centrifuged at 300 × g for 
3 min at 4 °C. The pellet was washed and re-suspended in 
medium and filtered through a 70-μm strainer.

Flow cytometric analysis
A single-cell suspension of total splenocytes was stained 
for 20 min at 4 °C in the dark with a combination of the 
following fluorochrome-conjugated monoclonal anti-
bodies: anti-chicken CD3-PACBLU (CT-3), anti-CD4-
FITC (CT-4), anti-CD8α-PE (CT-8), anti-Bu-1-Alexa 
 Fluor® 647 (AV20), and anti-monocyte/macrophage-PE 
(KUL01) (Southern Biotechnology). An anti-7AAD-
PerCP-Cy5.5 antibody was purchased from BD Bio-
sciences. After staining, the cells were washed, and the 
expression of surface markers was measured by flow 
cytometry (FACS Canto II). All the flow cytometric data 
were analysed using FlowJo software (Tree star).

Re‑stimulation with H9N2 and purification of  CD3+ T cells 
by magnetic beads
To analyse the antigen-specific T cells in the spleen, sple-
nocytes were collected from vaccinated chickens 7 days 
after the last immunization. Splenocytes were re-stim-
ulated with 32 HAU of inactivated H9N2 [26] for 24  h. 
Then, splenocytes were stained with an anti-chicken CD3 
(CT3) antibody (Southern Biotechnology). After wash-
ing with MACS buffer (PBS containing 0.5% BSA and 
2 mM EDTA), the cells were incubated with anti-mouse 
IgG microbeads (Miltenyi Biotec) for 15 min in the dark 
and centrifuged at 300 × g for 10 min at 4 °C. Then, the 
cell suspension was separated on a MACS LS column 
that was placed in the magnetic field of a MACS Separa-
tor (Miltenyi Biotec). The magnetic fraction of positively 
selected  CD3+ cells was used in the mRNA experiments 
for IFN-γ, IL-17 and IL-4.

RNA extraction and cDNA synthesis
Total RNA was extracted from splenocytes or purified 
T cells using NucleoZOL (Machery-Nagel, Duren, Ger-
many) according to the manufacturer’s instructions. 
Briefly, single cells of the splenocytes or T cells were 
treated with 1 mL of NucleoZOL per 5 × 106 cells. Total 
RNA was isolated by the addition of 400 μL of RNase-
free water (Sigma-Aldrich) followed by centrifugation at 

12  000 × g for 15  min. Then, 500 μL of aqueous phase 
was transferred into a new tube, and the same volume 
of isopropanol was added. Next, the samples were incu-
bated for 10 min at room temperature for RNA precipita-
tion and centrifuged at 12 000 × g for 10 min. The RNA 
pellet was obtained at the bottom of the tube after wash-
ing with 75% ethanol followed by air drying for 5–10 min 
and resuspension with RNase-free water. RNA concen-
tration was quantified with a NanoDrop (Amersham Bio-
sciences, Buckinghamshire, UK) at A260. Subsequently, 
500 ng of purified RNA was reverse transcribed to cDNA 
using M-MLV reverse transcriptase (Invitrogen) accord-
ing to the manufacturer’s instructions.

Real‑time quantitative PCR
Real-time quantitative PCR was performed on cDNA 
using a StepOne Plus real-time PCR system (Applied 
Biosystems, Waltham, USA).  SYBR® Green PCR Master 
Mix was used according to the manufacturer’s specifi-
cation (Applied Biosystems). PCR was carried out in a 
96-well reaction plate with 10 μL of  SYBR® Green PCR 
master mix, 0.5 μL of primers, 1–2 μL of cDNA template 
and 7–8 μL of nuclease-free  H2O. Each reaction involved 
a pre-incubation at 95 °C for 10 min, followed by 40 ther-
mal cycles at 95 °C for 15 s, 55 °C for 30 s and elongation 
at 72  °C for 30  s. Relative quantification of target genes 
was calculated using the  2−ΔΔCt method. Target gene 
expression was normalized to the β-actin mRNA level. 
Primer sequences used for real-time quantitative PCR 
(Table 1) were designed using NCBI Primer-BLAST and 
synthesized by Bioneer Inc. (Daejeon, Republic of Korea).

Statistical analysis
All data are expressed as the mean values ± standard 
deviations (SDs). For comparison of means between two 
groups, the data were analysed using two-tailed, paired 
Student’s t test and considered statistically significant 
when the P-value was less than 0.05. For multiple group 
comparisons, one-way ANOVA followed by a Friedman 
test was applied. All statistical analyses were performed 
using GraphPad Prism (version 5.01, GraphPad Software, 
Inc., San Diego, USA).

Results
Enhancement of H9N2 virus‑specific IgG production 
in chickens immunized with inactivated H9N2 with B. 
subtilis spores
To determine the adjuvant effect of B. subtilis spores on 
antigen-specific antibody responses, chickens were intra-
muscularly immunized with inactivated H9N2 with or 
without B. subtilis spores according to the immunization 
schedule (Figure  1A). None of the chickens at 28  days 
after hatching showed abnormalities, signs of illness, 
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body weight loss or death during the experimental period 
(data not shown). Serum H9N2 virus-specific IgG pro-
duction in chickens immunized with inactivated H9N2 
and B. subtilis spores (Spore + H9N2) was significantly 
higher than that of other groups at both day 21 and day 
28 (Figure 1B). To investigate the virus-specific inhibition 
of serum antibodies, we conducted a HI assay against 
H9N2 virus with serum from day 28. The results showed 
that the HI titre of Spore + H9N2 group was significantly 
higher than those of the other groups (Figure 1C). Col-
lectively, these results suggested that B. subtilis spores 
act as adjuvants in chickens, enhancing antigen-specific 
immune responses when immunized with the inactivated 
H9N2 avian influenza virus.

Changes in B cells and monocyte/macrophage subsets 
in chickens administered Spore + H9N2
We next investigated the changes in immune cells in the 
spleens of chickens immunized with inactivated H9N2 
and/or B. subtilis spores. The total cell number of spleno-
cytes seemed to increase slightly, but there were no sig-
nificant changes among the groups (Figure 2A). However, 
administration of B. subtilis spores led to an increase 
in the percentage (Figure  2B) and absolute number 

(Figure  2C) of  KUL01+ monocyte/macrophage popu-
lations compared to those of these populations in the 
H9N2 group.

We next analysed the changes in B cells, which are 
major adaptive immune effectors producing antigen-
specific antibodies. The percentage (Figure 2D) and abso-
lute number (Figure  2E) of the Bu-1+ B cell population 
were significantly increased only in the Spore + H9N2 
group but not in the H9N2 group or Spore group after 
the second immunization. These results suggested that B. 
subtilis works as an adjuvant to enhance the proliferation 
of B cells when co-administered with the H9N2 antigen. 
Collectively, B. subtilis spores efficiently activated innate 
immune cells by themself and increased the proportion 
and number of B cells when administered with antigens.

Gene expression patterns in splenocytes treated with B. 
subtilis spores
Next, we sought to determine what kind of immune-
related genes were upregulated in response to B. subtilis 
spores. To examine the gene expression pattern for pro-
inflammatory cytokines, quantitative RT-PCR analysis 
was conducted in splenocytes treated with H9N2 and/
or B. subtilis spores in vitro. The expression of IL-1β and 
IL-6, major pro-inflammatory cytokines produced in 
innate immune cells, was significantly increased in sple-
nocytes stimulated with the B. subtilis spore adjuvant 
(Figure 3A). The mRNA expression levels of BAFF, BAFF 
receptor (BAFF-R), transmembrane activator and calcium-
modulating cytophilin ligand interactor (TACI), CD40 and 
CD40L, which are responsible for the proliferation and 
survival signals in B cells, were higher in the Spore + H9N2 
group than in the other groups (Figure  3B). In addition, 
the mRNA expression of IL-4 and IL-15, which are pro-
survival factors for B cells or T cells, was significantly 
upregulated in the Spore + H9N2 group (Figure 3C). These 
results indicated that the expression of pro-inflammatory 
cytokines and key regulators of B cells was enhanced in 
splenocytes treated with the B. subtilis spore adjuvant.

B. subtilis spore adjuvant promoted  CD4+ and  CD8+ T cell 
proliferation
For the best T cell immunity, the combination of three 
components is necessary: TCR stimulation, co-stimulatory 
signalling and cytokines. Among them, we first examined 
the role of cytokines induced by B. subtilis spores. To test 
the role of cytokines from innate immune cells, we col-
lected the supernatant from splenocytes or monocytes/
macrophages stimulated with B. subtilis spores in  vitro. 
 CD3+ T cells from unimmunized chickens and labelled 
with CTV were treated with the supernatant and examined 
for proliferation [28]. TCR and co-stimulatory signalling 

Table 1 Primer sequences used for real-time quantitative 
PCR 

Target gene Primer sequence Product 
size (bp)

β‑actin F: CAA CAC AGT GCT GTC TGG TGGTA 
R: ATC GTA CTC CTG CTT GCT GATCC 

205

BAFF F: CAC GTC ATC CAG CAG AAG GAT 
R: ACA AGA GGA CAG GAG CAT TGC 

120

BAFF‑R F: CCT GGC CCC ACC ATA AGG 
R: CAT TAC AGT CTC TCC TCA CCC ATA CA

120

CD40 F: TGC ACA CCC TGT GAG AAT GGT 
R: CGT TGC GTT TCC CTG TCT CTT 

120

CD40L F: TGA AGT GGA TGA CGA CGA GCTA 
R: TGG TGC AGA AGC TGA CTT GTG 

120

TACI F: GGC TCC TCA TCC CAG TTC CT
R: TTG TGC GTG AAG AAA GCT CTGT 

120

IL‑1β F: GCT CTA CAT GTC GTG TGT GAT GAG 
R: TGT CGA TGT CCC GCA TGA 

80

IL‑4 F: AAC ATG CGT CAG CTC CTG AAT 
R: TCT GCT AGG AAC TTC TCC ATT GAA 

98

IL‑6 F: GCT CGC CGG CTT CGA 
R: GGT AGG TCT GAA AGG CGA ACAG 

71

IL‑15 F: TAG GAA GCA TGA TGT ACG GAA CAT 
R: TTT TTG CTG TTG TGG AAT TCA ACT 

83

IL‑17 F: GCT GCA GCA AGA AAA GGA AGA 
R: GCC GTA TCA CCT TCC CAT GT

120

IFN‑γ F: AAC CTT CCT GAT GGC GTG AA
R: GCT TTG CGC TGG ATT CTC AA

86
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was induced by using anti-CD3 and anti-CD28 antibodies 
together with the supernatant, as shown in the experimen-
tal scheme (Figure 4A). Flow cytometric analyses showed 
a strong  CD4+ T cell proliferation when T cells treated with 
the supernatant from the B. subtilis spore-treated group 
(Figures 4B and C). Similar to total splenocytes, the super-
natant from  KUL01+ monocytes/macrophages stimulated 
with spores promoted  CD4+ T cell proliferation (Fig-
ures 4B and C). In addition,  CD8+ T cells cultured in the 
supernatant from B. subtilis spore-treated total splenocytes 
or monocytes/macrophages also showed high proliferative 
capacity regardless of the presence of H9N2 (Figures  4D 
and E). These results demonstrated that cytokines from 
innate cells induced by B. subtilis spores could further 
enhance the proliferation of  CD4+ and  CD8+ T cells.

Changes in major immune cell populations induced 
by the spore‑adjuvanted vaccine compared to those 
induced by a commercial oil adjuvant vaccine
Generally, oil adjuvant vaccines are used against H9N2 
in poultry farms, but their limitations still exist. Since 
the treatment of B. subtilis spores together with inacti-
vated H9N2 showed an increase in  KUL01+ monocytes/
macrophages (Figure 2B) and B cells (Figure 2D) in chick-
ens, we compared the major immune cell changes with 
those of commercial H9N2 oil vaccine-immunized chick-
ens. Chickens immunized with the commercial H9N2 
oil vaccine or Spore + H9N2 chickens showed a signifi-
cantly increased percentage of the  KUL01+ monocyte/
macrophage population compared to that in the con-
trol chickens (Figure  5A), yet the absolute number was 
significantly higher only in chickens immunized with 
Spore + H9N2 treatment (Figure 5A).

Figure 1 Antigen‑specific IgG response and HI titre in chickens with intramuscular administration of inactivated H9N2 and/or B. subtilis 
spores. A Scheme of the immunization schedule. One‑week‑old White Leghorn chickens (N = 5) were administered with PBS as a negative control, 
2 × 109 CFU of B. subtilis spores, or inactivated H9N2 without or with B. subtilis spores. B The antigen‑specific IgG antibody response in serum was 
measured and expressed as arbitrary units at 3 and 4 weeks. C HI assays with sera against H9N2 virus at 4 weeks. To determine the significance, 
one‑way ANOVA followed by a Friedman test corrected by Dunn’s multiple comparison test was performed. Data are expressed as the mean 
values ± SDs. Different letters on each group denote a significant difference at P ≤ 0.05.
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Both the proportion and the absolute number of 
the B cell populations were significantly higher in the 
Spore + H9N2 group than in the oil vaccine groups (Fig-
ure  5B). There were no significant differences in  CD4+ 
T cells among the treated groups (Figure 5C), while the 
percentage and absolute number of the  CD8+ T cell pop-
ulation were significantly higher in chickens immunized 
with Spore + H9N2 than in the oil vaccine group chick-
ens (Figure  5D). These findings suggested that chickens 
administered the Spore + H9N2 vaccine showed a higher 
antigen-specific immune cell population than the chick-
ens administered the commercial oil vaccine.

B. subtilis spores as adjuvants promoted Th1‑ 
and Th17‑derived cytokine expression
Next, we investigated antigen-specific T cell responses in 
chickens immunized with inactivated H9N2 with/with-
out B. subtilis spores in vivo compared to those in oil vac-
cine-administered chickens. To investigate H9N2 virus 
antigen-specific T cell activities, the expression levels of 
the IFN-γ, IL-4, and IL-17 genes were analysed in  CD3+ 
T cells isolated from immunized chickens after re-stim-
ulation with H9N2. The expression levels of IFN-γ (Fig-
ure 6A) and IL-17 (Figure 6B) were strongly induced in T 
cells from chickens immunized with Spore + H9N2 treat-
ment, while minor changes were found in other groups 
(Figure 6B). The expression levels of IL-4 were relatively 

Figure 2 Analysis of splenic B cells and innate immune cells in chickens administered inactivated H9N2 and B. subtilis spores. 
Seven‑day‑old chickens (N = 10) were immunized twice with inactivated H9N2 and/or B. subtilis spores at one‑week intervals. Single cells from 
splenocytes were stained with the proper combination of anti‑chicken CD3, Bu‑1, and KUL01 antibodies, and flow cytometric analysis was 
performed. A Total splenocytes, B the percentage and C absolute number of  KUL01+ monocytes/macrophages cells, and D the percentage and E 
absolute number of Bu‑1+ cells were examined by using flow cytometry. To determine the significance, one‑way ANOVA followed by a Friedman 
test corrected by Dunn’s multiple comparison test was performed. Data are expressed as the mean values ± SDs. Different letters on each group 
denote a significant difference at P ≤ 0.05.
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low in all groups (Figure  6C). These results demon-
strated that B. subtilis spores as adjuvants could promote 
stronger antigen-specific Th1- and Th17-driven immune 
responses against H9N2 than a commercial oil vaccine.

Discussion
Adjuvants are now considered as an essential com-
ponent of most, if not all, inactivated virus vaccines 
in the poultry industry [29]. The elucidation of the 
action  mechanism of adjuvants has contributed greatly 
to the development of the appropriate adjuvants in a 
rational approach to modern vaccine formulation [30, 
31]. Although adjuvants have diverse activities [32], the 
exact role of each adjuvant has not yet been well clari-
fied, especially in chickens. Oil adjuvant, one of the most 
commonly used adjuvants in domestic animal vaccines, 
is known to have safety and robust efficacy profiles, with 
antigen-specific antibodies induced against influenza 
viruses. It has also been applied to vaccines for low-path-
ogenicity avian influenza H9N2 vaccines for decades [33, 

34]. However, H9N2 has not been conquered worldwide, 
and moreover, outbreaks have been reported in ani-
mals vaccinated against H9N2 infection. It has also been 
reported that oil adjuvants are not appropriate for induc-
ing T cell responses, which are essential for memory T or 
B cell generation [35]; therefore, novel adjuvants and for-
mulations of vaccine adjuvants are essential. In the pre-
sent study, we demonstrated that B. subtilis spores could 
act as potential vaccine adjuvants that synergistically pro-
vide antigen-specific immune responses against the avian 
influenza virus H9N2 in White Leghorn chickens.

Our results showed that B. subtilis spores could induce 
the expression of the pro-inflammatory cytokines IL-1β 
and IL-6 in innate immune cells such as monocytes and 
macrophages. These cytokines play a critical role not 
only in controlling and eliminating invading pathogens 
but also in provoking the activation of adaptive immune 
cells such as T cells, especially Th1 and Th17 differentia-
tion [36, 37]. It has been suggested that high expression 
of pro-inflammatory cytokines upon B. subtilis spore 

Figure 3 mRNA expression patterns of pro‑inflammatory cytokines in monocytes/macrophages and B cell proliferation/survival‑related 
genes in chicken splenocytes treated with inactivated H9N2 and B. subtilis spores. Total splenocytes and monocytes/macrophages were 
isolated from 3‑week‑old chickens (N = 5) and stimulated with inactivated H9N2 and/or B. subtilis spores for 3 h. A The expression patterns of the 
IL‑1 and IL‑6 genes, as pro‑inflammatory cytokines, in monocytes/macrophages. B The mRNA expression levels of the B cell proliferation‑related 
genes BAFF, BAFF‑R, TACI, CD40, and CD40L in total splenocytes. C The expression patterns of the IL‑4 and IL‑15 genes in total splenocytes by 
qRT‑PCR. To determine the significance, one‑way ANOVA followed by a Friedman test corrected by Dunn’s multiple comparison test was performed. 
Data are expressed as the mean values ± SDs. Different letters on each group denote a significant difference at P ≤ 0.05.
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treatment is associated with improved resistance to viral 
infection [12]. We showed that soluble factors such as 
cytokines from B. subtilis spore-treated innate immune 
cells can enhance the proliferation of T cells, suggest-
ing the importance of cytokines from innate cells treated 
with spores that subsequently enhance antigen-specific 
adaptive immune responses. In the present study, upreg-
ulation of gene expression of B cell-related genes such as 
BAFF or CD40L in total splenocytes after B. subtilis spore 
treatment showed a positive correlation with increased 
B cell numbers. We also showed that the proliferation 
of  CD8+ and  CD4+ T cells was increased by B. subtilis 
spores, which deserves further research to validate and 

identify the cross-presentation of exogenous antigens in 
antigen-presenting cells followed by activation of anti-
gen-specific  CD8+ T cells. On the other hand, since there 
is no suitable model to examine antigen-specific immune 
responses in chickens, we need more sophisticated 
in  vitro and in  vivo models to evaluate antigen-specific 
B and T cell responses. Furthermore, antigen-specific T 
or B cell responses should also be analysed at the pro-
tein level or single-cell level using ELISA or intracellular 
staining and flow cytometry in subsequent studies.

One of the most important factors for vaccine devel-
opment is probably whether the vaccine induces a long-
term immunological memory response. In particular, the 

Figure 4 CD4+ and CD8+ T cell proliferation after TCR stimulation co‑treatment with the supernatant from splenocytes or monocytes/
macrophages stimulated with inactivated H9N2 and B. subtilis spores. A CTV‑labelled purified  CD3+ T cells were cultured in anti‑CD3 and 
anti‑CD28 antibody‑coated plates with supernatants from splenocytes or monocytes/macrophages stimulated with inactivated H9N2 and/
or B. subtilis and analysed by using flow cytometry. B–E The proliferative populations of  CD4+ T cells (B and C) and  CD8+ T cells (D and E) were 
measured by CTV histograms and division index scores. To determine the significance, one‑way ANOVA followed by a Friedman test corrected by 
Dunn’s multiple comparison test was performed. Data are expressed as the mean values ± SDs. Different letters on each group denote a significant 
difference at P ≤ 0.05.
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induction of proper memory responses should be more 
important in laying hens and great grandparent stocks that 
generally stay alive for a longer period of time. The gen-
eration of memory responses is largely dependent on the 
activation of T cells, especially  CD4+ helper T cells. Most 
vaccine studies performed in chickens have focused only 
on humoral responses, including antigen-specific or neu-
tralizing antibody responses; however, the evaluation of T 
cell quality has been less studied. Our results showed that 
the commercial oil adjuvant vaccine could not induce a 
strong T cell response compared to that induced by H9N2 
with the B. subtilis spore adjuvant. This result is in line 
with a previous study that demonstrating the ability of 
B. subtilis spores to increase the level of T cell responses 
[35]. As B. subtilis spores induced stronger recall responses 
than a commercial oil adjuvant-based vaccine, they may 
have advantages as adjuvants in terms of the generation of 
antigen-specific memory responses, which should be fur-
ther investigated in chickens in the industrial field.

As we have demonstrated in the current study, B. sub-
tilis spores instruct Th1 and Th17 immune responses 

rather than Th2 responses when re-stimulated with 
H9N2, suggesting that antigen-specific T cell responses 
could be optimal for anti-viral or anti-bacterial responses. 
It is important to note that the Spore + H9N2 group had 
much higher levels of Th1 and Th17 responses than the 
commercial oil vaccine group. Th1 immune responses 
are considered to be essentially required against viral 
infection. IL-17 is known to trigger autoimmune dis-
ease or anti-bacterial immune responses [38] but is also 
reported to have a role in anti-viral immune responses 
[39]. In the same context as our results, IL-6 and IL-1β 
produced from innate immune cells, such as mac-
rophages, have been reported to be required for IL-17 
production. In addition, some studies have suggested that 
IL-1β can induce both Th1 and Th17 responses [40, 41]. 
We focused on systemic immune responses, but tissue-
specific immune responses have also been considered a 
primary target for protection against influenza infection. 
According to mouse studies [13], spore adjuvants could 
induce lung-specific immune responses when delivered 
as intranasal vaccines. Therefore, further studies with B. 

Figure 5 Comparison of the immune cell proportion after administration of H9N2 with B. subtilis spores or a commercial vaccine. 
Seven‑day‑old chickens (N = 5) were immunized twice with inactivated H9N2 and/or B. subtilis spores at one‑week intervals. At one week post 
second immunization, single cells from splenocytes were stained with anti‑KUL01, anti‑Bu‑1, anti‑CD4 and anti‑CD8 antibodies, and flow cytometry 
analysis was performed. The percentages and absolute numbers of A  KUL01+ monocytes/macrophage cells, B Bu‑1+ B cells, and C  CD4+ and D 
 CD8+ T cells were examined. To determine the significance, one‑way ANOVA followed by a Friedman test corrected by Dunn’s multiple comparison 
test was performed. Data are expressed as the mean values ± SDs. Different letters on each group denote a significant difference at P ≤ 0.05.
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subtilis spore adjuvants should be performed not only 
as a mucosal adjuvant but also with challenge studies 
against highly pathogenic influenza while comparing 
with commercially available vaccine adjuvants.

Taken together, the current study results demonstrated 
that a B. subtilis spore  adjuvant can effectively induce 
antigen-specific antibody and IFN-γ- and IL-17-produc-
ing T cell immune responses more potently than a tra-
ditional oil adjuvant. Therefore, B. subtilis spores could 
be novel and potential vaccine adjuvants against H9N2 
avian influenza virus in chickens.
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