Daichi Mukunoki

Toshiyuki Imamura

Yiyu Tan

Atsushi Koshiba

Jens Huthmann

Kentaro Sano

Fabienne Jézéquel

Stef Graillat

Roman Iakymchuk

Minimal-Precision Computing for High-Performance, Energy-Efficient, and Reliable Computations

We proposed a new systema.c approach for minimal-precision computa.ons. This approach is reliable, general, comprehensive, high-performant, and realis.c. Although the proposed system is s.ll in development, it can be constructed by combining already available (developed) in-house technologies as well as extending them. Our ongoing step is to demonstrate the system on a small applica.on.

In numerical computations, the precision of floating-point computations is a key factor to determine the performance (speed and energy-efficiency) as well as the reliability (accuracy and reproducibility). However, the precision generally plays a contrary role for both. Therefore, the ultimate concept for maximizing both at the same time is the minimal-precision computation through precision-tuning, which adjusts the optimal precision for each operation and data. Several studies have been already conducted for it so far, but the scope of those studies is limited to the precisiontuning alone. In this study, we propose a more broad concept of the minimal-precision computing with precisiontuning, involving both hardware and software stack.

Minimal-Precision Computing

Reliable

To ensure the requested accuracy, the precision-tuning is processed based on numerical validation, guaranteeing also reproducibility

General

Our scheme is applicable for any floa.ng-point computa.ons. It contributes to low development cost and sustainability (easy maintenance and system portability)

Comprehensive

We propose a total system from the precision-tuning to the execu.on of the tuned code, combining heterogeneous hardware and hierarchical soIware stack

High-performance

Performance can be improved through the minimalprecision as well as fast numerical libraries and accelerators

Realis6c

Our system can be realized by combining available in-house technologies

System Stack System Workflow

Low-level code for FPGA (VHDL etc.)

SPGen

for arbitrary-prec.

Compiler & Tools for FPGA CPU acceleration others…

OzBLAS ExBLAS

QPEigen MPLAPACK (MPBLAS) MPLAPACK [START_REF] Nakata | The MPACK (MBLAS/MLAPACK); a mul.ple precision arithme.c version of BLAS and LAPACK[END_REF] An open-source multiprecision BLAS and LAPACK based on several highprecision platforms such as MPFR, QD, and FP128.

MPFR [2]

A C library for multiple (arbitrary) precision floating-point computations on CPUs FloPoCo [START_REF] Dinechin | Designing custom arithme.c data paths with FloPoCo[END_REF] An open-source floating-point core generator for FPGA supporting arbitrary-precision.

No

Energy-Efficient

Through the minimal-precision as well as energy efficient hardware accelera.on with FPGA and GPU

FPGA as an Arbitrary-Precision Computing Platform Fast and Accurate Numerical Libraries

Error-free transforma-on of dot-product (x T y) OzBLAS (TWCU, RIKEN)

• OzBLAS [START_REF] Mukunoki | Accurate and Reproducible BLAS Rou.nes with Ozaki Scheme for Many-core Architectures[END_REF] is an accurate & reproducible BLAS using Ozaki scheme [START_REF] Jézéquel | CADNA: a library for es.ma.ng round-off error propaga.on[END_REF], which is an accurate matrix mulCplicaCon method based on the error-free transformaCon of dot-product • The accuracy is tunable and depends on the range of the inputs and the vector length • CPU and GPU (CUDA) versions ExBLAS (Sorbonne University)

• ExBLAS [START_REF] Iakymchuk | ExBLAS: Reproducible and Accurate BLAS Library[END_REF] is an accurate & reproducible BLAS based on floating-point expansions with error-free transformations (EFT: twosum and twoprod) and superaccumulator • Assures reproducibility through assuring correct-rounding: it preserves every bit of information until the final rounding to the desired format • CPU (Intel TBB) and GPU (OpenCL) versions

(x', x') = split(x) { ρ = ⌈(log 2 (u -1) + log 2 (n + 1))/2⌉ τ = ⌈log 2 (max 1 ≤ i ≤ n |x i |)⌉ σ = 2 (ρ+τ) x' = fl((x + σ) -σ) x' = fl(x -x') } (1)
x and y are split by split() (x (1) , x (2)) = split(x), (y (1) , y (2)) = split(y) it is applied recursively until x (p+1) = y (q+1) = 0

x = x (1) + x (2) +…+ x (p) , y = y (1) + y (2) +…+ y (q) (2) then, x T y is computed as

x T y = (x (1)) T y (1) + (x (1)) T y (2) +…+ (x (1)) T y (q) + (x (2)) T y (1) + (x (2)) T y (2) +… +… + (x (p)) T y (1) + (x (p)) T y (2) +…+ (x (p)) T y (q) (x (i)) T y (j) is error-free: (x (i)) T y (j) = fl((x (i)) T y (j)) Cygnus (University of Tsukuba)

• Cygnus is the world first supercomputer system equipped with both GPU (4x Tesla V100) and FPGA (2x Stratix 10), installed in CCS, University of Tsukuba

Cygnus system

Double-double format

ExBLAS scheme

B C SPGen (RIKEN)

• SPGen (Stream Processor Generator) [START_REF] Sano | Stream Processor Generator for HPC to Embedded Applica.ons on FPGA-based System Plaxorm[END_REF] is a compiler to generate HW module codes in Verilog-HDL for FPGA from input codes in Stream Processing DescripCon (SPD) Format. The SPD uses a data-flow graph representaCon, which is suitable for FPGA. • It supports FP32 only, but we are going to extend SPGen to support arbitrary-precision floaCng-point. Currently, there is no FPGA compiler supporCng arbitrary-precision.

Stochastic Arithmetic Tools

PROMISE (Sorbonne University)

A Precision tuning based on Delta-Debugging

Discrete StochasCc ArithmeCc (DSA) [START_REF] Vignes | Discrete Stochas.c Arithme.c for Valida.ng Results of Numerical SoIware[END_REF] enables us to esCmate rounding errors (i.e., the number of correct digits in the result) with 95% accuracy by execuCng the code 3 Cmes with random-rounding. DSA is a general scheme applicable for any floaCng-point operaCons: no special algorithms and no code modificaCon are needed. It is a light-weight approach in terms of performance, usability, and development cost compared to the other numerical verificaCon / validaCon methods.

QPEigen & QPBLAS (JAEA, RIKEN)

• Quadruple-precision Eigen solvers (QPEigen) [START_REF]Quadruple Precision Eigenvalue Calcula[END_REF][START_REF] Hirota | Performance of quadruple precision eigenvalue solver libraries QPEigenK and QPEigenG on the K computer[END_REF] is based on double-double (DD) arithmetic. It is built on a quadruple-precision BLAS (QPBLAS) [START_REF]Quadruple Precision BLAS Rou[END_REF]. They support distributed environments with MPI: equivalent to ScaLAPACK's Eigen solver and PBLAS Arbitrary-precision arithmeCc is performed using MPFR on CPUs, but the performance is very low. To accelerate it, we are developing several numerical libraries supporCng accurate computaCon based on high-precision arithmeCc or algorithmic approach. Some sojware also support GPU acceleraCon.

FPGA enables us to implement arbitrary-precision on hardware. High-Level Synthesis (HLS) enables us to program it in OpenCL. However, compiling arbitrary-precision code and obtaining high performance are still challenging. Heterogeneous computing with FPGA & CPU/GPU is also a challenge

 CADNA & SAM (Sorbonne University) • CADNA (Control of Accuracy and Debugging for Numerical Applications) [18] is a DSA library for FP16/32/64/128 • CADNA can be used on CPUs in Fortran/C/C++ codes with OpenMP & MPI and on GPUs with CUDA. • SAM (Stochastic Arithmetic in Multiprecision) [23] is a DSA library for arbitrary-precision with MPFR.

•(1)

 1 Define IP core "Core" Main_In {in:: x0_0, x0_1, y0_0, y0_1}; Main_Out {out::x2_0, x2_1, y2_0, y2_1}; ### Description of parallel pipelines for t=0 HDL pe10, 123, (x1_0, y1_0) = PE(x0_0, y0_0); HDL pe11, 123, (x1_1, y1_1) = PE(x0_1, y0_1); ### Description of parallel pipelines for t=1 HDL pe20, 123, (x2_0, y2_0) = PE(x1_0, y1_0); HDL pe21, 123, (x2_1, y2_1) = PE(x1_1, y1_1); Name PE; ### Define pipeline "PE" Main_In {in:: x_in, y_in}; Main_Out {out::x_out, y_out}; EQU eq1, t1 = x_in * y_in; EQU eq2, t2 = x_in / y_in; EQU eq3, x_out = t1 + t2; EQU eq3, y_out = t1 -t2; Nymble [15] is another compiler project for FPGA. It directly accepts C codes and has already started to support arbitrary-precision. • It is more suited for non-linear memory access pattern, like with graph based data structures. The same code is run several Cmes with the random rounding mode (results are rounded up / down with the same probability) (2) Different results are obtained (3) The common part in the different results is assumed to be a reliable result is a tool based on Delta-Debugging [24] to automaCcally tune the precision of floaCngpoint variables in C/C++ codes • The validity of the results is checked with CADNA • We are going to extend PROMISE for arbitrary-precision with MPFR • Each Stratix 10 FPGA has four external links at 100Gbps. 64 FPGAs make 8x8 2D-Torus network for communication • This project targets such a heterogeneous system with FPGA.

 the unit round-off

Code Transla,on for FPGA (SPGen, Nymble, FloPoCo)

				available	in development		Precision-Optimizer
	Precision	FP32, FP64, (FP16, FP128)	Arbitrary-Precision			Input: C code with MPFR (and MPLAPACK)	achieve the desired accuracy • The Precision-Optimizer determines the minimal floating-point precisions, which need to
	Tuning	PROMISE	PROMISE			
	Numerical Libraries Numerical Validation	BLAS LAPACK others… Stochastic Arithmetic SAM CADNA with SAM	Fast Accurate Methods / Libraries	Precision-Op,mizer (op.mized) C code with MPFR and CADNA/SAM) (with PROMISE	into account FPGA (as heterogeneous computing) • If possible, it considers to utilize • The required-accuracy must be taken some parts of the code with some other accurate computation methods than MPFR, those parts are replaced with them • At this stage, if possible to speedup Performance Optimization
						Performance
	Hardware Arithmetic Library		MPFR	DD/QD acceleration	Op,miza,on FPGA?	Yes	A part of the C code executed on FPGA with MPFR, which is
				Heterogeneous System	
		GPU			GPU	
			Nymble FloPoCo		C code with MPFR + other fast accurate methods
			FPGA			
						Compila.on and Execu.on on CPU/GPU	Compilation and Execution on FPGA

Acknowledgement:

This research was partially supported by the European Union's Horizon 2020 research, innovation programme under the Marie Skłodowska-Curie grant agreement via the Robust project No. 842528, the Japan Society for the Promotion of Science (JSPS) KAKENHI Grant No. 19K20286, and Multidisciplinary Cooperative Research Program in CCS, University of Tsukuba.

Minimal-precision compu0ng is both reliable (aka robust) and sustainable as it ensures the requested accuracy of the result as well as is energy-efficient.

Our Proposal

Field-Programmable Gate Array (FPGA) with High-Level Synthesis (HLS)

• FPGA enables us to implement any operations on hardware, including arbitrary-precision operations • HLS enables us to use FPGAs through existing programming languages such as C/C++ and OpenCL • FPGA can be used to perform arbitrary-precision computations on hardware efficiently (highperformance and energy-efficient)

(

1) Precision-tuning with numerical validation based on stochastic arithmetic

• Rounding-errors can be es.mated stochas.cally with a reasonable cost (for details, see "A.

Stochas.c Arithme.c Tools" at the booom leI) • General scheme applicable for any floa,ng-point computa,ons Tools:

• High-precision arithmetic: binary128 (intel, gcc), QD [START_REF] Bailey | QD (C++/Fortran-90 double-double and quad-double package)[END_REF], MPFR [START_REF] Hanrot | MPFR : GNU MPFR Library[END_REF], ARPREC [START_REF] Bailey | ARPREC: An Arbitrary Precision Computa.on Package[END_REF], CAMPARY [START_REF] Campary | [END_REF], etc. • Accurate sum/dot: AccSum/Dot [START_REF] Ogita | Accurate Sum and Dot Product[END_REF], Ozaki-scheme [START_REF] Ozaki | Error-free transforma.ons of matrix mul.plica.on by using fast rou.nes of matrix mul.plica.on and its applica.ons[END_REF], etc. • Numerical libraries: MPLAPACK [START_REF] Nakata | The MPACK (MBLAS/MLAPACK); a mul.ple precision arithme.c version of BLAS and LAPACK[END_REF], QPEigen [START_REF]Quadruple Precision Eigenvalue Calcula[END_REF],

QPBLAS [START_REF]Quadruple Precision BLAS Rou[END_REF], XBLAS [START_REF] Li | XBLAS -Extra Precise Basic Linear Algebra Subrou[END_REF], ReproBLAS [START_REF] Ahrens | ReproBLAS -Reproducible Basic Linear Algebra Sub-programs[END_REF], ExBLAS [START_REF] Iakymchuk | ExBLAS: Reproducible and Accurate BLAS Library[END_REF], OzBLAS [START_REF] Mukunoki | Accurate and Reproducible BLAS Rou.nes with Ozaki Scheme for Many-core Architectures[END_REF], etc.

Tools:

• Compilers: SPGen [START_REF] Sano | Stream Processor Generator for HPC to Embedded Applica.ons on FPGA-based System Plaxorm[END_REF], Nymble [START_REF] Huthmann | Hardware/soIware co-compila.on with the Nymble system[END_REF], etc.

• Custom floating-point operation generator: FloPoCo [START_REF] Dinechin | Designing custom arithme.c data paths with FloPoCo[END_REF], etc.

Tools:

• PROMISE [START_REF] Graillat | Auto-tuning for floa.ng-point precision with Discrete Stochas.c Arithme.c[END_REF] (based on a stochastic arithmetic library, CADNA [START_REF] Jézéquel | CADNA: a library for es.ma.ng round-off error propaga.on[END_REF]), Verrou [START_REF] Févooe | Debugging and op.miza.on of HPC programs in mixed precision with the Verrou tool[END_REF], etc.

Related work (not validation-based):

• Precimonious [START_REF] Rubio-González | Precimonious: Tuning Assistant for Floa.ng-Point Precision[END_REF], GPUMixer [START_REF] Laguna | GPUMixer: Performance-Driven Floa.ng-Point Tuning for GPU Scien.fic Applica.ons[END_REF] etc.

France-Japan-Germany trilateral workshop: Convergence of HPC and Data Science for Future Extreme Scale Intelligent Applica.ons (Tokyo, Japan) November 6-8, 2019

Introduction

A France-Japan joint research project