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Abstract

Dynamic mesh adaptation methods require suitable refinement indicators.

In the absence of a comprehensive error estimation theory, adaptive mesh

refinement (AMR) for nonlinear hyperbolic conservation laws, e.g. com-

pressible Euler equations, in practice utilizes mainly heuristic smoothness

indicators like combinations of scaled gradient criteria. As an alternative,

we describe in detail an easy to implement and computationally inexpensive

criterion built on a two-level wavelet transform that applies projection and

prediction operators from multiresolution analysis. The core idea is the use

of the amplitude of the wavelet coefficients as smoothness indicator, as it can
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be related to the local regularity of the solution. Implemented within the

fully parallelized and structured adaptive mesh refinement (SAMR) software

system AMROC (Adaptive Mesh Refinement in Object-oriented C++), the

proposed criterion is tested and comprehensively compared to results ob-

tained by applying the scaled gradient approach. A rigorous quantification

technique in terms of numerical adaptation error versus used finite volume

cells is developed and applied to study typical two- and three-dimensional

problems from compressible gas dynamics. It is found that the proposed

multiresolution approach is considerably more efficient and also identifies –

besides discontinuous shock and contact waves – in particular smooth rar-

efaction waves and their interaction as well as small-scale disturbances much

more reliably. Aside from pathological cases consisting solely of planar shock

waves, the majority of realistic cases show reductions in the number of used

finite volume cells between 20 to 40%, while the numerical error remains

basically unaltered.

Keywords:

Block-structured parallel adaptive mesh refinement, adaptation criteria,

multiresolution analysis, wavelets, compressible Euler equations, AMROC

1. Introduction

In the numerical simulation of inviscid compressible gas dynamics, dy-

namic mesh adaptation based on flow features, especially shock waves and

contact discontinuities, can reduce the computing time significantly, while

preserving high accuracy of the numerical solutions. A recent benchmark of

mesh adaptation techniques for the Euler equations on Cartesian meshes is
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given in [1]. A core finding of this work was that the wavelet-based multireso-

lution mesh adaptation approach, which is mathematically rigorous, leads to

a more reliable mesh adaptation; yet, the block-based adaptation approach

– thanks to very effective data structures – reduces the overall computing

time drastically. Hence, we decided to combine both techniques into a single

parallel computer code.

Multiresolution (MR) analysis, introduced by Mallat and Meyer [2, 3, 4],

is intimately related to the theory of discrete wavelets and the development

of the fast wavelet transform. Thus wavelet bases can be constructed which

have some specific desired proprieties, like, for instance, (bi-)orthogonality,

compact support, local regularity detection and norm equivalences. The

idea of multiresolution analysis is to represent a function, or a flow field,

at different resolution levels, which yield corresponding approximations with

a finite number of mesh points. The approximation spaces are nested and

can be generated by refinable functions. Wavelets then come into play when

considering the difference between subsequent resolution levels. Computing

the differences from the finest down to the coarsest resolution transforms

a single-level representation of a function into a multiresolution representa-

tion. Mathematical tools from approximation theory allow to define adaptive

(also called nonlinear) approximations of functions selecting only the most

significant coefficients of their series representation. Such approximations are

attractive as they reduce the number of coefficients and in addition provide

rigorous estimations of the error to represent the function discretely, cf. [5].

Since the late 1980’s such multiresolution representations have become very

popular in a wide range of applications for data compression, de-noising and
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more recently also in adaptive computations of nonlinear partial differential

equations (PDE). A key feature is suitable thresholding of the wavelet co-

efficients combined with an adaptation strategy to predict the set of active

wavelet coefficients, which thus allows reducing the computational cost in

terms of CPU time and memory requirements.

A detailed review of the literature using MR techniques for adaptive dis-

cretizations of PDEs is beyond the scope of the paper and we refer the in-

terested reader for instance to [6, 7, 8]. A first application of MR techniques

to PDEs was given by Harten who introduced MR analysis as an indicator

to control the switch between cheap and expensive numerical fluxes on static

fully refined grids [9]. Later on, these ideas were also applied to trigger lo-

cal grid adaptation for hyperbolic conservation laws with the objective of

automatic approximation error control and CPU time reductions. Harten’s

contributions were considered as seminal in this area too, with numerous

theoretical and practical works carried out in order to verify the properties

and efficiency of that approach, and also its extension to higher dimensions,

cf. [10, 11, 12]. In the context of Uncertainty Quantification (UQ) for com-

pressible flows MR techniques have been used in [13]. The main components

of Harten’s method is that the designed MR tool has two local operators to

perform the wavelet transform, namely prediction and projection. These lo-

cal operators can be combined to generate the so-called wavelet coefficients,

which encode the information needed to go from a coarse to a finer resolution.

The amplitudes of the wavelet coefficients can be used as local regularity indi-

cators of the numerical solution. In regions where their amplitudes are small,

the solution is smooth, while in regions where the amplitudes are large, the
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solution needs finer resolution. Hence, the wavelet coefficients are the basis

of a natural refinement indicator and could also be used for mesh coarsening,

if required by the adaptation approach.

In the context of discontinuous Galerkin methods multiresolution tech-

niques have also been developed for grid adaptation in numerous works, for

instance [14, 15, 16]. For high-order DG discretizations multi-wavelets have

been introduced for grid adaptation, which allow for higher-order vanishing

moments, while maintaining local support. Applications of adaptive simula-

tions have been presented by Gerhard et al. for compressible flows [17].

In the framework of semi-Lagrangian methods, multiresolution analysis

has been developed for triggering adaptive meshes for vortex methods by

Rossinelli et al. [18], including local time stepping. A multi-code implemen-

tation for computing incompressible viscous flows in two space dimensions

has been proposed in the open source package MRAG-I2D [18]. More re-

cently, Tanaka et al. [19] enhanced a moving particle semi-implicit method

using multiresolution tools and presented verification tests for channel and

free surface flows.

In our work [1], a serial two- and three-dimensional implementation of MR

smoothness detection in the cell-based finite volume code Carmen was com-

pared with the scaled gradient (SG) refinement criterion, as implemented in

the AMROC (Adaptive Mesh Refinement in Object-oriented C++) frame-

work [20]. Note that AMROC uses a block-structured adaptive mesh re-

finement approach, while Carmen refines individual cells. In addition, the

employed numerical fluxes and time integration strategies – while similar –

were not exactly identical. Hence, a direct comparison of refinement criteria
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in terms of numerical error and run-time performance was complicated as

not only slightly different finite volume base schemes but also two different

refinement algorithms on vastly different data structures were involved. Also,

AMROC is fully parallelized, while the cell-based Carmen code was available

in a serial version only, thereby restricting the comparison to smaller con-

figurations. Still, the main results indicated that the MR approach presents

a better localization of the adaptive solution, while the AMROC framework

was roughly ten times faster than the Carmen code.

This motivated incorporation of the MR strategy as a refinement ap-

proach into AMROC [21]. The aim of the current work is to use one frame-

work only, and to this end the multiresolution approach has been imple-

mented into AMROC as a criterion for mesh refinement. Moreover, the fully

parallel version of AMROC has been used together with block-based grids

with hierarchical time step reduction. The underlying finite volume dis-

cretization of the SAMR and MR computations is now always identical and

allows to assess the relative performance of scaled gradients and multireso-

lution based mesh refinement. Then, here, we use the new software system

to report about the first comprehensive assessment of the MR approach for

various adaptive shock-capturing schemes for Euler equations of compressible

gas dynamics that have been previously implemented in AMROC [20].

The paper is organized as follows: Section 2 sketches the principles of

SAMR for the Euler equations, its implementation in the AMROC frame-

work, and especially details the different refinement indicators that are eval-

uated in this work. Then, a large set of 2d as well as 3d numerical ex-

periments are presented in Section 3; conclusions and perspectives of this
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study are drawn in Section 4. In Appendix A a detailed description of the

multiresolution approach for finite volumes is given.

2. Structured adaptive mesh refinement

2.1. Governing equations for compressible gas dynamics

In the solution of nonlinear hyperbolic partial differential equations, ∂tq+

∇ · f(q) = 0, a multitude of length scales is ubiquitous. It is well established

that for nonlinear flux functions f(q) even continuous initial data can develop

into discontinuities over a finite time interval [22]. Here, we consider the

three-dimensional compressible Euler equations written in conservation form

with flux function f = (f1, f2, f3)T given by

f1 =



ρv1

ρv2
1 + p

ρv1v2

ρv1v3

(ρE + p)v1


, f2 =



ρv2

ρv1v2

ρv2
2 + p

ρv2v3

(ρE + p)v2


, f3 =



ρv3

ρv1v3

ρv2v3

ρv2
3 + p

(ρE + p)v3


,

with ρ denoting the fluid density, vi are the components of the velocity vec-

tor and E is the energy per unit mass. The hydrodynamic pressure p for a

perfect gas is given by the equation of state p = (γ − 1) ρ
(
E − v2

2

)
, with γ

denoting the specific heat ratio. In the case of Euler equations discontinuous

shock and contact waves can develop. Finite volume shock-capturing meth-

ods have been constructed to handle particularly this behavior in a robust

and oscillation-free way [23]. Since in practical inviscid problems such dis-

continuities are usually very localized, a local increase of mesh resolution is

beneficial to represent these jumps as accurately as possible.
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2.2. Block-structured adaptive mesh refinement in AMROC

A particular important mesh adaptation approach for finite volume meth-

ods of hyperbolic conservation laws is the SAMR method after Berger and

Collela [24, 25, 26]. This approach follows a patch-oriented strategy, where

non-overlapping rectangular sub-meshes G`,m are employed to cover the do-

main G` of each level with index ` = 0, . . . , L as G` :=
⋃M`

m=1G`,m. As the

construction of refinement proceeds recursively, a hierarchy of sub-meshes,

successively contained within the next coarser level domain, is created, cf.

Fig. 1. Values of cells covered by finer sub-meshes are subsequently overwrit-

ten by averaged fine mesh values, which, in general, would lead to a loss of

conservation on the coarser mesh. A remedy to this problem is to replace

the coarse mesh numerical fluxes at refinement boundaries with the sum of

fine mesh fluxes along the corresponding coarse cell boundary, cf. [25, 20].

The recursive nature of the algorithm allows only the addition of one

new level in each refinement operation. The patch-based approach does not

require special coarsening operations; sub-meshes are simply removed from

the hierarchy. The coarsest possible resolution is thereby restricted to the

level `=0 mesh. The resolution ∆xn,0 and ∆t0 of the mesh at `=0 is specified

by the user. In AMROC and most other SAMR implementations, all mesh

widths on level ` are r`-times finer than on the level `−1, i.e. ∆t` = ∆t`−1/r`

and ∆xn,` = ∆xn,`−1/r`, with r` ∈ N, r` ≥ 2 for ` > 0, which ensures that

a time-explicit finite volume (FV) scheme remains stable under a CFL-type

condition on all levels of the hierarchy.

Although AMROC allows arbitrary refinement factors, in order to stay

within the framework of traditional multiresolution analysis, all computa-
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tions in this paper use dyadic grids with r` = 2 being used for the refinement

of all levels.

The numerical update is applied on the level ` by calling a single-block

routine implementing the FV scheme in a loop over all sub-meshes G`,m.

The regularity of the input data allows a straightforward implementation of

the scheme and further permits optimization to take advantage of high-level

caches, pipelining, etc. New refinement meshes are initialized by interpo-

lating the vector of conservative quantities Q from the next coarser level;

data in cells already refined are copied directly from the previous refinement

patches. Ghost cells around each patch are used to decouple the sub-meshes

computationally. The execution of the numerical loop in UpdateLevel() in

Algorithm 1 requires the previous setting of the ghost cell values. Ghost

cells outside of the root domain G0 are used to implement physical boundary

conditions. Ghost cells in G` have a unique interior cell analogue and are set

by copying the data value from the patch where the interior cell is contained

(synchronization). For `>0, internal boundaries can also be used. If recur-

sive time step refinement is employed, ghost cells at the internal refinement

boundaries on the level ` are set by time-space interpolation from the two

previously calculated time steps of level `−1. Otherwise, spatial interpolation

from the level `−1 is sufficient.

Besides data structures that store the topology of the hierarchy (cf.

Fig. 1), the SAMR method requires at most two regular arrays assigned

to each subgrid which contain the discrete vector of state Q for the actual

and updated time step. In the Algorithms 1 and 2 we denote by Q`(t) and

Q`(t+ ∆t`) the unions of these arrays on level `. The edge- or face-centered
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Grid hierarchy

G2,1 G2,2

G1,1 G1,2 G1,3

G0,1

parent / child
neighbors

G2,1

G2,2

G1,1

G1,2

G1,3

G0,1

Figure 1: Hierarchy of rectangular sub-meshes in the SAMR approach.

flux correction terms δFn,`+1 have to be stored along the boundaries, where

a level ` > 0 abuts the next coarser level. Initialization and calculation of

the correction terms can be done efficiently during the loop over all subgrids

in UpdateLevel(). The numerical fluxes Fn are necessary only temporarily.

New refinement grids on all higher levels are created when Regrid(`) is

called in Algorithm 1. Level ` itself is not modified. To consider the nesting

of the level domains already in the grid generation, Algorithm 2 starts at the

highest refinable level `c, where 0 ≤ `c < L. The refinement flags are stored

in grid-based integer arrays N ι. Central to the block-structured mesh refine-

ment approach is the utilization of a dedicated algorithm to create blocks

from individual cells tagged for refinement by any of the criteria described in

the next section. We use a recursive algorithm proposed by Bell et al. [27] to

create a new block refinement Ğι+1 on basis of N ι. This method, inspired by

techniques used in image detection, counts the number of flagged cells in each

row and column on the entire domain. The sums Υ are called signatures.

First, cuts into new boxes are placed on all edges where Υ is equal to zero.
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Algorithm 1: Recursive AMR algorithm.

AdvanceLevel(`)

Repeat r` times

Set ghost cells of Q`(t)

If time to regrid

Regrid(`)

UpdateLevel(`)

If level `+ 1 exists

Set ghost cells of Q`(t+ ∆t`)

AdvanceLevel(`+ 1)

Average Q`+1(t+ ∆t`) onto

Q`(t+ ∆t`)

Correct Q`(t+ ∆t`) with δFn,`+1

t := t+ ∆t`

In the second step, cuts are placed at zero crossings of the discrete second

derivative ∆ = Υν+1 − 2 Υν + Υν−1. The algorithm starts with the steep-

est zero crossing and uses recursively weaker ones, until the ratio between

flagged and all cells in every new mesh is above the prescribed threshold value

0 < η ≤ 1. In practice, values around η = 0.80 are used. A buffer zone of

one or two cells is usually added around tagged cells to avoid degradation of

results from interpolation. A depiction of the signatures, second derivatives

and resulting blocks is given in Fig. 2. The upper index to Υ and ∆ indicates

the respective step of the recursive block generation procedure.

The re-initialization of the hierarchical data structures is done in the sec-

ond loop of Algorithm 2 utilizing auxiliary data Q̆ι(t). Cells in newly refined
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−1

1

0

Υ3
row

3

1

Υ1

col 6 6 2 3 3 2 2 2 2 2

∆1

col −4 5 1 −1 1 0 0 0

Υ2

col 2 2 0 0 0 0 0 0 0 0

Υ3

col 0 0 0 2 2 2 2 2 2 2

Υ4

col 4 4 2 3 3 2 2 2 2 2

∆4

col
−2 3 −2 −1 1 0 0 0

Υ5

col 4 4 2 1 1 0 0 0 0 0

∆5

col −2 1 1

Υ6

col 2 1 1

∆6

col 1

Figure 2: Signatures and second derivatives used for clustering.

regions Ğι\Gι are initialized by interpolation, values of cells in Ğι ∩ Gι are

copied. As interpolation requires the previous synchronized reorganization

of Qι−1(t), recomposition starts on level `+ 1.

Our AMROC framework [28, 20] implements the SAMR method discreti-

zation-independent in one to three space dimensions and is fully parallelized

for distributed memory systems. A rigorous domain decomposition strat-

egy is pursued, in which the workload from all refinement levels is projected

onto the level-0 cells before partitioning. The updated roughly load balanc-

ing distribution is then computed for level 0 only and all higher level sub-

grids are possibly split, redistributed across the parallel machine, and merged
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Algorithm 2: Regridding procedure.

Regrid(`)

For ι = `c Downto l Do

Flag N ι according to Qι(t)

Generate Ğι+1 from N ι

Ensure nesting of Ğ`+1, . . . , Ğ`c+1

For ι = `+ 1 To `c + 1 Do

Create Q̆ι(t) from Ğι

Interpolate Qι−1(t) onto Q̆ι(t)

Copy Qι(t) onto Q̆ι(t)

Set ghost cells of Q̆ι(t)

Qι(t) := Q̆ι(t)

where possible, based on the new level-0 partition [29]. During repartition-

ing, all inter-processor communication patterns are updated. Overlapping

ghost-cell regions of neighboring patch blocks are synchronized over proces-

sor borders as boundary conditions are applied using a single non-blocking

MPI-library-call with all the ghost cell data between two respective proces-

sors. In AMROC, a generalized Hilbert space filling curve algorithm is used

for load-balanced SAMR data distribution. On adaptive Cartesian meshes,

space filling curves provide an effective compromise between the competing

partitioning requirements of balancing the estimated workload and reducing

the partition surface area for parallel ghost cell synchronization. Space fill-

ing curves are also locality preserving and hence induce only moderate data

redistribution costs as the adaptive mesh is evolving. The present version

of AMROC achieves close to linear scalability in dynamically adaptive 3d

13



simulations on O(1000) processors.

2.3. Standard refinement criteria

In adaptive mesh refinement methods typically scaled gradient and heuris-

tic error estimations are used. For example adaptation along discontinuities

can be easily achieved by evaluating gradients multiplied by the step size

in all spatial directions. For the sake of clarity we restrict the subsequent

description to mainly two space dimensions and thereby flag a cell (i, j) for

refinement if at least one of the relations

|w(Qi+1,j)− w(Qi,j)| > εw, |w(Qi,j+1)− w(Qi,j)| > εw,

|w(Qi+1,j+1)− w(Qi,j)| > εw
(1)

is satisfied for a scalar quantity w, which is derived from the vector of state

Q`(t) on level `. The constant εw denotes the prescribed refinement threshold.

As an alternative to scaled gradients, AMROC also supports heuristic er-

ror estimation by Richardson extrapolation as suggested originally by Berger

and Oliger [24]. In this technique, the current solution is integrated forward

tentatively by one time step with ∆t` and coarsened by a factor of 2. Si-

multaneously, the solution from the previous time step is coarsened also by

a factor of 2 and integrated one time step with 2∆t`. After this, the lo-

cal error estimation of the scalar quantity w is computed, where for actual

applications a normalized version of that error with a prescribed tolerance

needs to be employed [28]. The error estimation technique is intended as a

refinement indicator in regions where the solution is smooth and in practice

it is generally combined with a scaled gradient criterion, e.g., to capture the

shock waves [20].
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While implementing Richardson extrapolation in an adaptive code is

rather complex, already our early quantitative comparisons of criteria, cf.

[21], uncovered significant deficiencies of the Richardson error estimation

technique in detecting smooth structures in oblique directions to the Carte-

sian mesh. As a result, Richardson estimation was found to be a dramatically

less efficient adaptation criterion, even for problems with smooth solution,

than the scaled gradient approach. Hence it is not considered here any fur-

ther.

2.4. Multiresolution as a refinement criterion

As explained above, the underlying idea of multiresolution techniques for

mesh adaptation in numerical schemes is based on representing the numerical

solution on different resolution levels. Compression of the number of mesh

points, corresponding to coarsening the mesh locally, can be obtained by

checking what happens between subsequent mesh resolutions [6, 7, 8].

We consider a discrete solution of a FV discretization as initial cell aver-

age data Q`+1 at level ` + 1. The principle of the cell average MR methods

is the transformation of these data Q`+1 into an equivalent multiscale repre-

sentation. For instance, in one decomposition level we have

Q`+1
projection



prediction

Q`+1
MR = {Q`} ∪ {d`+1},

where the set d`+1 contains the information between the two consecutive

levels ` and ` + 1, and Q` stores a smoothed version of the original numeri-

cal solution Q`+1. The data at the highest resolution level are transformed

into a set of coarser scale approximations plus a series of prediction errors
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corresponding to wavelet coefficients d`. These coefficients describe the in-

formation difference between subsequent resolutions. In order to perform the

MR method with finite volume data, operations for projection and prediction

are required, where the cell values are local averages. These local averages

correspond in the wavelet language to the scaling functions using the Haar

basis (cf. Appendix A).

A coarser cell Ω`
i,j has its value estimated using the finer level values and

a unique projection operator P `+1→` : Q`+1 7→ Q`. For the two-dimensional

case [30], the projection is performed by

Q`
i,j =

1

4

(
Q`+1

2i,2j + Q`+1
2i,2j+1 + Q`+1

2i+1,2j + Q`+1
2i+1,2j+1

)
, (2)

where Q`
i,j is the average value of the cell Ω`

i,j. Conversely, the prediction

operators P `→`+1
i,j : Q` 7→ Q`+1 yield a non-unique approximation of Q`+1

i,j

by interpolation. Following the line of argumentation of Appendix A, the

two-dimensional operators using tensor products for m,n ∈ {0, 1} read

Q̂`+1
2i+m,2j+n = Q`

i,j

+
1

8

[
(−1)m

(
Q`
i+1,j −Q`

i−1,j

)
+ (−1)n

(
Q`
i,j+1 −Q`

i,j−1

)]
+

1

64

[
(−1)mn

(
Q`
i+1,j+1 −Q`

i+1,j−1 −Q`
i−1,j+1 + Q`

i−1,j−1

)]
,

(3)

where the cell Q̂`+1
i,j is an approximation of the value Q`

i,j and its eight nearest

cells Q`
i±1,j±1. With this choice, the operators satisfy the properties of locality

and consistency.

Following Eq. (A.9), the prediction operator is used to obtain the wavelet

coefficients d`+1
2i,2j+1, d`+1

2i+1,2j and d`+1
2i+1,2j+1, of the finer cells. The coefficients
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are given by the approximation error of the prediction operator as

d`+1
2i,2j+1 = Q`+1

2i,2j+1 − Q̂`+1
2i,2j+1,d

`+1
2i+1,2j = Q`+1

2i+1,2j − Q̂`+1
2i+1,2j,

d`+1
2i+1,2j+1 = Q`+1

2i+1,2j+1 − Q̂`+1
2i+1,2j+1.

(4)

From wavelet theory it is known that the decay of the wavelet coefficients

also estimates the local regularity of a function, and in our case, of the

computed numerical solution [10]. Hence, it is natural to utilize the wavelet

coefficients to determine dynamic refinement as they indicate regions of steep

gradients or discontinuities. Since the objective of a refinement indicator is

the creation of level `+ 1 from level `, the criterion needs to be evaluated on

` and we thereby have to shift Eq. (4) one level downward. Consequently,

Q̂`
i,j is obtained as the averaged projection onto the next coarser level `− 1,

which is interpolated again back onto level `, i.e., we evaluate the wavelet

coefficients d`i,j = Q`
i,j − Q̂`

i,j in fact as

d`i,j = Q`
i,j − P `−1→`

0/1 P `→`−1(Q`
i,j). (5)

Comparing a suitable norm of the local wavelet coefficient with a user-

specified regularity threshold, |d`i,j| > ε, then marks cells at level ` for refine-

ment at the next finer level.

Based on the considered norm for the error estimate and depending on

the space dimensions, there are different possible choices for the threshold,

which allow identifying the retained large wavelet coefficients. In the context

of finite volumes, in order to control the L1-norm, Harten’s thresholding

strategy is primarily used, i.e,

ε` =
ε

|Ω|
2d (`+1−L), 0 ≤ ` < L, (6)
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where L is the finest scale level, the dimension parameter d = 2 or 3 according

to the dimension used, and |Ω| is the cell area. It is also possible to use a

constant threshold value ε for all levels. For instance, in [31] it was found

that for multiresolution techniques applied for UQ using a truncation and

encode approach thresholding with constant values could be more efficient

than the level dependent choice, proposed by Harten [32]. In the context

of adaptive stochastic problems Abgrall et al. [33] used however a level

dependent threshold. In Domingues et al. [34] we analyzed the choice of

the threshold for the compressible Euler equations and found that level (and

dimension) dependent values yield better results considering the MR category

that combines a time adaptive strategy with a controlled time-stepping.

In some of the numerical experiments we use different threshold values

to verify the influence of the perturbation error. In practical applications

the threshold should be chosen such that perturbation (thresholding) and

discretization errors are of the same order. One possible option for deter-

mining the order of the threshold value is to perform a series of computations

on a coarser mesh. For linear advection and advection-diffusion equations a

theoretical error estimate has been provided in [35, 12], however a constant

needs to be estimated which also requires test computations, as discussed in

[12].

While it seems natural to use a vector norm, e.g., the Euclidean norm, to

compute |d`i,j| for the entire state vector in each cell, this usually requires very

careful rescaling to ensure an equal consideration of all vector components

in the refinement indicator. In practice, the application of multiple scalar

refinement indicators with individual threshold values is generally easier to

18



use. Since all flow features inherent to the Euler equations can be well

detected in the density field, we have opted in this investigation to apply

the new multiresolution criterion as well as the scalar gradient criterion to ρ

only. Just the benchmark of Section 3.3 used scalar criteria for ρ and p in

combination.

The extension of the described criterion to three space dimensions is done

in a canonical manner. First, the projection operation P `+1→` is formulated

as the algebraic average of eight fine grid cells. Secondly, the interpolation

operations P `→`+1
i,j,k : Q` 7→ Q`+1 are constructed as tensor products. For the

computations of Section 3.3 we have used the polynomial prediction operators

given in [12], which reads for m,n, p ∈ {0, 1}

Q̂`+1
2i+m,2j+n,2k+p = Q`

i,j,k +
1

8

[
(−1)m

(
Q`
i+1,j,k −Q`

i−1,j,k

)
+ (−1)n

(
Q`
i,j+1,k −Q`

i,j−1,k

)
+ (−1)p

(
Q`
i,j,k+1 −Q`

i,j,k−1

)]
+

1

64

[
(−1)mn

(
Q`
i+1,j+1,k −Q`

i+1,j−1,k −Q`
i−1,j+1,k + Q`

i−1,j−1,k

)
(−1)np

(
Q`
i,j+1,k+1 −Q`

i,j−1,k+1 −Q`
i,j+1,k−1 + Q`

i,j−1,k−1

)
(−1)mp

(
Q`
i+1,j,k+1 −Q`

i−1,j,k+1 −Q`
i+1,j,k−1 + Q`

i−1,j,k−1

)]
+

1

512

[
Q`
i+1,j+1,k+1 −Q`

i+1,j+1,k−1 −Q`
i+1,j−1,k+1 −Q`

i−1,j+1,k+1+

Q`
i+1,j−1,k−1 + Q`

i−1,j+1,k−1 + Q`
i−1,j−1,k+1 −Q`

i−1,j−1,k−1

]
.

(7)

Finally, the extension of Eq. (5) to three dimensions defines seven wavelet
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coefficients

d`+1
2i,2j+1,2k = Q`+1

2i,2j+1,2k − Q̂`+1
2i,2j+1,2k,

d`+1
2i+1,2j,2k = Q`+1

2i+1,2j,2k − Q̂`+1
2i+1,2j,2k,

...

d`+1
2i+1,2j+1,2k+1 = Q`+1

2i+1,2j+1,2k+1 − Q̂`+1
2i+1,2j+1,2k+1.

(8)

In AMROC, we compute the dimension-dependent version of Eq. (5) on

a per-block basis using temporary auxiliary data coarsened by a factor of

two. It is apparent that all computations are strictly local and thereby no

additional parallelization effort or penalty is involved.

2.5. Evaluation of the adaptation error

In order to compare different refinement criteria quantitatively, it is neces-

sary to evaluate the numerical error of an adaptive computation with respect

to the error of the same computation on a uniform mesh of the same maximal

resolution. Here, we evaluate the numerical error primarily in the discrete

L1 norm, which is introduced for the error on level ` on a level-wise domain

G` as

L1(Q`, G`) =
∑
i,j

|Q`
i,j − q(xi, yj)|∆x`∆y`, (9)

with q(xi, yj) and i, j ∈ Z denoting the exact solution evaluated point-wise

in the respective cell centers of a two-dimensional Cartesian grid. If the

entire problem domain – that is G0 in the SAMR approach – is refined at the

maximal level L, we obtain the conventional numerical error of the numerical

method on a uniform mesh with resolutions ∆xL and ∆yL,

L1,uni(Q
L, G0) =

∑
i,j

|QL
i,j − q(xi, yj)|∆xL∆yL, (10)
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which we denote just by L1,uni(Q). In the adaptive case, however, the error

on G0 is given as the sum of the L1-errors computed on those parts of G`

that have no higher refinement, that is,

L1(Q) = L1(QL, GL) +
L−1∑
`=0

L1(Q`, G` \G`+1). (11)

In addition, we introduce the level-wise adaptation error

L1,AMR(Q`, G`) that is defined as

L1,AMR(Q`, G`) =
∑
i,j

|Q`
i,j −Qr

i,j|∆x`∆y`, (12)

where Qr
i,j corresponds to a solution computed on a uniform mesh with step

sizes corresponding to the finest adaptive resolution at level L and averaged

onto the actual level `, in case its resolution is coarser. Finally, the adaptation

error on the entire domain, L1,AMR(Q), is defined from Eq. (12) in analogy

to L1(Q) from Eq. (11).

In these notations, obviously the relation

L1(Q) ≤ L1,AMR(Q) + L1,uni(Q) (13)

holds true, yielding

L1(Q)− L1,uni(Q) ≤ L1,AMR(Q). (14)

Since L1,uni(Q) is the error of the finite volume scheme itself and independent

of any mesh refinement procedure, i.e. a constant when varying the refine-

ment criterion, monotone behavior in L1,AMR(Q) will equally be preserved

in L1(Q).

In the following we will use primarily Lρ1,AMR := L1,AMR(ρ) to measure

the accuracy and suitability of dynamically generated refinement at a defined
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MR, constant threshold MR, hierarchical threshold Scaled gradient

Lρ1 = 0.4360 · 10−3 Lρ1 = 0.4351 · 10−3 Lρ1 = 0.4465 · 10−3

Figure 3: Advection of a Gaussian density bump refined with the different criteria after

one period. Shown are isolines of density on regions of different refinement (depicted by

different gray scales).

point in simulated time. The solution on the adapted mesh is compared

to a reference solution computed at the maximal resolution following (12),

where ρr on coarser levels is generated from the density field of the uniform

reference solution by simple averaging of higher level cell values, Eq. (2), as

it is consistent with the finite volume approach. A post-processing tool has

been written to carry out the required norm calculations using only AMROC

output files.

3. Computational experiments

3.1. Moving Gaussian bump

In order to demonstrate the quantitative analysis approach, we first con-

sider a simple two-dimensional test case with analytic solution. A Gaussian

bump in density is advected with constant velocity and at constant pres-

sure along the diagonal x1 = x2. Periodic boundary conditions are used,
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Figure 4: Total cell count over time for the cases from Fig. 3.

which ensures that after exactly one propagation period, the exact solution

does agree identically with the initial conditions, allowing easy evaluation of

error norms. Further, this smooth test case will retain the maximal order

of accuracy of any FV scheme, while the varying gradients of the solution

lead to distinctively different adaptation patterns when the mesh refinement

indicator is varied. The initial conditions read

ρ(x1, x2) = 1 + exp

(
−x

2
1 + x2

2

R2

)
(15)

with R = 1/4 and v1 = v2 ≡ 1, p ≡ 1. The domain size is [−1, 1]×[−1, 1] with

periodic boundary conditions at all sides and the result is analyzed for a final

time of tend = 2. A base mesh of 80× 80 is used and three additional levels

all refined by a factor 2 are applied. The used finite volume scheme is the

Van Leer flux-vector splitting within a second-order-accurate MUSCL slope-

limiting method combined with dimensional splitting. See [36] for details on

these numerical techniques. The clustering efficiency is always η = 0.95.

In Fig. 3, we present the final refinement regions (depicted by gray scales)

created by the scaled gradient criterion and the MR criterion applied in ρ
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Figure 5: Cells on finest level versus Lρ1 error after one period.
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Figure 6: Cells on finest level vs. Lρ1,AMR error after one period.

only with and without hierarchical threshold for an error Lρ1 ≈ 0.44 · 10−3

and 3 · 10−5 < Lρ1,AMR < 6 · 10−5 in all three cases. Figure 4 visualizes the

total cell count of the computations from Fig. 3 over time. Despite yielding

a slightly larger error, the SG computation uses a larger cell number of cells

effectively throughout the entire computation. For all three cases the number

of cells in general increases throughout the computation, which is due to the

Gaussian bump spreading from the numerical diffusion of the scheme and

the mesh adapting accordingly. The MR criteria exhibit marginally larger
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variations in cell count than the SG calculation; however, all criteria provide

reliable and stable mesh adaptation. It is interesting to note that the MR

criteria create a considerable smaller higher level refinement based on the

initial conditions. For these criteria, the cell count at level 2 plateaus after

one to two level-0 time steps and remains roughly constant on level 3 only

after the fourth level-0 time step.

Figures 5 and 6 plot the Lρ1 and Lρ1,AMR errors respectively, for the refine-

ment criteria applied to the density as the threshold value is varied. Displayed

are the number of the cells on the finest level versus the error, as a measure

for efficiency of the used refinement. The two figures show that the MR cri-

teria are more efficient than the scaled gradient criterion, as the MR curves

are always below the respective scaled gradient curve.

This monotonicity is clearly visible in Lρ1,AMR and – following the argu-

ment from Section 2.5 – is even more apparent in Lρ1. Already this simple test

demonstrates the excellent performance of the MR criteria. In subsequent

tests, we will use primarily Lρ1,AMR to quantify criteria performance. This

is because the studied test cases do not have a known analytic solution and

Lρ1 cannot easily be approximated. The test case of the moving Gaussian

bump also illustrates that Lρ1,AMR is a reliable and unambiguous measure for

adaptation accuracy.

Each curve of Fig. 6 corresponds to a discrete mapping {τ1, . . . , τM} 7→

{N1, . . . , NM} involvingM computational experiments, where τ = log10(Lρ1,AMR)

is introduced as the decadic logarithm of the measured numerical error value

and N is a suitable count of the cells used. In order to establish quantita-

tive measures for comparing such maps, we denote as g(τ) the continuous
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function defined piecewise by

gi : τ 7→ Ni + (τ − τi)
Ni+1 −Ni

τi+1 − τi
for τ ∈ [τi, τi+1[ (16)

for all i ∈ {1, . . . ,M − 1}. We compare the respective functions, e.g., for

SG and MR criterion, gSG(τ) and gMR(τ), only within that interval [τs, τe],

in which both functions are defined, i.e. τs = max
{
τSG1 , τMR

1

}
and τe =

min
{
τSGM , τMR

M

}
. Using these definitions, we define a measure for the average

cell count saving of the MR criteria versus SG as

∆N =
1

τe − τs

∫ τe

τs

[gSG(ζ)− gMR(ζ)] dζ. (17)

The average efficiency of the MR criteria relative to the SG criterion is defined

as

E =
1

τe − τs

∫ τe

τs

gSG(ζ)− gMR(ζ)

gSG(ζ)
dζ. (18)

A straightforward Python script has been written to compute Eqs. (17) and

(18) from tabulated data. Using this tool, we obtain for the data of Fig. 6

∆N = 6088 and E = 5.7% when comparing the MR criterion with constant

threshold value to the SG criterion, and ∆N = 12645 and E = 10.4% for

MR with hierarchical thresholding. The latter result means that for this

problem the MR criterion with hierarchical thresholding will obtain a similar

numerical accuracy as the SG criterion on finest meshes that are about 10%

smaller in cell count.

3.2. Two-dimensional Lax–Liu Riemann problems

As comprehensive test cases for realistic gas dynamics, we employ the

above defined measures to compare the MR criterion with hierarchical thresh-

olding to the SG approach for the 19 classical two-dimensional Riemann
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for the 19 Lax–Liu configurations; MUSCL scheme used.
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Figure 8: Average efficiency E of MR with respect to the SG criterion for the 19 Lax–Liu

configurations; MUSCL scheme used.

problems for Euler equations described by Lax & Liu in [37], as described

in Appendix B. Depending on the initial values, planar waves can develop

into complex 2d patterns that give a good representation for a variety of flow

phenomena intrinsic to the multi-dimensional Euler equations. For instance,

the computational domain and the initial values for the configurations are

presented in Fig. B.21 and Table B.4, respectively. The final simulated times

are the same as reported by Lax & Liu [37], cf. Table B.3.
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In all computations the CFL number is kept roughly constant at 0.5

and the adiabatic exponent is set to the value γ = 1.4. The main in-

vestigations use a standard unsplit shock-capturing MUSCL scheme with

Minmod-limiter and Roe numerical flux function [38, 36], which employs the

MUSCL-Hancock approach for time integration, yielding an overall second-

order-accurate numerical method [36]. For comparison, some calculations are

in addition repeated with a WENO scheme with Roe flux function, which

is third-order-accurate in space. This method uses a storage efficient ex-

plicit 3-stage Runge–Kutta scheme for time integration, yielding an overall

third-order-accurate numerical scheme [39].

The base resolution of all computations is 64×64 cells and four additional

levels, each refined by a factor 2, are used. The adaptation criteria are again

applied just in density ρ. For computing the adaptation error Lρ1,AMR we

consider a reference solution on the uniform mesh 1024 × 1024. We have

tested the cluster parameters η = 0.75, 0.80, and 0.99, and we also computed

a distribution of M = 12 threshold parameters for each adaptation criterion.

For all configurations, we use MR with hierarchical threshold considering

L = 5. Since the compression results obtained with these cluster parameters

show very similar trends, we present here just the results for η = 0.80.

In general, both criteria identify the essential flow features and lead to

sensibly adapted meshes; however, notable differences between the 19 differ-

ences configurations can be observed. Using the number of cells on all SAMR

levels and throughout all time steps as cell metric N , we have evaluated the

average cell count saving, Eq. (17), and the average efficiency, Eq. (18), of

MR versus SG for all 19 cases. Fig. 7 shows in percent the ratio ∆N/Nuni for
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(a) Lax-Liu config #3
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(b) Lax-Liu config #6
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(c) Lax-Liu config #10
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Figure 9: Used cells in the adaptive MUSCL computations vs. Lρ1 and Lρ1,AMR error.

the MUSCL scheme; Fig. 8 displays the average efficiency E of the MR crite-

rion compared to the SG criterion directly. From Fig. 7 one deduces that in

absolute values, MR presents clear benefits for 12 configurations (where six of

them achieve > 4% of savings compared to the uniform case), is comparable

to SG in five cases, and performs notably worse for just two configurations.

In relative terms, Fig. 8 shows 11 average efficiencies around and larger than

20% in favour of the MR criterion and five cases with values smaller than

−20%, for which the SG approach performs more effectively.

A closer analysis of the occurring flow patterns uncovers that the MR
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(a) Lax-Liu config #3 (b) Lax-Liu config #6

(c) Lax-Liu config #10

Figure 10: Time evolution of the used cells for the adaptive MUSCL computations listed

in Table 1.

criterion obtains its highest efficiencies for cases dominated by widespread

rarefaction waves (Configs. #1 and #2). In these configurations more than

7% of the cells on the whole uniform mesh are saved. In Configs. #6−10 there

are rarefaction waves interacting with shear layers, i.e. contact discontinuities

with different transverse velocities. For these cases the MR criteria also

perform consistently and considerably better than SG, capturing all relevant

flow structures reliably and efficiently.

In situations in which shock waves in addition interact with rarefaction

waves and/or contact lines (like Configs. #14−17 and #19), the MR crite-

rion still leads to savings, however the benefit is reduced. In configurations
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involving primarily strong shock waves and shear layers, both strategies leads

to adaptive meshes of similar cell count, particularly Configs. #11−13 and

#18. In the few Lax–Liu cases, that are dominated by strong and global

shock waves (like #3 and #4), the SG criterion easily identifies the shock

regions and leads to an adaptation with a minimal number of cells.

To better understand the observed differences in criteria performance, we

take a closer look into configurations 3, 6, and 10. The used number of cells

over all time steps versus the absolute error Lρ1 and the adaptation error

Lρ1,AMR for both criteria is visualized in Fig. 9. For illustration, the evolution

of the number of cells over time for the adaptive MUSCL computation cases

listed in Table 1 are displayed in Fig. 10. In these cases the absolute error Lρ1

is approximated by using a reference solution evaluated on a highly resolved

uniform mesh of 4096× 4096 cells. Compared to Figs. 5 and 6 the behavior

is clearly more complex; however, it is eminent that the monotonicity of

Lρ1,AMR is preserved in Lρ1 and the curves are basically just shifted by the

constant value Lρ1,uni. Two cases from each configuration are selected that

exhibit a close adaptation error. Characteristic quantities for these cases

are listed in Table 1. Unsurprisingly, the time evolution of the number of

cells reflect the behavior expressed in the snapshot of the final time in each

case described, where the largest growth of number of cells occurs in the

shock configuration, while in the rarefaction waves and contacts the MR

cases present a much lower growth of the number of cells than the SG cases,

even tending to a constant in Config. #10.

In addition to the average number of cells updated throughout the re-

spective computation relative to the uniform 1024 × 1024 case, the relative
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Table 1: Characteristic adaptation quantities for selected cases with similar Lρ1,AMR error

for configurations 3, 6, and 10.

MUSCL WENO3

LL# ε ρ Lρ1 Lρ1,AMR

Av.

cells

Final

cells
Lρ1,AMR

Av.

cells

Final

cells

(10−3) (10−4) (10−4) (%) (%) (10−4) (%) (%)

3
SG 2.50 35.76 2.06 10.0 19.1 2.63 12.5 21.8

MR 0.50 35.95 2.08 12.6 26.7 2.52 12.4 24.1

6
SG 5.00 95.19 7.56 31.0 81.6 5.15 31.2 76.8

MR 0.25 93.38 7.68 22.3 45.5 6.69 24.1 47.3

10
SG 10.00 70.93 3.39 10.0 18.0 3.65 10.6 19.0

MR 1.00 72.28 3.44 4.41 9.4 4.49 5.40 10.6

coverage of cells in the last time step is also listed. For comparison, the

results for the same refinement threshold values for the WENO3 method are

also given, where we have refrained from approximating Lρ1 for this method

because of its very high computational expense. The mesh adaptation situ-

ation for the three cases at the final time is discussed below.

Lax–Liu configuration #3. This test case is dominated primarily by two

sharp quasi-one-dimensional shock fronts that propagate almost planar through-

out the entire domain, with minor interactions with weak rarefaction waves.

The global numerical error varies little as long as the planar shocks are reli-

ably adapted, which can be accomplished with a small number of refinement

cells. When the main shocks do interact, a growing rectangular shock and

32



rarefaction pattern is formed; however, its contribution to the global error

is comparably small. This somewhat pathological scenario is favorable for

the SG criterion, which detects strong shocks very efficiently, as illustrated

particularly in the left graphic of Fig. 11. On the other hand, the wavelet

basis of the MR criteria is very sensitive to small-scale perturbations of the

multi-dimensional shock interaction that are due to the MUSCL scheme.

The corresponding WENO3 adaptation pattern (lower, right) is free of these

artefacts and hence the average MR efficiency for this configuration is with

EWENO3 = −52.8% improved compared to EMUSCL = −65.5% (cf. Fig. 8),

albeit still negative. However, note that in absolute values, cf. Fig. 7, this

effect is much less pronounced than in relative terms, cf. Fig. 8, and thereby

the reduction in computational performance will be less obvious for a user of

the AMROC software.

While for this specific test case the benefit of the MR criterion is not

apparent in the global error and number of cells, the advantages become

obvious when visualizing the local contributions to Lρ1,AMR according to the

summation in Eq. (12). The upper row of Fig. 12 displays the local difference

|ρ`i,j − ρri,j| for the SG and MR computations of Fig. 11 with the WENO3

method; the lower row visualizes the term |ρ`i,j−ρri,j|∆x`∆y`, highlighting the

fact that a large error in coarse cells can have a significant influence on an

integral norm like L1. Comparing Fig. 12 with the refinement patterns in the

lower row of Fig. 11, one can discern that large local errors are visible for the

SG computation especially along secondary waves that are not refined. On

the other hand, the MR criterion captures these waves more gradually and

reliably on the second or third mesh adaptation level. As a consequence, the
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local error (upper row of Fig. 12) shows a much smoother distribution for the

MR computation and is free of the perturbations visible in the corresponding

plot for the SG calculation, which are a result of fluctuating and insufficient

refinement.

Lax–Liu configuration #6. In this configuration a rotational velocity field

with clockwise orientation leads to the creation of swirling shear layers. This

effect can clearly be seen in Fig. 13 for both FV schemes. We can observe

in the left images of this figure that the SG criterion dramatically over-

refines the vortex-like structure plus resulting rarefaction waves to the highest

level, while the MR criterion achieves a much better adaptation of density

variations of different magnitude. Consequently, the MR criterion achieves a

sizable reduction in used cells and a very large reduction in final cells versus

SG for all but very small threshold values, cf. Fig. 9 and Table 1. The

higher accuracy of the WENO3 method preserves minor vortex and shock

structures better, which are accordingly refined by the MR criterion; see

right images of Fig. 13. This yields generally smaller Lρ1,AMR errors for the

WENO3 scheme for the same threshold choices (cf. Table 1) but also leads

to an average MR efficiency that, with EWENO3 = 18.1%, is slightly lower

than EMUSCL = 25.6%.

Lax–Liu configuration # 10. Configuration #10 is a mixed situation consist-

ing of a shear layer between quadrants 1/2 and 3/4 and Riemann problems

with weaker shock and strong rarefactions between 2/3 and 1/4. Very weak

secondary shocks or rarefactions are formed in addition due to the interac-

tion of the primary phenomena. As can be seen in the lower row of Fig. 14

the SG criterion struggles considerably to detect these signals of different
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strength reliably in the density. The MR criterion however captures all of

them reliably and on a level of resolution commensurate to the signal gra-

dient. The upper right graphic of Fig. 14 displays the absolute value of

wavelet coefficients computed in density alone and all features (highlighted

in the upper left graphic by showing the temperature) can be clearly dis-

cerned. The larger absolute values of the wavelet coefficients are along the

central contact discontinuities; intermediate values detect the regions related

to the rarefaction and shock waves and reliably identify the regularity of

the numerical solution. In the lower row are again shown the refinement

levels generated by the SG and MR criteria with similar Lρ1,AMR error, cf.

Table 1. The SG criterion over-refines the upper right strong rarefaction

but misses entire weaker waves. As a result, for this case and the MUSCL

scheme the SG criterion will lead to 2.27 times more used cells than the

MR criterion to achieve a similar Lρ1,AMR error. With an average MR effi-

ciency of EWENO3 = 28.4% versus EMUSCL = 34.4% the results for both

methods are very similar and the WENO3 results are omitted in Fig. 14 for

brevity. However, in Fig. 15 is shown the local integral error contribution

|ρ`i,j−ρri,j|∆x`∆y` for the WENO3 scheme. The graphics highlight that large

local errors are again created especially along those secondary waves in the

lower left quadrant of the domain, which are missed in their entirety by the

SG criterion. Hence, the MR criterion achieves a much more homogeneous

local error distribution.

3.3. Three-dimensional ellipsoidally expanding shock wave

As an example for a gas dynamical problem of larger computational ex-

pense, we consider the expansion of an ellipsoidal shock wave in three space
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dimensions. The Euler equations are solved in the computational domain

Ω = [−2, 2]3 until the final simulation time tend = 0.8. Outflow boundary

conditions are applied at all sides of the domain. Initial conditions in density

ρ and energy density ρE are set as

ρ =

 0.125 , r < rc ,

1.00 , r ≥ rc ,
ρE =

 0.25 , r < rc ,

2.50 , r ≥ rc ,
(19)

with rc = 3
5
, while the velocity vector is initially zero, i.e. v1 = v2 = v3 = 0

everywhere. The initial ellipsoid is specified by

r =

√(x1r

a

)2

+
(x2r

b

)2

+
(x3r

c

)2

, (20)

where

x1r = x1 cos(θ)− x2 sin(θ),

x2r = (x1 sin(θ) + x2 cos(θ)) cos(φ)− x3 sin(φ),

x3r = (x1 sin(θ) + x2 cos(θ)) sin(φ) + x3 cos(φ),

with stretching and rotational parameters a = 1
3
, b = 1, c = 3, θ = π

3
, and

φ = π
4
.

The numerical method used is the fully multi-dimensional Wave Propa-

gation Method for Euler equations [23]. In this finite volume method, the

approximate Riemann solver of Roe in flux difference splitting form is used in

face normal direction. Second-order accuracy is achieved by reconstruction

and limiting in characteristic variables and blending with the Lax–Wendroff

scheme. In addition, a “transverse” Riemann solver of Roe-type is used to

approximate cross-derivative fluctuations to second-order accuracy. Here, the

complete three-dimensional method is applied. This compute-intensive, but
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Table 2: Characteristic adaptation quantities for two selected cases with similar Lρ1,AMR

error for the 3d configuration.

ε ρ,p Lρ1,AMR

Used

cells
Final time

CPU

time

(10−2) (10−2) (109) cells (%) # blocks (min)

SG 3.75 1.46 4.90 15.5 10963 43.5

MR 5.00 1.42 4.02 16.7 9701 39.0

very accurate method approximates three Riemann problems in the normal

direction and 36 transverse Riemann problems [40]. Albeit coded in FOR-

TRAN 77, AMROC supports the full wave propagation method as block-

based update scheme, including conservative flux correction at coarse-fine

interfaces, cf. [20].

For this test, we use a base mesh of 323 cells that can be refined by up

to four additional levels with refinement factor 2. This corresponds to a

solution on a 5123 cell mesh in the uniform case. The cluster parameter is

always set to η = 0.90 and one buffer cell is added around tagged cells to avoid

degradation of results from interpolation. Fixed time steps of ∆t = 0.04 are

employed on the coarsest level and time step refinement by factor 2 is equally

applied throughout all levels, leading to 320 time steps on the finest level as

well as in the uniform run. Throughout the computations, the CFL number

declines continuously from initially ∼ 0.95 to ∼ 0.53. Adaptation is based on

evaluating the SG and MR criteria (with hierarchical threshold) in density ρ

as well as pressure p, where for this problem in non-dimensional quantities

the same threshold values are applied to both.
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All computations are run in parallel on a single node of a recent Linux

compute cluster that provides 20 cores with shared memory. Note however

that parallelization in AMROC is through the MPI library. In case of the

adaptive computations, dynamic repartitioning to maintain load balance is

carried out after each level-0 time step. Computing the uniform solution re-

quired 379 min, while the expense of the adaptive computations varies from

4 to 71 min. Two typical computations with similar Lρ1,AMR error for MR

and SG criteria are visualized in Figs. 16 and 17. Comparing the cuts in

Fig. 17 one notices that the weakening expanding shock and subsequent rar-

efaction is resolved reliably on the second finest level for MR, while the SG

computation alternates between finest and second finest level. On the other

hand, the MR criteria pick up complex flow features near the origin that

are missed entirely by the SG criteria. Visualizing the wavelet coefficients of

the MR computation in Fig. 18 in density and pressure allows us to classify

the centermost features as contact discontinuities (as they show no pressure

variation) surrounded by shock and/or rarefaction waves. The resulting im-

proved efficiency of the adaptive computation can be seen in Table 2, which

shows a benefit of MR in used cells of 18% and an improvement in actual

runtime by 10.4%. This slight difference is due to an increased number of

refinement blocks in the MR computations, which raises the overhead in the

SAMR method. Measured time spent in the wave propagation scheme is 69%

for the MR and 73.5% for the SG run. In both computations the evaluation

of the criteria themselves is a negligible cost factor.

Finally, Fig. 19 depicts the number of used cells throughout the entire

computation versus the Lρ1,AMR error for SG and MR. Except for very small
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threshold values, which corresponds to very dense over-refinement, the MR

approach always achieves a similar adaptation error with less cells. The

average efficiency of MR versus SG, Eq. (18), for Fig. 19 is computed as

E = 44.1%, while ∆N/Nuni = 1.73%.

4. Conclusions

A multiresolution-based mesh adaptation criterion has been implemented

in the parallel SAMR framework AMROC. A comprehensive approach has

been developed to quantitatively compare the adaptive simulations using

the new criterion in terms of numerical error from mesh adaptation and

number of cells used with conventional adaptive computations. Here, we

have tested the MR criteria for numerous configurations encountered in gas

dynamics solving the compressible Euler equations and compared directly to

computations using scaled gradient criteria.

It is found that – besides somewhat pathological cases – the MR strategy

is far superior to the SG approach. Beside discontinuous shock and contact

waves, the MR criteria identify in particular smooth rarefaction waves and

their interaction reliably. The MR approach is also extremely robust in de-

tecting even small-scale flow disturbances. In the majority of complex test

cases considered, the greater mathematical sophistication of the MR crite-

rion leads to smaller approximation errors from dynamic mesh adaptation,

while the number of employed cells is reduced, in many realistic cases in 2d

as well as 3d by more than 40%. Yet, the comprehensive investigation in

2d uncovered that cases dominated solely by strong shock waves can also be

adapted very efficiently by the SG approach. In such technically less rele-
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vant scenarios, both approaches easily identify the shock waves. However,

due to the wider reaching stencil of the proposed MR criterion a slightly

larger refinement region is invariably produced. Nevertheless, this effect will

not increase the absolute number of cells considerably and thereby users of

adaptive codes will hardly notice it.

A potential next step might be the utilization of the multiresolution

prediction as inter-level interpolation in the SAMR method. The present

computations used a first-order accurate interpolation method that gen-

uinely avoids over- or undershoots with respect to the coarse level data and

therefore remains consistent with the TVD (total variation diminishing) and

WENO (weighted essentially non-oscillatory) concepts upon which the shock-

capturing methods used in here have been constructed, cf. [36, 23]. The

wavelet-based prediction operators do not satisfy such important properties

and thereby will have to be combined with a limiting operation to ensure

stable numerical results.

In summary, this very promising study motivates future more sophisti-

cated applications of the new class of MR-based mesh refinement indicators,

especially in more complex situations. Scenarios, in which simple refinement

indicators typically struggle are, for instance, highly perturbed turbulent flow

fields interacting with weak shock waves or chemically reactive flow, in which

gradual combustion is difficult to identify.
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Appendix A. Cell-average multiresolution and wavelets

The aim of this appendix is to highlight the equivalence between Harten’s

discrete MR and continuous biorthogonal wavelets, which is revealing for the

readers and not so well-known outside the wavelet community. The cell-

average multiresolution representation introduced by Harten [9, 32] for finite

volume discretizations of hyperbolic conservation laws is directly related to

biorthogonal wavelets. In the following we briefly summarize the concept

of multiresolution analysis, its relation to orthogonal and then biorthogo-

nal wavelets. Then we detail the connection between cell-average MR and

biorthognal wavelets using the Haar basis. For ease of presentation we choose

the one-dimensional scalar-valued case. The extension to higher dimensions

using tensor products is given at the end of this section and also how vector-

valued data are treated.
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Appendix A.1. Orthogonal wavelets

Multiresolution analysis introduced by Mallat and Meyer [2, 3, 4] cor-

responds to a sequence of embedded subspaces, typically denoted by V ` for

` ∈ N, which belong to the Hilbert space of square-integrable functions L2(R).

The required inner product reads

〈f(u), g(u)〉 =

∫ ∞
−∞

f(u) g(u) du

and the corresponding norm ||f ||2 = 〈f, f〉1/2.

The spaces V ` have several characteristic properties, in particular they

are nested V ` ⊂ V `+1, and a function q ∈ L2(R) with q(x) ∈ V ` satisfies

q(2x) ∈ V `+1, which corresponds to contracting the function by a factor two

and thus changing the scale. The subspaces V ` are generated by translated

scaling functions φ(x) which are required to exist. Therewith, we have V ` =

span{φ`i} where φ`i(x) = 2`/2φ(2`x − i). The nestedness of the subspaces

implies that the scaling functions satisfy a refinement equation,

φ(x) =
∑
i∈Z

hi φ(2x− i). (A.1)

In the case that φ has compact support, the filter coefficients hi (a low pass

filter) have only a finite number of non-vanishing coefficients.

In the case of the Haar basis, the scaling function is the characteristic

function of the interval [0, 1[,

φ(x) = χ[0,1[(x) =

 1 for 0 ≤ x < 1,

0 elsewhere,
(A.2)

and the filter coefficients are, following the relation

φ(x) = φ(2x) + φ(2x− 1),
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given by h0 = h1 = 1 and hi = 0 elsewhere. This basis function is perfectly

adapted to finite volume discretizations as it generates spaces of piecewise

constant functions which represent finite volume solutions. Moreover, the

Haar scaling function is orthonormal, i.e. 〈φ`i , φ`k〉 = δi,k, and its L2-norm

yields one, ||φ`i ||2 = 1. Thus, functions φ`i form an orthonormal basis of V `.

The nested subspaces can be considered as finite volume approximations

at different levels ` associated to the scales 2`. Wavelets can then be intro-

duced by defining complement spaces W ` with V `+1 = V `⊕W `. Analogously

to V `, which are spanned by the scaling functions φ`i , the complement spaces

W ` are spanned by wavelet functions ψ`i with ψ`i (x) = 2`/2ψ(2`x − i). The

wavelet also fulfills a refinement equation,

ψ(x) =
∑
i∈Z

gi φ(2x− i) (A.3)

with filter coefficients gi (a high pass filter). For the Haar wavelet

ψ(x) = χ(2x)− χ(2x− 1) =


1 for 0 ≤ x < 1/2,

−1 for 1/2 ≤ x < 1,

0 elsewhere,

(A.4)

we have g0 = −g1 = 1 and gi = 0 else, according to

ψ(x) = φ(2x)− φ(2x− 1).

The Haar wavelets are orthonormal and thus satisfy

〈ψ`i , ψ`
′

k 〉 = δ`,`′ δi,k.

Applying the decomposition V `+1 = V ` ⊕W ` recursively yields a mul-

tiresolution analysis of L2(R) = V 0
⊕∞

`=0 W
`. A function q ∈ L2(R) can thus
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be represented as an orthogonal wavelet series,

q(x) =
∑
i∈Z

〈q, φ0
i 〉φ0

i (x) +
∞∑
`=0

∑
i∈Z

〈q, ψ`i 〉ψ`i (x), (A.5)

with the scaling coefficients 〈q, φ0
i 〉 and the wavelet coefficients 〈q, ψ`i 〉.

Appendix A.2. Biorthogonal wavelets

Relaxing the orthogonality condition of scaling functions and wavelets

implies increased flexibility (in terms of symmetry, number of vanishing mo-

ments, filter length, etc.), which is obtained with biorthogonal wavelets [41].

In addition to the scaling function φ there exists a dual scaling function φ̃

which is also refinable with filter coefficients h̃i. Both functions are biorthog-

onal to each other, i.e., 〈φ(x − i), φ̃(x − j)〉 = δi,j ∀i, j ∈ Z. A dual wavelet

ψ̃ is also required to exist, which fulfills likewise a refinement equation with

filter coefficients g̃i and which is biorthogonal to the wavelets ψ. The fil-

ter coefficients are mutually related to each other via gi = (−1)i h̃1−i and

g̃i = (−1)i h1−i.

The biorthogonal wavelet expansion of a function q ∈ L2(R) thus reads

q(x) =
∑
i∈Z

〈q, φ̃0
i 〉φ0

i (x) +
∞∑
`=0

∑
i∈Z

〈q, ψ̃`i 〉ψ`i (x), (A.6)

and the special case of an orthogonal representation is recovered for φ̃ = φ

and ψ̃ = ψ. Note that for a given primary scaling function φ different dual

scaling functions φ̃ can be constructed (and vice versa) and thus the choice

is not unique.

For the cell-average multiresolution analysis, which is well adapted to

finite volumes, the scaling coefficients 〈q, φ̃`i〉 correspond to the scaled cell
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average of the cell Ω`
i . Hence the dual scaling function φ̃ is the rescaled Haar

scaling function

φ̃`,i = χΩ`
i
/
√
|Ω`

i |. (A.7)

We introduce the cell average1 of the cell Ω`
i which is defined as Q

`

i =

〈q, φ̃`,i〉/
√
|Ω`

i |. Consequently, we can use the polynomial prediction oper-

ator, as the one presented in Eq. 3 and described in [12], to obtain

Q̂`+1
2i =

s∑
n=−s

λn 〈q, φ̃`i〉. (A.8)

where the details can be computed as

d`+1
2i = Q

`+1

2i − Q̂`+1
2i = Q

`+1

2i −
s∑

n=−s

λnQ
`

i+n (A.9)

= 〈q, ψ̃`i 〉/
√
|Ω`

i |,

The dual wavelet ψ̃`i is given by a linear combination of dual scaling functions

ψ̃`i = φ̃`+1
2i −

s∑
n=−s

λn φ̃
`
i+n. (A.10)

Details for odd indices d`+1
2i+1 are redundant and equal to −d`+1

2i . In Harten’s

MR analysis based on prediction and reconstruction in the discrete frame-

work, wavelet coefficients are determined as linear combinations of prediction

errors, whereas in the continuous wavelet context, these coefficients are de-

fined as inner products of the underlying function with the wavelets. The

connection between these ideas is presented in Eq. A.9.

1Note that we denote the cell average by Q
`

i instead of Q`i in this appendix as it is

consistent with our previous work and the notation typically used in the MR community.
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The filter coefficients of the biorthogonal multiresolution can thus be di-

rectly computed and we find h̃0 = h̃1 = 1 and h̃i = 0 elsewhere, corresponding

to the Haar scaling function. Using the relation with the filter coefficients

of g we find g0 = −g1 = 1 and gi = 0 elsewhere. Choosing the prediction

operator with r = 2s + 1 = 3 and the values λ−1 = −λ1 = −1/8, λ0 = 0 we

obtain the filter coefficients h0 = h1 = 1, h−1 = h2 = 1/8, h−2 = h3 = −1/8

and hi = 0 elsewhere. Correspondingly, we find for g̃0 = 1, g̃1 = −1, g̃2 =

g̃3 = 1/8, g̃−1 = g̃−2 = −1/8 and g̃i = 0 elsewhere. Plots of the corresponding

biorthogonal scaling and wavelet functions are presented in Fig. A.20.

Vanishing moments or polynomial cancellation proprieties of wavelets. A

wavelet function has p vanishing moments if and only if its related scal-

ing function can generate polynomials up to degree p − 1. Therefore, the

wavelet coefficients are zero for polynomials of degree at most p− 1, so that,

the scaling functions alone can be used to represent the function. More van-

ishing moments of the wavelet function imply that its related scaling function

can represent more complex functions and that the wavelet representation is

sparser, as many wavelet coefficients vanish. In Fourier space this property

is equivalent to say that the first p derivatives of the Fourier transform of

the wavelet function of the wavelet function vanish at frequency zero. The

cancellation property of wavelets is an essential ingredient to obtain a sparse

representation of functions which are locally smooth. This motivates the

thresholding procedure and justifies that the MR criteria can be considered

as a shock detector.

Boundary conditions. Harten’s MR analysis for cell averages is adapted to

bounded domains, as the analyzing scaling function does correspond to the

51



indicator function and is thus adapted to the interval. Hence no special care

is required to take into account boundary conditions on Cartesian domains.

Extensions for high space dimension. Extensions are obtained by tensor prod-

uct, cf. Appendix A of [12]. In two dimensions the spaces V` are con-

structed via V` = V ` ⊗ V `. Using V ` = V `−1 ⊕ W `−1, we thus obtain

V` =
(
V `−1 ⊕W `−1

)
⊗
(
V `−1 ⊕W `−1

)
= V `−1 ⊗ V `−1 ⊕ W `−1 ⊗ V `−1 ⊕

V `−1 ⊗W `−1 ⊕W `−1 ⊗W `−1 = V`−1 ⊕W`−1, where W`−1 corresponds to

three wavelet spaces in the horizontal, vertical and diagonal directions. The

procedure in three dimensions is analogous and yields seven directions. The

construction of the corresponding biorthogonal wavelet basis in 2d and 3d is

likewise obtained by tensor product and the resulting wavelets have conse-

quently three and seven directions in 2d and 3d, respectively. For details we

refer to [42].

Vector-valued functions. The biorthogonal wavelet expansion is applied to

each component of the vector and thus a vector-valued wavelet series is ob-

tained as the coefficients become vector-valued, but not the basis functions.

Appendix B. Lax-Liu configurations

The Lax–Liu benchmarks, in [37], are classical 2d Riemann problems of

gas dynamics. The computational domain is a square Ω = [0, 1]2 and the

initial condition is constant within the four quadrants denoted by 1, 2, 3, and

4, as illustrated in Fig. B.21. For the sake of comparison with our results

and other, we also use the same final times described in [37], cf. Table B.3.

In Table B.4 we display in a more systematic form the initial conditions used
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on these sub-domains. We also indicate for each configuration the formation

of Rarefaction waves (R), Contact Discontinuities (J), and Shocks (S) that

arise in the fluid interfaces. The arrow direction (�,�) and the inclinations

(with the symbols ±) complement the flow structure developed.

Table B.3: Final time used in the Lax-Liu simulations.

Lax Liu configurations

Number 1 2 3 4 5 6 7 8 9 10

tend 0.20 0.20 0.30 0.25 0.30 0.30 0.25 0.25 0.30 0.15

Number 11 12 13 14 15 16 17 18 19

tend 0.30 0.25 0.30 0.10 0.02 0.20 0.30 0.20 0.30
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SG, ε ρ = 0.0025 MR, ε ρ = 0.0005
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Figure 11: Lax–Liu Config. # 3: density contours for the SG and MR computations of

Table 1 superimposed on refinement levels (in gray scales) at final time tend = 0.3.
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SG, ε ρ = 0.0025 MR, ε ρ = 0.0005

Figure 12: Lax–Liu Config. # 3: Local error |ρ`i,j − ρri,j | (upper row) and Lρ1,AMR-norm

contribution |ρ`i,j−ρri,j |∆x`∆y` (lower row) in gray scales for the SG and MR computations

of Fig. 11 with WENO3 at final time tend = 0.3.
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SG, ε ρ = 0.005 MR, ε ρ = 0.00025

M
U

S
C

L
W

E
N

O
3

Figure 13: Lax–Liu Config. # 6: density contours for the SG and MR computations of

Table 1 superimposed on refinement levels (in gray scales) at final time tend = 0.3.
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Temperature abs. wavelet coefficients

SG, ε ρ = 0.010 MR, ε ρ = 0.001

M
U

S
C

L

Figure 14: Lax–Liu Config. #10: Schlieren plot of temperature (top, left), gray scale plots

of wavelet coefficients (top, right) and refinement levels (bottom) at final time tend = 0.15

.
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SG, ε ρ = 0.010 MR, ε ρ = 0.001

Figure 15: Lax–Liu Config. # 10: Local Lρ1,AMR-norm contribution |ρ`i,j − ρri,j |∆x`∆y`
in gray scales for the SG and MR computations of Fig. 14 with WENO3 at final time

tend = 0.15.

Figure 16: Contours of density shown on levels of mesh refinement in 3d (left) for MR

with ε ρ,p = 0.05 at tend = 0.8. The right graphic indicates by color the distribution to 20

processors at this time.
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SG, ε ρ = 0.0375 MR, ε ρ,p = 0.05

Figure 17: Adaptation for the 3d shock-wave case at the time tend = 0.8. Isolines of two-

dimensional cuts of density for the SG and MR computation superimposed on domain of

refinement (in gray scales). From top to bottom: y − z-plane at x = 0, x − z-plane at

y = 0, x− y-plane z = 0.
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Figure 18: Visualization of wavelet coefficients in x-plane at t = 0.72 in density (left) and

pressure (right).
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Figure 19: Used cells in the adaptive 3d computations versus Lρ1,AMR error at the time

te = 0.8.
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Figure A.20: Biorthogonal scaling functions φ and φ̃ (left, top and bottom), and wavelet

functions ψ and ψ̃ (right, top and bottom) for r = 3.
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Figure B.21: Initial domain partition for the Lax-Liu configurations.
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Table B.4: Initial conditions for Lax–Liu configurations #1− 19.

Q Configuration Domain position Configuration Domain position

1 2 3 4 1 2 3 4

ρ Number 1 1.0000 0.5197 0.1072 0.2579 Number 11 1.0000 0.5313 0.8000 0.5313

p
�
R21 1.0000 0.4000 0.0439 0.1500

�
S21 1.0000 0.4000 0.4000 0.4000

v1

�
R32

�
R41 0.0000 -0.7259 -0.7259 0.0000 J+

32

�
S41 0.1000 0.8276 0.1000 0.1000

v2

�
R34 0.0000 0.0000 -1.4045 -1.4045 J+

34 0.0000 0.0000 0.0000 0.7276

ρ Number 2 1.0000 0.5197 1.0000 0.5197 Number 12 0.5313 1.0000 0.8000 1.0000

p
�
R21 1.0000 0.4000 1.0000 0.4000

�
S21 1.0000 0.4000 0.4000 0.4000

v1

�
R32

�
R41 0.0000 -0.7259 -0.7259 0.0000 J+

32

�
S41 0.0000 0.7276 0.0000 0.0000

v2

�
R34 0.0000 0.0000 -0.7259 -0.7259 J+

34 0.0000 0.0000 0.0000 0.7276

ρ Number 3 1.5000 0.5323 0.1380 0.5323 Number 13 1.0000 2.0000 1.0625 0.5313

p
�
S21 1.5000 0.3000 0.0290 0.3000 J−21 1.0000 1.0000 0.4000 0.4000

v1

�
S32

�
S41 0.0000 1.2060 1.2060 0.0000

�
S32

�
S41 0.0000 0.0000 0.0000 0.0000

v2

�
S34 0.0000 0.0000 1.2060 1.2060 J−34 -0.3000 0.3000 0.8145 0.4276

ρ Number 4 1.1000 0.5065 1.1000 0.5065 Number 14 2.0000 1.0000 0.4736 0.9474

p
�
S21 1.1000 0.3500 1.1000 0.3500 J+

21 8.0000 8.0000 2.6667 2.6667

v1

�
S32

�
S41 0.0000 0.8939 0.8939 0.0000

�
S32

�
S41 -0.5606 -1.2172 1.2172 1.1606

v2

�
S34 0.0000 0.0000 0.8939 0.8939 J−34 -0.3000 0.3000 0.8145 0.4276

ρ Number 5 1.0000 2.0000 1.0000 3.0000 Number 15 1.0000 0.5197 0.8000 0.5313

p J−21 1.0000 1.0000 1.0000 1.0000
�
R21 1.0000 0.4000 0.4000 0.4000

v1 J−32 J−41 -0.7500 -0.7500 0.7500 0.7500 J−32

�
S41 0.1000 -0.6259 0.1000 0.1000

v2 J−34 -0.5000 0.5000 0.5000 -0.5000 J+
34 -0.3000 -0.3000 -0.3000 0.4276

ρ Number 6 1.0000 2.0000 1.0000 3.0000 Number 16 0.5313 1.0222 0.8000 1.000

p J−21 1.0000 1.0000 1.0000 1.0000
�
R21 0.4000 1.0000 1.0000 1.0000

v1 J+
32 J+

41 0.7500 0.7500 -0.7500 -0.7500 J−32

�
S41 0.1000 -0.6179 0.1000 0.1000

v2 J−34 -0.5000 0.5000 0.5000 -0.5000 J+
34 0.1000 0.1000 0.1000 0.8276

ρ Number 7 1.0000 0.5197 0.8000 0.5197 Number 17 1.000 2.0000 1.0625 0.5197

p
�
R21 1.0000 0.4000 0.4000 0.4000 J−21 1.0000 1.0000 0.4000 0.4000

v1 J−32

�
R41 0.1000 -0.6259 0.1000 0.1000

�
S32

�
S41 0.0000 0.0000 0.0000 0.0000

v2 J−34 0.1000 0.1000 0.1000 -0.6259 J−34 -0.4000 -0.3000 0.2145 -1.1259

ρ Number 8 0.5197 1.0000 0.8000 1.0000 Number 18 1.000 2.0000 1.0625 0.5197

p
�
R21 0.4000 1.0000 1.0000 1.0000 J+

21 1.0000 1.0000 0.4000 0.4000

v1 J−32

�
R41 0.1000 -0.6259 0.1000 0.1000

�
S32

�
S41 0.0000 0.0000 0.0000 0.0000

v2 J−34 0.1000 0.1000 0.1000 -0.6259 J+
34 1.0000 -0.3000 0.2145 0.2741

ρ Number 9 1.0000 2.0000 1.0390 0.5197 Number 19 1.000 2.0000 1.0625 0.5197

p J+
21 1.0000 1.0000 0.4000 0.4000 J+

21 1.0000 1.0000 0.4000 0.4000

v1

�
R32

�
R41 0.0000 0.000 0.0000 0.0000

�
S32

�
S41 0.0000 0.0000 0.0000 0.0000

v2 J+
34 0.3000 -0.3000 -0.8133 -0.4259 J−34 0.3000 -0.3000 0.0000 0.0000

ρ Number 10 1.0000 0.5000 0.2281 0.4562

p J−21 1.0000 1.0000 0.3333 0.3333

v1

�
R32

�
R41 0.0000 0.0000 0.0000 0.1000

v2 J+
34 0.4297 0.6076 -0.6076 -0.4297
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