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Abstract

The secret to the spectacular flight capabilities of flapping insects lies in their

wings, which are often approximated as flat, rigid plates. Real wings are how-

ever delicate structures, composed of veins and membranes, and can undergo

significant deformation. In the present work, we present detailed numerical

simulations of such deformable wings. Our results are obtained with a fluid–

structure interaction solver, coupling a mass–spring model for the flexible

wing with a pseudo-spectral code solving the incompressible Navier–Stokes

equations. We impose the no-slip boundary condition through the volume pe-

nalization method; the time-dependent complex geometry is then completely

described by a mask function. This allows solving the governing equations

of the fluid on a regular Cartesian grid. Our implementation for massively

parallel computers allows us to perform high resolution computations with
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up to 500 million grid points. The mass–spring model uses a functional ap-

proach, thus modeling the different mechanical behaviors of the veins and

the membranes of the wing. We perform a series of numerical simulations of

a flexible revolving bumblebee wing at a Reynolds number Re = 1800. In

order to assess the influence of wing flexibility on the aerodynamics, we vary

the elasticity parameters and study rigid, flexible and highly flexible wing

models. Code validation is carried out by computing classical benchmarks.

Keywords:

insect flight, wing elasticity, mass–spring model, fluid–structure interaction,

spectral method, volume penalization method

1. Introduction

A fundamental characteristics of insect flight are flexible wings, which

play an important role for their aerodynamics [1, 2, 3], requiring lower forces

than their rigid counter parts and producing reduced sound. Numerical sim-

ulation of insect flight is itself a sophisticated task, because it involves the

solution of fluid-solid interaction problems. Thus, we have to model simul-

taneously the fluid part and the solid part by using two coupled solvers.

The fluid solver [4] we are using in the present work has been developed

previously and is called FLUSI 1, a fully parallel software dedicated for mod-

eling three-dimensional flapping flight in viscous flows. The heart of this

software is the Fourier pseudospectral method with adaptive time stepping

used for the discretization of the 3D incompressible Navier–Stokes equations.

1FLUSI: freely available for noncommercial use from GitHub

(https://github.com/pseudospectators/FLUSI).
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Moreover, the volume penalization method is used to take into account the

no-slip boundary conditions on the interfaces between the fluid and the solid

part.

In [5], we performed numerical simulations of rotating triangular rigid

wings at Reynolds number Re = 250 to investigate the Leading-Edge Vortices

(LEVs) as a function of the wing aspect ratio and the angle of attack. High

resolution direct numerical simulations of rotating and flapping bumblebee

wings were presented in [6] using likewise the FLUSI code with rigid wings

focusing again on the role of LEVs and the associated helicity production.

The interaction of flapping bumblebees with turbulent inflow in free and

tethered flight was studied in [7] using once again massively parallel com-

putations with FLUSI. We found that the fluctuations of aerodynamic ob-

servables significantly grow with increasing turbulence intensity, even if the

mean values are almost unaffected. Changing the length scale of the tur-

bulent inflow, while keeping the turbulence intensity fixed, showed that the

fluctuation level of forces and moments can be significantly reduced. We also

found that the scale-dependent energy distribution in the surrounding tur-

bulent flow is a relevant factor conditioning how flying insects control their

body orientation.

Nevertheless, a solver for solving the deformation of the structure was

not fully developed in this software FLUSI. Hence, all previous simulations

of insect flight have been performed with the essential assumption that the

insect is composed of linked rigid parts including the wings.

In the current work we aim at investigating the role of wing elasticity on

the flight performance. Consequently, a wing model is required for simulating
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the deformation of the solid part under the impact from the fluid. There are

many models based on continuum mechanics theory, which are used in many

well-known solid solvers. Among these, Finite Element Methods (FEM) are

mostly used in both research and industrial fields due to their reliability

and effectiveness. Despite this dominance, the requirement for faster and

more efficient methods motivates the development of alternative models. One

of these is the mass-spring system, which is known for its computational

efficiency and straightforward implementation [8]. As part of this work, a

solver using a network of masses and springs is developed to model a flexible

insect wing and coupled with FLUSI.

The story of mass-spring models started back at the end of the 20th

century when people were dealing with observable deformations of flexible

objects in computer graphics applications, such as soft tissue, skin, hair, ball,

cloth, textiles, etc. Being considered as one of the pioneers on this field, Ter-

zopoulos et al. [9] proposed using elasticity theory for modeling deformable

objects instead of previously-used kinematic models, where the motion and

the deformation of materials were prescribed. During this period, most of

simulations of flexible objects had been calculated using finite element meth-

ods until the requirement of faster models was claimed by Eischen et al. [10].

Consequently, the development of physically based deformable models started

to grow, especially in the field of computer graphics [11] and biomedical engi-

neering [8]. While classic solvers, based on finite elements or finite difference

methods, are generally employed in the static case for computing stress and

strain in a structure, new solvers for deformable objects must have the ability

to deal with large deformations and large displacements, i.e. the nonlinear
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regime. Furthermore, these models need to be fast enough since they are

usually employed for real-time applications or coupled with other models

which are already time-consuming. Among all the deformable models pro-

posed, mass-spring networks stand out as the most intuitive and simplest

due to their computational efficiency [12]. Mass-spring systems have already

been employed in many fields such as medical applications [8] (muscle, red

blood cells and virtual surgery), computer graphics, fluid-structure inter-

action and insect flight. Miller and Peskin [13] used mass-spring networks

to model insect wings in two-dimensional numerical simulations. A mass-

spring network was used by Yeh and Alexeev [14] to model a flexible plate

swimmer and performed fluid-structure interaction simulation with Lattice-

Boltzmann methods in 3D. The development of our solid solver is motivated

by their mass-spring network approach, aiming to model the flexibility of

insect wings in the three-dimensional case.

The goal of this paper is to move from rigid to flexible wings and to

present a fluid-structure interaction solver for flapping flight, based on the

open access software FLUSI, where we integrated a solid model based on

mass-spring systems. However, the wing kinematics of insects is very diffi-

cult to obtain, since the measurements usually require high tech equipment

to capture all the dynamic motion at small time scale and length scale. In-

stead, a revolving wing model is usually employed to study the aerodynamics

of flapping wings thanks to its simplicity. Accordingly, the flow fields and

force generation aspects of revolving wings have been analyzed for a wide

range of parameters, as reported in the literature [15, 16, 17]. Di et al. [18]

studied the role of forewings in generating LEVs of three revolving insect
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wing models: hawkmoth (Manduca sexta), bumblebee (Bombus ignitus) and

fruitfly (Drosophila melanogaster). Van de Meerendonk et al. [19] inves-

tigated experimentally the flow field and fluid-dynamic loads of a flexible

revolving wing to quantify the influence of flexibility on the force generation

performance of the wing. In our study, we also consider revolving flexible

bumblebee wings and assess the influence of the wing deformation.

The outline of this paper is the following: In sec. 2 we present a mass-

spring model for describing the flexible insect wings. The wing structure

of the considered bumblebee wings and its mass distribution are detailed in

sec. 3. The numerical artillery of fluid-structure interaction is explained in

sec. 4 and some validation tests are given. The numerical results as well

as the discussion about the influence of the flexibility on the aerodynamic

performance are presented in sec. 5. Finally, conclusions are drawn in sec. 6,

including some perspectives for future investigations.

2. Flexible wing

2.1. Mass-spring model

The very basic idea of the mass-spring model is to discretize an object

using mass points mi (i = 1, ..., n) connected by springs. There exist many

kinds of springs for different purposes but in the limit of our work, we have

used only linear extension and bending springs to model insect wings. The

dynamic behavior of the mass-spring system, at a given time t, is defined by

the position xi and the velocity vi of the mass point i. For this, we need

to solve the dynamic equations of the system, which govern their motion in

time under certain external forces. This is one of the elegant advantages
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of the mass-spring network where these governing equations are simply the

corresponding classical well-known Newton’s second law, given in eqns. (1).

Fi = miai

Fi = Fint
i + Fext

i for i = 1...n

vi(t = 0) = v0,i

xi(t = 0) = x0,i

(1)

where n is the number of mass points, Fi is the total force (internal force

Fint
i and external force Fext

i ) acting on the ith mass point, mi, ai are mass

and acceleration of the ith mass point, respectively.

Here, all terms are quite simple to derive except for the forces. The exter-

nal forces come from outside of the system and depend on the surrounding

field and the problem we are dealing with. On the other hand, the internal

forces represent the restoring forces caused by the springs. The complicated

properties of these forces make the system (1) become nonlinear. Hence, we

have a nonlinear system of 3n second order ordinary differential equations

(ODEs) corresponding to three dimensions x, y, z and n mass points. In the

general case, this system (1) needs to be solved numerically since its analyti-

cal solution cannot be derived. In practice, it is more convenient to convert a

system of 3n second order equations into a system of 6n first order equations

by using the relations ai = dvi/dt and vi = dxi/dt. Eqns. (1) can then be
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rewritten as below:

dxi
dt

= vi

mi
dvi
dt

= Fint
i + Fext

i for i = 1...n

vi(t = 0) = v0,i

xi(t = 0) = x0,i

(2)

Let us call q =
[
xi, vi

]ᵀ
the phase vector containing positions and velocities

of all mass points and f(q) =
[
vi, m−1

i (Fint
i + Fext

i )
]ᵀ

the right hand side

function, eqns.(2) can be rewritten again under the familiar form of a system

of first order ODEs as follows:

dq

dt
= f(q, t)

q(t = 0) = q0

(3)

For time stepping, eqns. (3) need to be discretized using an appropriate

numerical scheme. The choice for this scheme is not trivial since it depends

on many factors. Due to the size of the wings, the mass-spring network

contains a lot of very small springs, which make the system very stiff and we

need an implicit scheme for time marching. For this reason, either a centered

scheme or a backward scheme can be used. Although centered schemes are

usually in favor for their conservation property without numerical diffusion,

a centered scheme, for example the trapezoidal scheme, can lead to numerical

instability at some points because the eigenvalues of the operator of the time

discretization lie exactly on the imaginary axis, the boundary of the stability

zone [20]. Furthermore, the coupling between the fluid and the solid solver

will require an adaptive time stepping scheme. For all these reasons, a second
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order backward differentiation scheme with variable time steps [21] is used

to discretize eqns. (3) in time.

qn+1
i − (1 + ξ)2

1 + 2ξ
qni +

ξ2

1 + 2ξ
qn−1
i =

1 + ξ

1 + 2ξ
∆tnf(qn+1

i ) (4)

where ξ = ∆tn/∆tn−1 is the ratio between the current ∆tn and the pre-

vious time step ∆tn−1. Eqn. (4) is a system of nonlinear equations with

the variable qn+1, the phase vector of the system at the current time step,

which needs to be solved. The Newton–Raphson method, a powerful itera-

tive method, is employed to solve this nonlinear system of equations. With

an initial guess, which is reasonably close to the true root of the equations,

Newton–Raphson helps to find approximations of the root with the rate of

convergence estimated to be quadratic. For our mass-spring solver, the ini-

tial guess chosen is the phase vector qn solved at the previous time step; this

allows the Newton–Raphson method to converge quickly since the structure

is advanced slowly and smoothly in time, which assures that qn+1 remains

close to qn. In most cases, the Newton–Raphson method in the solver needs

three to four iterations to converge within a relative or absolute L2 norm

error of 10−6 as the stopping criterion.

2.2. Extension springs and bending springs

Extension springs (figure 1a) and bending springs (figure 1b) are common

mechanical devices, which resist against the external forces to get back to

their resting positions. The former is designed to operate with axial forces,

while the latter is used for torques. The relations between the displacement

and the restoring force are given by:
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• Linear extension spring

Fi = keij (||xij|| − ||x0,ij||) eij

Fj = −Fi

(5)

where keij is the extension stiffness, eij = (xj−xi)/||xj − xi|| is the unit

position vector and Fi and Fj are the restoring forces of the extension

spring acting on two points i and j, respectively;

• Linear bending spring

Mijk = −kbijk(θijk − θ0,ijk) (6)

or in terms of forces

Fi = kbijk(θijk − θ0,ijk) (eij × ejk)× eij

Fk = kbijk(θijk − θ0,ijk) (eij × ejk)× ejk

Fj = −Fi − Fk

(7)

where Mijk is the restoring moment, kbijk is the bending stiffness, θ0,ijk is

the initial bending angle among three points i, j and k, θijk the current

bending angle and Fi, Fj, Fk are the restoring force vectors (as shown

in figure 1) of the bending spring acting on three points i, j and k,

respectively.

However, the calculation of θijk in eqn.(7) is not trivial since it involves

the geometrical definition of the angle in 3D space with respect to a fixed
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coordinate system. Firstly, we consider a simpler case when the three points

are in the same plane, a 2D coordinate system Oxy. This leads to xi =

(xi, yi)
T , xj = (xj, yj)

T and xk = (xk, yk)
T . The angle is now determined by:

θijk = atan2
[
(yk − yj)(xj − xi)− (yj − yi)(xk − xj),

(xk − xj)(xj − xi) + (yk − yj)(yj − yi)
] (8)

Here, atan2 (usually known as two-argument arctangent) is a special func-

tion first introduced in computer programming languages to give a correct

and unambiguous value for the angle by taking into account the sign of both

arguments. This function helps us to calculate on the whole space when the

angle can vary in the range of (−π, π], instead of the range of (−π/2, π/2)

when using the standard arctangent function.

For a problem in 3D space, only one bending angle will not be sufficient.

This can be easily seen by considering a simple case of one bending spring.

At an instant t, the spring is deformed and has a bending angle θijk. Nev-

ertheless, corresponding to this θijk, there is an infinite number of solutions

xi, xj and xk that can satisfy this deformation and the set of all these so-

lutions forms a cone, like shown in figure 2. Consequently, one more angle

is needed to obtain a unique solution. To define these two bending angles,

the same bending spring as the 2D case above is considered but now in a 3D

coordinate system Oxyz. The bending spring is projected on the Oxy and

the Oxz planes which gives us two 2D bending angles θyijk and θzijk on the

Oxy and the Oxz planes, respectively. Then, like in the 2D problem, these

two bending angles are calculated as below:
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θyijk = atan2
[
(xj − xi)(yk − yj)− (xk − xj)(yj − yi),

(xj − xi)(xk − xj) + (yj − yi)(yk − yj)
]

θzijk = atan2
[
(xj − xi)(zk − zj)− (xk − xj)(zj − zi),

(xj − xi)(xk − xj) + (zj − zi)(zk − zj)
]

(9)

2.3. Functional approach - vein and membrane models

Modeling insect wings is challenging due to the fact that these wings

have complex structures composed of a network of veins, partly connected

through hinges, with thin membranes spanned in between and their elastic-

ity properties are still poorly understood. Certain studies have shown that

the vein arrangements in insect wings have strong impact on their mechan-

ical properties [3, 22]. Thus, it will be inaccurate to consider a wing as a

homogeneous structure; the vein pattern as well as the difference in terms

of mechanical behaviors between vein and membrane need to be taken into

account. However this is not an easy task, since insects are the most diverse

group of animals living on Earth with more than one million known species

with varying wing sizes and wing shapes. As a result, in this study, we want

to limit ourself to a specific case when we examine only bumblebee (Bombus

ignitus). Bumblebee wings are mainly composed of veins and membranes.

The longitudinal veins extending along the wing in the spanwise direction

are big, hollow and providing conduits for nerves while the cross veins are

smaller, solid and connecting the longitudinal veins to form a kind of truss

structure. In the space between these veins, we find a thin layer called mem-

brane.
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From a mechanical point of view, veins can be considered as rods which

resist mainly the torsion and bending deformation. On the other hand, a

membrane is fabric-like, it behaves like a piece of cloth which resists again

the extension deformation. Consequently, instead of considering the wing as

a homogeneous structure, a functional approach is used to distinguish veins

and membranes. We then propose two models using mass-spring networks

to imitate the mechanical behavior of the vein and the membrane.

A vein is considered as a rod whose length is much greater than its height

and width. The total effect of all the external loads applied on a mechanical

structure results in deformation which can usually be classified into three

main types: bending, twisting and stretching. Although the whole wing is

observed to be twisted significantly in many studies using high speed cameras

or the digital particle image velocimetry [23, 24, 25, 26, 27], it is not entirely

clear that torsion happens locally at veins or the unsynchronized bending

deformations between veins cause the whole wing to twist. To simplify the

model, we study only the latter in which we ignore the local torsion of veins

and model solely the bending deformation of veins by using extension and

bending springs. Thus, we model a vein by a curve line which is discretized by

n mass points as shown in figure 3. Two neighboring points are connected

with each other by an extension spring (e.g. the mass points i and i + 1

are connected by the extension spring kei ) and three neighboring points are

connected with each other by a bending spring (e.g. the mass points i− 1, i

and i+ 1 are connected by the bending spring kbi−1).

When flapping, most of external forces will act in the direction perpen-

dicular to the wing surface. As a result, the stretching deformation is negli-
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gible comparing to the bending deformation. Thus, the role of the extension

springs in the model is solely to conserve the length of the vein. The stiffness

of these extension springs is artificial and they do not need to reflect the

mechanical property of the vein itself. They should be chosen stiff enough to

make the rod unstretched but not too stiff to avoid problems with numerical

stability when integrating the dynamical system in time.

Compared to veins, membranes are totally different in terms of geomet-

rical and mechanical properties. Geometrically, a membrane is an object

whose thickness is much smaller than its extent. Consequently, a membrane

is usually considered as a planar two-dimensional sheet or a set of planar

sheets in the case of non-planar three-dimensional membranes [28, 29]. On

the mechanical side, a membrane is a special kind of structure compared to

other structural elements, i.e. a rod, a bar, a plate or a beam. It behaves

like a piece of cloth which is much easier to be bent than to be stretched

or compressed. Keeping these in mind, the membrane part of the wing is

modeled by a 2D sheet which is discretized by a system of mass points and

extension springs. There are several ways to discretize a 2D sheet (as shown

in figure 4) but an unstructured triangular mesh needs to be employed for

our problem due to the complicated geometry of insect wing. Moreover, an

unstructured mesh is preferred for modeling isotropic membranes [30] since

the random orientations of the springs will average out the forces.

2.3.1. Correlation between mass-spring network models and continuum con-

stitutive laws

Besides the mesh topology, the parameter setting is another challenge

that one has to solve in order to correctly model the material of which the
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object is made. There are two main parameters needed to be assigned for a

mass-spring model: the masses and the spring stiffness. Although a Voronoi

diagram can be used to find the masses in a proper way [32], selecting spring

stiffness is still an open question and there are two common solutions to

overcome this [33]. The first approach is based on optimization methods to

minimize the difference between the results solved by the mass-spring model

and the reference data. These reference data can come from the measure-

ments, the visual appearance of real objects [34] or numerical solutions using

validated methods such as finite element methods [35, 36]. In general, this

approach cannot be applied if the system has too many degrees of freedom

with many unknown spring constants or the mesh topology varies in time

since one set of parameters works for solely one mesh structure. Otherwise,

tuning the spring stiffness by using optimization can give satisfying results

with reasonable computational cost.

The second way is about deriving a relation between spring stiffness and

other continuum mechanic properties, such as Young modulus, the Poisson

ratio and the flexural rigidity. In contrast to the discrete models, the elas-

ticity parameters have been obtained for many materials and can be used

to calculate the corresponding spring stiffness. Omori et al. [31] succeeded

in doing this for a planar membrane by considering a 2D sheet under small

uniaxial deformation. The relation between spring networks and continuum

models for three types of meshes is shown in figure 5.

For the vein model, a relation between the flexural rigidity EI and the

stiffness of the bending springs kbi is needed. To derive this relation, we

consider a classical problem of a cantilever beam length lb, under a point
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force F at the free end (figure 6). In the limit of small displacement, the

principle of energy yields the value of the bending spring stiffness kb as a

function of the flexural rigidity EI. The energy stored in this beam at the

static state can be calculated easily using the Euler-Bernoulli beam theory

as shown in eqn. (10).

Ebeam =
F 2l3b
6EI

(10)

The mass-spring network is called an equivalent model of the continuous

beam if under the same external loads, its mechanical behavior (in this case, it

is the energy stored in the system) is the same as the one of the beam. Let us

now study a mass-spring network discretized into n+2 mass points connected

by bending and extension springs as shown in figure 6. All the bending and

extension springs are the same with a stiffness kb and ke, respectively and

ke � kb. The first two points are totally fixed to represent the boundary

condition of the fixed end of the beam. Writing the equilibrium equations

for the remaining n points, we have:

F
lb

(n+ 1)
(n+ 1− i) = kb(θi+1 − θi) for i = 1...n (11)

Considering the deformations of extension springs are very small, the

total potential energy of all the bending springs of the system is

Emass−spring =
1

2
kb

n∑
i=1

(θi+1 − θi)2 (12)

With eqn. (11) and eqn. (12) we obtain:
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Emass−spring =
F 2l2b

2kb(n+ 1)2

n∑
i=1

i2

=
F 2l2b

2kb(n+ 1)2
n(n+ 1)(2n+ 1)

6

=
F 2l2b
12kb

n(2n+ 1)

n+ 1

(13)

By comparing eqn. (10) and eqn. (13), we can derive an analytical

relation between kb and EI as following:

kb =
EI

lb

n(2n+ 1)

2(n+ 1)
(14)

Since eqn. (14) is derived based on the assumption of small displacement,

we still have here a linear problem thus the principle of superposition can

be applied. During the flight, the aerodynamic loads acting on insect wings

can be considered to be equivalent to distributed loads on the surface of

the wings. These distributed loads can be discretized into many point forces

using a work-equivalent method [37] and then the superposition principle can

be applied. Thus, it is sufficient to analyze only one point force case to find

the relation between EI and kb, since it does not depend on the point force

F.

However, as mentioned at the beginning of this section, insect wings are

deformed significantly to create lift for flying. Here, we are dealing with a

large displacement problem and the question is if eqn. (14) still remains valid.

The technique used to derive (14) is no longer applicable since the solution

for large deflection of a cantilever beam cannot be obtained analytically [38].

This problem involves calculating elliptical integrals of the second kind [39]
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and needs to be solved numerically. Consequently, the relation between EI

and kb is put into a large displacement, nonlinear test case to check if we

still get the same mechanical behaviors between the continuous beam and

the mass-spring model. The results are presented in the next section.

2.4. Validations of the mass-spring model

2.4.1. Vein model - Cantilever beam under gravitational force

Static case. Firstly, we consider a static case of a cantilever beam with length

L = 0.3, flexural rigidity EI = 0.24 and loaded by a point force F at the

free end. The force F varies from 0.39 to 11.76 and it must be strong enough

to cause a large deflection. All the parameters here are dimensionless. The

vertical displacement δy and the horizontal displacement δx of the free end

of the beam at equilibrium state can be calculated by using the fundamental

Bernoulli–Euler theorem [40] and the mass-spring network as given in table

1.The static state of the vein model (discretized by n = 64 mass points)

is obtained by solving the dynamic equations of the system with artificial

damping forces to make the system go quickly towards its balanced position.

Despite the small displacement assumption for deriving the relation between

EI and kb, the relation in eqn. (14) is still valid even in very large deflection

problem. For the case F = 3.92, the vertical displacement of the free end is

already more than 30% of the total length of the beam and we still get very

good agreements between both models with the relative error being smaller

than 1%. The mapping from EI to kb can then be generalized for nonlinear,

large deflection cases with good agreement between the continuum theory

and the discrete mass-spring network.
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Table 1: Comparison between the continuum theory and the discrete mass-spring network

in the static large deflection case.

Point force Nonlinear beam [39] Mass-spring network Relative error

F δxref [10−2] δyref [10−2] δx[10−2] δy[10−2] errx[%] erry[%]

0.39 29.96 -1.46 29.96 -1.46 0 0

1.96 29.02 -6.93 29.01 -6.92 0.03 0.14

3.92 26.87 -12.14 26.85 -12.1 0.07 0.33

7.84 22.53 -17.93 22.53 -17.85 0 0.45

11.76 19.37 -20.69 19.40 -20.57 0.15 0.58

Dynamic case. The vein model will now be compared with another solid

solver developed by Engels et al. [41]. It is based on the classical nonlinear

beam equation, the Euler–Bernoulli theory. All details about this solver can

be found in [20]. We study the case when we have a 2D cantilever beam

(figure 7) of length lb = 1, density ρ = 0.0571, flexural rigidity EI = 0.0259.

The beam is in vacuum, subjected to a gravity field g = 0.7 strong enough

to cause large deflection. All the parameters here are dimensionless. Both

computations are performed for the same numerical parameters with the time

step dt = 10−2 and n = 64 grid points. Although both solvers require the

same amount of CPU time for the same resolution, the mass-spring network

is still more efficient since it is designed to deal with 3D problems. For

the computation, the mass-spring solver handles a system of 3n degrees of
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freedom, corresponding to 3 dimensions, while the nonlinear-beam solver

only solves for 2n variables.

The deflection line of the two models at a given time t and the oscilla-

tion of the trailing edge yte(t) are shown in figure 8. The dashed blue line

calculated by the nonlinear beam theory and the solid red line calculated by

the mass-spring network are almost coincident with each other. We have an

excellent agreement between these two models with a relative error smaller

than 1%.

2.4.2. Membrane model - Uniaxial and isotropic deformations of a two-dimensional

sheet

We consider here the same test case proposed by Omori et al. [31] where

a square 2D sheet with an initial side length l0 = 1 is extended by a uniaxial

tension T = 0.005 and has a final length l in the x-direction at the equilibrium

state, as shown in figure 4. This tension must be small enough to cause small

deformation on the sheet. The Young modulus Es is defined by:

Es =
T

ε
(15)

where ε is the strain.

The sheet is then discretized by using three types of meshes, illustrated

in figure 4. The grid size ∆l is the side length of one triangle element of the

mesh and inversely proportional to the number of grid points n. The grid

size is varied to refine the mesh resolution. Since we are only interested in

the equilibrium state of the model, the masses will not have any effect on the

result and they are chosen properly for the numerical convergence. Instead

of solving the static equation of the system, we still solve here the dynamic
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equations of the system with artificial damping forces to make the system

go quickly towards its balanced position. Last but not least, all the spring

stiffnesses are set to the same value k = 1. Figure 10 shows the results we get

for all three mesh structures. First, for the cross-center structure, we are able

to reproduce the result of Omori et al. [31]. When the mesh is refined, the

ratio k/Es converges to the analytical value 3/4 with the relative error being

smaller than 1%. For the regular triangle, due to the shape of the square, we

have some minor flaws of the mesh at the border. But these can be neglected

when the mesh is fine enough and we can consider it as a regular triangular

mesh. Indeed, for high resolution, we find again an excellent agreement with

the analytical ratio k/Es =
√

3/2 derived by Omori et al. The relative error

is also smaller than 1%. However, for the unstructured mesh, the convergent

value of k/Es is larger than the one of Omori et al., but identical to the

analytical solution for the regular triangle. This finding is in fact expected

by Omori et al. since these two meshes are both constructed with triangles,

each node being connected to six springs. Yet, the random structure of the

unstructured mesh makes it difficult to explain the difference.

Using our mass-spring model, we are capable of reproducing the results

from the references, which indicates the reliability of the solver. These re-

sults for both small and large deformation cases allow us to have the same

conclusions as in the literature about the mass-spring system. Even though

the mechanical properties of spring networks are strongly dependent on the

mesh topology, a correlation between the discrete model and the continuum

model can still be obtained if the mesh is fine enough. However, this needs to

be compromised with the computational efficiency which is the main reason
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that we choose mass-spring network in the first place.

3. Wing structure

The simulation of insects with flexible wings is extremely complicated

not only because it involves solving for both fluid and solid dynamics, but

also due to the fact that insect wings are sophisticated structures. In our

work, we want to take into account as much as possible all the mechanical

properties of the bumblebee wing, in order to correctly model its dynamic

behaviors. In our wing model there are three main factors introduced, which

are considered to have the most impact on wing deformation during flight:

venation pattern, mass distribution and vein stiffness.

3.1. Venation pattern

The venation architecture is claimed to affect the anisotropy of the wing.

Throughout measurements from different insects, Combes et al. [3, 22] sug-

gest that wing flexural stiffness declines exponentially towards the tip and

trailing edge. This is explained by the common venation patterns of insect

wings: most insect wings have thick, stiff veins at the leading edge and cross

veins are thinner as they expand toward the wing tip. This structure allows

insect wings to resist against strong bending deformation in the spanwise

direction, while creating camber for lift generation in the chordwise direction

[22]. Nakata and Liu [2] modeled the anisotropy caused by wing veins. To

this end they took into account the variation of wing thickness and intro-

duced a ”rule of mixture” of composite materials.

In our model, the functional approach is used to take into consideration

the venation pattern. The vein structure, as well as the wing contour, are
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adapted from the data from [42] and encoded into the mass-spring network,

as shown in figure 11. Comparing to the reference data, two more veins are

added (vein 21 in the forewing and vein 7 in the hindwing) and two forewing

veins 19 and 20 are extended toward the tip of the wing. These modifications

are made to add bending stiffness to the tip of the wing and thus to obtain

a more realistic behavior during the simulation. The meshing is done by

identifying firstly the contour of the wing and all the veins (green, red and

blue curves in figure 11). The membrane is then discretized by a triangular

mesh using SALOME 2, an open-source integration platform for numerical

simulation and mesh generation.

3.2. Mass distribution

Another property which plays an essential role on the aerodynamics of the

wing, is the mass distribution. It represents the inertia of the system and the

position of the mass center has a strong connection with the stability of the

wing during flight. The mass distribution is calculated based on the measured

wing mass data from [42]. For our numerical simulations, the total wing

mass is chosen as the same used by Kolomenskiy et al. [42], mw = 0.791 mg.

The mass is then distributed into vein and membrane parts based on their

geometry and material. Each vein is considered as a rod composed of cuticle,

ρc = 1300 kg/m3 [42], with a circular cross section of constant diameter dv

[42] and length lv, calculated directly from the model. The mass of each

vein is then calculated and shown in table 2. Both diameter and mass are

dimensionless quantities, normalized by wing length L and air density ρairL
3,

2https://www.salome-platform.org/
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respectively.

The mass distribution for the membrane is more tricky since we do not

have the material properties of bumblebee membranes. A bi-linear regression

is employed due to the fact that the membrane is heavier near the wing

root and the leading edge [42]. An optimization is employed to find the

parameters for the regression using the mass center from the measured data

as an objective function. For a mass point mi belonging to the membrane at

position [xi, yi] (the z coordinate is neglected here because we assume that

the membrane is a planar sheet), we get:

mi = 1.75 · 10−4 − 2.83 · 10−4xi + 4.91 · 10−4yi (16)

This yields a difference, between two mass centers, of 0.0013 in the x-direction

and 0.0085 in the y-direction which are really small compared to the reference

wing length Rw = 1.

3.3. Vein stiffness estimation

To study the influence of wing flexibility on the aerodynamics perfor-

mance, the flexural rigidity of veins will be changed to alter the bending

stiffness of the wing. Consequently, only Young modulus E will be varied.

Insect cuticles are reported to have a Young modulus about 1kPa to 50MPa

[43]. For our study, we are choosing two values of E (corresponding to flexible

and highly flexible wings): 3.5 kPa and 35 kPa, which are in this range and

give realistic deformations comparing to those observed in real life. Then, the

flexural rigidity EI of each vein will be calculated using the second moment

of inertia I of circular-section veins with diameters given in table 2.
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Forewing Hindwing

#
Nominal

diameter

Nominal

mass
#

Nominal

diameter

Nominal

mass

1 0.0070 0.0209 1 0.0065 0.0180

2 0.0074 0.0237 2 0.0043 0.0071

3 0.0055 0.0076 3 0.0046 0.0024

4 0.0070 0.0063 4 0.0011 0.0001

5 0.0040 0.0031 5 0.0038 0.0043

6 0.0048 0.0094 6 0.0037 0.0005

7 0.0040 0.0019 7 0.0020 0.0012

8 0.0038 0.0009

9 0.0041 0.0023

10 0.0048 0.0064

11 0.0045 0.0017

12 0.0038 0.0018

13 0.0042 0.0010

14 0.0038 0.0020

15 0.0034 0.0008

16 0.0032 0.0005

17 0.0032 0.0004

18 0.0044 0.0009

19 0.0015 0.0001

20 0.0018 0.0001

21 0.0020 0.0009

Table 2: Dimensionless vein diameter dv (adapted from [42]) and their corresponding

dimensionless mass mv.
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4. Fluid-structure interaction

4.1. Numerical method

The ultimate goal of this work is the fluid-structure interaction simulation

of insects with flexible wings. To study the airflow as well as the effect

of flexibility on the aerodynamic performance of the wing, the developed

mass-spring model needs to be coupled with a fluid solver. This is done by

combining the volume penalization method [44] with a Fourier pseudospectral

discretization [45], for which we developed the parallel opensource solver

FLUSI, freely available on Github3 [4]. The code solves the incompressible,

penalized Navier-Stokes equations

∂tu + ω × u = −∇Π + ν∇2u− χ

Cη
(u− us)︸ ︷︷ ︸

penalization term

− 1

Csp
∇× (χspω)

∇2︸ ︷︷ ︸
sponge term

(17)

∇ · u = 0 (18)

u(x, t = 0) = u0(x) x ∈ Ω, t > 0 (19)

where u is the fluid velocity, ω is the vorticity, Π = p + 1
2
u · u is the total

pressure, ν is the kinematic viscosity. We find here again all the familiar

terms of the classical Navier–Stokes equations except for the sponge and pe-

nalization terms. The former is a vorticity damping term used to gradually

damp vortices and alleviate the periodicity inherent to the Fourier discretiza-

tion. The last term is used to impose the no-slip boundary conditions on the

fluid-solid interface as explained in [4]. All the geometry information of the

3https://github.com/pseudospectators/FLUSI
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solid is encoded in the mask function χ, which is usually taken as one inside

the solid and zero otherwise. However, we are dealing with a moving flexible

obstacle and the discontinuous mask function χ need to be replaced by a

smooth one, eqn. (20), to avoid oscillations in the hydrodynamic forces [20].

Thus, we employ a mask function χ as shown below:

χ(δ) =


1 δ ≤ tw − h

1
2

(
1 + cos π (δ−tw+h)

2h

)
tw − h < δ < tw + h

0 δ ≥ tw + h

(20)

where h is the semi-thickness of the smoothing layer, tw is the semi-thickness

of the wing and δ is the distance function which gives us the distance from

Eulerian fluid nodes to the center surface of the wing. As presented in section

3, an unstructured triangular mesh is employed for our wing model. Thus,

the discretized wing surface is composed of triangles constructed by three

vertices (e.g. xs,i,xs,j and xs,k). The distance function δ is computed by

cycling over all these triangles. Since we are only interested in the fluid

nodes near the fluid-solid interface, a bounding box is used to save computing

time. For each triangle, the distance from it to all the fluid nodes belonging

to its bounding box will be computed by using the algorithm from [46]. The

distance function at one fluid node is finally the minimum distance from this

fluid node to all the triangles nearby.

δ(x, t) = min(||x− triangle(xs,i,xs,j,xs,k)||2) (21)

The solid velocity field us is calculated in the same way as the distance

function δ. If the triangle (xs,i,xs,j,xs,k) is the one closest to the fluid node
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x, x will be projected onto the plane of the triangle and the solid velocity

of the projected point is interpolated from the velocities of the three vertices

by using barycentric interpolation. Because we do not consider the flexibility

of the wing in the direction perpendicular to the wing surface, the velocity

of the projected point should be the same as the one of the fluid node.

Nevertheless, the solid velocity field is defined in the global reference frame

for the fluid solver while the velocity solved by the solid solver is in the local

wing reference frame. These velocities are needed to be transformed back

to the global reference frame using eqn. (22) where VO(w) and Ω are the

translating and rotating velocity of the wing reference frame, v(w) and x(w)

are the velocity and the position computed by the solid solver in the wing

reference frame, respectively.

us = VO(w) + v(w) + Ω× x(w) (22)

Moreover, the fluid also interacts with the wing via the pressure and

viscous force. However, at Re = O(103) in our study, the viscous force

is considered to be very small and only the pressure force is transferred

into the mass-spring system as external force. Contrary to the previous

calculation of the solid velocity field us, the pressure force is interpolated

from the Eulerian fluid grid onto the Lagrangian mass points. The pressure

interpolation is quite straightforward because the pressure field solved by the

penalized Navier–Stokes equations is following the Darcy law and continuous

even inside the wing [44]. Consequently, the pressure at any mass point can

always be determined, using delta interpolation proposed by Yang et al. [47],

from pressure values at neighboring Eulerian grid points [20]. Then for each
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triangle element of the wing, the pressure forces at the three vertices are

perpendicular to the triangle and have magnitudes equaling to the pressure

multiplied by one third of the triangle area. This is done for all the triangles

and then accumulated to obtain the overall external pressure forces acting

on the mass-spring system.

For time-stepping, the coupled fluid-solid system is advanced by employ-

ing a semi-implicit staggered scheme as proposed in [20]. At time step tn,

the fluid velocity field is advanced to new time level un → un+1 from the old

mask function χn and the old solid velocity field uns by using the Adams–

Bashforth scheme. Then, the pressure field at the new time step pn+1 is

calculated from the fluid velocity field un+1. Finally, the solid is advanced

to the new time step χn+1 and un+1
s and the whole process is repeated until

the final time.

4.2. Validation

For the validation of the fluid-solid coupling, we consider two test cases:

the Turek benchmark test case FSI3 [48, 49] and the rigid revolving bumble-

bee wing test case [6].

4.2.1. Turek benchmark FSI3

The Turek benchmark FSI3 involves a flexible appendage of length l =

0.35 and thickness h = 0.02 placed right behind a circle cylinder of radius

R = 0.05; the whole obstacle is immersed in a channel of size H × L =

0.41× 2.5 with a Poiseuille inflow of meanflow Ū = 2, as shown in figure 12.

The center of the cylinder is placed a bit lower to the centerline at (0.2, 0.2)

to trigger the instability and to make the appendage oscillate.
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The fluid solver, as well as the fluid-solid coupling, are handled by the

software FLUSI [4] and the setup remains the same as the test case FSI3

with a resolution of 5200 × 1152 whose details can be found in [20]. Only

the solid solver based on the nonlinear beam equation, which is used for

validation in section 2, is now replaced by the new solver using the mass-

spring network for validation. The results of this simulation are presented

in table 3 for the comparison with the reference solutions presented in the

literature [20, 48, 49].

For the oscillation of the trailing edge yte, the result is in excellent agree-

ment with all three references when the maximum relative error, for both

maximum and minimum values of yte, is only 1.76% and the relative error

for the frequency of oscillation is 1.65%. The vertical displacement of the

trailing edge with respect to time in the periodic state is also plotted in

figure 13 to compare with the reference [49]. The two lines are almost super-

posed on each other. Nevertheless, the computed drag is less accurate with

a relative error which can go up to 4.57% comparing the maximum value

with the reference [20], but only 1% comparing with [48]. From figure 13,

the curves of the two solutions appear to have the same shape but have some

offset. This offset is explained in [20] to be due to the smoothing layer in

the mask function, which plays a role as surface roughness. This leads to the

over-prediction of the drag force. Concerning the lift force, the mass-spring

model yields results very close to the one calculated by Engels with the error

of 2.76%, and the difference is around 20% with respect to [48, 49] for both

max and min values. Like in Engels [20], the amplitude of the lift force is

over-predicted by coupling FLUSI and the mass-spring solver. In conclusion
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References yte[10−3] Drag Lift f0

max min max min max min

Mass-spring network 36.22 -32.93 503.02 442.12 189.94 -186.23 5.56

(1) T. Engels [20] 35.63 -32.71 481.20 432.50 188.52 -181.30 5.44

(2) S. Turek [48] 36.37 -33.45 487.81 432.79 156.13 -151.31 5.47

(3) S. Turek [49] 36.46 -33.52 488.24 432.76 156.40 -151.40 5.47

Table 3: Results of the FSI3 benchmark.

we find satisfying agreement with the results from the literature, for the solid

solver alone, as well as for the FSI algorithm coupling the solid solver with

the fluid solver in 2D.

4.2.2. Rigid revolving wing

Prior to studying the flexibility of the wing, a common test case of a rigid

revolving wing is considered to validate the coupling between the fluid and

the solid solver in 3D, i.e. the mask function generation and the velocity

field of the solid. The setup is taken the same as the one used by Engels et

al. [6] as shown in figure 14. The angle of attack is fixed at α = 45◦ while

the rotation angle φ(t) is given by

φ(t) = τe−t/τ + t− τ (23)

The wing is rotated around the center of the computational domain of

31



size 4 × 4 × 2, which is discretized using a mesh of 1024 × 1024 × 512 grid

points. To be consistent with the reference simulation [6], the wing shape

is not the one presented in section 3 but adapted from the wing planform

taken from the reference. The wing shape is then discretized by a triangular

mesh as shown in figure 14b. However, the vein structure will not be taken

into account in this model because we are considering a rigid wing. The

triangular mesh is solely exploited for the creation of the mask function and

the solid velocity field by using the algorithm presented at the beginning of

this section. Here, all the quantities are normalized. The wing length is

chosen as the length scale L = 13.2 mm; the mass scale is based on the air

density M = ρair×L3 = 2.817 mg and the time scale is chosen in the way that

wing tip velocity is unity, thus T = 1 s . The Reynolds number is then defined

as in [6] Re = ūtipcm/ν where the mean wingtip velocity ūtip = 1 [LT−1] by

definition from eqn. 23, the fluid viscosity ν = 1.477 · 10−4 [L2T−1] and the

mean chord, the ratio between the wing surface area A and the wing length

Rw, cm = A/Rw = 0.304 [L]. This yields Re = 2060. Additionally, the lift

and drag coefficient are defined as below

CL =
FL

MLT−2
; CD =

FD
MLT−2

(24)

where the lift FL is the force in the vertical direction Oz and the drag FD

is the force perpendicular to the plane formed by the vertical and the wing

spanwise axes, as shown in figure 14a.

The computed lift and drag coefficients are shown in figure 15 along with

the reference values from [6]. To evaluate quantitatively the error, the average

lift and drag during the steady state (for rotation angles φ varying from

160◦ to 320◦) are computed and compared with the reference. A very good
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agreement is obtained with the relative error of 1.3% for the drag and 1.6%

for the lift.

From the results obtained from these two test cases, the satisfactory agree-

ments can give us the confidence about the solid solver, based on mass-spring

system, as well as the coupling with the flow solver FLUSI. Any difference

between all the numerical studies carried out can be explained by the differ-

ence between the continuum model and the discrete model together with the

way of generating the mask function.

5. Results and discussion

In the following we present results of high resolution computations of

revolving bumblebee wings which are either rigid, flexible or highly flexi-

ble. First we perform computations for different resolutions to check the

mesh convergence for both fluid and solid solvers. Then a comparison of the

flexible wings with the rigid case allows to assess the influence of the wing

deformation on the aerodynamic forces. The setup is exactly the same as

described in the revolving wing test case of the previous section. The only

difference is the wing shape which is now changed back to the one presented

in section 3. As a result, the length scale and the mass scale are changed

as follows: L = 15 mm and M = ρair × L3 = 4.13 mg while the time scale

remains the same T = 1 s. The corresponding Reynolds number is 1800

where the fluid viscosity is assumed to be ν = 1.477 · 10−4 [L2T−1], the wing

tip velocity utip = 1 [LT−1] and the mean chord calculated from the new

wing surface area is cm = A/Rw = 0.266 [L].
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5.1. Study of mesh convergence

5.1.1. Fluid mesh

The following mesh convergence study for the fluid solver is performed

considering five different resolutions: 128× 128× 64, 256× 256× 128, 512×

512× 256, 768× 768× 384 and 1024× 1024× 512.

The mean drag generated during the second half cycle of the rotation

is chosen for the evaluation of the mesh convergence (160◦ ≤ φ ≤ 320◦).

Because it is impossible to obtain the exact values for the mean drag in this

case, we use here the result obtained with the finest mesh as a reference

value. The relative error of the mean drag with respect to the reference

drag for all the mesh size is shown in figure 17. In all the simulations, the

penalization parameter Cη is chosen to satisfy that the number of points

per thickness of the penalization boundary layer Kη =
√
νCη/∆x is always

constant (as recommended in [20]) and equal to 0.052. The drag obtained

for each simulation (figure 16) shows the convergence to the finest resolution

solution when we refine the mesh. The spatial convergence exhibits a first to

second order behavior when we plot the error versus the mesh size.

5.1.2. Solid mesh

As mentioned above, the dynamics of the mass-spring system depends

strongly on the mesh size. Thus another convergence test on the number

of mass points is performed. Two simulations of a revolving flexible wing

at resolution 7682 × 384 are run to compare between a medium-mesh and a

fine-mesh wing which are discretized by 465 and 1065 mass points, respec-

tively. As shown here in figure 18, although the number of mass points is

more than doubled, the forces remain almost unchanged with an increase of
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1.1% and 0.8% in average lift and drag coefficients during the steady state,

respectively. Since the fluid solver is itself already costly in term of CPU

time, the medium-mesh wing with 465 mass points is sufficient and can be

chosen for the following study in section 5.2.

5.2. Influence of wing flexibility

To examine the influence of vein stiffness on the aerodynamic performance

of the wing, the flexural rigidity of veins will be varied by changing the

Young modulus E. Two values of the Young modulus are used: E = 1.25 ·

108 [ML−1T−2] and E = 1.25 · 107 [ML−1T−2], corresponding to the flexible

and highly flexible cases, respectively.

Lift and drag coefficients at resolution 10242 × 512 for the rigid, flexible

and highly flexible cases are presented in figure 19.

During the transition phase (rotation angle φ ≤ 40◦), the lift generated by

the rigid wing increases instantly and then decreases before going up again.

The drag follows the same trend as the lift, but is larger in magnitude. When

the flexibility of the wing is taken into account, the rapid rise at the beginning

of the forces for both flexible and highly flexible wings disappear. Instead,

the forces increase gradually and the more flexible the wing is, the lower the

lift and the higher the drag are.

At steady state, similar behaviors between the rigid and the flexible wings

can be observed. When the rotation angle reaches 160◦, the forces generated

by these two wings are stabilized. This can be explained by the fact that

no dynamic deformation of the wings takes place and just the shape plays a

role.

We also find that the lift-to-drag ratio at the steady state of the flexible
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wing is 1.2, 14.5% higher than the one of the rigid case, which is only 1.05

(figure 20). This finding is consistent with conclusions found in literature

[50, 19]. A flexible wing generates less lift and drag than a rigid one. However,

due to the flexibility of the wing, the bending in the chordwise direction

makes the effective geometric angle of attack decrease and alters the direction

of the total resultant force upward [19]. This makes the lift-to-drag ratio raise

and allows better flight performance.

On the contrary, the highly flexible wing acts differently. Both the lift and

the drag increase gradually to attain their maximum values at the rotation

angle φ = 120◦ and then decline instead of being stabilized as in the other

simulations. The lift-to-drag ratio is surprisingly much less than the one

of the rigid case at the beginning of the steady state but then increases

and keeps up with the rigid wing. This can be explained by the fact that

the bending of the wing in the spanwise direction (figure 21) prevents the

development of the LEV growing further toward the wing tip and makes the

LEV burst sooner at mid-span of the wing.

The change of aerodynamic forces compared to the rigid case is linked

to the deformation of the wing, which is modeled by the mass-spring solver.

The wing deformation for all three cases is shown in the same figure 21 for

comparison at three time instants t = 2, t = 4 and t = 6. By applying the

functional approach, the difference between the vein and the membrane is

visible in the visualization.

At the finest resolution of the mesh (10242× 512), the flows generated by

the flexible wing are shown (figure 22) by plotting their vorticity magnitude

at four time instants of the simulation. The formations of the leading edge
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vortex as well as the tip vortex can be observed clearly at the beginning of

the rotation (t = 1.0 and t = 2.0). Then, the vortex burst happens and a

region of inhomogeneous vorticity forms at the wing tip. However, the LEV

remains attached to the wing surface and this results in constant lift and

drag.

6. Conclusions

We presented a numerical approach for fluid-structure interaction in the

open source framework FLUSI, which is based on a mass-spring model de-

scribing the structure of the insect wings and a pseudospectral method for

solving the incompressible Navier–Stokes equations. For imposing no-slip

boundary conditions in the complex time-changing geometry we used the vol-

ume penalization technique. The solver has been implemented on massively

parallel supercomputers using MPI and allows high resolution computations,

here with more than half a billion grid points. Code validation for two clas-

sical benchmarks, a flow past a cylinder with a flexible appendage and the

flow generated by a rigid revolving wing, is likewise presented.

Considering the flexible wing, the flexibility reduces the buildup of the

aerodynamic force during the beginning of motion. Nevertheless, after the

start-up phase, the wing yields a steady state configuration, and no significant

oscillation nor unsteady deformation of the wing are observed. A better

aerodynamic performance of the flexible wing, characterized by the increase

of the lift-to-drag ratio during the steady state, is explained by the decrease

of the effective angle of attack caused by the deformation of the flexible wing.

On the other hand, the highly flexible wing appears to be less efficient than
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the rigid wing. This can be interpreted that there is an optimized zone of

wing flexibility, which is ideal for flying.

For flapping wings we anticipate that flexibility will become important

because of the dynamic wing deformation. In the near future we are planing

high resolution numerical simulations of flapping insect flight with flexible

wings where the dynamical deformation plays an important role.

The limitations of the current approach are the resolution and CPU time

requirements imposed by the use of an uniform grid. Hence large scale simula-

tions become prohibitively expensive. Moreover, the thickness of bumblebee

wing is much smaller than the spatial mesh size in our present simulations.

Consequently, the virtual thickness of wings studied here is set to 4 times

the mesh size, necessary for the usage of the volume penalization method.

An adaptive version of the FLUSI code, likewise fully parallel, using

wavelet-based grid refinement is currently being developed to be able to re-

duce memory and CPU time requirements. High resolution numerical sim-

ulation of flapping flight for larger species and large Reynolds numbers will

thus become possible.

Implementing the solid solver presented in the current paper into the

adaptive Navier–Stokes solver will allow to perform fluid-structure interac-

tion on adaptive grids at reduced computational cost.
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(a) extension spring

(b) bending spring

Figure 1: Illustration of the restoring forces corresponding to the deformation of extension

and bending springs.

Figure 2: All possible shapes of a bending spring corresponding to one bending angle θijk.
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Figure 3: Illustration of a vein modeled by mass points, extension springs and bending

springs. White circles represent mass points, solid lines represent extension springs, black

circles represent both mass points and bending springs.

Figure 4: Different mesh structures for 2D discretization [31].

Figure 5: Relationship between the spring constant k, Young modulus Es, and Poisson

ratio νs in the small deformation limit for a 2D membrane under uniaxial deformation.

The membrane is discretized by three types of meshes and subjected to homogeneous

deformation. Figure adapted from [31].
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(a) Continuous beam

(b) Discrete mass-spring network

Figure 6: Illustration of deformation corresponding to forces applied on extension and

bending springs.
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Figure 7: Cantilever beam subjected to gravity field modeled by continuous nonlinear

beam and mass-spring network.

(a) (b)

Figure 8: The oscillation of the trailing edge yte(t) (a) and the deflection lines at t = 2

(b) calculated by the nonlinear beam theory [20] (dashed blue line) and the mass-spring

network (solid red line).
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Figure 9: Deformation of a 2D sheet along the x-axis under the uniaxial tension T .

Figure 10: Effect of mesh topology on the relation between the spring stiffness k and the

corresponding Young modulus Es
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Figure 11: Illustration of the mass-spring model which is meshed based on measured

data of real bumblebee wings [42]. The black and white markers represent mass centers.

Color codes (red, green and blue) are used for identifying veins and the membranes are

represented by cyan circles.

Figure 12: Computational domain of the FSI3 Turek benchmark and dimensions of the

solid part [49].
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(a)

(b) (c)

Figure 13: The oscillation of the trailing edge yte(t) (a), the drag (b) and the lift (c) from

the references [49] (blue dashed line), [20] (black dash-dotted line) and the mass-spring

network (red continuous line).
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(a) Scheme of the revolving wing, adapted from [6].

(b) Corresponding discrete mass-spring network.

Figure 14: Schematic diagram of the revolving wing simulation (a) and the wing mass-

spring model (b) adapted from [6]. The wing is rotated around the hinge point with an

angle of attack α = 45◦.
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Figure 15: Comparison of lift and drag coefficients for a rigid wing, calculated using the

coupling between FLUSI and the developed mass-spring solver, with the reference data

from [6].

55



Figure 16: Drag coefficient generated by a flexible wing, calculated at different resolutions:

1282 × 64, 2562 × 128, 5122 × 256, 7682 × 384 and 10242 × 512 .
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Figure 17: The error of the mean drag versus mesh size. The dashed lines represent first

and second order convergence.
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Figure 18: Lift and drag coefficients generated by a revolving flexible wing discretized by

465 and 1065 mass points at Re = 1800.
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(a) Lift coefficients.

(b) Drag coefficient.

Figure 19: Influence of wing flexibility on lift and drag coefficients of a revolving wing at

Re = 1800.
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Figure 20: Lift-to-drag ratio for the three wings during the steady state, rotation angle

120◦ ≤ φ ≤ 320◦.
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(a) Top view.

(b) Side view.

Figure 21: Wing deformation corresponding to rigid (dark blue), flexible (blue) and highly

flexible (light blue) wings at three time instants, t = 2, t = 4 and t = 6.
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Figure 22: Flows generated by a flexible revolving wing, visualized by their vorticity

magnitude |ω| at four time instants t = 1, 2, 4 and 6. The simulation is performed with

resolution 10242 × 512.
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