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Abstract

A space-time fully adaptive multiresolution method for evolutionary non-linear partial differential equations
is presented introducing an improved local time-stepping method. The space discretisation is based on
classical finite volumes, endowed with cell average multiresolution analysis for triggering the dynamical grid
adaptation. The explicit time scheme features a natural extension of Runge–Kutta methods which allow
local time-stepping while guaranteeing accuracy. The use of a compact Runge–Kutta formulation permits
further memory reduction. The precision and computational efficiency of the scheme regarding CPU time
and memory compression are assessed for problems in one, two and three space dimensions. As application
Burgers equation, reaction-diffusion equations and the compressible Euler equations are considered. The
numerical results illustrate the efficiency and superiority of the proposed local time-stepping method with
respect to the reference computations.
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1. Introduction

Multiresolution (MR) methods improve the computational performance of numerical solvers of evolu-
tionary partial differential equations when the solution exhibits localised structures, point-wise singular-
ities, boundary layers, shocks, coherent vortices such as encountered in combustion and turbulent flow
applications [12, 26, 19].

In these methods, the fast wavelet transform is the key ingredient to speed-up computations. The
wavelet coefficients are employed to measure the local smoothness of the solution. Then, a thresholding
strategy is used to remove non-significant coefficients, obtaining a grid adapted to the solution. This grid
is coarser in smooth regions and finer there where structures and steep gradients are present. The locally
refined grid can be rebuilt interactively to a regular grid with an expected error directly related to the
chosen threshold. With the use of this adaptive grid, the number of interface flux computations during
the time evolution can be significantly reduced, while controlling the error. The adaptive grid is checked
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before each time step to guarantee that it is sufficiently refined to represent possible new structures in the
solution. Therefore, the adaptive grid is dynamically adapted to track the solution in scale and space.

The next step to improve the computational performance associated with these adaptive grids is to
use a local time-stepping (LT) approach, especially when explicit time schemes are used. In this work,
the combination of MR methods with the local time-stepping approach is denoted as MRLT. LT consists
in performing the time evolution of each cell on the adaptive grid independently according to its required
time step. Therefore, each cell must have a time step proportional to its refinement and consequently, a
larger cell performs a larger time step.

Local time-stepping methods for space adaptive discretisations of partial differential equations have a
long tradition, going back to the early work of Osher and Sanders [21]. Related to multiresolution, Müller
and Stiriba [20] presented some general MRLT schemes that could be applied either to an explicit time
scheme, based on Lagrange projection, or an implicit time scheme, for a reference finite-volume method in
space. In [20] they applied LT to one-dimensional scalar conservation laws. Following this work, Coquel
et al. [3] presented MRLT methods with both explicit and implicit Lagrange-projection schemes, the
latter is the novelty concerning [20]. Hejazialhosseini et al. combined in [13] first and second order RK
schemes to propose an LT approach for MR in blocks with finite volumes for multi-phase compressible
flows implemented on multi-core architectures.

More recently, LT methods have been proposed using different approaches for time interpolation re-
quired in the algorithms for providing values at intermediate time steps. In [24], the authors use a high-order
Taylor type integrator, while a discontinuous Galerkin method with spectral elements is used for spatial
discretization. In the context of finite elements methods, [25] proposed an energy conserving LT algorithm
based on a second-order leap-frog scheme. Discussions on the proper choice of the time-step in LT schemes
are still an important topic of discussion. To this end a posteriori error estimators are used in [1, 18],
while Gnedin et al. (2018) [11] investigate their effect by enforcing the CFL condition locally over every
cell. In the context of finite volumes methods, the use of high-order schemes for local time-stepping on
adaptive mesh refinement grids were previously discussed in [8]. In that work, the accuracy order in space
is obtained through a WENO reconstruction, while the accuracy in the time discretization is achieved by
a local space-time discontinuous Galerkin predictor method. This approach yields up to fourth order for
compressible Euler equations in 2D. Similar and related works in this context were carried out in [15] and
[2].

A detailed discussion on the stability of those MRLT schemes is presented in [14]. In the context of
adaptive numerical methods for partial differential equations, the derivation of explicit LT methods based
on standard RK schemes typically stays at orders smaller or equal to two [6, 4, 5] The reason why LT
methods are limited to low order in time is because a time synchronization is required; for a discussion
we refer to [6]. Recently, higher-order LT schemes have been proposed in the context of discontinuous
Galerkin methods. The works of Gassner et al. [10, 9] in this context are based on natural continuous
extensions for Runge–Kutta methods (NERK). Such schemes have been introduced initially by Zennaro
in the late 1980’s for solving general ODEs, with application to delay equations [30]. The idea is to
interpolate the intermediate stages of the Runge–Kutta scheme to obtain the values at the requested
intermediate time instants required for the time synchronisation in LT schemes. This method is also called
Natural Continuous Extension in [30], Continuous Extension Runge–Kutta in [23], and in a general way
Continuous Runge–Kutta, as discussed in [28].

Recently, an alternative for higher-order LT methods, again in the context of discontinuous Galerkin
spectral element schemes, has been proposed by Winters and Kopriva [29]. The underlying ideas are
Adams–Bashforth multi-step schemes.

Moreover, Gassner et al. (2011) considered a family of explicit one-step time discretisations for finite
volume (FV) and discontinuous Galerkin schemes, which are based on a predictor-corrector formulation
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[9].
The aim here is to use the idea of Gassner et al. [10] using NERK for the first time in the con-

text of MRLT methods to perform the synchronisation. Thus, an improvement in time accuracy can
be obtained. In the current work, only second and third-order schemes are used, but the extension to
higher-order is in principle possible. Gassner et al. [10] discussed that NERK is 10% slower than the
Cauchy—Kovalevskaya scheme. However, to work with the latter is complicated as the analytic solution
of some nonlinear PDEs is required. The goal of the proposed approach is to perform simulations using
NERK schemes. Therewith, the synchronisation required for the LT approach is possible, and this new
class of MRLT methods, named MRLT/NERK, is created. This work presents the application and im-
plementation of the MRLT/NERK method for the second (RK2) and third (RK3) order time evolution,
named MRLT/NERK2 and MRLT/NERK3, respectively. The method proposed in this work is applied for
solving the two-dimensional Burgers equation, one and three-dimensional reaction-diffusion problems and
the two-dimensional compressible Euler equations. The obtained results and CPU times are compared with
the MR method using classical RK2 and RK3 time evolution, named MR/RK2 and MR/RK3, respectively.
The results are also compared with the MRLT approach given in [6] based on RK2 time evolution, named
MRLT/RK2.

In Section 2, we summarise the adaptive multiresolution method proposed in [12]. Then, in Section 3,
we discuss the Runge–Kutta methods and the NERK methods used in the current work to perform the
proposed MRLT/NERK approach given in Section 4. A convergence analysis is conducted in Section 4.4.
Performance comparisons, considering CPU time and errors, among the FV, MR and MRLT approaches
given in [6] and the MRLT/NERK approach introduced here, are presented in Section 5. Conclusions are
drawn in Section 6.

2. Adaptive multiresolution methods using finite volumes

The following initial value problem for a vector-valued function Qpx, tq written in divergence form is
considered:

BQ

Bt
“ ´∇ ¨ FpQ,∇Qq ` SpQq, for px, tq P Ωˆ r0,`8q, Ω Ă Rd . (1)

This problem is given in d space dimensions, completed with initial conditions Qpx, t “ 0q “ Q0pxq
and appropriate boundary conditions. The terms ∇ ¨ FpQ,∇Qq and SpQq denote the divergence and
source term, respectively. The flux F can be decomposed into advective and diffusive contributions, i.e.
FpQ,∇Qq “ fpQq ´ ν∇Q, where the diffusion coefficient ν is positive and assumed to be constant.

To discretise Equation (1) in space, we use a classical finite volume formulation written in standard
form. The domain Ω corresponds to a rectangular parallelepiped in d “ 1, 2 or 3 dimensions in Cartesian
geometry. It is partitioned into cells pΩiqiPΛ, Λ “ t0, . . . , imaxu with Ω “

Ť

i Ωi.
Defining the volume of the cell by |Ωi| “

ş

Ωi
dx, we compute the cell-average q̄iptq of a given quantity

Q on Ωi at time instant t by,

q̄iptq “
1

|Ωi|

ż

Ωi

Qpx, tq dx.

Considering the one-dimensional case, Ωi is an interval rxi´ 1
2
, xi` 1

2
s of length ∆xi “ xi` 1

2
´xi´ 1

2
. Integrating

Equation (1) on Ωi then yields:

dq̄i
dt
ptq “ ´

1

∆xi

´

F̄i` 1
2
´ F̄i´ 1

2

¯

` S̄i, (2)

where F̄ is the numerical flux and S̄i is the source term of the cell Ωi. This formulation can be extended
to two- and three dimensional problems.
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The source term is approximated by S̄i « Spq̄iq, which yields also second-order accuracy in case of a
linear source term.

The adaptive multiresolution (MR) analysis in the cell average context, proposed by Harten [12], con-
sists in decomposing the cell-averages of the solution into a multilevel representation. This representation,
illustrated in Figure 1a, consists of a hierarchy of nested grids Ω`, where ` is the grid refinement level. Each
grid Ω` consists of a regular grid, as defined for the FV formulation, with 2d` cells. A cell of refinement
level ` and position i is denoted by Ω`

i .
Figure 1a shows the implementation of this structure as a binary tree, where the nodes of level `

generate the grid Ω`. For the two- and three-dimensional cases, this idea is extended by using a quadtree
and an octree, respectively.

a) Grid hierarchy for an unidimensional domain.

b) Tree structure for an adapted grid.

Figure 1: Dyadic grid hierarchy of MR methods and its implementation in a tree data structure. a) Example of nested
unidimensional grids, the circles represent the internal nodes of the tree structure, while the triangles represent the leaves of
the tree. b) Example of an adapted grid using the tree structure from a). The virtual leaves are represented by the triangles
O. Adapted from [26].

This sequence of nested grids corresponds to a scheme where a finer scale represents its subsequent
coarser scale plus a sum of details between these levels. These details are the wavelet coefficients. The
construction of the adapted grid in the MR method consists in representing the grid using only cells with
significant wavelet coefficients. For this, the leaves of the most refined level are checked, if their parent cell
has a significant wavelet coefficient, larger than a predetermined threshold ε, if not, the leaves are deleted.
This process is repeated recursively starting from the finest level, going to coarser and coarser levels. The
procedure to obtain the projection of the solution on the coarser levels and the wavelet coefficients is given
in Section 2.
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The grid generation procedure is mathematically supported by the fact that the magnitude of of the
wavelet coefficients are small in regions where the solution is smooth, while they are significant in regions
where the solution exhibits steep gradients. Hence, high compression rates are expected when only a small
number of cell-averages is present on the finest scales.

In this work, the data structure for representing the solution is organized as a dynamic graded tree.
This tree organization requires that no hole is admitted inside the tree, which means that the connectivity
in the tree structure has to be ensured. Moreover, the tree can change in time to track the space-scale
evolution of the solution as nodes can be added or removed while guaranteeing its gradedness.

This dynamic graded tree organization implies that neighbours of each cell can have a difference of one
refinement level at most. This restriction allows the use of virtual leaves for the flux computations between
leaves at different refinement levels. These virtual leaves are auxiliary leaves placed as children nodes of the
leaves who have an interface with finer leaves. Their values are predicted using the prediction procedure
used to compute the wavelet coefficients. A unidimensional adaptive grid represented in a graded tree
structure is shown in Figure 1b.

The flux computations in the MR scheme are performed individually for each leaf. The numerical
fluxes are computed between cells at the same refinement level. Using the adaptive grid of Figure 1b, the
following interface scenarios for computing the numerical fluxes of a leaf can be identified:

• Leaf / Leaf or Virtual leaf: When both leaves belong to the same refinement level, the flux
computation is performed in the same way as in the FV method. The following cases can occur:
Leaf/Leaf example: Flux between cells Ω3

0 and Ω3
1; Leaf/Virtual leaf example: Flux between cells Ω4

5

and Ω4
6.

• Leaf / Internal node: In this scenario, the current leaf has an interface with a finer leaf. To
perform the flux computation in this case, the numerical flux is computed using the virtual children
of the leaf and its adjacent leaves. Example: Flux between cells Ω2

2 and Ω2
1.

The construction of the adaptive grid guarantees that the current solution is well represented. However,
after the time evolution process, the new solution should also be well represented on this grid, which a
priori cannot be ensured. In order to guarantee that the new solution after the time evolution is still well
represented on this grid, the leaves with finer neighbours are refined and neighbor cells are added. Further
details of the MR scheme and its implementation can be found in [26]. The Algorithms 1 and 2 given in
Appendix Appendix A describe the adaptive grid creation and its update, respectively.

Projection and prediction operators

In order to perform the MR method, some operations for projection and prediction are required. For
the MR scheme with finite volumes, where the cell values are local averages, a coarser cell Ω`

i has its value
estimated using the finer values and an unique projection operator P``1Ñ` : q̄``1 ÞÑ q̄`. In this scheme,
the projection operator to obtain the solution of a coarser cell is given by the average value of its children.
For the unidimensional case, the projection is performed by:

q̄`i “ P``1Ñ`

`

q̄``1
2i , q̄

``1
2i`1

˘

“
1

2

`

q̄``1
2i ` q̄``1

2i`1

˘

, (3)

where q̄`i are the average value of the cell Ω`
i . The same idea is extended for the two and three-dimensional

cases.
The prediction operators are used to perform the opposite path of the projection operators, they allow

to obtain the values of the finer cells using the values of the coarser ones. For each child cell to be predicted,
there is a different prediction operator, represented by P i

`Ñ``1 : q̄` ÞÑ q̄``1 for the one-dimensional case,
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P i,j
`Ñ``1 : q̄` ÞÑ q̄``1 for the two-dimensional case and P i,j,k

`Ñ``1 : q̄` ÞÑ q̄``1 for the three-dimensional

case. These operators yield a non-unique approximation of q̄``1
i by interpolation. We use polynomial

interpolation of second degree on the cell-averages, as proposed by Harten [12], which yields third-order
accuracy. For the one-dimensional case, it follows that,

q̃``1
2i “ P 0

`Ñ``1

`

q̄`i´1, q̄
`
i , q̄

`
i`1

˘

“ q̄`i ´
1

8
pq̄`i`1 ´ q̄`i´1q (4a)

q̃``1
2i`1 “ P 1

`Ñ``1

`

q̄`i´1, q̄
`
i , q̄

`
i`1

˘

“ q̄`i `
1

8
pq̄`i`1 ´ q̄`i´1q. (4b)

where q̃`i is an approximation of the value q̄`i . Interpolation operators for higher dimensions can be found
in [26]. The operator must satisfy the properties of locality, requiring the interpolation for a child cell to be
computed from the cell-averages of its parent and its nearest uncle cells in each direction; and consistency,
P``1Ñ` ˝ P`Ñ``1 “ Identity.

The prediction operator is used to obtain the wavelet coefficients d`i of the finer cells. These coefficients
are given by the difference between the cell average q̄`i and the predicted value q̃`i :

d`i “ q̄`i ´ q̃`i . (5)

The values d`i are also used for reconstructing the finer levels without interpolation errors. Their norm
yields the local approximation error. Moreover, the information of the cell-average value of the two children
is equivalent to the knowledge of the cell-average value of the parent and one independent detail. This
can be expressed by

`

q̄``1
2i , q̄

``1
2i`1

˘

ÐÑ
`

d``1
2i , q̄

`i
˘

. This procedure can be applied recursively from level
L down to the level 0 creating thus a multiresolution transform of the cell-average values as proposed by
Harten [12]. Therefore, we have

q̄L ÞÝÑ pD̄L, D̄L´1, . . . , D̄1, q̄0
q, (6)

where D̄` is the set of wavelet coefficients at level `. Accordingly, the information of the cell-average
values of all the leaves is equivalent to the knowledge of the cell-average value of the root and the wavelet
coefficients of all the other nodes of the tree structure. For two and three dimensions, respectively, the
information of the cell-averages of four and eight children is equivalent to the knowledge of three and seven
wavelet coefficients in the different directions and the node value [12, 26].

3. Runge–Kutta methods

After discretising in space the initial value problem given in Eq. (1), the following system of ordinary
differential equations in time is obtained:

dq̄

dt
“ fpt, q̄q , (7)

where Qpt “ 0q “ q̄0 is the given initial condition. This system yields an equation for each leaf of the grid.
By abuse of or to simplify notation the space discretised solution will be denoted again by q̄. The general
formulation for an explicit s-stage Runge–Kutta (RK) method can be expressed at time tǹ 1 as:

q̄n`1
“ q̄n `

s
ÿ

i“1

biki , (8)

with

ki “ ∆tn f

˜

tn ` ci∆t
n, q̄n `

i´1
ÿ

j“1

aijkj

¸

, (9)
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where aij, bi and ci are the Runge–Kutta coefficients, and ∆tn is the time-step used to perform the time
evolution from the instant tn to tn`1. The actual convergence order of the RK method depends of the
number of stages and a set of well selected RK coefficients.

In this work we consider second order RK methods (RK2) with coefficients ci and aij in such a way
that they are the same coefficients used in the first and second steps of the RK3 method. Namely, the

values of these coefficients are c1 “ 0 and c2 “ a21 “ 1. The other coefficients for RK2 are b1 “ b2 “
1

2
.

To perform RK3, further coefficients are c3 “
1

2
, a31 “ a32 “

1

4
, b1 “ b2 “

1

6
and b3 “

2

3
.

Natural continuous Extension Runge–Kutta (NERK) method

The NERK method, originally introduced by [30], produces an approximation of the solution in the
time interval rtn; tn`∆tns using the same coefficients aij and ci as in the standard Runge–Kutta methods.
The difference between NERK and RK is the use of polynomials βi instead of the constant coefficients bi.

The NERK method can be expressed as,

q̄ptn ` θ∆tnq “ q̄n `
s
ÿ

i“1

βipθq ki, θ P p0, 1s, (10)

where the polynomials βi are given as a function of the coefficients bi of the original RK method.
Using the proposed RK2 coefficients, the following polynomials for the two-stage NERK method are

obtained using the methodology given in [23]:

β1pθq “ ´
1

2
θ2
` θ, β2pθq “

1

2
θ2. (11)

In this work, the application of the NERK method consists in producing approximations of a solution
at some intermediate time instants inside the interval rtn, tn `∆tns, depending on the choice for RK2 or
RK3 time evolution.

Compact formulation

In order to reduce the memory allocation per cell when performing the time evolution, the compact
formulation of the RK methods is of particular interest, used for example in [26]. Based on the standard
RK methods, we can obtain the following compact formulation for the two and three stage methods,

• RK2: q̄˚ “ q̄n `∆tnfptn, q̄nq, q̄n`1 “ 1
2
q̄n ` 1

2
q̄˚ ` 1

2
∆tnf ptn `∆tn, q̄˚q.

• RK3: q̄˚ “ q̄n `∆tnfptn, q̄nq, q̄˚˚ “ 3
4
q̄n ` 1

4
q̄˚ ` 1

4
∆tnf ptn `∆tn, q̄˚q ,

q̄n`1 “ 1
3
q̄n ` 2

3
q̄˚˚ ` 2

3
∆tnf

´

tn ` 1
2
∆tn, q̄˚˚

¯

.

When performing the time integration using a local time-stepping approach, cf. Section 4, some
intermediate values are necessary. In this work, we propose to use the NERK method for that. However,
the values ki are not stored in the RK compact formulation. Hence the NERK solution must be adapted
to be compatible with the compact RK method.

The following steps produce a NERK/RK2 approximation at the time instant tn ` 1
2
∆tn. Due to the

memory management of the numerical code, where the fluxes are stored at the same memory allocation,
each one of the following steps is executed immediately after its corresponding compact RK step:

q̄˚
θ“ 1

2
“ q̄n `

3

8
∆tnfptn, q̄nq, q̄θ“ 1

2
“ q̄˚

θ“ 1
2
`

1

8
∆tnf ptn `∆tn, q̄˚q . (12)
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where the values fptn, q̄nq and f ptn `∆tn, q̄˚q are the same as those obtained for the compact RK formu-
lation. In this formulation, the values q̄θ“ 1

2
and q̄˚

θ“ 1
2

are stored at the same memory allocation.

For the RK3 time evolution, second order approximations at the time instants tn` 1
4
∆tn and tn` 3

4
∆tn

become necessary. These approximations are required to compute the third step of the RK3. However,
the NERK/RK3 method only yields these information after the third step. The proposed solution for this
problem is to obtain these approximations via NERK/RK2. Then, it is possible to obtain approximations
at these desired instants immediately after the second step of the RK method, under the condition that
the coefficients aij and ci of both, RK2 and RK3, methods are the same. Therefore we use the following
approximations:

• at tn ` 1
4
∆tn: q̄˚

θ“ 1
4

“ q̄n `
7

32
∆tnfptn, q̄nq, q̄θ“ 1

4
“ q̄˚

θ“ 1
4

`
1

32
∆tnf ptn `∆tn, q̄˚q.

• at tn ` 3
4
∆tn: q̄˚

θ“ 3
4

“ q̄n `
15

32
∆tnfptn, q̄nq, q̄θ“ 3

4
“ q̄˚

θ“ 3
4

`
9

32
∆tnf ptn `∆tn, q̄˚q.

These approximations can be performed using similar memory management ideas as for the RK2 evolution.

4. Local time-stepping

To improve further the computational efficiency of the MR method, a local time-stepping approach
was proposed in [6]. This approach consists in using an adapted time-step for each leaf individually. This
time step is obtained accordingly to the spatial size of the leaf. Thus, small time steps are only used for
fine scale leaves, while large time-steps can be used for coarser leaves. This is possible without violating
the stability condition of the explicit time discretisation, as shown in [6].

Solutions with point-like singularities are well adapted and yield highly efficient multiresolution rep-
resentations. For those, the MRLT approach is found to be most efficient. Besides, the adaptive grid
created for the MRLT scheme is the same graded tree structure used in the MR scheme [26]. The update
procedure for the trees during MRLT schemes is discussed in Section 4.3.

We suppose that the CFL condition implies a time-step ∆t for the most refined level. In the LT scheme,
each cell of level ` performs its time evolution with a proper time step given by:

∆t` “ 2L´`∆t, (13)

where L is the finest level of the grid. From this point, the notation is adjusted in order to facilitate the
understanding. Moreover, considering the Courant number σ depending on the ratio between ∆t` and
∆x`, and using the relations between the cell size and the time-step of different levels, the value σ obtained
for every cell will thus be the same.

As illustrated in Figure 2, due to the scale dependent time-stepping of the LT scheme, not all leaves
of the coarser scales will be evolved during an iteration of the time evolution. We define the coarsest
level where the leaves must be evolved in a certain iteration n to be the minimum scale level in which the
modulo operator between n and 2L´` is zero and we denote it as `min.

The above approach is restricted to second order time accuracy, because the internal steps of standard
Runge–Kutta schemes are not compatible with the dyadic grid size. The reason is that the intermediate
time steps of higher order RK schemes (order larger than two) do not correspond to the time instants of the
solution obtained by the RK method when using the dyadic grid size [6]. A possible solution to overcome
this limitation is to use NERK schemes. Their polynomial approximation in time is used to evaluate the
solution at the intermediate time instants imposed by the dyadic spatial grid size.

The implementation of high order LT schemes leads to three synchronization challenges during the time
evolution of a leaf with a neighbour at a different refinement level. Those challenges are discussed in the
following subsections. The whole LT method as proposed in this work is performed as in Algorithm 3.
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Figure 2: LT evolution of adjacent cells at different scales. The finer cells in this representation need a second time evolution
to reach the instant tn`2.

4.1. Synchronization during the Runge–Kutta iteration

Considering the restriction that during an iteration of LT schemes only leaves of refinement level greater
or equal `min are evolved, we know that all of these leaves have their solutions at the same time instant tn,
requiring no synchronization to perform the first RK step. Thus, the first RK step can be done with the
MR method using the proper ∆t` value. After performing the first step of the Runge–Kutta method, the
leaves at each level are evolved with their own time step, obtaining a first order solution at time instant
tn `∆t`. Using the fluxes obtained in this step, the values q̄˚

θ“ 1
2

, for RK2, or q̄˚
θ“ 1

4

and q̄˚
θ“ 3

4

for RK3, are

computed at the leaves of every level evolved in this iteration.
However, for the next RK steps, due to the different time step size, the solution values after the RK

step are given in a different time instant for each refinement level. This implies that some synchronization
has to be performed.

4.1.1. Second Runge–Kutta step synchronization

In order to perform the second step of the RK method, it is necessary to compute the flux fptn`∆t`, q̄
˚q.

This flux can be interpreted as the flux between leaves at the time instant tn`∆t`, where the leaf value is a
first order approximation q̄˚ “ q̄n`a21k1. The challenge here lies in the fact that when this approximation
is obtained at a finer scale, due to the different time step size used, it is located at an earlier time instant
with respect to the approximation at a coarser scale. This situation implies that the flux computation for
each scale has to be performed at a different time instant, as shown in the scheme presented in Figure 3.
The values required for both cases of the second RK step are not available after the first RK step, requiring
thus a synchronization procedure to obtain those values for each scale. Then the second RK step in this
scale can be performed. To obtain the missing values to compute the fluxes in the situation given in
Figure 3(a), a tree refreshing procedure, described in Section 4.2, must be performed in order to project
the solution for scales ` ą `min at time instant tn `∆t` onto the scale `´ 1 at instant tn `∆t`´1.

The proposed synchronization methodology to perform the second RK step consists in using a first order
approximation q̄n` `

1
2
a21k1 as a solution at the time instant tn` 1

2
∆t` for every ` ‰ L. This approximation

is in the same time instant as the solution in the next finer level. The use of this approximation consists
in predicting the values of the virtual leaves at level ` ` 1, at the proper time instant, before performing

9



the flux computations of the leaves at level `` 1. This approach is illustrated for the situation presented
in Figure 3(a).

In order to simplify the algorithm, the prediction of the virtual leaves at the coarser scales at the
proper time instant, necessary to update the next finer level, is performed during the tree refreshing
process, explained in detail for every RK step, in Section 4.2. In this Section, we focus on the update of
the virtual leaves at level `` 1 in order to perform the flux computations on leaves of level `, as presented
in Figure 3(b).

Initially, the flux computations for the second RK step are performed on the leaves of level L. This
choice is due to the fact that at this level, there are no interfaces of the type leaf/internal node, avoiding
thus the situation shown in Figure 3(b).

Having updated the level L, the same process is repeated recursively for the levels L ´ 1 down to
L “ `min. However, due to the leaf/internal node scenario, the leaves and virtual leaves of the previously
updated level ` ` 1 must be synchronized at the instant tn ` ∆t`, which is equivalent to the instant
tn ` 2∆t``1, in order to perform the flux computations of the next coarser level. For that we propose the
use of an extrapolated value, resulting in the situation presented in Figure 3(b).

In this work, we propose to obtain an extrapolation at time instant tn`2∆t``1, which allows to compute
the fluxes for the second step of the RK method. For this, the value k2 is used as the value k1 in a second
RK1 time evolution. The first order approximation of the solution at the instant tn ` 2∆t``1 is computed
as:

q̄``1 pt
n
` 2∆t``1q “ q̄˚``1 `∆t``1f

`

t`∆t``1; q̄˚``1

˘

“ q̄n``1 ` k1 ` k2 (14)

where q̄˚``1 is the first RK step, and ∆t``1f
`

t`∆t``1; q̄˚``1

˘

is the flux of the second RK step. Note that
this approximation is only possible due to the choice of the coefficients a11 “ b1 “ 1.

Once the leaves of level `` 1 are extrapolated to the instant tn` 2∆t``1, the virtual leaves of this level
are also updated. However, in order to predict the value of the virtual leaves at level ` ` 1, the values of
the virtual leaves and internal nodes of level ` must be synchronized at instant tn `∆t` first.

The solution of the virtual leaves and internal nodes of level ` in this time instant is obtained during
the tree refreshing process. However, in order to improve the solution of the internal nodes, their values at
time instant tn`∆t` are updated after the evolution of the leaves of level `` 1. This update is performed
via projection of the extrapolated solution at instant tn ` 2∆t``1 from the level ` ` 1 to `. In contrast
to the leaves, which have an approximation at this instant, the internal nodes do not. The values for the
internal nodes are obtained via linear extrapolation:

q̄``1 pt
n
` 2∆t``1q “ 2q̄˚``1 ´ q̄n``1. (15)

This approximation is used to perform the projection of the solution of the internal node to the next
finer level `. The projection procedure is given in Algorithm 4. After the projection procedure, the virtual
leaves of level `` 1 have their predicted values. Then, the flux computations and the update of the leaves
at level ` can be performed. The second step of the RK method is given in Algorithm 5.

During the second RK step, the fluxes are also used for computing the second step of the NERK
approximation with second order at the time instants tn ` 1

2
∆t` for RK2 or tn ` 1

4
∆t` and tn ` 3

4
∆t` for

RK3 time evolution.
As stated before, the NERK approximation for the RK2 time evolution is used to solve the synchroniza-

tion according the time evolution problem given in Section 4.3. For the RK3 time evolution, the NERK
approximations are used to perform the third RK step.

After the second step of the RK evolution, a solution at the time instant tn`∆t` for the RK2 method,
and at tn` 1

2
∆t` for the RK3 method is obtained. In order to prepare the tree structure for the next RK2

10



a) Evaluation of the fine leaves. b) Evaluation of the coarse leaves.

Figure 3: Schematic view of the synchronization issues for the second RK step. a) presents the evaluation of flux computations
F̄ at instant tn ` ∆t. For adjacent leaves at the same level we can compute the fluxes directly. However, to compute the
fluxes between different levels, we need the virtual leaves of the coarser leaf at the same time instant of the finer leaves. For
that, first, we interpolate the coarser leaf q̄ at instance tn ` ∆t from its respective values at tn and tn ` 2∆t. Then, we
predict its value at the finer level and obtain its virtual leaves. After that, we evaluate the flux, and then, the RK step for
the finer leaves. b) presents the evolution of the flux at tn ` 2∆t of the coarser leaf. First, we predict the virtual leaves of
the coarse leaf, then we compute q̄˚ ` k2, i.e. a RK1 step of the finer leaves, which yields a first order approximation. After
that, we can compute the flux and evaluate the leaves.

iteration and for the next RK3 step, another tree refreshing procedure must be applied. This procedure
is given in detail in Section 4.2. After this process, the information obtained for the cells (internal nodes,
leaves and virtual leaves) in every refinement level are illustrated in Figure 4.

4.1.2. Third Runge–Kutta step synchronization

The third step is done only in the case of the RK3 time evolution. As for the second step of the RK
evolution, in the third step, the evolution must be done first on the finest scale in order to obtain the
necessary values to perform the evolution on the next coarser scale. However there are, indeed, slightly
different synchronization issues in this case which we discuss in the following.

As performed in the second RK step, the virtual leaves and the internal nodes have their values updated
during the tree refreshing process, the details are discussed in the next section.

To perform the third RK step, the fluxes of level L are computed in the proper time instant tn` 1
2
∆tL.

Then, the third RK step yields a third order solution at the time instant tn `∆tL.
Again as for the second step, this solution is projected onto the next coarser level in order to update

the virtual leaves at level L at the instant tn `∆tL, where the fluxes for the third step of the level L´ 1
shall be computed.

The projection procedure for the third RK step is, as mentioned above, slightly different from the
projection procedure in the second step. In this case, the solution at the leaves at level ` after the third
RK step matches with the time instant where the fluxes of level `´ 1 are computed. Then, the solution is
projected from level ` to level ` ´ 1 by simple averaging, obtaining thus a solution at tn ` 1

2
∆t`´1. This

solution is used as an approximation for q̄˚˚. Then, the value of the internal nodes at the instant tn`∆t`´1

should be updated with a second order solution in order to continue the projections recursively during the
third RK step. This update is performed using the following relation obtained from the NERK scheme:

11



a) RK2 evolution. b) RK3 evolution.

Figure 4: Scheme of the obtained values and its respective instants for cells in each level after performing the second RK step
in the LT method. a) for RK2 and b) for the RK3 time evolution. The filled, crossed and clear circles represent an available
solution, of first, second and third order, respectively, at the corresponding time instant.

q̄`pt
n
`∆t`q “ q̄n` ` 2

´

q̄`,θ“ 3
4
´ q̄`,θ“ 1

4

¯

. (16)

The projection procedure inside the third RK step is given in Algorithm 6, and the execution of the
third step of the RK evolution in Algorithm 7.

4.2. Tree refreshing with time synchronization

In the MR scheme, due to the same time step for every scale, the leaves of every scale store values
corresponding to the same time instant. Therefore, projections of the leaves onto internal nodes receive
values at the same time instant. However, in the LT approach, due to fact that leaves of different scales are
evolved with different time steps, the tree refreshing may project values at different time instants related
to the leaves at the same scale. Accordingly, we need a procedure before each RK step internally to the
time cycle, to project the solution to an internal node at its corresponding time instant.

Moreover, these synchronizations are necessary to predict the values of the virtual leaves for the next
steps of the RK method, at the required time instant. Only after that, the flux computations can be
performed.

Before the first RK step, every scale of level `min or greater, which must be evolved, has its solution
at the same time instant. Therefore, the values of the virtual leaves can be predicted normally, except at
level `min, which has its virtual leaves predicted using the solution at tn` 1

2
∆t`min´1 from the level `min´ 1.

After the first step of the RK method, each leaf yields a first order solution at the time instant tn`∆t`,
which corresponds to the time instant tn` 1

2
∆t`´1. This implies that the projection of the leaves from level

` to ` ´ 1 produces an approximation at that time instant. The value of an internal node at this instant
is given by the mean value of its children:

q̄`´1

ˆ

tn `
1

2
∆t`´1

˙

“ q̄n`´1 `
1

2
∆t`´1f

`

tn, q̄n`´1

˘

“
1

2d

2d
ÿ

i“1

“

q̄n`, i `∆t`f
`

tn, q̄n`, i
˘‰

(17)

where d is the number of dimensions of the problem and q̄n`, i is the solution of the children cell i. This value
is stored in order to predict the values of the virtual leaves of level ` for the second RK step. Furthermore,
this value must be extrapolated to the instant tn ` ∆t`´1, obtaining the value q̄˚`´1. This value, used to
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update the virtual leaves of level ` during the second RK step, is obtained by linear extrapolation:

q̄˚`´1 “ 2q̄`´1

ˆ

tn `
1

2
∆t`´1

˙

´ q̄n`´1, (18)

where the value q̄n`´1 is the solution before the time evolution. This value should be stored for every node
before the RK procedure. The tree refreshing procedure after the first RK step is given in Algorithm 8.

When performing the RK3 time evolution, before the third RK step, besides the solution, the values
q̄θ“ 1

4
and q̄θ“ 3

4
must be obtained for the internal nodes. The solution in those instants are required to

predict the solution of the virtual leaves in the next finer level at the instant required for this RK step.
Those values are obtained through projections from the level L down to the level `min, initially by

projecting the solution q̄˚˚` at the time instant tn ` 1
2
∆t`, obtaining thus a value at tn ` 1

4
∆t`´1, which is

used as an approximation for q̄`´1, θ“ 1
4
.

Using this solution, the Equation 10 and the value q̄˚` , computed during the projection before the second
RK step, we obtain the following relation to reconstruct the solution inside the interval rtn; tn `∆tns:

q̄` pt
n
` θ∆t`q “

“

1´ θ ´ 12θ2
‰

q̄n` `
“

θ ´ 4θ2
‰

q̄˚` ` 16θ2q̄`, θ“ 1
4
. (19)

This expression is based on the NERK scheme presented in Section 3. Using the value θ “ 3
4
, we have:

q̄`, θ“ 3
4
“ ´

13

2
q̄n` ´

3

2
q̄˚` ` 9q̄`, θ“ 1

4
(20)

Subsequently, using these values, the value q̄˚˚ can be computed as:

q̄˚˚` “ ´
11

2
q̄n` ´

3

2
q̄˚` ` 8q̄`, θ“ 1

4
(21)

The solution q̄˚˚` allows to continue the projection procedure recursively by obtaining the value q̄`´1, θ“ 1
4

at the next coarser level, while the solution q̄`, θ“ 3
4

is used to compute the value of the virtual leaves at
level `` 1 on the following iterations, as explained in Section 4.1.

The tree refreshing procedure, illustrated in Figure 5, consists in projecting the solution q̄˚˚L from the
level L onto the level L ´ 1. This solution is approximated as q̄L´1, θ“ 1

4
. Then, using the previously

obtained value q̄˚L´1, the values q̄L´1, θ“ 3
4

and q̄˚˚L´1 can be obtained using Equations (20) and (21). This
procedure is recursively repeated down to the coarsest scale `min.

Figure 5: Projection scheme before the third RK step.
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In the third RK step, the fluxes are computed at the intermediary time instant tn ` 1
2
∆t`. For an

adjacent coarser leaf, this instant is tn` 1
4
∆t`´1 or tn` 3

4
∆t`´1, depending on the current iteration number.

Basically, if the current scale is `min then the NERK value used to compute the virtual leaves is available
at time instant tn ` 3

4
∆t`min´1. Otherwise, the value at the time instant tn ` 1

4
∆t`´1 is used.

The choice which value of the NERK approximation shall be used in the flux computations is shown
in Figure 6, where we choose `min “ L´2.

Once the projections have been performed from the level L until the level `min, the virtual leaves have
their values q̄˚˚` predicted using the values q̄`´1, θ“ 3

4
, in case of ` “ `min; or using q̄`, θ“ 1

4
, otherwise.

Then, the values q̄`, θ“ 1
4

and q̄`, θ“ 3
4

for these virtual leaves are obtained using the Equations (20) and

(21). Those values are required here to predict the values of the virtual leaves at the next finer scale.

Figure 6: Scheme of the choice of the NERK solution to predict the virtual leaves for the third RK step in a LT iteration
with `min “ L´ 2. The solution q̄θ“ 3

4
is used to predict the q̄˚˚ values at level `min. For the other scales, the solution q̄˚˚

is predicted with the values q̄θ“ 1
4
.

The tree refreshing procedure before the third RK step is detailed in Algorithm 9.

4.3. Synchronization after the time evolution

After finishing the RK steps, the leaves at level ` perform a complete time evolution with a time step
that is twice the time step of the leaves at level `` 1. In order to perform the next time evolution at scale
`, the finer scale leaves must reach the same time instant. For that, a second time evolution is required for
this finer scale leaf.

Moreover, in the next iteration of the time evolution, a new value for `min is obtained. To predict the
virtual leaves at the new scale `min at the proper time instant, the values q̄`min´1, θ“ 1

2
for RK2 or q̄˚˚`min´1

for RK3 are used. For the scales finer than `min, the virtual leaves are predicted with the MR method.
To solve this synchronization challenge and to maintain the approximation order, a high order approx-

imation at time step tn ` 1
2
∆t`, where ` is the refinement level of the leaf, is required. In this case, in

the tree terminology, it means that for the coarser leaves, an approximation of its virtual children at the
instant tn ` 1

2
∆t` is required.

To obtain these values, it is necessary to obtain approximations at the instant tn ` 1
2
∆t` during the

Runge–Kutta evolution for every cell of refinement level ` ‰ L and its neighbours, including internal nodes.
Then, the values of the virtual children are obtained by the prediction procedure.

For the RK2 time evolution, we use the NERK approach to obtain the approximation with θ “ 1
2
.

However, the implementation of the MRLT/NERK approach for the RK3 time evolution requires extra
memory. Hence we use the approximation q̄˚˚, obtained after the second step of the compact RK, which
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is at the instant tn` 1
2
∆t`, instead of the NERK approximation with θ “ 1

2
in order to reduce the number

of variables to be stored in the problem.
Besides those values, the updated solution, at time instant tn `∆t`, is projected onto the coarser level

at the time instant tn ` 1
2
∆t`´1 by simple averaging. This solution is then used as an approximation for

q̄`´1, θ“ 1
2
, in the RK2 time evolution, or q̄˚˚`´1 for the RK3 time evolution. Using the NERK equations given

in Section 3 and the current value of the internal node at tn`∆t`´1 (RK first step), the solution at instant
tn `∆t` is obtained by the following relation:

q̄` pt
n
`∆t`q “ ´2q̄n` ´ q̄˚` ` 4q̄`, θ“ 1

2
. (22)

This value is used to compute the value of the virtual leaves at level `min` 1 in the following iterations
at the second RK step, as explained in Section 4.1.1.

Adapting the grid during local time-stepping

During the LT scheme, in most parts of the numerical simulation, some scales have results at different
time instants. Therefore, in order to avoid errors to be caused by converting a cell with a solution value
at a determined time instant to another scale where its cells are in a different time instant, there is a need
for a criterion when adapting the solution during the LT scheme.

This criterion consists in combining or splitting only leaves from a scale to another scale whose leaves
are at the same time instant. These scales can be easily detected due to the fact that the time evolution
procedure is applied only in scales at the same time instant. In other words, to split a cell into more refined
ones, both scales must be included into the current time evolution iteration. The same is valid to combine
cells into a coarser one.

Moreover, beyond this restriction, the remeshing process is identical to the remeshing process of the
multiresolution method.

4.4. Some remarks on the convergence and stability of MRLT/NERK schemes

In this section, we perform a stability analysis to check the convergence order of the MRLT/NERK3
method. For that, we compute the interpolation and extrapolation errors in each approximation required
for the method, considering the interface between cell of different levels.

To analyze the stability typically a simple linear ODE,

dq

dt
“ λu (23)

where a constant complex-valued coefficient λ P C with negative or zero real part is considered. The above
equation is completed with an initial condition. Using Fourier analysis of linear PDEs it can be shown
that imaginary values of λ correspond to pure advection, while real (negative) values correspond to pure
diffusion equations.

One-step schemes, including Runge–Kutta methods can then we written in the following form,

q̂n`1
“ gpλ∆tq q̂n (24)

where g is a polynomial. In particular, for RK1, RK2 and RK3 we respectively have gpλ∆tq “ 1 ` λ∆t,
gpλ∆tq “ 1`λ∆t` 1

2
λ2∆t2 and gpλ∆tq “ 1`λ∆t` 1

2
λ2∆t2` 1

6
λ3∆t3, which correspond to the truncated

Taylor series of exppλ∆tq. A method is called of convergence order n if its polynomial gpλ∆tq reconstructs
the Taylor series until the λn∆tn term.

To compute the polynomial g for the MRLT/NERK methods, the analysis is performed by computing
and inserting each error εi obtained in every approximation required to perform the MRLT method.
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The errors obtained in those approximations are inserted into the flux computations of the stability
model as follows:

fpq̄q “ fpq̂´ εq , (25)

where q̄ is an approximation obtained during the MRLT/NERK method and q̂ is the solution that would
be obtained by the regular RK method.

In the following, we obtain the errors ε for each approximation used for the first RK evolution on both
finer and coarser scales. In this evolution, both scales are initially at the same time instant, so there is no
approximation error for the first RK step (k1). In other words, it means that q̄n “ q̂n.

In this section, we consider the RK3 scheme as given in Section 3.
Considering that the solution q̄n is at the same instant for every scale to be updated in the time

evolution, the first RK stage reads,
q̄˚ “ q̄n `∆tnfptn, q̄nq (26)

and yields no interpolation errors due to the LT approach for both scales. That leads to q̄˚ “ q̂˚.

Approximations after the first RK step

Here we compute the errors obtained from the predictions and projections after the first RK step, as
performed in Section 4.1.1. The solution of the intermediary solution q̄˚ is at a different time instant for
each refinement level, requiring thus a series of interpolations and extrapolations, which introduces errors
ε1 and ε2 into the scheme.

• ε1: Prediction error in the finer leaf.

Error obtained in the prediction of q̄˚ in the finer leaf using the values of the solution in the lower
level with half of the time-step.

ε1 “ q̂˚` ´ P`´1Ñ`

„

q̄n`´1 ´
∆t`´1

2
fpq̄n`´1q



“ 0. (27)

Proof: Considering fpq̄n`´1q “ λq̄n`´1

ε1 “ q̂n` `∆t`λq̂n` ´ P`´1Ñ`

„

q̄`´1 ´
∆t`´1

2
λq̄`´1



(28)

ε1 “ q̂n` `∆t`λq̂n` ´ q̄` ´
∆t`´1

2
λq̄` (29)

ε1 “ 0 (30)

• ε2: Projection error in the coarser leaf. Error obtained in the projection to obtain q̄˚ in the coarser
level. This solution is a first order extrapolation to the time instant tn `∆t`´1 for the leaves in the
finer level.

ε2 “ q̂˚` ´ P``1Ñ`

»

—

–

q̄n``1 `∆t``1fpq̄
n
``1q

looooooooooomooooooooooon

First RK step in finer leaf

` ∆t``1fpq̄
˚
``1q

loooooomoooooon

extrapolation to tn`∆t`´1

fi

ffi

fl

“ ´
∆t2`λ

2

4
q̂n` (31)

Proof: Here we consider the errors caused in the previous approximations in the flux terms. Using
q˚ “ q`∆tfpqq ´ ε1 inside the flux term:

ε2 “ q̂n` `∆t`fpq̂
n
` q ´ P``1Ñ`

“

q̄n``1 `∆t``1fpq̄
n
``1q `∆t``1fpq̂

n
``1 `∆t``1fpq̂

n
``1q ´ ε1q

‰

(32)
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Considering fpq̄n``1q “ λq̄n``1 we have

ε2 “ q̂n` `∆t`λq̂n` ´ P``1Ñ`

“

q̂n``1 `∆t``1λq̂n``1 `∆t``1λpq̂
n
``1 `∆t``1λpq̂

n
``1qq

‰

(33)

Applying the projection operator we get

ε2 “ q̂n` `∆t`λq̂n` ´ q̂n` ´∆t``1λq̂n` ´∆t``1λ pq̂
n
` `∆t``1λq̂n` q (34)

ε2 “ ∆t`λq̂n` ´
∆t`
2
λq̂n` ´

∆t`
2
λ

ˆ

q̂n` `
∆t`
2
λq̂n`

˙

(35)

ε2 “ ´
∆t2`λ

2

4
q̂n` (36)

Once the interpolation errors are obtained, the second Runge–Kutta step is performed for the finer scale:

q̄˚˚ “
3

4
q̄n `

1

4
q̄˚ `

1

4
∆tnf ptn `∆tn, q̄˚q (37)

q̄˚˚ “
3

4
q̂n `

1

4
q̂˚ `

1

4
∆tnf pq̂˚ ´ ε1q (38)

q̄˚˚ “
3

4
q̂n `

1

4
q̂˚ `

1

4
∆tnf pq̂˚q (39)

q̄˚˚ “ q̂˚˚ (40)

We observe that the q̄˚˚ solution does not have any interpolation errors due to the LT scheme. Then the
second order RK step is performed for the coarser scale:

q̄˚˚ “
3

4
q̄n `

1

4
q̄˚ `

1

4
∆tnf ptn `∆tn, q̄˚q (41)

q̄˚˚ “
3

4
q̂n `

1

4
q̂˚ `

1

4
∆tnf pq̂˚ ´ ε2q (42)

q̄˚˚ “
3

4
q̂n `

1

4
q̂˚ `

1

4
∆tnλq̂˚ ´

1

4
∆tnλε2 (43)

q̄˚˚ “
3

4
q̂n `

1

4
q̂˚ `

z

4
q̂˚ ´

∆t`λ

4
ε2 (44)

q̄˚˚ “ q̂˚˚ ´
∆t`λ

4
ε2 (45)

Here, the approximation has an error of ´∆t`λ
4
ε2.

Approximations after the second RK step

In the following, we compute the errors obtained from the predictions and projections after the second
RK step, as performed in Section 4.1.2. The approximations here are the NERK solution at tn ` 1

4
∆t`´1

to predict the solution q̄˚˚` on finer scales and the projections of the RK3 evolution of the finer leaves to
approximate q̄˚˚`´1. The first one is given by:

• ε3: Prediction error using NERK approximation

ε3 “ q̂˚˚` ´ P`´1Ñ`

”

q̄n
`´1,θ“ 1

4

ı

“

ˆ

∆t2`λ
2

8
´

∆t3`λ
3

16

˙

q̂n` (46)

Proof: Considering the NERK equation for θ “
1

4
given in Section 3 we get,

ε3 “ q̂˚˚` ´ P`´1Ñ`

„

q̄n`´1 `
7

32
∆t`´1fpq̄

n
`´1q `

1

32
∆t`´1fpq̄

˚
`´1q



(47)
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Then, we consider the error ε2 in the flux computations for the coarser scale:

ε3 “ q̂n`

ˆ

1`
∆t`λ

2
`

∆t2`λ
2

4

˙

´ P`´1Ñ`

„

q̄n`´1 `
7

32
∆t`´1λq̄n`´1 `

1

32
∆t`´1λ

`

q̂˚`´1 ´ ε2
˘



(48)

ε3 “ q̂n`

ˆ

∆t`λ

16
`

∆t2`λ
2

4

˙

´
∆t`λ

16
P`´1Ñ`

“

q̂˚`´1 ´ ε2
‰

(49)

ε3 “ q̂n`

ˆ

∆t`λ

16
`

∆t2`λ
2

4

˙

´
∆t`λ

16
P`´1Ñ`

„

q̂n`´1 `∆t`´1fpq̂
n
`´1q `

∆t2`´1λ
2

4
q̂n`´1



(50)

ε3 “
∆t2`λ

2

4
q̂n` ´

∆t2`λ
2

8
q̂n` ´

∆t`λ

16
P`´1Ñ`

„

∆t2`´1λ
2

4
q̂n`´1



(51)

ε3 “

ˆ

∆t2`λ
2

8
´

∆t3`λ
3

16

˙

q̂n` (52)

Afterwards we perform the third RK step for the finer leaf.

q̄n`1
“

1

3
q̄n `

2

3
q̄˚˚ `

2

3
∆tnf

´

tn `
1

2
∆tn, q̄˚˚

¯

(53)

q̄n`1
“

1

3
q̂n `

2

3
q̂˚˚ `

2z

3

´

q̂˚˚ ´ ε3

¯

(54)

q̄n`1
“

1

3
q̂n `

2

3

ˆ

1`
∆t`λ

2
`

∆t2`λ
2

4

˙

q̂n `
2∆t`λ

3

„ˆ

1`
∆t`λ

2
`

∆t2`λ
2

4

˙

q̂n ´ ε3



(55)

q̄n`1
“

ˆ

1`∆t`λ`
∆t2`λ

2

2
`

∆t3`λ
3

6

˙

q̂n ´
2∆t`λ

3

ˆ

∆t2`λ
2

8
´

∆t3`λ
3

16

˙

q̂n (56)

q̄n`1
“

ˆ

1`∆t`λ`
∆t2`λ

2

2
`

∆t3`λ
3

12
`

∆t4`λ
4

24

˙

q̂n (57)

This shows that the third order accuracy is lost in the evolution of the finer leaf.

• ε4: Projection error using finer leaf evolution.

ε4 “ q̂˚˚` ´ P``1Ñ`

“

q̄n`1
``1

‰

“

ˆ

∆t2`λ
2

8
´

∆t3`λ
3

96
´

∆t4`λ
4

384

˙

q̂n` (58)

Proof: Using Equation 57 to represent the time evolution for the finer leaf, we have,

ε4 “ q̂˚˚` ´ P``1Ñ`

«˜

1`∆t``1λ`
p∆t``1λq

2

2
`
p∆t``1λq

3

12
`
p∆t``1λq

4

24

¸

q̂n``1

ff

(59)

ε4 “ q̂˚˚` ´ P``1Ñ`

«˜

1`
∆t`λ

2
`
p∆t`λq

2

8
`
p∆t`λq

3

96
`
p∆t`λq

4

384

¸

q̂n``1

ff

(60)

ε4 “

ˆ

1`
∆t`λ

2
`

∆t2`λ
2

4

˙

q̂n` ´

ˆ

1`
∆t`λ

2
`

∆t2`λ
2

8
`

∆t3`λ
3

96
`

∆t4`λ
4

384

˙

q̂n` (61)

ε4 “

ˆ

∆t2`λ
2

8
´

∆t3`λ
3

96
´

∆t4`λ
4

384

˙

q̂n` (62)
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And finally, performing the third RK step for the coarser leaf, we get

q̄n`1
“

1

3
q̄n `

2

3
q̄˚˚ `

2

3
∆t`f

„

tn `
1

2
∆t`, q̄

˚˚



(63)

q̄n`1
“

1

3
q̂n `

2

3

ˆ

q̂˚˚ ´
∆t`λ

4
ε2

˙

`
2∆t`λ

3
rq̂˚˚ ´ ε4s (64)

q̄n`1
“

1

3
q̂n `

2

3

ˆ

q̂˚˚ `
∆t3`λ

3

16
q̂n`

˙

`
2∆t`λ

3

„

q̂˚˚ ´

ˆ

∆t2`λ
2

8
´

∆t3`λ
3

96
´

∆t4`λ
4

384

˙

q̂n`



(65)

q̄n`1
“ q̂n`1

`
∆t3`λ

3

24
q̂n` `

ˆ

´
∆t3`λ

3

12
`

∆t4`λ
4

144
`

∆t5`λ
5

576

˙

q̂n` (66)

q̄n`1
“

ˆ

1`∆t`λ`
∆t2`λ

2

2
`

∆t3`λ
3

8
`

∆t4`λ
4

144
`

∆t5`λ
5

576

˙

q̂n. (67)

This result also shows a loss of the third order accuracy, since the third order term of the Taylor series
∆t3`λ

3

6
is not found.

4.5. Discussion on the numerical convergence

To study the numerical convergence of local time stepping we consider the advection equation

BQ

Bt
`
BQ

Bx
“ 0 x P r0, 1s (68)

with periodic boundary conditions and a Gaussian initial condition, given byQpxq “ exp
`

´100 px´ 0.25q2
˘

.
The simulation is performed for one time cycle. In order to avoid errors due to the MR scheme, we per-
formed the adaptive simulations using two fixed grids in the domain. The first one in the interval r0, 0.5s
with ∆x “ 1{512, and the second in the interval r0.5, 1.0s with ∆x “ 1{256, are both fixed during the
entire simulation. We also use a centered numerical flux.

The convergence order is computed using a self convergence method, obtaining the rate which the MR
and MRLT methods solution converges to a solution as ∆t Ñ 0. For that, we perform simulations using
subsequently smaller time steps, each one having half of the time step used in the previous simulation.
The convergence rate is obtained from the following ratio:

›

›

›

›

›

q̄∆t ´ q̄∆t
2

q̄∆t
2
´ q̄∆t

4

›

›

›

›

›

“
C∆tp ´ C

`

∆t
2

˘p
`Op∆tp`1q

C
`

∆t
2

˘p
´ C

`

∆t
4

˘p
`Op∆tp`1q

“
1´ 2´p `Op∆tq

2´p ´ 2´2p `Op∆tq
“ 2p `Op∆tq (69)

where q̄∆t is the solution of a simulation using a time step ∆t and p is the order of the method, which is
approximated using the logarithm:

p « log2

›

›

›

›

›

q̄∆t ´ q̄∆t
2

q̄∆t
2
´ q̄∆t

4

›

›

›

›

›

. (70)

The convergence order obtained for the FV, MR and MRLT methods are given in Table 1. In order
to check that p Ñ 0 as ∆t Ñ 0, we perform this test using two different values for the coarsest ∆t. We
observe that FV/RK2 and FV/RK3 yield second and third order time discretisations, respectively, as
expected. For MRLT/NERK2 and MRLT/NERK3 we obtained the expected second order, in particular
for the MRLT/NERK3 the second order is justified by the approximation errors ε3 and ε4 which caused
the loss of the third order, as shown in the Equations 57 and 67. Another reason for this loss in accuracy
was the fact that due to the order barrier for NERK methods [22], a third order solution at instant tn` ∆t`

2

could not be produced by a 3 stage method. Thus, when a leaf performs its second time evolution inside
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the LT cycle, it may use the second order solution from a coarser leaf, causing the loss from third to second
order. This issue also justifies the observed loss in accuracy for the MRLT/RK2 method. Here, the coarser
leaf produces a first order solution at instant tn ` ∆t`

2
to be used in the second evolution of the finer leaf.

∆t Method
pˆ10´4q FV/RK2 MR/RK2 MRLT/RK2 MRLT/NERK2 FV/RK3 MR/RK3 MRLT/NERK3

1.6 1.9991 1.9984 1.0794 2.0154 3.0000 3.0030 1.7895
0.8 2.0003 2.0010 0.9433 2.0002 3.0077 3.0017 1.9152

Table 1: Convergence order for the FV, MR and MRLT methods.

5. Numerical experiments

In this section we present some comparative results of the proposed MRLT/NERK method with the
MR, MRLT methods given in [6] and also the traditional FV method on a uniform grid. These methods
are applied to solve the two-dimensional Burgers equation, one and three-dimensional reaction-diffusion
equations and finally the two-dimensional compressible Euler equations. We use the AUSM+ scheme [17]
to compute the numerical flux in Burgers and Euler equations. To compute the advective term for the
reaction–diffusion equation, we use the McCormack scheme [27]. The errors are computed in the discrete
L1 norm on the fine grid as:

emethod
L1

“
1

2Ld

2Ld´1
ÿ

i“0

›

›q̄ref
i ´ q̄method

i

›

› (71)

where q̄ref is the FV/RK3 reference solution of the corresponding problem and q̄method is the solution
obtained with the analyzed method.

To compare the performance of two adaptive methodologies in terms of CPU time reduction versus
accuracy loss, a cost value µmethod is defined for each adaptive method as:

µmethod
“
emethod
L1

¨ tmethod
CPU

tFV
CPU

, (72)

where tmethod
CPU is the CPU time obtained for the analyzed method and tFV

CPU is the CPU time of the FV
method with the same number of scales L and Runge–Kutta of the same order.

The ratio between the cost of different adaptive methods yields the parameter λ, used to measure the
advantage of one method compared with the other. In this work, the parameter λ is used to compare the
proposed MRLT/NERK methods with the MR and MRLT methods, defined as:

λmethod
MRLT/NERK “

µmethod

µMRLT/NERK
. (73)

If the parameter λ is larger than 1, the MRLT/NERK approach is considered to be advantageous over the
other method. In case of λ ă 1, the MRLT/NERK approach is considered to be disadvantageous over the
other method, and in case of λ “ 1, the methods are considered to be equivalent.

All the simulations are performed using a fixed threshold value ε in order to simplify the experiments.
In [7] computations are presented using a MR methodology with ε values which depend of the refinement
level.
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5.1. Two-dimensional Burgers equation

The Burgers equation is a non-linear PDE which represents a simple model for turbulence and is used
in astrophysical applications. The inviscid model, in the two-dimensional case, is given by the following
equation:

BQ

Bt
`

1

2

ˆ

BpQ2q

Bx
`
BpQ2q

By

˙

“ 0 px, yq P Ω “ r0, 1s ˆ r0, 1s. (74)

The initial condition used in this work is Q0px, yq “ sinp2πxq sinp2πyq, with Dirichlet boundary condi-
tions given by Qpx, 0q “ Qpx, 1q “ Qp0, yq “ Qp1, yq “ 0.

All simulations are performed with a Courant number σ “ 0.5 and a threshold ε “ 0.01 until the time
instant tf “ 0.9. The reference solution for this case is obtained using refinement level L “ 12.

Figure 7 shows the reference solution and the solution obtained with the MRLT/RK2 and MRLT/NERK2.
The respective difference, in modulus, with respect to the reference solution and adaptive grids at the end
of the computation are also shown. The method MRLT/RK2 case exhibits larger errors close to the shocks,
especially in the peak of the structure and in its background. The other methods present solutions closer
to the one obtained with the MRLT/NERK2 method.

The results are compared with the solution in an uniform grid at the same level using a L1 norm,
showing perturbation errors. These errors, CPU time and memory compression are summarized in Table
2. The CPU time and memory of the adaptive methods are given in percentage of the number of leaves
used in the FV method with the same number of scales and the same Runge–Kutta scheme. For the two-
dimensional Burgers equation, the proposed MRLT/NERK methods present a slight gain in precision and a
significant gain in CPU time in relation to the other adaptive methodologies. However, the MRLT schemes
with NERK time integration require more memory, which decreases when increasing the resolution, i.e.
for increasing L.

The parameters λ obtained for the MRLT/NERK methods compared to the MR and MRLT methods
are presented in Table 3. For most of the experiments, the proposed methods yield values of λ between 2
and 3. This shows that the NERK-based methods are significantly more efficient than the RK-based MR
and MRLT methods.
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Table 2: Two-dimensional Burgers equation: L1 errors, CPU time and memory compression.

Finest scale Method Error (ˆ10´2) CPU Time Memory
level Q (% FV)

MR/RK2 1.5032 68.4 19.5
MRLT/RK2 1.7701 67.8 19.5

L “ 8 MRLT/NERK2 1.2958 40.3 24.2

MR/RK3 1.5045 184.9 19.4
MRLT/NERK3 1.2932 94.7 24.2

MR/RK2 1.3615 34.7 8.9
MRLT/RK2 1.6645 32.5 8.9

L “ 9 MRLT/NERK2 1.1457 16.7 10.3

MR/RK3 1.3614 95.4 8.9
MRLT/NERK3 1.1423 42.7 10.3
MR/RK2 1.2890 14.7 4.1
MRLT/RK2 1.6016 13.5 4.1

L “ 10 MRLT/NERK2 1.0740 6.7 4.4

MR/RK3 1.2893 15.3 4.1
MRLT/NERK3 1.0699 6.4 4.4

Note: All adaptive computations use ε “ 10´2; the final time is tf “ 0.9. The computations have been carried out on an

Intel CoreTMi7 CPU 2.67GHz. FV/RK2 CPU time: 2.0 min (L “ 8); 15.7 min (L “ 9); 2.3 h (L “ 10). FV/RK3 CPU

Time: 1.2 min (L “ 8); 8.0 min (L “ 9); 3.3 h (L “ 10).

Table 3: Two-dimensional Burgers equation:
Computational gain λ of the MRLT/NERK methods with respect to the MR and MRLT methods.

Finest scale MR/RK2 MRLT/RK2 MR/RK3
level

L “ 8
MRLT/NERK2 1.96 2.29 -
MRLT/NERK3 - - 2.27

L “ 9
MRLT/NERK2 2.46 2.82 -
MRLT/NERK3 - - 2.66

L “ 10
MRLT/NERK2 2.63 3.00 -
MRLT/NERK3 - - 2.88
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Solution
a) Reference b) MRLT/RK2 c) MRLT/NERK2

Error
d) MRLT/RK2 e) MRLT/NERK2

Adaptive grid
f) MRLT/RK2 g) MRLT/NERK2

Figure 7: Reference solution for the two-dimensional Burgers equation a), the solutions obtained by the MRLT/RK2 b) and
MRLT/NERK2 c) methods with its respective errors and the corresponding adaptive grids. For all cases we use L “ 10 and
the time instant is tf “ 0.9.
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5.2. Reaction-diffusion equations

We consider reaction-diffusion equations in one and three space dimensions and study the formation of
a flame front ignited with a spark in an environment with flammable premixed gas. This kind of problem
is a prototype of non-linear parabolic equations with a non-linearity in the source term, see e.g. [26, 6].

5.2.1. One-dimensional case

In the one-dimensional case, considering equal mass and heat diffusion, this problem can be modeled
by the following equation:

BT

Bt
` vf

BT

Bx
“
B2T

Bx2
` ωpT q for x P p´15, 15q (75)

where the function T px, tq is the dimensionless temperature normalized between 0 (unburned gas) and 1
(burned gas), vf “

ş

ω dx is the flame velocity and ωpT q is the chemical reaction rate, given by:

ωpT q “
Ze2

2
p1´ T q exp

ˆ

Zep1´ T q

τp1´ T q ´ 1

˙

(76)

where Ze is a dimensionless activation energy, know as Zeldovich number, and τ is the burnt-unburnt
temperature ratio. In this one-dimensional case, the unburned gas concentration Y is defined as Y “ 1´T .

In the numerical experiments, the following initial condition is used:

T px, 0q “

#

1, if x ď 1

expp1´ xq, otherwise
(77)

with boundary conditions given by:

BT

Bx
p´15, tq “ 0, T p15, tq “ 0 (78)

The subsequent simulations are performed with the parameters Ze “ 10, τ “ 0.8 and a Courant
number σ “ 0.5 until the final time instant tf “ 5.0. The adaptive simulations are performed with a
threshold ε “ 0.01. The reference solution for this case is obtained using the same Courant number
and a refinement level L “ 13. Figure 8 shows the reference solution and the solution obtained by the
MRLT/RK2 and MRLT/NERK2 methods with its respective errors and the corresponding final grids. In
this one-dimensional case, the adaptive grid is represented by the position of each cell (x-axis) and its
refinement level (y-axis).

The adaptive methods present a larger error in the flame front region, especially for the variable ω.
Among the adaptive methods, MRLT/RK2 has the smallest errors, while the other methods present very
similar errors. However, the MRLT/NERK methods still requires the lowest CPU time. These times and
L1 errors are assembled in Table 4.

The computational gain of the MRLT/NERK methods compared to the MR and MRLT methods are
given in Table 5. In this case, the MRLT/NERK methods yields the most expressive results compared to
the MR methods in terms of computational gain. The gain of the MRLT/NERK2 method compared with
the MRLT/RK2 method is small for the cases L “ 12 and 13. The corresponding results are presented in
Table 5.
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Table 4: One-dimensional reaction-diffusion equations: L1 errors, CPU time and memory compression.

Finest scale Method Error (ˆ10´4) CPU Time Memory
level T Y ω (%FV)

MR/RK2 5.045 5.045 24.564 31.9 3.1
MRLT/RK2 5.666 5.666 30.192 18.0 3.1

L “ 11 MRLT/NERK2 4.380 4.380 21.308 7.2 3.1

MR/RK3 5.045 5.045 24.566 31.3 3.1
MRLT/NERK3 4.543 4.543 22.173 5.3 3.1

MR/RK2 5.043 5.043 24.559 15.9 1.5
MRLT/RK2 1.780 1.780 14.256 8.0 1.5

L “ 12 MRLT/NERK2 4.728 4.728 23.107 2.8 1.5

MR/RK3 5.043 5.043 24.560 16.0 1.5
MRLT/NERK3 4.755 4.755 23.261 2.3 1.5

MR/RK2 5.054 5.054 24.609 7.9 0.7
MRLT/RK2 2.904 2.904 15.062 3.9 0.7

L “ 13 MRLT/NERK2 4.900 4.900 23.903 1.4 0.7

MR/RK3 5.054 5.054 24.609 7.9 0.7
MRLT/NERK3 4.904 4.904 23.923 1.1 0.7

Note: All adaptive computations use ε “ 10´2; final time: tf “ 5.0. Computed on an Intel CoreTMi7 CPU 2.67GHz.

FV/RK2 CPU time: 51.4 min (L “ 11); 6.9 h (L “ 12); 54.6 h (L “ 13). FV/RK3 CPU Time: 51.4 min (L “ 11); 6.9 h

(L “ 12); 54.6 h (L “ 13).

Table 5: One-dimensional reaction-diffusion equations: Computational gain, for the variable T , of the proposed MRLT/NERK
methods compared to the MR and MRLT methods.

Finest scale MR/RK2 MRLT/RK2 MR/RK3
level

L “ 11
MRLT/NERK2 5.10 3.23 -
MRLT/NERK3 - - 6.55

L “ 12
MRLT/NERK2 6.05 1.07 -
MRLT/NERK3 - - 7.37

L “ 13
MRLT/NERK2 5.82 1.65 -
MRLT/NERK3 - - 7.40
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Solution
aq Reference bq MRLT/RK2 cq MRLT/NERK2

Error
dq MRLT/RK2 eq MRLT/NERK2

Adaptive grid
fq MRLT/RK2 gq MRLT/NERK2

Figure 8: Reference solution of the one-dimensional reaction-diffusion equations a) and the solutions obtained by the
MRLT/RK2 (b) and MRLT/NERK2 pcq methods with its respective errors pd, eq and final adaptive grids pf, gq. For all
cases we use L “ 13.
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5.2.2. Three-dimensional case

In the three-dimensional case, the reaction-diffusion equations read:

BT

Bt
“ ∇2T ` ω ´ s (79a)

BY

Bt
“

1

Le
∇2Y ´ ω (79b)

where Le denotes the Lewis number, which defines the ratio of mass and heat diffusion and with the
chemical reaction rate ω:

ωpT, Y q “
Ze2

2Le
Y exp

ˆ

ZepT ´ 1q

1` τpT ´ 1q

˙

(80)

According to the Stefan–Boltzmann law, the heat loss due to radiation s is modeled by:

spT q “ κ
“

pT ` τ´1
´ 1q4 ´ pτ´1

´ 1q4
‰

(81)

where κ is a dimensionless radiation coefficient. In this work, we use κ “ 0.1.
The initial condition, described by spherical coordinates, is:

T pr, 0q “

#

1, if r ď r0

exp
´

1´ r
r0

¯

, otherwise
(82)

Y pr, 0q “

#

0, if r ď r0

1´ e
´

Lep1´ r
r0
q

¯

, otherwise
(83)

where r0 “ 1 is the initial radius of the ellipsoidal flame ball and r “
b

X2

a2 `
Y 2

b2
` Z2

c2
with:

X “ x cospθq ´ y sinpθq (84)

Y “ rx sinpθq ` y cospθqs cospφq ´ z sinpφq (85)

Z “ rx sinpθq ` y cospθqs sinpφq ` z cospφq (86)

The boundary conditions are of homogeneous Neumann type. In these simulations we use the param-
eters Ze “ 10, τ “ 0.64, Le “ 0.3, θ “ π

3
, φ “ π

4
, a “ 3

2
, b “ 3

2
, c “ 3, a threshold factor ε “ 0.01 and

a Courant number σ “ 0.1 until the final time instant tf “ 5.0. The reference solution for this case is
obtained using the same Courant number and the refinement level L “ 7. Figure 9 shows the isosurface
of T for the reference and the MRLT/NERK2 and MRLT/NERK3 methods. It also shows the solutions,
difference from the reference solution in modulus, and projections of every cell center at the plane xz.
The adaptive methodologies present higher errors close to the flame ball fronts, which are more rounded
in comparison to the FV solutions. The adaptive grids are similar for all adaptive methodologies, with a
higher concentration of refined cells in the region of the front and inside the flame ball.

The L1 errors, CPU time and memory compression are summarized in Table 6. In this case, the proposed
MRLT/NERK methods present a loss in precision and memory usage with a gain in CPU time in relation
to the other adaptive methodologies. However, the parameters λ obtained for the MRLT/NERK methods
compared to the MR and MRLT methods, presented in Table 7, still yield favorable values, especially for
the third order methods. Thus we find that the MRLT/NERK methods are slightly more efficient than
the MR and MRLT methods for the three-dimensional flame ball case, besides a small loss in precision.
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Table 6: Three-dimensional reaction-diffusion equations: L1 errors, CPU time and memory compression.

Finest scale Method Error (ˆ10´4) CPU Time Memory
level T Y ω (%FV)

MR/RK2 4.516 7.338 21.831 15.6 2.5
MRLT/RK2 4.511 7.267 21.798 14.9 2.5

L “ 7 MRLT/NERK2 4.513 7.636 22.038 10.9 7.7

MR/RK3 4.516 7.338 21.831 14.4 2.5
MRLT/NERK3 4.526 7.369 21.856 5.5 2.5

Note: All adaptive computations use ε “ 10´2; final time: tf “ 5.0. Computed on a Quad-Core AMD OpteronTMCPU

2.4GHz. FV/RK2 CPU time: 25.8h (L “ 7). FV/RK3 CPU Time: 38.5h (L “ 7).

Table 7: Three-dimensional reaction-diffusion equations:
Computational gain, for the variable T , of the MRLT/NERK methods compared to the MR and MRLT methods.

Finest scale MR/RK2 MRLT/RK2 MR/RK3
level

L “ 7
MRLT/NERK2 1.43 1.36 -
MRLT/NERK3 - - 2.61
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Solution
a) Reference b) MRLT/NERK2 c) MRLT/NERK3

Solution in the plane xz
d) Reference e) MRLT/NERK2 f) MRLT/NERK3

Error in the plane xz
g) MRLT/NERK2 h) MRLT/NERK3

Grid projection in the plane xz
i) MRLT/NERK2 j) MRLT/NERK3

Figure 9: Isosurface and xz plane reference solution for the variable T in three-dimensions at tf “ 5.0. The solutions are
obtained with the MRLT/NERK2 and MRLT/NERK3 methods with its respective errors in the xz plane and projections of
the center of the adaptive grid cell onto the xz plane. The isosurface plot were build using 5 linearly scaled values.
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5.3. Compressible two-dimensional Euler equations

The Euler equations, which describe the dynamics of a non-ionized gas, are given by the following
relations:

Bρ

Bt
`∇ ¨ pρ~vq “ 0 (87a)

Bρ~v

Bt
`∇ ¨ pρ~vq~v `∇p “ 0 (87b)

BE

Bt
`∇ ¨

ˆ

~vpE ` pq

˙

“ 0 (87c)

where ~v “ pvx, vyq is the velocity, ρ is the fluid density, p is the pressure, and the energy per mass unity

E is given by E “ ρe` ρ}~v}2

2
. This system is completed by the equation of state of an ideal gas p “ ρT

γMa2 ,
where γ is the specific heat ratio, T is the temperature and Ma is the Mach number.

The initial condition used in this numerical test is the classical Lax–Liu configuration #6 [16, 7]. In
this initial condition configuration, the domain is divided into four quadrants, ordered from 1st to 4th,
and defined by the subdomains r0.5; 1s ˆ r0.5; 1s, r0; 0.5s ˆ r0.5; 1s, r0; 0.5s ˆ r0; 0.5s and r0.5; 1s ˆ r0; 0.5s
respectively. The initial values for each quadrant are given in Table 8. This problem is simulated until the
final instant tf “ 0.25, using homogeneous Neumann boundary conditions. The numerical parameters are
the Courant number σ “ 0.5, Ma “ 1, and γ “ 1.4 inside the domain r0; 1s ˆ r0; 1s.

Table 8: Initial condition for two-dimensional Euler equations.

Variables
Quadrant

1st 2nd 3rd 4th

Density, ρ 1.00 2.00 1.00 3.00
Pressure, p 1.00 1.00 1.00 1.00
x-velocity, vx 0.75 0.75 ´0.75 ´0.75
y-velocity, vy ´0.50 0.50 0.50 ´0.50

Figure 10 shows the reference solution and the solution obtained with the MRLT/RK2, MRLT/NERK2
methods and its respective difference, in modulus, from the reference. Furthermore, the corresponding
adaptive grid using L “ 12 with CFL σ “ 0.5 is shown.

The L1 errors, CPU time and memory compression are presented in Table 9. In this case, the proposed
MRLT/NERK methods yield a slightly gain in precision with a significant gain in CPU time in relation to
the other adaptive methodologies. The memory usage of all adaptive methodologies is quite similar. Due
to the gain in both precision and CPU time, the parameters λ for the MRLT/NERK methods compared
with the MR and MRLT methods, presented in Table 10 have expressive values, around 3 for most of
the experiments. Thus, using this metric, the proposed methods for the Euler two-dimensional case are
significantly more efficient than the MR and MRLT methods.
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Solution
aq Reference bq MRLT/RK2 cq MRLT/NERK2

Error
dq MRLT/RK2 eq MRLT/NERK2

Adaptive grid
fq MRLT/RK2 gq MRLT/NERK2

Figure 10: Reference solution for the two-dimensional Euler equations(a), the solutions obtained by the MRLT/RK2 (b) and
MRLT/NERK2 methods, using L “ 10 scales, with its respective errors(d, e), and corresponding adaptive grids pf, gq at final
time tf “ 0.25.
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Table 9: Two-dimensional Euler equations: L1 errors, CPU time and memory compression.

Finest scale Method Error (ˆ10´1) CPU Time Memory
level ρ p T E vx vy (%FV)

MR/RK2 2.2095 0.6075 0.9581 2.0499 1.7521 0.7180 40.7 26.4
MRLT/RK2 2.2085 0.6049 0.9572 2.0463 1.7510 0.7167 33.7 26.0

L “ 8 MRLT/NERK2 2.2096 0.6077 0.9582 2.0503 1.7521 0.7183 12.9 26.6

MR/RK3 2.2093 0.6075 0.9580 2.0498 1.7520 0.7180 46.3 26.4
MRLT/NERK3 2.2095 0.6078 0.9581 2.0504 1.7522 0.7182 14.6 26.6

MR/RK2 1.1365 0.3133 0.5217 1.0470 0.9012 0.3934 24.4 14.0
MRLT/RK2 1.1369 0.3133 0.5219 1.0483 0.9012 0.3931 22.6 13.9

L “ 9 MRLT/NERK2 1.1355 0.3128 0.5216 1.0458 0.9012 0.3931 7.4 14.2

MR/RK3 1.1364 0.3133 0.5217 1.0469 0.9012 0.3934 27.3 14.0
MRLT/NERK3 1.1355 0.3130 0.5216 1.0461 0.9013 0.3931 8.0 14.2

MR/RK2 0.5835 0.1604 0.2765 0.5353 0.4611 0.2115 14.7 7.2
MRLT/RK2 0.5864 0.1643 0.2782 0.5441 0.4622 0.2131 12.8 7.2

L “ 10 MRLT/NERK2 0.5821 0.1596 0.2762 0.5335 0.4609 0.2110 4.1 7.3

MR/RK3 0.5834 0.1604 0.2765 0.5352 0.4611 0.2115 11.2 7.2
MRLT/NERK3 0.5821 0.1598 0.2762 0.5338 0.4610 0.2109 3.6 7.3

Note: All adaptive computations use ε “ 10´2; final time: tf “ 0.25. Computed on an Intel CoreTMi7 CPU 2.67GHz.

FV/RK2 CPU time: 10.1 min (L “ 8); 73.3 min (L “ 9); 8.8 h (L “ 10). FV/RK3 CPU Time: 11.7min (L “ 8); 91.7 min

(L “ 9); 13.8 h (L “ 10).

6. Conclusions

In this work, we introduced a new local time-stepping for adaptive multiresolution methods using
NERK time integration schemes [30]. Interpolating values of the intermediate Runge–Kutta stages yield
the required values at intermediate time steps, which are necessary for the time evolution. Hence the current
limitation of local time stepping to second order schemes can be overcome, and the required synchronised
solution can be obtained. The proposed new methodology has been implemented and validated for two
and three stage NERK schemes. In principle the extension of MRLT/NERK schemes to even higher
order is possible, but the computational cost would increase due to the order barrier discussed in [22].
For NERK methods of order larger or equal to three, Owren and Zennaro [23] have shown that the
order of approximation is reduced concerning the underlying RK method. This order reduction implies
that increasing the order of NERK schemes beyond three would become less efficient and thus further
research is indeed necessary to obtain well performing local time-stepping schemes with order larger than
three. With the presented numerical experiments we assessed the precision and efficiency of the proposed
two and three stage MRLT/NERK approach for different classical nonlinear evolution equations, i.e.,
for Burgers, reaction-diffusion and the compressible Euler equations considering Cartesian geometries in
one, two and three space dimensions. In all adaptive computations, we observed a significant gain in
CPU time in comparison with uniform grid computations where the efficiency is increasing with the grid
resolution. Nevertheless, the precision of the uniform grid computations is controlled in the MRLT/NERK
schemes, and the order of convergence is maintained. Regarding memory consumption, we observed for
the MRLT/NERK schemes no necessary increase, compared to MR and classical MRLT methods.
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Table 10: Two-dimensional Euler equations:
Computational gain, for the variable ρ, of the proposed MRLT/NERK methods compared with the MR and MRLT methods.

Finest scale MR/RK2 MRLT/RK2 MR/RK3
level

L “ 8
MRLT/NERK2 3.15 2.61 -
MRLT/NERK3 - - 3.17

L “ 9
MRLT/NERK2 3.30 3.05 -
MRLT/NERK3 - - 3.41

L “ 10
MRLT/NERK2 3.59 3.14 -
MRLT/NERK3 - - 3.11

The precision of the MRLT/NERK computations is very reasonable, and in all cases, we found errors
about the same order of magnitude as for the MRLT computations using classical RK schemes.

In conclusion, we showed that the MRLT/NERK methods are advantageous compared to the MR and
MRLT approaches in all studied cases, obtaining even significant performance gains in some examples. For
the two-dimensional Euler equations, for instance, the MRLT/NERK simulations only required one-third
of the CPU time necessary for the MR and MRLT computations. Most of these gains are due to the
significant reduction in CPU time obtained in the MRLT/NERK methods.
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Appendix A. Algorithms

Algorithm 1 Construction of the adaptive grid.

Do Algorithm 2 {Compute the leaves that will belong to the adaptive grid}
– Refine each leaf with a finer neighbour leaf.
– Set these new leaves as virtual leaves;

Algorithm 2 Grid adaptation.

Require: Finest scale level L of the solution.
Require: Solution at level L.
Require: Threshold value ε.
{Selection of the nodes in the adaptive grid}
for ` “ L´1 Ñ 0, ` “ `´1 do

– Project the solution from the grid Ω``1 to Ω`;
– Predict the solution of the grid Ω``1 based on the project solution in Ω` ;
– Compare the original solution of the grid Ω``1 with the predicted one, and then obtain the wavelet
coefficients D̄``1, as the difference with these solutions;
{Elimination of the unnecessary nodes and the imposition of a graded tree}
for every leaf P Ω``1 do

if |d``1| ď ε and adjacent leaves are inside Ω``1 or Ω` then
– Remove the leaf from the grid Ω``1;

end if
end for

end for
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Algorithm 3 Single iteration of the LT scheme.

Require: Coarsest scale `min to be evolved in this time evolution;
Require: Current iteration number n;

Compute `min “ min
`

“

mod
`

n, 2L´`
˘

“ 0
‰

;

for ` “ LÑ `min, `“`´1 do
for Every internal node P Ω` do

Obtain the solution q̄n` by projecting the solution from its child nodes via simple averaging;
end for

end for
if `min is not the coarsest scale of the grid then

for Every internal node P Ω`min´1 do
Obtain the NERK solution with θ “ 1

2
by projecting q̄n`min

.

Extrapolate this solution to the instant tn`2L´`min (Section 4.3).
end for
for Every virtual leaf P Ω`min do

Predict q̄n` using the NERK (RK2) or q̄˚˚`min´1 (RK3) solutions of the cells P Ω`min´1 at instant tn.
end for

end if
for ` “ `min ` 1 Ñ L, `“``1 do

for Every virtual leaf P Ω` do
Predict q̄n` using the values of the cells P Ω`´1 at time instant tn.

end for
end for
Remeshing process of cells with refinement level greater or equal than `min;
for ` “ LÑ `min, `“`´1 do

for Every leaf P Ω` do
Perform flux computations at instant tn;
First RK step;
First order interpolation of the RK evolution at instant tn ` 1

2
∆t`;

if we are computing RK2 time evolution then
Compute q̄˚

θ“ 1
2

;

else if we are computing RK3 time evolution then
Compute q̄˚

θ“ 1
4

;

Compute q̄˚
θ“ 3

4

;

end if
end for

end for
Tree refreshing before the second RK step (Algorithm 8):
Second RK step of the time evolution (Algorithm 5);
if Performing RK3 time evolution then

Tree refreshing before the third RK step (Section 4.2):
Third RK step of the time evolution (Algorithm 7);

end if
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Algorithm 4 Projection procedure inside the second RK step.

Require: Scale ` to receive the projection.
Require: Number of dimensions d of the problem.

for Every internal node P Ω` do
q̄˚` “ 0; {result after RK1, set here to zero to store the projection}
for Every child cell P Ω``1 do

if The cell is a leaf then
q̄˚` Ð q̄˚` ` q̄``1 pt

n ` 2∆t``1q; {Add the already extrapolated value q̄``1 at tn ` 2∆t``1 }
else if The cell is an internal node then

q̄˚` Ð q̄˚` ` 2q̄˚``1 ´ q̄n``1; {Add a linear extrapolation of the values q̄``1 at tn ` 2∆t``1 }
end if

end for

q̄˚` Ð
1

2d
q̄˚` ;

end for

Algorithm 5 Performing the second RK step in the LT approach.

for ` “ LÑ `min, ` “ `´1 do
if ` ‰ L then

Project the leaves and internal nodes from level `` 1 onto level ` (Algorithm 4);
Predict the values of the virtual leaves of level `` 1 at instant tn ` 2∆t``1;
{These two steps compute the update in time of the virtual leaves}

end if
for every leaf P Ω` do

Flux computation using the values at instant tn `∆t`;
Second step of compact RK;
Perform the approximation at instant tn ` 2∆t` given in Equation (14);
if we are computing RK2 time evolution then

Compute q̄θ“ 1
2
;

else if we are computing RK3 time evolution then
Compute q̄θ“ 1

4
;

Compute q̄θ“ 3
4
;

end if
end for

end for
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Algorithm 6 Projection procedure inside the third RK step.

Require: Scale ` to receive the projection.
Require: Number of dimensions d of the problem.

for every internal node P Ω` do
q̄`

`

tn ` 1
2
∆t`

˘

“ 0; {result after RK2, set here to zero to store the projection}

for Every child cell P Ω``1 do
q̄`

`

tn ` 1
2
∆t`

˘

Ð q̄`
`

tn ` 1
2
∆t`

˘

` q̄``1 pt
n `∆t``1q; {Add value q̄``1 from RK3 3rd step }

end for

q̄`
`

tn ` 1
2
∆t`

˘

Ð
1

2d
q̄`

`

tn ` 1
2
∆t`

˘

q̄˚˚` « q̄`
`

tn ` 1
2
∆t`

˘

;

To obtain a 2nd order approximation for q̄`pt
n `∆t`q, use Equation (16).

end for

Algorithm 7 Performing the third RK step in the LT approach.

for ` “ LÑ `min, `“`´1 do
if ` ‰ L then

– Project the leaves and internal nodes from level `` 1 onto level ` (Algorithm 6);
– Predict the values of the virtual leaves of level `` 1 at instant tn `∆t``1;
{These two steps compute the update in time of the virtual leaves}

end if
for Every leaf P Ω` do

– Flux computation using the values at instant tn ` 1
2
∆t`;

– Third step of compact RK;
end for

end for
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Algorithm 8 Tree refreshing before the second RK step.

Require: Scale ` to receive the projection.
Require: Number of dimensions d of the problem.

for ` “ L´ 1 Ñ `min, `“`´1 do
for Every internal node P Ω` do

q̄`
`

tn ` 1
2
∆t`

˘

“ 0; {Set the solution equal zero to perform the averaging of its children cells.}
for Every child cell i P Ω``1 do

q̄`
`

tn ` 1
2
∆t`

˘

Ð q̄`
`

tn ` 1
2
∆t`

˘

` q̄˚``1, i ;
end for
q̄`

`

tn ` 1
2
∆t`

˘

Ð 1
2d

q̄`
`

tn ` 1
2
∆t`

˘

Obtain a 1st order approximation for q̄˚` using Equation (18).
end for

end for
for ` “ `min Ñ L, `“``1 do

for Every virtual leaf P Ω` do
Use the approximated solution at level `´ 1 at time instant tn` 1

2
∆t`´1 to predict the solution q̄˚` .

Obtain the solution q̄`
`

tn ` 1
2
∆t`

˘

by linear interpolation. {These two steps predict the solution of
the virtual leaves in the proper time instant to update the level `.}

end for
end for

Algorithm 9 Tree refreshing before the third RK step.

Require: Scale ` to receive the projection.
Require: Number of dimensions d of the problem.

for ` “ L´ 1 Ñ `min, `“`´1 do
for Every internal node P Ω` do

q̄`, θ“ 1
4
“ 0;

for Every child cell i P Ω``1 do
q̄`, θ“ 1

4
Ð q̄`, θ“ 1

4
` q̄˚˚``1, i ;

end for
q̄`, θ“ 1

4
Ð 1

2d
q̄`, θ“ 1

4

Compute q̄`, θ“ 3
4

using Equation (20).

Compute q̄˚˚` using Equation (21).
end for

end for
for ` “ `min Ñ L, `“``1 do

for Every virtual leaf P Ω` do
if ` “ `min then

Use the solution q̄`´1, θ“ 3
4
, at time instant tn ` 1

2
∆t`, to predict the solution q̄˚˚` .

else
Use the solution q̄`´1, θ“ 1

4
, at time instant tn ` 1

2
∆t`, to predict the solution q̄˚˚` .

end if
Compute q̄`, θ“ 1

4
using Equation (21).

Compute q̄`, θ“ 3
4

using Equation (20).
end for

end for
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