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Abstract

Computational magnetohydrodynamics (MHD) for space physics has become an essential area in understanding the multiscale
dynamics of geophysical and astrophysical plasma processes, partially motivated by the lack of space data. Full MHD simula-
tions are typically very demanding and may require substantial computational efforts. In particular, computational space-weather
forecasting is an essential long-term goal in this area, motivated for instance by the needs of modern satellite communication
technology. We present a new feature of a recently developed compressible two- and three-dimensional MHD solver, which has
been successfully implemented into the parallel AMROC (Adaptive Mesh Refinement in Object-oriented C++) framework with
improvements concerning the mesh adaptation criteria based on wavelet techniques. The developments are related to computational

efficiency while controlling the precision using dynamically adapted meshes in space-time in a fully parallel context.
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1. Introduction

Space weather forecasting is concerned with predicting dis-
turbances in the Earth upper atmosphere and the magnetic field
that can have dramatic consequences for modern technology,
especially satellites and communication electronics. A com-
bination of theoretical studies, observations, numerical simu-
lations including data assimilation, and forecasting is the key
for achieving success in this strategic area [1]. For numeri-
cal predictions of space plasma physics, the considerable range
of dynamically active space-time scales is a major obstacle.
Accordingly, fast, robust, and efficient numerical models that
merge physics-based, accurate simulation with timely observa-
tions are of fundamental importance. A particularly successful
computational approach is the magnetohydrodynamic model
[2]. Roughly speaking, the magnetohydrodynamic model con-
sists of a system of eight nonlinear partial differential equa-
tions describing the dynamics of a compressible, inviscid, and
perfectly electrically conducting fluid interacting with a mag-
netic field, combining thus the Euler equations of hydrodynam-
ics with the Maxwell equations of electrodynamics. The latter
yields an evolution equation for the magnetic field, the so-called
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induction equation, and an incompressibility constraint of the
magnetic field using Gauss’s law [3]. Numerical approaches to
solve these systems are computationally costly and a full mesh
approach to compute them is prohibitive in most cases of inter-
est in space physics [2]. Therefore, adaptive techniques have
been combined with on-the-fly mesh refinement [2]. More re-
cently, multiresolution techniques have also been used [4, 5]. In
such approaches, the mesh is refined locally just in the regions
where structures or discontinuities are or can be present in short
integration time [6].

Adaptive techniques reduce the computing time significantly
while preserving the high accuracy of the numerical solutions.
In a previous article [7] we presented a comparison of these
mesh adaptation techniques, which we have recently extended
in [8]. In these works, we used the generic open-source frame-
work for patch-structured adaptive mesh refinement AMROC
[9, 10]. A core finding of these publications is that the multires-
olution approach is mathematically more rigorous and leads to a
more faithful mesh adaptation; yet, the patch-based adaptation
approach — thanks to advantageous data structures — reduces the
overall computation time drastically. Hence, in this work we
present the multiresolution approach in our MHD solver [11]
within the AMROC framework.

The organisation of the remainder of the manuscript is as fol-
lows. In Section 2, we contextualise the space environment
of the Earth and introduce the primary phenomena of interest
for simulation test cases. In Section 3 we describe the gov-
erning equations, their discretisation using finite volumes, and
outline the main ideas of the patch-based adaptive mesh refine-

April 24, 2019



ment (AMR) approach briefly as implemented in AMROC. In
Section 4 we develop numerical experiments and discuss the
accuracy and efficiency of our implementation. Finally, in Sec-
tion 5 we draw some conclusions.

2. Earth space environment

The Sun is the source of several phenomena that affect the
sidereal bodies, even the human artefacts, such as interplane-
tary probes, existing in the heliosphere [12]. The three main
solar agents are electromagnetic radiation, high energetic cor-
puscular radiation, and magnetised plasma structures evolving
in the solar wind.

As the Earth has an atmosphere and an intrinsic magnetic
field, a particular situation occurs; the solar radiation ionises
the upper atmosphere of the Earth, located above an altitude of
70 km. Also, a magnetic field of inner origin imprecates the
whole atmosphere. This conjunction of ionisation and mag-
netic field creates a kind of shield to the solar plasma displace-
ment, i.e., the fully ionised and magnetised solar wind plasma
cannot mix with the terrestrial plasma, which establishes a geo-
magnetic field domain surrounding the planet, named magneto-
sphere. As a consequence, the expanding solar plasma deviates
from its original direction involving the Earth’s domain [13].

Incident upon this obstacle, the solar plasma wind, which
moves with supersonic speed, creates a bow shock involving
the terrestrial domain. Immediately after the shock the flux
presents a subsonic speed, thermalised particles, and an intensi-
fied interplanetary magnetic field, characterising a region desig-
nated as magnetosheath. The plasma of this region compresses
the region dominated by the geomagnetic field in a process that
defines an interface between the two physical media, the mag-
netopause. As a manifestation of a tangential discontinuity, this
region is a surface of total pressure equilibrium between the so-
lar wind-magnetosheath plasma and the geomagnetic field con-
fined in the magnetosphere. Inside the magnetosphere, several
processes establish distinct regions of plasma, energetic particle
distributions, and a sophisticated building of electrical current
systems. All the features of this real scenario are consequences
of the electrodynamical interaction between the incident solar
wind and the Earth atmosphere [14].

An enormous amount of studies provided by experimen-
tal, observational research, such as the one obtained by satel-
lite data-set analyses, and theoretical approaches, such as the
propositions of phenomena from the magnetohydrodynamic
formalism, has contributed to an in-depth interpretation of the
space environment [15, 16]. The efforts of numerical sim-
ulations can significantly help the scientific concepts under
development and provide more realistic process descriptions.
The comprehensive view and understanding of important space
plasma processes and their geoeffective events depend on much
more realistic performances of the currently available magne-
tohydrodynamic models. However, to be utilised in emerging
space weather programs, competitive-in-time codes are increas-
ingly demanded nowadays.

In this work, we aim at developing an up-to-date numer-
ical tool for modelling magnetohydrodynamics. We address

two fundamental cases, prominent in the investigation of ap-
plied space sciences. The first case is the Orszag—-Tang vor-
tex, originally introduced in [17] for incompressible MHD, a
canonical model problem for testing the transition to supersonic
two-dimensional MHD turbulence. The second is the magnetic
shock cloud [15, 18], a common occurrence evolving superim-
posed with the solar wind through the interplanetary medium.

2.1. GLM-MHD model

In numerical simulations of the ideal magnetohydrodynamics
equations, including the divergence-free constraint of the mag-
netic field, typical methodologies consider an additional correc-
tion term to facilitate the enforcement of this physical property.
There are different kinds of well-known methods in order to
minimise this effect, as described in [19] and references therein.
In the context of this study, having in mind the application of
the multiresolution method using explicit time integration, we
adopt the approach proposed in [20], with the non-dimensional
adjustment added by Mignone and Tzeferacos in [21]. Namely,
the divergence-free constraint is treated by the introduction of a
new variable ¢ and a corresponding balance equation is added
to the ideal MHD equations. This process leads to the well-
known Generalised Lagrangian Multiplier (GLM) hyperbolic
conservation system

dp

o TV o = 0,
‘2—]:+v-[uBT—BuT+¢I]= 0. )
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where p represents density, p is the pressure, u is the fluid
velocity vector, B is the magnetic field vector, I is the iden-
tity tensor of order 2, and the superscript symbol 7 indicates
the transposed matrix. The parameter ¢, is defined as ¢, =
max [v%, max (|ui| + c_f)], where Ah is the minimal value of
the mesh sizes in each direction, v the Courant number, u; is
the velocity of the i-th component, and ¢/ is the fast magneto-

acoustic wave of the MHD model. The ¢, value is defined in

c
terms of the parameter o, = Ah —;’, where @, € [0, 1], as de-
c

P
scribed in [21]. The total energy density E is given by the con-
stitutive law

p u-u B-B
E = + + ,
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@

in which v is the adiabatic constant with y > 1. Moreover, the
above MHD system is completed by suitable initial and bound-
ary conditions as presented in the numerical experiments sec-
tion. These equations have been rewritten in non-dimensional
form such that the magnetic permeability yields the identity,



i.e., 4 = 1. We also consider the divergence control parameter
@, = 0.4, and ¢ = 0 in the initial conditions.

In near Earth space, the governing equations of MHD mod-
elling can in particular develop discontinuities, i.e., shocks
and contact waves. Therefore, we use finite volume shock-
capturing methods that are constructed to properly handle this
behaviour in a robust and oscillation-free way, as discussed
in detail in [22]. Moreover, we are interested in studying the
development of MHD instabilities that are very local and can
present complex local multiscale behaviour. For this reason, it
can be undoubtedly beneficial to have an economical, accurate,
and efficient mesh representation of these features.

3. Numerical discretisation

As reference discretisation for these equations in the conser-
vation form, the numerical solution is represented by the quan-
tity vector Q of the approximated cell averages on a uniform
mesh of the computation domain. For space discretisation, a
finite volume method is chosen, which results in a system of
ordinary differential equations with a vector of numerical flux
function differences with respect to each cell. In all numer-
ical schemes throughout this paper enhanced numerical flux
functions with comparable second-order-accurate reconstruc-
tion and flux limiting are used. For time integration, we adopt
an explicit second order Runge—Kutta scheme.

The adaptive mesh refinement method (AMR) [23, 24, 25]
follows a patch-oriented refinement approach, where non-
overlapping rectangular submeshes G, define the domain
Gy = U,AZ;  Gem of an entire level £ = 0,...,L. As the con-
struction of refinement proceeds recursively, a hierarchy of sub-
meshes successively contained within the next coarser level do-
main is created. The recursive nature of the algorithm only al-
lows the addition of one new level in each refinement operation.
The patch-based approach does not require special coarsening
operations; submeshes are simply removed from the hierarchy.
The coarsest possible resolution is thereby restricted to the level
0 mesh. Typically, it is assumed that all mesh widths on level
{ are ro-times finer than on the level £ — 1, i.e., Aty = At;_/re
and Ax, ¢ = Axpe-1/re, withrp € Nyrp > 2for £ > 0andrg = 1.
This ensures that a time-explicit finite volume scheme remains
stable under a CFL-type condition on all levels of the hierarchy.
In our MR implementations we always use r, = 2 here.

The numerical update is applied on the level £ by calling a
single-mesh routine implementing the finite volume scheme in
a loop over all the submeshes G,,. The regularity of the in-
put data allows a straightforward implementation of the scheme
and furthermore permits optimisation to take advantage of high-
level caches, pipelining, etc. New refinement meshes are ini-
tialised by interpolating the vector of conservative quantities Q
from the next coarser level. However, data in an already refined
cell are copied directly from the previous refinement patches.
Ghost cells around each patch are used to decouple the sub-
meshes computationally. Ghost cells outside of the root domain
G are used to implement physical boundary conditions. Ghost
cells in G, have a unique interior cell analogue and are set by
copying the data value from the patch where the interior cell

is contained (synchronisation). For ¢ > 0, internal boundaries
can also be used. If recursive time step refinement is employed,
ghost cells at the internal refinement boundaries on the level £
are set by time-space interpolation from the two previously cal-
culated time steps of level £{—1. Otherwise, spatial interpolation
from the level ¢ — 1 is sufficient.

One feature of the AMR algorithm is that refinement patches
overlay coarser mesh data structures instead of being embed-
ded, again preventing data fragmentation. Values of cells cov-
ered by finer submeshes are subsequently overwritten by aver-
aged fine mesh values, which, in general, would lead to a loss
of conservation on the coarser mesh. A remedy to this prob-
lem is to replace the coarse mesh numerical fluxes at refine-
ment boundaries with the sum of fine mesh fluxes along the
corresponding coarse cell boundary.

3.1. MR refinement indicator

The principle of MR methods is the transformation of the
cell averages given by the finite volume discretisation into a
multiscale representation. A detailed review can be found in
[26, 27] and references therein. We consider a discrete solution
of the discretisation as initial cell average data Q‘*! at level
¢+ 1. Then for instance, in one decomposition level a two-level
MR transformation can be written as follows,

=il pruji(,\'tion =il = ¢
Q" = Qu = {Q} U {d},

prediction

where d’ contains the information between the two consecutive
levels £ and £+ 1; and Q' stores a smooth version of the original
numerical solution Q*!. These ideas are a natural extension of
the work [28, 29]. The numerical solution at the finest resolu-
tion level is transformed into a set of coarser scale approxima-
tions plus a series of prediction errors corresponding to wavelet
coefficients. These coefficients describe the difference between
subsequent resolutions. The main principle is then to use the
decay of the wavelet coefficients to estimate the local regularity
of the solution [30, 31]. In regions where the solution is smooth
these coefficients are small, while they have large magnitude in
regions of steep gradients or discontinuities.

In order to perform the MR method, some operations for pro-
jection and prediction are required. For the MR scheme with fi-
nite volumes, where the cell values are local averages, a coarser
cell Qf has its value estimated using the smaller scale values
and a unique projection operator Py, : Q' — Q. In
this scheme, the projection operator to obtain the solution on a
coarser cell is given by the average value of its children. For
the one-dimensional case (cf. Fig. 1, top), the projection is per-
formed by

Q! = P (0504 = 5 (@5 Q5L). )
where Q! is the average value of the cell Q.

The prediction operators are used to perform the opposite
path of the projection operators and allow to obtain the values
of the finer cells using the values of the coarser ones (cf. Fig. 1,
bottom). For each child cell i to be predicted, there is a different



prediction operator represented by Pi_, | : Qf — Q! for
the one-dimensional case. These operators yield a non-unique

approximation of Q/*! by interpolation.

ol+1 ol+1 ol+1 ol+1 ol+1 ol+1
Qi—3 Qi—Z Qi—l Qi Qi+l Qi+2

| | | | | | |
[ [ [ [ [ [ |
iy Q! A0
Qi ! Qi
| | | |

Projection : P}, |, : Q! 5 Qf

l+1 l+1 ol+1 ol+1 l+1 ol+1
Q5 QG5 4 Q Qi Qi

s 4o DI . Of y(+1
Prediction : P,_,., : Q" = Q

Figure 1: Scheme of the projection (restriction) and prediction (prolongation)
operators for the quantity vector Q.

We use polynomial interpolation of second degree on the
cell-averages as proposed by Harten [28], which yields third-
order accuracy. For the one-dimensional case, it follows that

~ . o~ = _, 1 - _
o= P (Q Q0 QL) = Q- 5QL - QL) @)

~ _ _, - _ 1 - _
S = Pog ( . Qf f+1) =Q/ + g(Qfﬂ -QL).

where Q! is an approximation of the value Q. With this choice,
the operator satisfies the locality and the consistency properties,
namely: the interpolation into a child cell is computed from the
cell-averages of its parent and its nearest uncle cells in each
direction; and prediction and projection operator are consistent,
i.e. Ppii—¢ 0 Pppyr = Identity.

The prediction operator is used to obtain the wavelet coef-
ficients df of the finer cells. The wavelet coefficients are then
given by the difference between the values on the finer level and
the predicted values as

df =Qf - Q. (6)

The values df are also used for reconstructing the finest levels
without errors due to their property of being the interpolation
error. Their norm yields the local approximation error. More-
over, the information of the cell-average value of the two chil-
dren is equivalent to the knowledge of the cell-average value of
the parent and one independent detail.

The same idea can be extended to higher-dimensional cases.
For instance, for two dimensions the information of the cell-
averages of four children is equivalent to the knowledge of three
wavelet coefficients in the different directions and the nodal
value on the coarser mesh.

In the process to obtain the adaptive meshes, we flag all cells
in which the associate wavelet coefficients d’ are larger than a
threshold. We can select d° for only a scalar value from the
MHD quantities or adopt other combinations between the vari-
ables. For the examples presented below we consider only a
scalar value for density or pressure.

Choice of the threshold

There are different possible choices for the threshold, which
enable the identification of the retained wavelet coefficients
having magnitude above the threshold. In practice, its value
should be chosen such that the perturbation related to the
thresholding and the discretisation errors is of the same order.
Moreover, it is possible, for instance, to use a constant threshold
value € for all levels. However, in the context of finite volumes,
and based on our own experiences, [32, 5], we usually follow
Harten’s thresholding strategy, i.e,

t_ € 2d(¢-L)

€ s
12|

1<¢<L, @)
in order to control the L;-norm. In this case, L is the finest scale
level added to the base mesh level in AMROC, the dimension
parameter is d = 2 or 3 according to the dimension used, and
|Q| is the cell area.

3.2. Clustering algorithm

After evaluating the refinement indicators and flagging cells
for refinement, a special clustering algorithm [25] is used to
create new refinement patches until the ratio between all cells
and flagged ones in every new submesh is above a prescribed
value 0 < n < 1. Central to the patch-based mesh refinement
approach is the utilisation of a dedicated algorithm to create
blocks (or patches) from individual cells tagged for refinement
by any of the above criteria. We use a recursive algorithm pro-
posed by Bell er al. [33]. This method, inspired by techniques
used in image detection, counts the number of flagged cells
in each row and column on the entire domain. The sums Y
are called signatures. First, cuts into new boxes are placed on
all edges where Y is equal to zero. In the second step, cuts
are placed at zero crossings of the discrete second derivative
A=y —27, + Y,_1. The algorithm starts with the steepest
zero crossing and uses recursively weaker ones, until the ratio
between all cells and flagged ones in every new mesh are above
the prescribed value 7. An illustration of the general clustering
procedure is given in Figure 2.

4. Computational experiments and discussions

In order to compare and assess different refinement criteria
quantitatively, we compute the L; error between the adaptive
solution and its corresponding uniform mesh solution related to
the same maximal resolution used in the adaptive computation,
as discussed in [8]. We denote this error by Lj amr.

Computations are run in parallel on nodes of a recent
GNU/LINUX compute cluster that provides 20 cores with
shared memory per node. The AMROC system is parallelised
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through the MPI library with dynamic re-partitioning. Load
balancing is carried out after each level-0 time step in the adap-
tive cases. AMROC is pursuing a rigorous domain decomposi-
tion strategy, in which the increased computational expense on
higher refinement levels in the patch-based AMR algorithm is
considered in evaluating parallel workload; however, only units
of smallest resolution corresponding to a cell on level zero are
utilised [34]. This approach simplifies the implementation and
reduces the expense of the partitioning algorithm, but it can lead
to slight load imbalances on deep hierarchies. The algorithm
used for partitioning is always a multi-dimensional space fill-
ing curve [9, 10].

In all experiments we use a Cartesian mesh with HLLD nu-
merical flux introduced in [35] and a MinMod limiter as dis-
cussed in [36].

4.1. Orszag-Tang vortex

Nowadays, this classical experiment is also used to test how
robust a compressible MHD code is at handling the formation
of MHD shocks [37], shock-shock interactions, discontinuities,
and other structure formations, as presented in [38]. Therefore,
this test is also frequently used for code verification and com-
parison, and it can also demonstrate how significant magnetic
monopoles, i.e the V - B = 0 condition, affect the numerical so-
lution, as discussed in [39] and references therein. Here we use
this test to verify how the wavelet-based criteria handle shock
formations. We also present a comparison with the Scaled Gra-
dient (SG) refinement criteria already implemented in the AM-
ROC framework [10, 8, 40]. For SG criteria in two-dimensions,
a cell at a position (j, k) is flagged for refinement if at least one

of the following relations is satisfied for mass density, for in-
stance,

[Pjstk—Pik] > €7, 1pjke1 =Pkl > €7, | pjsr e —pjk | > €7,

where the constant € denotes the prescribed refinement limit;
in subsequent parts we simply denote it by € = €”.

Computational set-up

We consider as initial conditions the density p = y2, the pres-
sure p = vy, and the periodic velocities with u, = —sin(y), and
u, = sin(x) together with the magnetic field B, = -sin(y),
B, = sin(2x), using the parameters y = 5/3 and CFL v = 0.3.
The computational domainis 0 < x < 1,0 < y < 1
with periodic boundary conditions. This magnetic field is con-
structed using a periodic vector potential to guarantee vanishing
divergence of the magnetic field.

Numerical results

In this experiment we have observed that the wavelet-based
MR criteria detect the shock formations reproducing the ex-
pected structures. Moreover, we have found that it produces
less refinement of additional features at the maximal level com-
pared to the gradient criterion and additionally stronger coars-
ening. Therefore, MR prevents unnecessary over-refinement
while preventing improper coarsening. These representative
effects are the reason why the MR criterion with hierarchical
thresholding achieves a smaller error than the SG criterion. An
example of these effects is presented in Figure 3 (b, and c, in the
right panel). The adaptive mass density solution is presented in
Panel (a) for the uniform mesh and it is represented by isolines.
Pseudo-colours are used to identify the levels. These results
are computed for L = 5 maximum refinement level, coarsest
mesh 322, i.e., corresponding to a uniform mesh of 5122 cells,
at final time 7, = n. To compare the number of cells we have
used in Table 1 the value n = 0.80 and threshold parameters
which lead to similar errors for SG and MR. Therefore, even
with slightly smaller errors, MR needs less cells to obtain the
expected representation, resulting in a gain of 1.3 considering
the ratio between the number of cells and the error. This result

Table 1: MR and SG: accuracy and number of cells.

Method € LI,AMR # of cells
SG 0.20 2.30 411,392
MR 0.05 2.15 333,064

is highlighted in panels (b) and (c) on the right of Figure 3. The
SG method presents refinement from levels 2 -5, whereas the
MR method from 3—-5. We have also observed that SG uses
much more refinement at the highest level. On the left panel,
we present the processor distribution for the three cases. All
show a good distribution on the processors. Especially for the
adaptive cases, the distribution pattern follows the data organi-
sation on the level refinements. As the MR case has less blocks
in the highest level and more regions at the same level, its dis-
tribution is slightly less fragmented than for the SG one. The



(a) Uniform mesh

Figure 3: Orszag—Tang vortex: mass density at final time 7, = 7. (a) uniform
mesh with max value 6.16, in blue, and min value 1.1 in white, (b, and c) adap-
tive meshes (pseudo-colour: white coarsest level 2, grey finest level 5) using
SG, and MR criteria, respectively. The panels in the right column represent the
data distribution in the 40 processors indicated by colours.

accuracy of the adaptive solution depends on the choice of the
MR threshold parameter with a computational cost determined
by the number of cells used in the representation. In our case
the number of cells is directly related to the CPU time. Figure 4
illustrates the accuracy behaviour measured by the L; amr e1-
ror, which is related to the choice of the threshold (vertical axis
at right). Therefore, we can estimate roughly the error when
choosing the threshold based on this behaviour. On the left ver-
tical axis, we present the number of cells. The number of cells
in the adaptive mesh increases as the error decreases. Again,
we can deduce a rough estimator how to proceed for choosing
a certain threshold to obtain a certain number of cells based on
the desired accuracy.

900000 P— 0.5
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H 04
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Figure 4: Orszag-Tang vortex: flag cells and MR threshold at 7, = 7 as a
function of the L amr error of the mass density.



4.2. Magnetic shock cloud

This experiment models a disruption of a high-density mag-
netic cloud by a strong shock wave, as described in [41]. The
initial condition of this Riemann problem defines a region of
the advancing plasma — which causes the shock — and a station-
ary state where the shock advances. We also define a spherical
magnetic cloud as a high density region, like a plasmoid, in hy-
drostatic equilibrium with the surrounding plasma.

We compare the performance obtained with the serial mul-
tiresolution Carmen-MHD code [42, 4, 5, 43], which is the pro-
totype solver we had implemented initially during this devel-
opment project. The detailed software design aspects of both
software systems are discussed in [8]. This experiment also
provides the performance of the wavelet patch-based method
when dealing with high speed flows.

Computational set-up

The cloud region has its centre at (0.25,0.5,0.5) and radius
ro = 0.15 with density p = 10 inside the cloud and p = 1
otherwise. We have adopted outlet boundaries and these regions
are limited by the domain boundaries and a plane parallel to the
yz plane at x = 0.05. The advancing plasma initial condition
is given by p = 3.86859, p = 167.345, u, = 11.2536, u, =
u, = B, =0, B, = 2.1826182, and B, = —B,, with a stationary
state given by p = 1, u = 0, B, = B, = 0.56418958. The
computational domain is [0, 1]¢, where d = 2 or 3 respectively
stand for the two- and the three-dimensional case. We use the
following parameters: CFL v = 0.3, v = 5/3, the MR threshold
is applied to the pressure variable and we run the simulations
until the final time ¢z, = 0.06.

Numerical results

For two-dimensional simulations the wavelet-based adaptive
solutions present similar behaviour for both Carmen-MHD and
AMROC solvers. Both capture well all the expected relevant
physical structures, especially the bow shock, and moreover the
symmetry of the solution is almost perfectly preserved.

Figure 5 presents pressure solutions and their respective
adaptive meshes at 7, for both environments. In the Carmen-
MHD code, the cell-based structure requires many less cells in
the representation than in the patch-based one used in the AM-
ROC framework. At the final time 7,, AMROC needs 311,612
cells clustered in 528 blocks with 7 = 0.99 and Carmen-MHD
40,329 cells. On the other hand, we obtain an improvement in
CPU time of about 9 times in AMROC compared to Carmen-
MHD, considering mono-processor runs. Similar results were
obtained for the hydrodynamic Euler solvers in both environ-
ments [8].

With the additional parallelisation in the AMROC frame-
work, the improvement becomes even larger, with a speed-up of
39 using 16 processors, as reflected in the CPU times in Table 2.
AMROC simulations are performed with seven refinement lev-
els over a base mesh 162, using 2" processors with n from one
to four. We observe that in these experiments the maximum
AMROC scalability is near 1.8 for one to two processors and it

reduces to a factor of around 1.3 for the four and eight proces-

sor cases. Considering eight and sixteen processors, this factor

is smaller due to a reduction of the problem size, as expected.
(b) AMROC framework

Figure 5: Adaptive computations of the pressure solution for the magnetic
cloudy test case related to a 1,024 uniform mesh. (a) Carmen-MHD code,
(b) AMROC framework with = 0.99 and 16% base mesh with L = 7. Left

columns show the adaptive meshes, red colour corresponds to the most refined
level for Carmen-MHD, and dark-blue for AMROC.

(a) Carmen-MHD code

Table 2: Comparison of the CPU time (s) for the two-dimensional magnetic
cloudy test case corresponding to a refined mesh 1, 0242, e = 0.01, n = 0.80,
and base mesh 162.

Number of Processors

2D 1 2 4 8 16
Carmen-MHD 17,520 - - - -
AMROC 1,889 1021 635 478 447

Considering the 3D case with computations using one pro-
cessor and a MR threshold € = 0.01 until time ¢., the Carmen-
MHD code with a corresponding 128° refined mesh needs a
CPU time of 16, 816 seconds, while AMROC needs only 2, 620
seconds considering a base mesh 322, and 1 = 0.80. Therefore,
we achieve a speed-up of a factor 6. Furthermore, if 60 proces-
sors are considered, the speed-up increases to around 84, as this
AMROC computation uses only 201 seconds, in this case with
€ = 0.025 and the same 1 = 0.80.

Two-dimensional cuts of the pressure solution on the adap-
tive mesh at time ¢, = 0.06 are presented in Fig. 6 (left panel),
for € = 0.025, n = 0.80, base mesh 322, and corresponding fine
mesh 1024°. We can again observe that the symmetry is almost
perfectly preserved and the adaptive mesh refines all relevant



structures, particularly the bow shock, the front cap, and the
internal structures. Additionally, new features could be devel-
oped in the three-dimensional scenario, especially, in the tail,
and in front of the cloudy structure. Conjointly, the mesh adap-
tation at time 7, = 0.06 fits very well the main features of the
solution (Fig. 6, right panel). Furthermore, the adaptive mesh
distribution is well balanced considering the difference in com-
putational costs required by the adaptive meshes (Fig. 6, right
panel), as it can be observed in the 2D cuts in Fig. 7. The pro-
cessor distribution (not shown) of the x—z plane presents similar
results as for the x — y plane. Using Table 3, we show the 3D
performance of AMROC related to three corresponding locally
refined meshes, and 60 processors (distributed on 3 nodes) at
time ¢, = 0.06. We observe that the adaptation rises proportion-
ally with the mesh size as we expand the corresponding refined
mesh by a factor of two. Basically, a factor of 10 increases the
CPU time as we expand by a factor 2° the fully refined mesh.
However, the effective number of cells on the adaptive mesh
growths only by a factor of 5.

@
bx

Figure 6: Adaptation for the 3D magnetic cloud test case at time #, = 0.06.
AMROC computation related to a uniform mesh 1, 0243 with base mesh 323, 6
refinement levels, € = 0.025, and 7 = 0.80. Left column: 2D cuts of pressure in
different planes (y — z plane at x = 0.5, x — z plane with y = 0.5, and x — y plane
with z = 0.5). Right column: Refinement levels, dark blue is the maximum
refinement level L. In all panels, the orientations of the axes are according to
the right-hand rule.
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5. Conclusions

We presented and benchmarked a parallel solver with dy-
namic mesh adaptation for magnetohydrodynamics, imple-

Figure 7: Processor distribution for the 3D magnetic cloud test case at time
t. = 0.06. AMROC computation related to a uniform mesh 1,0243 with € =
0.025 and 60 processors. 2D cuts in different planes (y — z plane at x = 0.5, and
x—y plane with z = 0.5). Colours indicate the data distribution in the processors
at the cuts.

Table 3: AMROC 3D adaptive computations of the magnetic cloudy test case
corresponding to € = 0.025, = 0.80, and base mesh 322,

Corresponding refined mesh

2563 5123 1,0243
# cells 5,917,288 27,444,592 122,076,544
% cells 35.3 20.4 114
# blocks 148 894 2,502
CPU time (s) 1,468 11,350 117,731

mented into the MPI-parallel distributed memory framework
AMROC. The GLM-MHD model is discretised using finite vol-
umes in two- and three-dimensional Cartesian geometries with
explicit time integration. MR criteria are employed for trigger-
ing the mesh refinement. We considered two classical MHD
benchmarks, the Orszag—Tong vortex and the magnetic shock
cloud configuration. The accuracy and CPU time of the de-
veloped code were assessed and parallelisation issues including
load balancing were analysed. We showed that in comparison
with the scaled gradient criterion the new MR implementation
yields much better results in terms of accuracy and memory
compression. Moreover, our implementation presented a signif-
icant improvement compared to its MR-MHD base serial code.

This improvement is in agreement with the conclusions
drawn in [8] for hydrodynamic problems where the total CPU
time was the primary concern and it was found that patch-based
hierarchical data structures yield a better choice. These data
structures preserve some memory coherence on the comput-
ing data and using auxiliary data avoids repeated generation of
topological and numerical procedures. However, this advantage
comes at the cost of a more complex implementation. Yet, by
using AMROC, including the verified patch-based AMR algo-
rithm implementation plus parallelisation [10], and incorporat-
ing the MHD-GLM method as a patch integrator and imple-
menting MR mesh adaptation as a refinement criterion, a per-
formance enhanced two- and three-dimensional adaptive paral-
lel MHD solver based on multiresolution principles has been



realised in minimal time.
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