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TRACK: A MULTI-MODAL DEEP ARCHITECTURE FOR HEAD MOTION PREDICTION IN
360° VIDEOS

Miguel Fabidn Romero Rondon, Lucile Sassatelli, Ramoén Aparicio Pardo, Frédéric Precioso

Université Cote d’ Azur, CNRS, I3S

ABSTRACT

Head motion prediction is an important problem with 360°
videos, in particular to inform the streaming decisions. Vari-
ous methods tackling this problem with deep neural networks
have been proposed recently. In this article, we introduce
a new deep architecture, named TRACK, that benefits both
from the history of past positions and knowledge of the video
content. We show that TRACK achieves state-of-the-art
performance when compared against all recent approaches
considering the same datasets and wider prediction horizons:
from O to 5 seconds.

Index Terms— 360° videos, head motion prediction,
deep recurrent networks, content analysis

1. INTRODUCTION

Despite the exciting prospects of Virtual Reality (VR), the de-
velopment is persistently hindered by the difficulty to access
immersive content through Internet streaming. Indeed, ow-
ing to the closer proximity of the screen to the eye and to the
width of the content, the data rate to stream 360° videos may
be two orders of magnitude that of a regular video [1]. To
decrease the amount of data to stream, a solution is to send in
high resolution only the portion of the sphere the user has ac-
cess to at each point in time, named the Field of View (FoV).
To do so, recent works have proposed to either segment the
video spatially into tiles and set the quality of the tiles ac-
cording to their proximity to the FoV [2], [3], [4], or use pro-
jections enabling high resolutions of regions close to the FoV
[5], [6]. These approaches however require to know the user’s
head position in advance, that is at the time of sending the
content from the server. Various methods tackling this prob-
lem with deep neural networks have therefore been proposed
in the last couple of years (e.g., [7, 8, 9, 10, 11]).
Contributions:

e We propose a new architecture, TRACK, that (i) processes
individually the time series of positions, (ii) processes the
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saliency map estimated from the content with recurrent unit
to vary its importance over the prediction window, and (iii)
then merges these two embeddings.

e We show that TRACK indeed benefits both from the posi-
tion and the video modalities, achieving state-of-the-art per-
formance on all considered datasets and wide prediction hori-
zons: from 0 to 5 seconds.

In our concern for reproducibility, the entire code used to
generate the results, as well as the experimental setup and
datasets of each assessed method are detailed and available
online at [12] to generate the presented results and plots.

2. REVIEW OF EXISTING HEAD MOTION
PREDICTION METHODS

We first rigorously formulate the prediction problem which
consists, at each video playback time ¢, in predicting the fu-
ture user’s head positions between t and ¢t + H, as represented
in Fig. 1, with the only knowledge of this user’s past positions
and the (entire) video content. We then provide a description
and classification of each of the existing methods we compare
with.

2.1. Problem formulation

Let us first define some notation. Let P; = [0, ¢:] denote
the vector coordinates of the FoV at time ¢. Let V; denote
the considered visual information at time ¢: depending on
the models’ assumptions, it can either be the raw frame with
each RGB channel, or a 2D saliency map resulting from a
pre-computed saliency extractor (embedding the motion in-
formation). Let T" be the video duration. We now refer to
Fig. 1. Let H be the prediction horizon. We define the terms
prediction step and video time-stamp as predicting for all pre-
diction steps s € [0, H| from video time-stamp t. For every
time-stamp t € [Tsiart, T'], we run predictions Pt+s, for all
prediction steps s € [0, H].

We formulate the problem of trajectory prediction as find-
ing the best model F; verifying:

Fy; =argminE, {D([PHI, .. .,Pt+H],

FH([Pt;Ptfla"' ;P07Vt+H7Vt+H717’"7V0])>:|



where D (-) is the chosen distance between the ground truth
series of the future positions and the series of predicted po-
sitions given by the prediction model Fy. For each s, we
average the errors dist(lst_s_s, Piis)overallt € [T, T)-

prediction window t: video time-stamp

b | H: prediction horizon
0 Mt t+H T M: _past histor}/
- === === == — = + T:video duration

video duration

Fig. 1. For each time-stamp ¢, the next positions until ¢ + H
are predicted.

2.2. Methods for head motion prediction

Various approaches to predict user motion in 360° video en-
vironments have been published in the last couple of years.
Here we consider that the users’ statistics for the specific
video are not known at test time, hence we do not consider
methods relying on these per-video statistics, such as [13, 14].
Each considered method from the literature is named accord-
ing to the name of the conference or journal it was published
in, appended with the year of publication.

PAMI18: Xu et al. in [7] design a Deep Reinforcement
Learning model to predict head motion. Their deep neural
network only receives the viewer’s FoV and has to decide to
which direction and with which magnitude the viewer’s head
will move. The prediction horizon is only one frame, around
30ms. By only injecting the FoV, the authors make the choice
not to consider the positional information explicitly as input.
IC3D17: The strategy presented by Aladagli et al. in [15]
extracts the saliency from the current frame with an off-the-
shelf method, identifies the most salient point, and predicts
the next FoV to be centered on this most salient point. It then
builds recursively. We therefore consider this method to be a
sub-case of PAMI18 to which we compare.

ICMEI1S: Ban et al. in [16] use a linear regressor first learned
to get a prediction of the displacement, which it then adjusts
by computing the centroid of the k nearest neighbors corre-
sponding to other users’ positions at the next time-step, and
hence assume more information than our case of study.
CVPRI18: In [8], Xu et al. predict the gaze positions over the
next second in 360° videos based on the gaze coordinates in
the past second, and saliency and motion information on the
entire equirectangular projection and the FoV of the current
frame and next frame.

MM18: Nguyen et al. in [9] first construct a saliency model
based on a deep convolutional network and named PanoSal-
Net. The so-extracted saliency map is then fed, along with the
position encoded as a mask, into a doubly-stacked LSTM, to
finally predict the tiles that pertain to the FoV.

NOSSDAV17: Fan et al. in [11] propose to concatenate the
positional information, saliency and motion maps then fed

into LSTM, they propose two networks to predict the head
orientations or the likelihood that tiles pertain to future FoV
in the future H time-steps.

ChinaCom18: Li et al. in [10] present a similar approach as
NOSSDAV 17, adding a correction module to compensate for
the fact that tiles predicted to be in the FoV may not corre-
spond to the actual FoV shape. We consider this model to be
a sub-case of NOSSDAV 17 to which we compare.

Selected methods for comparison. The above methods can
be classified into two groups, depending on the way the fusion
of the visual features (V}) and the positional features (FP;) is
handled: either both position and visual information are fed to
a single recurrent unit (case of MM18, Chinacom18, NOSS-
DAV 17), or the time series of positions is first processed with
a dedicated recurrent unit, the output of which then gets fused
with visual features (case of CVPR18). In Sec. 4 we compare
with the following methods: PAMI18, NOSSDAV17, MM18
and CVPRI18, the remaining methods are either considered
sub-cases of the selected methods or assume there is more
information available than for our case study. However, all
relevant comparisons can be found online at [12]. In Sec. 4.1,
we consider the most recent representatives of both groups:
MM18 and CVPRI18S.

3. OUR ARCHITECTURE: TRACK

Let us first present the analysis we make of the problem, to
build our architecture. For each prediction task starting from
time ¢ until ¢+ H, we assume in the first prediction time steps,
the user’s motion is mostly driven by inertia. Hence it should
be most predictable from the time series of the past positions.
In the later prediction time steps however, the motion may be
diverted by attractors from the content. Therefore the saliency
map (or features from the content generally) should help the
prediction. However, it is important that the visual features do
not noise the prediction that a simple linear prediction could
make for the first milliseconds.

We therefore make the following assembly, depicted in
Fig. 2. First, we produce a position-only embedding by pro-
cessing the time series of positions with a dedicated recurrent
unit (LSTMs). Second, if the content-based (CB) saliency
holds relevant (yet noisier) information that may help the pre-
diction in the late prediction time-steps, then having a dedi-
cated recurrent unit to process the visual features (saliency)
before merging them with the positional embedding should
help. Indeed, it would let information from the saliency map
enter the fusion layers in the late time-steps only, fading it in
the first prediction time-steps. Third, using another recurrent
unit in the fusion layer would provide more lever to enable a
time-dependent correction of the inertia-based prediction with
the saliency information. Making these architectural choices,
we come up with the architecture depicted in Fig. 2.

The main components of TRACK are (i) a doubly-stacked
LSTM with 256 units each, processing the flattened CB-



saliency map pre-generated for each time-stamp; (ii) another
set of doubly-stacked LSTM with 256 units to process the
head orientation input; (iii) a third set of doubly-stacked
LSTM with 256 units to handle the multimodal fusion; and
finally (iv) a Fully-Connected (FC) layer with 256 and a FC
layer with 3 neurons is used to predict the head displacement
on the (x,y,z) coordinates. We assembled this building block
into a seq2seq framework to get the prediction for all time-
steps in the prediction window, as shown in Fig. 2. We trained
our model for 500 epochs, with a batch size of 128, we used
Adam optimization algorithm with a learning rate of 0.0005
and we used the Mean Squared Error of the 3D coordinates
(7,y,2) € R? as loss function to obtain the results.

Fig. 2. The proposed TRACK architecture.

4. RESULTS

We now present the comparisons of the state-of-the-art meth-
ods presented in Sec. 2.2 with the proposed TRACK archi-
tecture defined above. We report the exact results of the orig-
inal articles, along with the results of our network trained and
tested on the exact same train and test subsets of the original
dataset as the original method. The test metrics are those from
the original articles, so are the considered prediction horizons.
For the sake of completeness, we summarize below informa-
tion on the metrics of each experiment.
e NOSSDAV17 [11] considers the following metrics:
— Accuracy: ratio of correctly classified tiles to the union of
predicted and viewed tiles.
— Ranking Loss: number of tile pairs that are incorrectly or-
dered by probability normalized to the number of tiles.
— F-Score: harmonic mean of precision and recall, where
precision is the ratio of correctly predicted tiles to the total
number of predicted tiles, and recall is the ratio of correctly
predicted tiles to the number of viewed tiles.
o PAMI18 [7] uses as metric the Mean Overlap (MO) defined
A(FoV, N FoVy)
as: MO = X
A(FoV, U FoV)
FoV, FoV} is the ground truth FoV, and A(-) is the area of a
panoramic region.
e CVPRI18 [8] uses the Intersection Angle Error TAFE for

where F'oV, is the predicted

each gaze point (6, ) and its prediction (6,¢), defined as
TAE = arccos({P, P)), where P is the 3D coordinate in the
unit sphere:

P = (z,y,2) = (cos(0)cos(p), cos(8)sin(p), sin(9)).

e MMI18 [9] takes the tile with the highest viewing proba-
bility as the center of the predicted viewport, and assigns it
and all the neighboring tiles that cover the viewport, label 1.
Tiles outside the viewport are assigned 0. Then, the score is
computed on these labels as ToU = TP/TT, the intersec-
tion between prediction and ground-truth of tiles with label 1
(T'P) over the union of all tiles with label 1 in the prediction
and in the ground-truth (7T'7).

Results for PAMI18 are shown in Table 1, for CVPR18
in Fig. 3-Left, for MM18 in Fig. 3-Right, and for NOSS-
DAV17 in Table 2. Given these results, we can conclude that
our model outperforms all existing methods by running the
same experiments with the same settings, metrics and datasets
of the original works. For the case of CVPRI18, on which
our results are much similar, we emphasize the significantly
higher complexity of this model compared to ours. To bet-
ter compare with CVPR18 and its architectural choices, we
propose a more challenging configuration with a longer pre-
diction horizon, as presented next.
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Fig. 3. Left: Comparison with CVPRI18 [8], prediction
horizon H = 1 sec. Right: Comparison with MM18 [9],
H = 2.5 sec.

4.1. Results on a more challenging configuration

To better compare with CVPR18 and MM 18 (representatives
of the groups defined in Sec. 2.2), we consider more chal-
lenging settings:

e Longer prediction horizon: H = 5 sec. This way, both
short-term where the motion is mostly driven by inertia, and
long-term where the saliency impacts the trajectory, are cov-
ered.

e Dataset with higher user motion: we consider the dataset
from [17], where after 5 sec., 50% of the users have shifted
their FoV by more than its width (100°), while in the datasets
of CVPR18, NOSSDAV17, MM 18 and PAMI18, the percent-
age is 30%, 20%, 20% and 15%, respectively.

As for MM 18, we consider that the saliency map is estimated
from the video content using PanoSalNet [18, 9] for CVPR18
and TRACK. This way, we identify the most suited architec-
tural assembly to fuse position and visual content modalities:



Method

KingKong SpaceWar2 StarryPolar Dancing Guitar BTSRun InsideCar RioOlympics SpaceWar CMLauncher2 Waterfall Sunset BlueWorld Symphony WaitingForLove Average

PAMIIS [7]
TRACK

0.809
0.974

0.763
0.964

0.549
0.912

0.859
0.978

0.785
0.968

0.878
0.982

0.847
0.974

0.820
0.965

0.626
0.965

0.763
0.981

0.667
0.972

0.659
0.964

0.693
0.970

0.747
0.969

0.863
0.977

0.753
0.968

Table 1. Comparison with PAMI18 [7]: Mean Overlap scores of FoV prediction, prediction horizon H ~ 30ms (1 frame).

Method Accuracy F-Score Rank Loss
NOSSDAV17-Tile [11] 84.22% 0.53 0.19
NOSSDAV17-Orient. [11]  86.35% 0.62 0.14
TRACK 95.48% 0.85 0.15

Table 2. Comparison with NOSSDAV17: Performance of
Tile- and Orientation-based networks of [11] compared with
our TRACK network, prediction horizon H = 1 second.

(i) MM18 first concatenates both modalities then processes
them with the same recurrent unit, (i) CVPR18 dedicates a
recurrent unit to process the positions before merging these
features with saliency with a Fully Connected (FC) layer, and
(iii)) TRACK first processes separately both modalities with
a dedicated recurrent unit for each, before merging the out-
puts not with an FC layer, but with another recurrent unit.
PanoSalNet is not the saliency extractor considered in the
original CVPR18 [8] (whose implementation is not available
online nor was communicated on request). Therefore, we also
plot a lower bound on its prediction error by plotting the per-
formance of the CVPR18 assembly when provided with the
Ground-Truth saliency (line denoted GT Sal-CVPR18 in Fig.
4). The Ground-Truth saliency is the 2D distribution of the
viewing patterns, obtained from the users’ traces.
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Fig. 4. Left: Comparison of TRACK with CVPR18 over a
longer prediction horizon, H =1 sec., on the dataset of [17].
Right: Ablation study of TRACK, same prediction horizon
and dataset.

In Fig. 4-Left, the results of MM18 are omitted for clarity
because they are all worse than CVPR18 and TRACK (but the
complete figures can be generated from [12]). Fig. 4 shows
that our proposed architecture TRACK is able to significantly
outperform all state-of-the-art methods for both short- and
long-term predictions, on the previous datasets and this new
dataset. This is remarkable.

Finally, we perform an ablation study of TRACK to

confirm the analysis that led us to introduce this new archi-
tecture TRACK. We either replace the LSTMs processing
the saliency with two FC layers (line named AblatSal), or
replace the fusion LSTMs with two FC layers (line named
AblatFuse). The results are shown in Fig. 4-Right. They
confirm the analysis we developed in Sec. 3: the greater
degradation with AblatSal shows that the major improvement
of TRACK over CVPR18 comes from the recurrent unit (a
doubly-stacked LSTM) dedicated to pre-processing the esti-
mated saliency map, and vary its weight in the prediction over
time. This is all the more clear in Fig. 5 where the results
are not averaged over all the videos anymore, but instead
show two videos that can be categorized as Ride and Static
focus, according to the taxonomy introduced in [19]. In these
categories, the user’s position is much predictable from the
content, therefore it is important not to cancel out the noised
information the estimated saliency holds, and that can help
for late prediction time-steps. We can see that when there is
not pre-processing of the saliency with a recurrent unit, the
performance severely degrades.
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Fig. 5. Ablation of TRACK for specific video categories with
concentrated saliency, helpful for late prediction time steps.

5. CONCLUSION

In this article we have reviewed existing methods for the dy-
namic head prediction problem in 360° videos. We proposed
an architecture, named TRACK, that (i) has a dedicated re-
current network to process individually the time series of po-
sitions, before merging the obtained embedding with visual
content features, and (ii) has another recurrent network pro-
cessing the saliency map estimated from the content, to be re-
silient to, while benefiting from, noisy saliency information.
We show that TRACK achieves state-of-the-art performance
on all considered datasets and prediction horizons: from O to
5 seconds, and we conduct an ablation study to justify its as-
sets.
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