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ABSTRACT
The streaming transmissions of 360° videos is a major challenge
for the development of Virtual Reality, and require a reliable head
motion predictor to identify which region of the sphere to send in
high quality and save data rate. Different head motion predictors
have been proposed recently. Some of these works have similar
evaluation metrics or even share the same dataset, however, none
of them compare with each other. In this article we introduce an
open software that enables to evaluate heterogeneous head motion
prediction methods on various common grounds. The goal is to
ease the development of new head/eye motion prediction methods.
We first propose an algorithm to create a uniform data structure
from each of the datasets. We also provide the description of the
algorithms used to compute the saliencymaps either estimated from
the raw video content or from the users’ statistics. We exemplify
how to run existing approaches on customizable settings, and finally
present the targeted usage of our open framework: how to train and
evaluate a new prediction method, and compare it with existing
approaches and baselines in common settings. The entire material
(code, datasets, neural network weights and documentation) is
publicly available.
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• Computing methodologies → Model verification and vali-
dation; Virtual reality.
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1 INTRODUCTION
360° videos are an important part of the Virtual Reality (VR) ecosys-
tem, providing the users the ability to freely explore an omnidi-
rectional scene and a feeling of immersion when watched in a VR
headset. Given the closer proximity of the screen to the eye and
the width of the content, the required data rate is two orders of
magnitude that of a regular video [9]. To decrease the amount of
data to stream, a solution is to send in high resolution only the
portion of the sphere the user has access to at each point in time,
named the Field of View (FoV). These approaches however require
to know the user’s head position in advance, that is at the time of
sending the content from the server.
Owing to this acute need for head motion prediction in 360° video
streaming, a number of recent approaches have proposed deep neu-
ral networks meant to exploit the knowledge of the past positions
and of the content to periodically predict the next positions over a
given horizon (e.g., [4, 7, 16, 17]). Some of these works have simi-
lar evaluation metrics or even use the same dataset, none of them
however compares with their counterparts aiming the exact same
prediction problem.
Our goal is to address the strong need for a comparison of existing
approaches on common ground. For this reason, the main contri-
bution of this work is a framework that allows researchers to study
the performance of their new head motion prediction methods
when compared with existing approaches on the same evaluation
settings (dataset, prediction horizon, and test metrics). This soft-
ware framework therefore contributes to progress towards efficient
360° systems. The entire material (code, datasets, neural network
weights and documentation) is available at [12].
The paper is organized as follows. Section 2 introduces the defi-
nition of the problem of head motion prediction and each of the
methods considered for reproduction and comparison. Section 3
describes the datasets used in these approaches and suggests an
algorithm to create a uniform data structure from these hetero-
geneous dataset formats. Section 4 details the algorithms used to
compute the saliency maps estimated from the raw video content
or from the users’ statistics. Section 5 details how to run existing
approaches on customizable settings, and introduce two reference
baselines. Section 6 presents how to prepare a testbed to assess
comprehensively a new prediction method (on various datasets
against several competitors). Finally, Section 7 concludes the paper.
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2 REVIEW OF EXISTING HEAD MOTION
PREDICTION METHODS

We first rigorously formulate the prediction problemwhich consists,
at each video playback time 𝑡 , in predicting the future user’s head
positions between 𝑡 and 𝑡 + 𝐻 , as represented in Fig. 1, with the
only knowledge of this user’s past positions and the (entire) video
content. We then provide a description and classification of each of
the existing methods we compare with.

2.1 Problem Formulation
Let us first define some notation. Let P𝑡 = [𝜃𝑡 , 𝜑𝑡 ] denote the vector
coordinates of the FoV at time 𝑡 . Let V𝑡 denote the considered visual
information at time 𝑡 : depending on the models’ assumptions, it can
either be the raw frame with each RGB channel, or a 2D saliency
map resulting from a pre-computed saliency extractor (embedding
the motion information). Let 𝑇 be the video duration. We now
refer to Fig. 1. Let H be the prediction horizon. We define the terms
prediction step and video time-stamp as predicting for all prediction
steps 𝑠 ∈ [0, 𝐻 ] from video time-stamp 𝑡 . For every time-stamp
𝑡 ∈ [𝑇𝑠𝑡𝑎𝑟𝑡 ,𝑇 ], we run predictions P̂𝑡+𝑠 , for all prediction steps
𝑠 ∈ [0, 𝐻 ].
We formulate the problem of trajectory prediction as finding the
best model F∗

𝐻
verifying:

F∗𝐻 = argminE𝑡
[
𝐷

( [
P𝑡+1, . . . , P𝑡+𝐻

]
,

F𝐻
(
[P𝑡 , P𝑡−1, . . . , P0,V𝑡+𝐻 ,V𝑡+𝐻−1, . . . ,V0]

) )]
where 𝐷 (·) is the chosen distance between the ground truth series
of the future positions and the series of predicted positions. For
each 𝑠 , we average the errors 𝐷 (P̂𝑡+𝑠 , P𝑡+𝑠 ) over all 𝑡 ∈ [𝑇𝑠𝑡𝑎𝑟𝑡 ,𝑇 ].

Figure 1: Headmotion prediction: For each time-stamp 𝑡 , the
next positions until 𝑡 + 𝐻 are predicted.

2.2 Methods for Head Motion Prediction
Various approaches to predict user motion in 360° video environ-
ments have been published in the last couple of years. Here we con-
sider that the users’ statistics for the specific video are not known
at test time, hence we do not consider methods relying on these
per-video statistics, such as [10, 13]. Each considered method from
the literature is named according to the name of the conference or
journal it was published in, appended with the year of publication.
PAMI18: Xu et al. in [16] design a Deep Reinforcement Learning
model to predict head motion. Their deep neural network only
receives the viewer’s FoV and has to decide to which direction and
with which magnitude the viewer’s head will move. The prediction
horizon is only one frame, around 30ms. By only injecting the FoV,
the authors make the choice not to consider the positional informa-
tion explicitly as input.

IC3D17: The strategy presented by Aladagli et al. in [1] extracts
the saliency from the current frame with an off-the-shelf method,
identifies the most salient point, and predicts the next FoV to be
centered on this most salient point. It then builds recursively. We
therefore consider this method to be a sub-case of PAMI18.
ICME18: Ban et al. in [2] use a linear regressor first learned to
get a prediction of the displacement, which it then adjusts by com-
puting the centroid of the k nearest neighbors corresponding to
other users’ positions at the next time-step, and hence assume more
information than our case of study.
CVPR18: In [17], Xu et al. predict the gaze positions over the next
second in 360° videos based on the gaze coordinates in the past
second, and saliency and motion information on the entire equirect-
angular projection and the FoV of the current frame and next frame.
MM18: Nguyen et al. in [7] first construct a saliency model based
on a deep convolutional neural network and named PanoSalNet.
The so-extracted saliency map is then fed, along with the position
encoded as a mask, into a doubly-stacked LSTM, to finally predict
the tiles that pertain to the FoV.
NOSSDAV17: Fan et al. in [4] propose to concatenate the positional
information, saliency and motion maps then fed into LSTM, they
propose two neural networks to predict the head orientations or the
likelihood that tiles pertain to future FoV in the future𝐻 time-steps.
ChinaCom18: Li et al. in [6] present a similar approach as NOSS-
DAV17, adding a correction module to compensate for the fact that
tiles predicted to be in the FoV may not correspond to the actual
FoV shape. We consider this model to be a sub-case of NOSSDAV17.
TRACK: In [11], we present a neural network that processes inde-
pendently the time-series of positions and the visual features with
dedicated recurrent units (LSTMs), before fusing the two embed-
dings with a third recurrent unit used to predict the sequence of
future 𝐻 time-steps.
Selected methods analyzed. From Sec. 3 we present the analy-
sis of the following methods: PAMI18, NOSSDAV17, MM18 and
CVPR18, the remaining methods are either considered sub-cases of
the selected methods or assume there is more information available
such as the viewers’ position statistics.

3 UNIFORM DATA FORMATS
One of the challenges when evaluating a head motion prediction
method across multiple datasets is to adapt it to the specific at-
tributes of each dataset. Consider the case of a model trained with a
specific sampling rate that is evaluated on a dataset with a different
sampling rate, or where the size or the format of the visual input
is different. It is important to have a convention on the structure
of the datasets, as it becomes easier to read, sort, understand and
compare homogeneous data. In this section, we first describe how
to use our framework to post-process the datasets and get a uniform
structure shared among all datasets considered in this work. We
then provide a way to analyze the datasets.

3.1 Make the Dataset Structure Uniform
The datasets used to evaluate the methods discussed in Sec. 2.2
contain visual and head motion data for 360° videos, stored in
different formats. In Table 1 we describe each of the datasets we
analyze in our repository and we show how each dataset has a
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Reference Head Pos. Log Format Saliency Maps Raw Videos Storage of Head Pos. Traces Code and Neural Network
NOSSDAV17 [4] Yaw, Pitch and Roll in range [-180,

180].
A MP4 file per video of
size 1920 × 3840.

No. A CSV file per trace. No.

PAMI18 [16] Longitude and latitude in range [-
180, 180] and [-180, 180] respec-
tively.

Not provided. MP4 format. MATLAB file with an entry per
video, each with a matrix with a col-
umn per user and alternating lon-
gitude and latitudes in the rows.

Found in [15].

CVPR18 [17] Longitude and latitude in range [-0,
1], origin in bottom-left corner.

Not provided. MP4 format. A folder per user with a text file per
trace.

No.

MM18 [7] 3D position in the unit sphere, (x, y,
z) in range [-0, 1].

A Python array per
video of size 9 × 16.

No. Python dictionary with an entry
per video, each with a list with an
entry per user.

Found in [8].

MMSys18 [3] longitude and latitude in range [-0,
1], origin in top-left corner.

A binary file per video
of size 1024 × 2048.

MP4 format. A CSV file with the traces of all
users per video.

N/A.

Table 1: Features of the file structure and format of the datasets used in each referenced method.

Figure 2: Uniform dataset file structure

particular format and schema. Some of them store the head position
data in language-specific formats (e.g. PAMI18 stores the data in a
Matlab-file andMM18 stores the data in a Python dictionary), others
store the head position data in text files (e.g. CVPR18 groups the
files in a folder per user, MMSys18 uses a CSV file per video, while
NOSSDAV17 uses a CSV file per user and video). Some datasets
contain the saliency maps and the raw videos (MMSys18), others
store only the saliency maps (NOSSDAV17, MM18) while others
contain only the raw videos in mp4 file (PAMI18, CVPR18).
We propose an algorithm that allows to read each of the datasets,
with methods to cleanse the data and produce traces in a uniform
format, common for all the datasets. The uniform dataset structure
is shown in Fig. 2. The following command is used to run the
analysis on each dataset:

python {Fan_NOSSDAV_17, Nguyen_MM_18,
Xu_PAMI_18}/Read_Dataset.py −analyze_data

Thanks to the analysis on the original datasets, we found that: (i)
there are a few missing entries in the PAMI18 dataset, (ii) when
re-implementing the tile mapping algorithm from NOSSDAV17, we
found that there is a discrepancy in the tiles generated and the
tile numbers provided in the dataset, and (iii) when observing the
time-stamps in MM18’s dataset, most of the traces are splitted and
concatenated, and there are intersections between the time-stamps.
By creating this dataset structure, we not only provide ways to read,
parse and analyze the different datasets, we also allow to sample
the datasets with a common sampling rate (by default 0.2 seconds).
To subsample the datasets, we first transform the head position
format from the original dataset to the quaternion representation.
Then, we perform the spherical linear interpolation of the rotations

Figure 3: Exploration of user “45”, in video “drive” from
NOSSDAV17, represented in the unit sphere.

(represented as quaternions) with a constant angular velocity, the
rotations are interpolated at the rate of 0.2 seconds. Finally we
transform the sampled quaternions into 3D coordinates. We provide
a method on each dataset to visualize the exploration of the user
in the unit sphere. For example, to obtain a plot similar to that of
Fig. 3, the following command can be used:

python Fan_NOSSDAV_17/Read_Dataset.py −plot_3d_traces
In our repository [12] we provide a folder “sampled_dataset”

for each of the original datasets (NOSSDAV17, CVPR18, PAMI18,
MM18 and MMSys18), with a sub-folder per video. Inside, a text file
per user stores the head motion trace indicating the time-stamp,
followed by the 3D coordinates of the unit vector (x, y, z).
For example, to create the sampled dataset from the original dataset
of PAMI18, the command to use is:

python Xu_PAMI_18/Read_Dataset.py −creat_samp_dat

We also provide functions to plot and verify that the sampling
is correctly done. For example, the following command is used to
compare the sampled trace against the original trace to get plots
similar to Fig. 4:

python Xu_PAMI_18/Read_Dataset.py −compare_traces

3.2 Analysis of Head Motion in each Dataset
We provide the code to compute the Cumulative Distribution Func-
tion (CDF) of the maximum angular distance from the head position
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Figure 4: Comparison between the original trace (left) and
the sampled trace (right) for user “m1_21” video “Termina-
tor” in PAMI18 dataset.

at the start of the prediction window 𝑡 for different prediction win-
dow lengths 𝐻 ∈ 0.2, 0.5, 1, 2, 5, 15 seconds, as shown in Fig. 5. The
following command can be used to get these plots for each dataset:

python DatasetAnalysis/DatasetAnalysis_{CVPR18, MM18,
MMSys18, NOSSDAV17, PAMI18}.py

We observe that in the MMSys18 dataset [3], 50% of the users have
shifted their FoV by more than its width (100°) after 5 sec., while
in the datasets of CVPR18, NOSSDAV17, MM18 and PAMI18, the
percentage is 30%, 20%, 20% and 15%.

4 SALIENCY EXTRACTION
The saliency map is a heatmap (2D distribution) that identifies
what are the points in the 360° scene that attract the attention of
the viewers the most. Besides the time series of past positions, the
saliency map is one of the considered input modalities of the exist-
ing head motion prediction methods. Each of these methods extract
the visual features in a different way. If we want to fairly compare
different methods for head motion prediction, we would need to
use the same post-processing to obtain the salient visual features.
In our framework, we propose an algorithm to create saliency maps
estimated from the video content using the same saliency detection
model for all the datasets considered for reproduction and compar-
ison. In a second case, if we want our evaluation to be independent
from the imperfection of any saliency prediction model, we use
a method based on users’ statistics, namely ground-truth saliency
map. It is the heatmap of the viewing patterns, obtained at each
point in time from the users’ traces. In this section, we describe
how to compute each of these saliency maps using our code.

4.1 Ground-Truth Saliency Map
To compute the ground-truth saliency maps, we consider the point
at the center of the viewport 𝑃𝑡𝑢,𝑣 for user 𝑢 ∈ 𝑈 and video 𝑣 ∈ 𝑉

at the 𝑡𝑡ℎ time-stamp (𝑡 = 0, . . . ,𝑇 ), where 𝑇 is the length of the
sampled traces. For each head position 𝑃𝑡𝑢,𝑣 , we draw a frame in
equirectangular projection, and compute the orthodromic distance
𝐷 (·) from 𝑃𝑡𝑢,𝑣 to each point𝑄𝑥,𝑦 in the equirectangular frame with
longitude 𝑥 and latitude 𝑦. Then, we use a modification of the radial
basis function (RBF) kernel shown in Eq. 1 to convolve the points
in the equirectangular projection.

𝐺𝑇_𝑆𝑎𝑙𝑡𝑢,𝑣,𝑥,𝑦 = exp

(
−
𝐷 (𝑃𝑡𝑢,𝑣, 𝑄𝑥,𝑦)2

2𝜎2

)
, (1)

where 𝐷 (𝑃𝑡𝑢,𝑣, 𝑄𝑥,𝑦) is the orthodromic distance, that is computed
using Eq. 2.

𝐷 (𝑃,𝑄) = arccos ( ®𝑃 • ®𝑄), (2)
where • is the dot product operation, and ®𝑃 are the coordinates in
the unit sphere of point 𝑃 . For a point 𝑃 = (𝑥,𝑦), where 𝑥 is the
longitude and 𝑦 is the latitude, the coordinates in the unit sphere
are ®𝑃 = (cos𝑥 cos𝑦, sin𝑥 cos𝑦, sin𝑦).

We compute saliency maps 𝐺𝑇_𝑆𝑎𝑙𝑡𝑢,𝑣 per user 𝑢 ∈ 𝑈 , video
𝑣 ∈ 𝑉 and time-stamp 𝑡 by convolving each head position 𝑃𝑡𝑢,𝑣
with the modified RBF function in Eq 1, a value of 𝜎 = 6° is chosen.
The saliency map per video frame can be calculated as follows
𝐺𝑇_𝑆𝑎𝑙𝑡𝑣 = 1

𝑈

∑
𝑢∈𝑈 𝐺𝑇_𝑆𝑎𝑙𝑡𝑢,𝑣 , where 𝑈 is the total number of

users watching this video-frame. An example of the ground-truth
saliency map is shown in Fig. 6. The file Read_Dataset.py under
the folder of each dataset contains all the methods to create the
ground-truth saliency maps, for example, the command to compute
and store the ground-truth saliency maps for David_MMSys_18
dataset is:

python David_MMSys_18/Read_Dataset.py −creat_true_sal

4.2 Content-Based Saliency Maps
To extract saliency maps from the content, we provide the workflow
that uses PanoSalNet [7, 8], also considered in MM18. The neural
network of PanoSalNet is composed by nine convolution layers, the
first three layers are initialized with the parameters of VGG16 [14],
the following layers are first trained on the images of the SALICON
dataset [5], and finally the entire model is re-trained on 400 pairs
of video frames and saliency maps in equirectangular projection.
To create the content-based saliencymapswe first need to transform
the videos into scaled images. We provide a executable file to create
images from each video with a rate of 5 samples per second (the
same sampling rate used to create our “sampled_dataset” from
Sec. 3). The file for each dataset is:

{Xu_CVPR_18, Xu_PAMI_18, David_MMSys_18}/dataset/
creation_of_scaled_images.sh

The file panosalnet.py under the folder Extract_Saliency contains
the methods to create the content-based saliency maps. As an ex-
ample, we provide the command to create the saliency map for each
frame in each video in CVPR18’s dataset:

python Extract_Saliency/panosalnet.py −gpu_id 0
−dataset_name CVPR_18

However, for the datasets that do not provide the 360° videos, but
directly the saliency maps (NOSSDAV17 and MM18), we can create
the content-based saliency maps using their provided information.
For example, this command can be used for MM18:

python Nguyen_MM_18/Read_Dataset.py −creat_cb_sal
An example of content-based saliency map is shown in Fig. 6.

5 EVALUATION OF ORIGINAL METHODS
We provide the algorithms to run the experiments of PAMI18,
CVPR18, MM18, ChinaCom18 and NOSSDAV17 with their orig-
inal settings, evaluation metrics and datasets. To have a common
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Figure 5: From left to right: Motion distribution of the datasets used in NOSSDAV17, PAMI18, CVPR18, MM18, and the
MMSys18-dataset from [3]. The x-axis corresponds to the motion from position t to position t+H in degrees.

Figure 6: Saliency maps computed for frame “98” in video
“160” from CVPR18 dataset. a) Original frame. b) Content-
based saliency. c) Ground-truth saliency.

reference point on each evaluation experiment, we also present
how to run two different baselines:
• no-motion baseline: Simple baseline that assumes that the head of
the user stays still during the whole prediction horizon, no learning
involved.
• position-only baseline: Sequence-to-sequence LSTM-based archi-
tecture that exploits the time series of past positions only (disre-
garding the video content).

The file Baselines.py under the folder of each dataset contains all
the methods to run the experimental setup of each of the works for
a given method. Depending on the type of result either a plot or a
table is shown at the end of the execution, for the case of MM18, the
figure shown in Fig. 7(left) is obtained by executing this file. The
following command can be used to get the results for the no-motion
baseline in the experimental setup of MM18:

python Nguyen_MM_18/Baselines.py −gpu_id "" −model_name
no_motion

6 TYPICAL USAGE OF THE HEAD MOTION
PREDICTION FRAMEWORK

Importantly, the software framework we propose enables to prepare
a testbed and compare different methods on the same head motion
prediction experiment. It therefore eases the assessment of new
prediction techniques, and compare them with other existing pre-
diction methods and baselines. Our framework allows to train and
evaluate a given prediction model on a chosen dataset, specifying
the prediction horizon and history window, among other parame-
ters described below.We first detail the formatting of the commands
and the available options, before developing some examples.

6.1 Training and Evaluation
To train or evaluate a given neural network in a specific dataset
and configure some basic settings, the following command can be
used:

python training_procedure.py −{evaluate, train} −gpu_id
GPU_ID −dataset_name DATASET_NAME −model_name
MODEL_NAME −init_window T_START −m_window
M_WINDOW −h_window H_WINDOW [−end_window
T_END] −exp_folder FOLDER_NAME [−provided_videos]
−use_true_saliency −metric {orthodromic, mse}

Here is the detail of each option:
• -evaluate/-train: This option allows to decide if we want to train
or evaluate the neural network defined in MODEL_NAME.
• -gpu_id: Specify the GPU_ID to load the neural network, if the
parameter is left empty, the neural network will be loaded on CPU.
• -dataset_name: Select the dataset to use with the parameter
DATASET_NAME, the options are:
Xu_PAMI_18, Xu_CVPR_18, Fan_NOSSDAV_17, Nguyen_MM_18,
Li_ChinaCom_18 and David_MMSys_18.
• -model_name: Select the model to train or evaluate, the options
are: no_motion, pos_only, CVPR18, MM18, TRACK, among others.
• -init_window: In the experiment, the prediction will not be as-
sessed over the first T_START time-stamps of the videos.
• -m_window: The neural network takes into account the last
M_WINDOW time-stamps from time 𝑡 , also named history window
in Fig. 1.
• -h_window: The prediction horizon, we try to predict over the
following H_WINDOW time-stamps from time 𝑡 .
• -end_window:The prediction is not assessed over the last T_END
time-stamps of the videos, by default T_END is equal toH_WINDOW.
• -exp_folder: The folder to read the traces. The default value is
“sampled_dataset”, the folder created when uniformly sampling all
datasets in Sec. 3.
• -provided_videos: Flag to use in case the partition into train
and test videos are provided in the original dataset.
• -use_true_saliency: Flag that tells whether to use true saliency,
if not set, then content-based saliency is used.
• -metric:Metric used for the evaluation, by default orthodromic
distance (orthodromic), but mean squared error (mse) can be used
too. More metrics can be easily added by filling up the Python
dictionary “all_metrics” in the script “Utils.py”.

6.2 Examples of Usage
We now present a few examples on how to use our framework
to get the results for the methods of CVPR18, MM18 and TRACK
in an experimental setup where the prediction horizon is 𝐻 = 5
seconds, the evaluation metric is the orthodromic distance, using
the dataset of MMSys18, and using the ground-truth saliency for
CVPR18 and MM18 and the content-based saliency for TRACK. The
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plot obtained by running the commands presented below is shown
in Fig. 7(right).
CVPR18
Since the code of CVPR18 is not publicly available, the neural net-
work of CVPR18 used here is a replica from the description in [17].
In our replica of CVPR18, we decided to prune the Saliency En-
coder Module and replace it directly with the ground-truth to be
independent from the imperfection of the saliency encoder module
fed with the visual content. The following command is used to get
the results for the replica of the neural network of CVPR18 on our
experimental setup, trained and tested with ground-truth saliency
maps:

python training_procedure.py −evaluate −gpu_id 0
−dataset_name David_MMSys_18 −model_name CVPR18
−init_window 30 −m_window 5 −h_window 25
−exp_folder original_dataset_xyz −provided_videos
−use_true_saliency

MM18
For the case of MM18, the model and weights are publicly available
in [8]. Since the model of MM18 predicts the head orientation at
time 𝑡 + 𝐻 , we had to retrain the model for each prediction step
in the prediction horizon, i.e., for each 𝑠 ∈ {0.2𝑠, 0.4𝑠, · · · , 𝐻 =

5𝑠}. To get the results for the neural network of MM18 on our
experimental setup, using ground-truth saliency maps, use the
following command:

python training_procedure.py −evaluate −gpu_id 0
−dataset_name David_MMSys_18 −model_name MM18
−init_window 30 −m_window 15 −h_window 25
−exp_folder original_dataset_xyz −provided_videos
−use_true_saliency

TRACK
We provide as example the command to evaluate the neural network
of TRACK:

python training_procedure.py −evaluate −gpu_id 0
−dataset_name David_MMSys_18 −model_name TRACK
−init_window 30 −m_window 5 −h_window 25
−exp_folder original_dataset_xyz −provided_videos
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Figure 7: (Left) Performance of the no-motion baseline and
position-only baseline compared with the results of MM18
in [7]. (Right) Average error of themodels ofMM18, CVPR18
using Ground-truth saliency and the model TRACK using
Content-based saliency, tested on MMSys18’s dataset [3].

7 CONCLUSIONS
In this paper we presented a framework to evaluate and compare
different methods to predict head position in 360° videos. In this
framework, we propose an algorithm to create a uniform data struc-
ture from each of the heterogeneous datasets evaluated in this work.
We described the algorithms used to compute the saliency maps
either estimated from the raw video content or from the users’
statistics, considering a kernel fitted for the equirectangular pro-
jection used to encode 360° videos. To compare each of the head
motion prediction settings to a common reference, we detailed the
commands to estimate the performance of different approaches
in each original evaluation context (prediction horizon, metrics
and datasets). Finally, we presented how to use our framework
to prepare a testbed to assess comprehensively a new prediction
method (on various datasets against several competitors). This soft-
ware framework therefore contributes to progress towards efficient
360° streaming systems. The entire material (codes, datasets, neural
network weights and documentation) is available at [12].
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