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Abstract
Designing editing cuts for cinematic Virtual Reality (VR) has been under active investigation. Recently, the connection has been
made between cuts in VR and adaptive streaming logics for 360◦videos, with the introduction of rotational snap-cuts. Snap-
cuts can benefit the user’s experience both by improving the streamed quality in the FoV and ensuring the user sees important
elements for the plot. However, snap-cuts should not be too frequent and may be avoided when not beneficial to the streamed
quality. We formulate the dynamic decision problem of snap-change triggering as a model-free Reinforcement Learning. We
express the optimum cut triggering decisions computed offline with dynamic programming and investigate possible gains in
quality of experience compared to baselines. We design Imitation Learning-based dynamic triggering strategies, and show that
only knowing the past user’s motion and video content, it is possible to outperform the controls without and with all cuts.

CCS Concepts
•Computing methodologies → Virtual reality; Sequential decision making; Apprenticeship learning; • Information systems
→ Multimedia streaming;

1. Introduction

The question of designing editing cuts to drive the user’s attention
in cinematic Virtual Reality (VR) has been under active investiga-
tion for the last 3 to 4 years. If driving the user’s attention is critical
for a director to ensure the story plot is understood, in this paper we
investigate attention driving techniques from a different perspec-
tive: that of the multimedia networking community. The develop-
ment of VR contents is persistently hindered by the difficulty of ac-
cessing them through regular Internet video streaming. Indeed, ow-
ing to the closer proximity of the screen to the eye and to the width
of the spherical content, the data rate to stream 360◦ videos may be
two orders of magnitude that of a regular video [BBMD17]. To de-
crease the amount of data to stream, a solution is to split the sphere
into tiles and send in high resolution only the portion of the sphere
the user has access to at each point in time, named the Field of View
(FoV). This however requires to know the user’s head position in
advance, that is at the time of sending the content from the server.
This can go from a few tens of seconds (low network delay) to a
few seconds (extreme network delay or presence of a video play-
back buffer at the client to absorb network rate variations). Predict-
ing the user’s head motion is difficult and can be done accurately
only over short horizons (less that 2s, see [NYN18, RRSAPP19]).
If the server makes an error in prediction and the level of band-
width is sufficient to attempt sending again in High Quality (HQ)
tiles previously sent in Low Quality (LQ), then the prediction error
translates into a higher level of network bandwidth consumption.
In 360◦ video streaming, the consumed data rate therefore depends

on the prediction error, that is on the user’s motion, which in turn
depends on the user’s attentional process and hence on the editing
cuts. Fig. 1 depicts this interplay, from which can arise interdis-
ciplinary approaches to jointly design 360◦ video streaming algo-
rithms and 360◦ film editing techniques.

In [DSS∗18a], for the first time, Dambra et al. have showed that
film editing can be helpful for streaming 360◦ videos by directing
the user’s attention to specific pre-defined Regions of Interest (RoI),
thereby lowering the randomness of the user’s motion and using
this a-priori knowledge in the streaming decisions (consisting, at
each point in time, in deciding which area/tile of which video seg-
ment to send in which quality). This is done by periodically regain-
ing control on the user’s FoV using so-called snap-changes, which
are a type of intra-scene rotational cuts. They are interchangeably
called snap-cuts. The details of the method and its positioning with
respect to the relevant literature are provided in Sec. 2. Dambra
et al. showed that it is beneficial both for application-level metrics
(level of quality in FoV, consumed bandwidth) and user-experience
metrics (user’s angular speed, story understanding). Their results
are a proof-of-concept where the set of cuts is pre-defined in an
XML file by, e.g., the film director, and all cuts are executed at
their corresponding time instants. However, snap-cuts are forced
re-positioning corresponding to momentaneously taking some free-
dom off of the user. These intra-scene cuts can hence be envisioned
as levers that the 360◦ video player can leverage to cope with an
insufficient bandwidth and still succeeding in displaying HQ in the
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Figure 1: Streaming 360◦ videos: the sphere is tiled and each tile of
the sphere is sent into low or high quality depending on the user’s
motion and network bandwidth.

user’s FoV (which gets re-positioned in front of the HQ area). Ev-
ery cut may hence not always be necessary:

• if the user will be close enough to the FoV targeted by the cut:
this is implemented by the 30◦rule already implemented in the
original method [DSS∗18a] (with a moderate impact on the qual-
ity downloading decision)
• if the network bandwidth is high enough so that replacements

are possible and not costly, and/or
• if the user moves slowly enough that the spatial qualities fetched

earlier for each area/tile overlap sufficiently the FoV at the time
of playback (so the cut will not help increase the quality in the
FoV).

Whether or not a cut will be beneficial therefore depends on the
user’s motion and on the network conditions. Specifically, the
trade-off involves: (i) a snap-change guarantees that the user will
see the FoV desired by the director, and that HQ is displayed in this
FoV, while (ii) not having a snap-change may preserve the level of
presence and keep low the probability of disorientation.

In this article, we consider the network conditions being fixed
and investigate how to optimize cut triggering to obtain best trade-
off, by designing a user-adaptive editing policy for 360◦ video
streaming.
Contributions:
•We model the dynamic decision problem of snap-change trigger-
ing as a model-free Reinforcement Learning (RL), for which we
model the user’s quality of experience as a reward function based
on the quality in FoV penalized by the cut frequency. We express
the optimum cut triggering decisions computed offline with dy-
namic programming, when the user’s motion is known before but
also after the cut decision time.
•We adopt a machine learning framework from the realm of Imita-
tion Learning, namely Behavioral Cloning, to train different strate-
gies aimed at approaching optimal decisions. We show that it is
possible to improve the quality of experience by dynamically de-
ciding to trigger snap-cuts, only knowing the past user’s motion
and video content, compared to the controls without and with all
cuts.

After presenting the related works in Sec. 2, Sec. 3 presents the
problem formulation. The design of the learning approaches is pre-
sented in Sec. 4, and Sec. 5 gathers the results and their analysis.
Finally, the limitations of this preliminary work are discussed in
Sec. 6, and conclusions are given in Sec. 7.

2. Related works

This section reviews the main categories of existing works relevant
to the problem at hand. We provide successfully an overview of
techniques to partly control the user’s FoV, introduce the concept
of adaptive 360◦ video streaming and the required adaptation to
the user, and finally review some ML-based approaches for various
questions arising with 360◦ videos.

2.1. Directing change of FoV

The works presented in [YLN∗17, SMSR17, FT20] are aimed at
assisting the user in moving in the virtual environment to in-
crease comfort and/or lower sickness, while those presented in
[PHA17, RBR18, RHB05, SPDW∗18, DSS∗18a] consist in oper-
ating FoV changes independently from the user’s motion or will.
In [SMSR17], amplified and guided head rotation are introduced
for seated use of VR in HMDs: physical head rotation angles are
magnified in the VE so that physically turning in a (limited) com-
fortable range can allow wider range. In [FT20], Farmani et al.
show that it is possible to artificially reduce vection − the illusion
of self-motion, which is connected to cybersickness− by snapping
the viewpoint, reducing continuous viewpoint motion by skipping
frames. They show that both rotational and translational snapping
reduce cybersickness by 40% and 50 %, respectively. In [LCH∗17],
the authors compare an auto-pilot mode deciding which FoV is
exposed to a seated user, independently of the user movements,
with assisting the user by displaying an arrow of where to look.
In [PHA17] and [RBR18], user-initiated (by pressing a button) and
system-initiated rotational re-positioning of FoV are performed, in-
dependently of the user motion. The re-positioning is progressive
and while participants could most easily track scene changes, they
generally and unsurprisingly experienced sickness due to rotational
vection. Much interestingly, it has been uncovered in [RHB05] that
participants can automatically update their sense of spatial orien-
tation during rotation using only visual cues, and that the accom-
panying physical rotation may not be necessary for fast and reflex-
ive updating. Also, how cut frequency influences viewers’ sense of
disorientation and their ability to follow the story has been studied
in [KLMP∗17]. The results show that high editing cut frequency
can be very well received, as long as the user’s attention is ap-
propriately guided at the point of cut. In [SPDW∗18, DSS∗18a],
the authors introduce so-called dynamic editing with (rotational)
snap-changes, combining the positive aspects of the above meth-
ods: to periodically regain control over the user’s FoV at the time of
360◦ video playback (these intra-scene cuts are hence not built into
the video file), the FoV is repositioned, in a snap, that is from one
frame (image) to the next, in front of a pre-determined FoV (possi-
bly decided by the director). To do so, only an additional XML file
has to be downloaded at the begining of the video, and the custom
player [DSS∗18b] implements the snap-changes at the indicated
times in front of the indicated angular sectors. Fig. 2 depicts the ef-
fect of a snap-change on the FoV. It is shown in [DSS∗18a] that this
strategy enables to reduce the average head motion speed by up to
30%, that these repositionings are mostly not noticed by the users
when performed towards a meaningful RoI (possibly perceived as
fast-cutting, which may sometimes feel like missing in cinematic
VR), and when they notice it, no discomfort or sickness are yielded
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as no motion is sensed, and the vestibular system is not involved. It
is also shown that incorporating the knowledge of the future snap-
changes into the adaptive streaming algorithm enables bandwidth
savings, as described below.

Figure 2: Top left: Identification of the RoI targeted by the snap-
change. Top right: Description of the list of snap-changes over the
video as an XML file.
Bottom: FoV re-positioning in front of the targeted RoI by the snap-
change.

2.2. Adaptive streaming for 360◦ videos

Modern (regular non-360◦) video streaming relies on the concept
of HTTP Adaptive Streaming, whose most wide spread version is
the MPEG-DASH standard [MPE14]. It consists in the video file
being chunked into temporal segments of fixed duration (often 2
sec. or 5 sec.), each encoded into several quality levels, that is at
different bitrates (often corresponding to resolutions). The client
strives to (i) prevent playback interruptions by maintaining a non-
empty playback buffer where a certain number of segments (or
seconds of video) are stored in advance of playback, while (ii)
fetching and displaying qualities as high as possible. To do so,
the client runs a so-called adaptive streaming logic (or algorithm)
which chooses which quality to request for every segment to the
remote server, based on the network bandwidth varying over time.
As explained in Sec. 1, in the case of 360◦ video streaming, a sin-
gle segment does not correspond anymore to a single entity, but
possibly to several tiles. The goal is to reduce the required band-
width to stream 360◦ videos by requesting high quality for the
tiles that will intersect the FoV of the user. The qualities to re-
quest for every tile of every segment must therefore adapt both to
the network and the user dynamics, as represented in Fig. 3. The
challenge is that at the time of the decision, the future of the net-
work bandwidth (which will support the currently decided object to
download) and the user motion (which will determine where will
the FoV be at the time this segment is played out) are unknown.
Most recent examples of strategies addressing this difficult problem
are [ZZB∗19,PBY∗19], which strive to predict network bandwidth
and user’s motion with recurrent deep neural networks. The inno-
vative interdisciplinary approach presented in [DSS∗18a] consisted
in not trying to predict the future user’s motion (which is much dif-
ficult to do [RRSAPP19]), but instead in designing a 360◦ adaptive
streaming algorithm which benefits from the knowledge of the fu-
ture rotational cuts to better target which tile must be fetched in

HQ. The bandwidth savings yielded by such approach have been
shown to be substantial (up to 25%). In [SWFA19], a first attempt
of learning how to trigger snap-changes of [DSS∗18a] is demoed. It
implements a deep Reinforcement Learning (RL) strategy to adapt
to the user’s motion, without proving that it can work better than
a simple baseline, nor quantifying the gains. In the present article,
we design a complete learning framework addressing the problem
of FoV overlap (quality) prediction and snap-change triggering de-
cision, to best trade between quality in FoV and user’s freedom
while streaming a 360◦ video over a bandwidth-limited network.

Figure 3: Buffering process for a tiled 360◦ video. While segment
n is being decoded at time t, segment n+B is being downloaded.
Red (resp. blue) rectangles represent tiles’ segments in HQ (resp.
LQ). Idealistically, the tiles in HQ must match the user’s FoV at
their time of playback.

3. Problem definition

In this section, we first expose, in Sec. 3.1 all the system and model
assumption we make (that we implement in our simulator used for
training and analysis in 4 and Sec. 5), before formally describing
the optimization problem in Sec. 3.2. The notations are provided in
Table 1.

3.1. Assumptions

System assumptions: As aforementioned, a 360◦ streaming strat-
egy has to be both network- and user-adaptive. In this work, we
focus on how to adapt the frequency of the snap-changes to the
user’s motion and maximize their level of experience − a Quality
of Experience (QoE) function defined in Sec. 3.2. Therefore, we set
fix the underlying streaming strategy, detailed in Algo. 1, working
as follows. We consider (wlog) that 2 quality levels are available.
The qualities (HQ or LQ) for every tile of every segment are de-
cided based on the current user’s FoV at the time of downloading
this tile (HQ for the tiles intersecting the FoV, LQ for the others).
The tile’s download can occur up to B seconds before its playback,
where B is the size of the playback buffer. We consider the time to
download a tile negligible. The downloading process pauses when
the buffer is full, and resumes when at least one segment has been
dequeued and fed to the video decoder. We consider that the list
C of potential snap-changes is loaded with the video description
file before the playback starts (each snap-change is described as
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System param. Definition

N (N ), M (M) number (set) of segments, tiles
C (C) number (set) of possible snap-changes
B playback buffer size (in sec.)
qm(n) ∈ {0,1} quality level of tile m at segment n
bu fm(t) num. of sec. stored in buffer of tile m at time t
time(c) playback time of snap-change c
FoVsnap(c) FoV targeted by snap-change c
f lagdecided(c) = 1 if the decision for c is made, = 0 ow.
f lagtrigger(c) = 1 if c has been decided to be triggered, = 0 ow.
wpast(t) time interval [0, t]
w f ut1(t) time interval ]t, t +B]
w f ut2(t) time interval ]t +B, t +B+D]

Model param. Definition

D duration of snap-cut impact on user’s motion
β penalty for triggering a snap-change

Table 1: Notation of the system and model parameters.

depicted in Fig. 2-top right). We then augment the streaming strat-
egy as described in Algo. 1: when the first tile of a new segment is
about to be downloaded, if the list of possible snap-changes indi-
cates that a snap-change may be trigger at this segment, then a de-
cision function is called to decide whether this snap-change should
be triggered to maximize the objective function described below.
Designing such a snap-triggering decision function is the subject
of this article.

QoE model assumptions: We model the user’s reaction to the trig-
gering of a snap-change. It has been shown in [DSS∗18a, Fig. 11],
with user experiments, that snap-changes decrease the head motion
speed of users by up to 30%. In the simulations used in this arti-
cle (later used to train classifiers), we use the user motion dataset
presented in [DGC∗18], which contains the head tracking data of
57 users exploring 19 videos. In this dataset, considering a FoV to
be about 100◦ wide [FLL∗17], it takes about 5 sec. for 50% of the
users to shift their FoV entirely. This can be seen in [RRSAPP19,
Fig. 7]. In this article, we adopt a preliminary simplistic user model:
considering that a 30% decrease in angular speed would add 1.5
sec. to shift the field of view of half of these users, we consider
in our simulator that right after each triggered snap-change, reposi-
tioning the user in front of a meaningful/interesting FoV, every user
pauses for 2 sec. before resuming her motion.

3.2. Formulation of the optimization problem

To formulate the decision problem, we adopt a model for the
level of user’s experience under adaptive 360◦ streaming and snap-
changes. We define an instantaneous reward obtained after the play-
out of segment n (of duration 1s in the simulator):

r(n) = qFoV (n)−β
t(n)−tlast (n) . (1)

The components are as follows. We define the average quality in the
FoV over segment n’s duration as qFoV (n) = ∑

M
m=1 qm(n)F(n,m),

with qm(n) the quality level of tile m at segment n, and F(n,m) the
average fraction of FoV at segment n occupied by tile m. The sec-
ond component represents the penalty incurred by triggering snap-
changes: β is a penalty parameter, t(n) is the playback time of seg-

Algorithm 1: Downloading process: quality allocation and
snap-change triggering decisions

Data: Current playback time t. Buffer states bu fm(t), ∀m ∈M. List
of possible snap-changes c ∈ C. Initially f lagdecided(c) = 0 and
f lagtrigger(c) = 0, ∀s ∈ C.

Result: which segment n of which tile m to download next in which
quality qm(n), whether to trigger a snap-change if n has one
not decided yet, ∀m ∈M, n ∈N , qm(n) ∈ {0,1}

if all M buffers are full then1

stay idle;2

3

else4

set m to the tile index with the least full buffer;5

set n to the lowest value not having entered buffer m yet;6

qm(n) = 0 # initialize with LQ;7

if there exists a snap-change c such that8

time(c)= nand f lagdecided(c) = 0 then
# Whether this snap-change will be triggered at time time(c)9

must be decided now;
form environment state state(t);10

f lagtrigger(c) =decision(state(t));11

f lagdecided(c) = 1;12

13

identify the highest snap index clast with f lagtrigger(slast) = 1;14

if clast not empty and t ≤time(clast )≤ n then15

if m intersects snap-change’s FoVsnap(clast) then16

qm(n) = 1 # download in HQ;17

18

19

else20

if m intersects current user’s FoV(t) then21

qm(n) = 1 # download in HQ;22

23

24

25

ment n (close to n depending on playback interruption), and tlast(n)
is the time of the last triggered snap-change.

Let us denote by Su the state of the streaming process (tiles’ qual-
ities stored in the buffer) and user’s state (past head coordinates but
also fatigue, likeliness to move) at the time of deciding for snap-
change c. Given that the decision of triggering each snap is taken at
the time of downloading it, hence of it entering the playback buffer,
Su+1 is independent of what happened before u conditionally on
Su, and hence the Markov property is verified. The snap triggering
problem is therefore a Markov Decision Process (MDP) defined by
the tuple (S,A,P,R,γ), where Pa

ss′ =Pr[Su+1 = s′|Su = s,Au = a],
Ra

s = E[Ru|Su = s,Au = a]. The time is paced with snap-triggering
decisions, a ∈ {0,1}, and Ru = ∑n∈N(u) r(n)/|N(u)| where N(u) is
the segments played between both snaps decided at u and u+1. We
define π(a|s) = Pr[Au = a|Su = s] and formulate the snap-change
triggering optimization problem as:

π
? = argmaxE

[C−1

∑
u=0

γ
uRu

]
. (2)

The optimal snap-triggering strategy must therefore trigger a snap-
change when the contribution, to the cumulative reward, of the
quality increase due to this snap exceeds the incurred penalty. It
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therefore must trigger depending on the user’s motion. The transi-
tion probability distribution Pa

ss′ is unknown as, to take online deci-
sions sequentially, we cannot know how the user is going to move
and react, given a certain state. The decision-making problem is
hence that of model-free RL.

Finally, it is interesting to notice that other forms of similar
problems have appeared in much different application domains.
In [PGV∗09], Pineau et al. present how to automatically learn an
optimal neurostimulation strategy for the treatment of epilepsy. The
goal is to trigger the minimum amount of neurostimulation (electric
discharge from intra-cerebral electrodes) as a function of the EEG
signal, so as to minimize the number of seizures.

4. Learning how to trigger a snap-cut

For the reasons exposed in Sec. 3.2, deciding dynamically during
the video playback how to trigger a snap-change is a model-free
RL problem. However, rather than designing an RL agent learning
from its own observations, we instead leverage here the principle
of learning from expert’s demonstration, also known as Imitation
Learning (IL) [OPN∗18]. In our case, for the short videos consid-
ered, we indeed have access to an expert which is the offline opti-
mal defined below in Sec. 4.1. We consider in this article the sim-
plest version of IL, known as Behavioral Cloning (BC) [OPN∗18].
It consists in supervising the training of the action policy/decision
classifier (deciding whether or not to trigger the next snap-change),
with the trigger labels provided by the offline optimal. A major de-
sign difficulty is the possibly loose correlation between the past
motion at time t, and the decision to trigger snap c decided at time
t but impacting user’s motion only from time t +B, as represented
in Fig. 4. We therefore split the snap-triggering problem at time t
into 2 sub-problems: (P1) predicting the FoV overlap over w f ut2(t)
from wpast(t) (as defined in Table. 1 and shown in Fig. 4), and (P2)
deciding whether to trigger based on the series of predicted over-
laps.

Figure 4: Timing of the process: the tiles’ qualities displayed at
time t have been downloaded at time t − B. If segment n to be
downloaded at time tdec and to be played at tdec + B, contains a
possible snap-change c, either (i) this snap is not triggered, then
the quality in the user’s FoV at any t ∈ w f ut2(tdec) is given by
overlap(t) = FoV (t)∩FoV (t−B), or (ii) it is triggered, then only
HQ is displayed in the FoV as the qualities fetched at t − B are
based on the snap-change’s FoV FoVsnap(c).
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Figure 5: Reward, quality and snap frequency for the optimal pre-
diction and for the control baselines: always trigger (ONES) and
never trigger (ZEROS). The parameters are: FoV Area: 100◦x50◦,
regular snap interval of 3 sec., D = 2, B = 4 (Left) β = 0.2, (Right)
β = 0.35.

4.1. Definition of expert and baseline

We consider supervised learning and the labels being the optimal
decisions. With the perfect knowledge of the user’s motion over the
entire video, we are able to compute the set of optimal decisions for
each trace, corresponding to a given user watching a given video.
This offline optimal solution is computed with Dynamic Program-
ming. This is feasible in reasonable time only if the number of de-
cisions is not too high. In Sec. 5, we consider 20 sec-long videos
with a possible snap-changes every 3 sec., hence a total of 7 snap-
changes. Fig. 5 illustrates, for B = 4 and β = 0 and 0.2, the gain
of the offline optimal (OPT in legend) over two baselines: ZEROS
where no snap-change is triggered, and ONES where every snap-
change is triggered. Let us now present how to design online de-
cision strategies able to outperform the baselines and approach the
offline optimal as much as possible.

4.2. P1: Future overlap prediction

As shown in Fig. 4 and defined in Sec. 3.2, the quality in the user’s
FoV at any time t is given by overlap(t) = FoV (t)∩FoV (t−B).
One set of inputs we feed the decision classifier with at the decision
time tdec, is therefore the prediction of the D values of overlap over
w f ut2(tdec), i.e., FoV (tdec + B + m− B)∩ FoV (tdec + B + m) for
m ∈ {0, . . . ,D}. We consider two options to solve P1.

Past Overlap as estimate of future overlap: The D overlap values
anterior to tdec are considered as those over w f ut2(tdec).

Future overlap estimation from FoV prediction: The deep
neural network architecture named TRACK and introduced in
[RRSAPP19] is used to predict the series of FoV positions between
tdec and tdec +B+D, from (i) the series of FoV positions anterior
to tdec and (ii) the visual saliency extracted from the video content
available for the entire video (streaming of pre-recorded content).

4.3. P2: Classify to decide

The goal of the decision step is to classify whether the snap-cut
should be triggered (1) or not (0). A Decision Tree (DT) is used to
perform this classification, as it provides a simple yet informative
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structure that allows to investigate how the different configurations
of the environment change the way the input features are used. The
inputs are set to be as close as possible to the reward’s components
defined in Eq. 1: the overlap values predicted over w f ut2(tdec) as
described above, and input describing the relative snap position in
time. The latter is made of the elapsed time since the last snap-cut
triggered (t(n)− tlast(n) in Eq. 1), and the remaining playback time
after the playback time of the snap (to represent the likely impact
of the snap, impacting less the cumulative reward as we reach the
end of the video).

4.4. Training the Complete Framework

The training of the snap-cut decision framework is not in an end-
to-end manner. TRACK is pre-trained to provide the overlap pre-
dictions, the DT decision classifier is trained on top. The dataset is
split into 70% for training, 20% for testing and 10% for validation.
The training, validation and test sets are the same for both overlap
prediction and decision layers. We perform hyper-parameter tun-
ing by varying the maximum tree depth in the range [1,10), and
selecting the depth yielding the highest F1-Score (defined as the
harmonic mean of precision and recall) on the validation set. Dur-
ing train, the t(n)− tlast(n) input above is fed from the offline opti-
mal. However at test time, the input is determined from the previous
decisions already made. The test is therefore made in an iterative
process, where the previous decision will affect the future ones.

5. Results

We present here the performance in terms of reward, quality in FoV
and fraction of snap-cut triggered, for the different baselines and
proposed dynamic methods for different values of buffer size (B in
sec.) and snap-cut penalty β. We identify the difficulties and discuss
the limitations in Sec. 6.

Simulator settings: The results in this section are generated with
an emulated streaming process developed in Python and serving as
training and testing environment. Given the simple user’s behav-
ior model introduced in Sec. 3.1 where the user’s reaction does not
depend on the FoV targeted by the snap-cut, we consider equally
spaced possible snap-changes to trigger, with the FoV for each
picked uniformly at random in [−180◦,180◦[. From Sec. 3.1, the
snap-cut impact duration is D= 2s. One video segment corresponds
to one second of playback. Playback starts at second 0, the first pos-
sible snap at second 1, and possible snap-changes are evenly spaced
every 3s. With the 20 sec-long videos in the dataset of David et
al. [DGC∗18] described in Sec. 3.1, there are 7 possible snaps, oc-
curring at times {1,4,7,10,13,16,19}.

Results on overlap prediction: As a preliminary result, Table 2
compares the error (overlap computed as orthodromic distance of
the centers of the FoVs) of overlap prediction for both methods for
P1 (PAST-Past overlap and TRACK), when varying the buffer size.
We confirm the interest of employing a refined FoV predictor in
lowering the overlap prediction error.

Results on reward, quality and snap frequency:
Fig. 6 depicts the results in terms of reward, quality in the FoV and
percentage of triggered snap-cuts. The values for playback buffer

B=2 B=3 B=4
PAST 40.79◦ 42.42◦ 45.54◦

TRACK 36.07◦ 37.17◦ 36.74◦

Table 2: Absolute error of (TRACK) future overlap prediction us-
ing TRACK or (PAST) estimating the future overlap from the past
overlap, varying the buffer size B ∈ {2,3,4}.

size B (still in sec.) and snap penalty β are the combination of
B ∈ {2,3,4} and β ∈ {0.2,0.3,0.35}. One baseline is added: GT,
standing for Ground Truth, when the DT is fed with the GT overlap
over w f ut2(tdec), for every decision time. It refines the upper-bound
accessible by the online methods predicting the future overlap.

First, general and expected trends can be observed from OPT.
The optimal reward decreases when B or β increase. So does the
quality. Indeed, the higher B, the lower the FoV overlap between
t and t − B, for any time t, hence the lower the quality, hence
the reward (we can trigger a snap only every 3 sec., i.e., every
3 segments, with these settings). The optimal fraction of triggers
increases with B but decreases with β. Indeed, the higher B, the
lower the FoV overlap, the more snap-cuts needed to get back a
high quality. However the higher the snap-cut penalty β, the lower
the amount of snap-cut allowed to not decrease the reward. Second,
GT is relatively close to OPT when β is small, but gets away from
OPT when β increases: this shows the need of not being myopic
and considering a future horizon longer than w f ut2()̇ to make deci-
sions, when the snap penalty β increases. Third, it is interesting to
observe that the gap between OPT and the best of both ZEROS and
ONES, where online methods can bring improvement, is greater
for higher values of B and intermediate values of β (for example,
B = 3 and β = 0.2, or B = 4 and β = 0.3). In these cases, the on-
line methods PAST and TRACK (not assuming any knowledge of
the future) are able to slightly outperform (in reward) the ZEROS
and ONES baselines. However, when observing their snap-cut trig-
gering decisions, we observe that for β≥ 0.3, they often are much
more conservative than GT, triggering almost no snap-cut. In such
case of high β, for high B (3 and even more so 4), the quality is
much impacted by the lower accuracy of future prediction.

6. Discussion

This work defines and investigate how to learn to trigger (rota-
tional) snap-cuts meant to jointly benefit the user and the streaming
algorithm to increase the user’s QoE. It is however a preliminary
work, suffering from several limitations. First, in comparison with
GT, we can observe that the performance of the proposed method
TRACK (even more so PAST) is limited by the difficulty of pre-
dicting the overlap (the prediction horizon is B+D sec., 4 to 6 sec.
here). To overcome this difficulty, it will be important to extract less
volatile features that can be exploited in deciding to trigger, particu-
larly user or video profiles. Second, the considered model of user’s
reactions to a snap-cut (freezing for D sec.) and the QoE model (for
the reward) are simplistic. Future work should carry out user ex-
periments to determine accurate models, and considering complex
or unknown reaction models will require to adopt other types of
learning approaches (RL approaches where the test set is collected

c© 2020 The Author(s)
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Figure 6: (Left) Average reward (QoE), (Center) fraction of triggered snap-changes and (Right) average quality in FoV, for each method
in OPT: Optimal, GT: Using the groundtruth future overlap as features, TRACK: Using the overlap computed with the prediction from
TRACK [RRSAPP19], PAST: Using the overlaps before the decision, ZEROS: Never triggering a snap, ONES: Always triggering the snaps.
The values are computed for each of the experiments, varying the buffer size B, and the penalty for triggering a snap-change β.

using a behavior policy different from the target policy). Finally,
the snap-cuts are modulated here to help the streaming process (us-
ing a playback buffer). However, we have considered the network
state fix and the streaming logic independent of the available band-
width. Future work will design advanced network-adaptive strate-
gies making use of user- and content-adaptive snap-cutting strate-
gies.

7. Conclusion

In this article, we have investigated how to learn to dynamically
trigger rotational snap-cuts that re-position a user in front of new
FoV, when watching a VR content streamed over the Internet.
These snap-cuts can benefit the user’s experience both by helping
stream and improve the quality in the FoV, and ensuring the user
sees RoIs important for the story plot. However, snap-cuts should
not be too frequent and may be avoided when not beneficial to the
streamed quality. We have formulated the snap-cut triggering op-
timization problem and investigated possible gains in quality of
experience. We have shown that learning approaches are relevant
to design online snap-cut triggering strategies to outperform base-
lines. Finally, we have identified the limitations of this preliminary
work and the future steps to take.
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