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Motion by curvature and large deviations for an interface

dynamics on Z2

Benoit Dagallier

Courant Institute of Mathematical Sciences, New York University.

E-mail: bd2543@nyu.edu

Abstract: We study large deviations for a Markov process on curves in Z2 mimicking the motion
of an interface. Our dynamics can be tuned with a parameter β, which plays the role of an inverse
temperature and coincides at β = ∞ with the zero temperature Ising model Glauber dynamics,
where curves correspond to the boundaries of droplets of one phase immersed in a sea of the other
one. The di�usion coe�cient and mobility of the model are identi�ed and correspond to those
predicted in the literature. We prove that contours typically follow a motion by curvature with an
in�uence of the parameter β and establish large deviation bounds at all large enough β <∞.

1 Introduction

A basic paradigm in non-equilibrium statistical mechanics is the following. Consider a system with
two coexisting pure phases separated by an interface, undergoing a �rst-order phase transition
with non-conserved order parameter. Then, macroscopically, the interface should evolve in time
to reduce its surface tension, according to a motion by curvature. For microscopic models on
a lattice, some trace of the lattice symmetries should remain at the macroscopic scale and the
resulting motion by curvature should be anisotropic. The following general behaviour, known as
the Lifshitz law, is expected: if a droplet of linear size N ≫ 1 of one phase is immersed in a sea of
the other phase, then it should disappear in a time of order N2. (Anisotropic) motion by curvature
should correspond to the limiting dynamics, when N is large, under di�usive rescaling of space
and time. Phenomenological arguments in favour of this picture go back to Lifshitz [Lif62] and
can be summarised as follows. Consider a model with surface tension t = t(N), which depends
on the local inwards normal N to an interface. We work in two dimensions to keep things simple.
The surface energy associated with a curve γ separating two phases reads:

F (γ) =

∫
γ

t(N(s))ds, (1.1)
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where s is the arclength coordinate on γ. The postulate is then that the local inwards normal
speed v to the interface reads:

v = µ
δF

δγ
. (1.2)

Above, δF/δγ is the variational derivative of F , de�ned informally below. The quantity µ = µ(N)
is the mobility of the model, computed by Spohn in [Spo93] using linear response arguments. Let
us relate (1.2) and motion by curvature. The change δF = δF (N) in energy induced by the
motion of a length ds in the normal direction N is equal to (t(N)/R(N))ds, which can be written
δF/δγ = t(N)/R(N), with R(N) the radius of curvature at N. As such:

v = µtk =: ak, with: a(N) = µ(N)t(N) the anisotropy and k = 1/R the curvature. (1.3)

A closed curve satisfying (1.3) is said to evolve according to anisotropic motion by curvature. A
bounded set with boundary following this equation is known to shrink to a point in �nite time for
a wide range of anisotropies a, see e.g. [LST14a] and references therein.

The paper [Spo93], already cited, is a landmark in the rigorous study of interface motion
starting from microscopic models. Ideally, one would like to start from a microscopic model with
short-range interactions, with at least two di�erent phases initially segregated on a macroscopic
scale, and derive motion by curvature (1.3) of the boundaries between the phases in the di�usive
scaling. To this day however, results on microscopic models are scarce. A major di�culty is
to understand how to decouple, from the comparatively slower motion of the interface, the fast
relaxation inside the bulk of each phase. Indeed, in a di�usive time scale and at least for models
with local interactions, one expects the bulk to behave as if at equilibrium. Let us provide a
(non-exhaustive) account of works on the subject.

In models where the interface is the graph of a function of a one-dimensional parameter, mo-
tion by curvature has been proven for a number of interacting particle systems. Motion by cur-
vature usually boils down to the heat equation in this case, and the Lifshitz law is related to
freezing/melting problems, see [Spo93, CS96, CK08, CK12], as well as [Lac14] and the mono-
graph [CMGP16].

For one-dimensional interfaces in two dimensions, a landmark is the proof of anisotropic motion
by curvature for the Glauber dynamics of the zero temperature Ising model (henceforth zero-
temperature Glauber dynamics). The drift of the interface at time 0 was computed in [CL07] for
several types of initial conditions, before the full motion by curvature (1.3) was proven in [LST14b]�
[LST14a]. Their proof crucially relies on monotonicity of the Glauber dynamics.

More is known on another type of microscopic models for which some sort of mean-�eld
mesoscopic description can be achieved. This comprises the so-called Glauber+Kawasaki pro-
cess [MFL86] (see also [BBP18] for an account of works on the model), which has local evolu-
tion rules, and models with long range interactions such as the Ising model with Kac potentials
[Com87, MOPT93, MOPT94, KS94]. For these models, studied in any dimension, the derivation
takes place in two steps: �rst deriving a mean-�eld description of the dynamics, then rescaling
space-time to derive motion by curvature. As a result, lattice symmetries are blurred and the
resulting motion by curvature is isotropic. A series of recent works [FT19, FvMST22, FvMST23]
consider a Glauber+Kawasaki dynamics (see also [KFH+20] for Glauber+Zero-range). In these
works, the existence of an interface between regions at high- and low-density is established, and
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motion by curvature for this interface is obtained directly from the microscopic model, suitably
scaling the Glauber part of the dynamics.

A last category of models comprises the so-called e�ective interface models. In these models,
an interface between phases is represented by the graph of a function, with which an "interfacial"
cost is associated. Only the interface is relevant, and the phases it separates are not described.
E�ective interface models comprise the Ginzburg-Landau model in any dimension, see [FS97], and
more recently Lozenge-tiling dynamics in dimension three [LT18].

To better understand the structure of interface dynamics, another related line of investigation
concerns large deviations of the motion of an interface around motion by curvature. Assuming
Gaussian-like �uctuations around the mean behaviour (1.3), the rate function describing the cost
of observing an abnormal trajectory γ· = (γt)t≤T should read:

I(γ·) =

∫ T

0

dt

∫
γt

(v − ak)2

2µ
ds, (1.4)

with s the arclength coordinate on γt. In the assumption of Gaussian �uctuations leading to (1.4),
one of the di�culties is that it is not even clear how the noise should be incorporated into the
deterministic equations describing the interface motion. Extensive work to address this question
and obtain rate functions of the form (1.4) has been carried out in the last decades on several
models. We discuss them below and refer to the recent works [BBP17b]�[BBP18]�[HR18] and
references therein for a more complete picture.

One particularly studied class of model involves the stochastic Allen-Cahn equation, see [Fun16,
Chapter 4] for an introduction. It is known that, in the di�usive (or sharp interface) limit, solutions
to the (deterministic) Allen-Cahn equation satisfy motion by mean curvature in some sense, see
[Ilm93, ESS92, BSS93]. One can then study large deviations around motion by curvature by
starting from the Allen-Cahn equation perturbed by a small noise, then taking suitable limits in all
parameters involved: regularisation of the noise if any, temperature and sharpnes of the interface.
The addition of a noise term in the equation leads to very di�erent solution theories depending on
the regularisation and strength of the noise, with the equation for instance becoming ill-posed in
dimension d > 1 for space-time white noise. At the level of the large deviations however, this ill-
posedness does not a�ect the rate functions at least in a suitable region of the regularisation, noise
strength and interface sharpness as mentioned in [KORVE07] and discussed in detail in [HW14].

Rate functions of the form (1.4) have been obtained from the stochastic Allen-Cahn equation
taking various orders in the limits involved, see the seminal work [KORVE07] where the order of the
limits ensures well-posedness of the stochastic Allen-Cahn equation and the more recent [BBP17b]
where a joint limit in all parameters is considered, with corresponding regularity estimates on
solutions established in [BBP17a]. The rate function obtained as upper bounds in these papers is
a more general version of (1.4) that coincides in simple cases, such as for a droplet trajectory with
smooth boundary. More general trajectories that may feature nucleation events are also treated.
A di�erent way of adding noise to the Allen-Cahn equation and associated large deviations are
considered in [HR18].

Microscopic models have also been considered. In [BBP18], upper bound large deviations are
proven for the aforementioned Glauber+Kawasaki process and Ising model with Kac potentials.
The rate function (1.4) is proven to be the correct one for smooth trajectories and extensions to
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more general paths are discussed.

To the best of our knowledge however, no results on large deviations from motion by curvature
for microscopic interface dynamics with local interactions have yet been published. In particular
the question of large deviations for the zero temperature Ising Glauber dynamics is still open.

In this work, we present a family of interface dynamics that we call the contour dynamics. In the
scaling limit, this dynamics typically evolves according to motion by curvature and we characterise
the large deviations. The contour dynamics is closely related to the zero temperature Glauber dy-
namics for the Ising model: it has the same updates, except that additional moves depending on
a parameter β > 0 are allowed. This parameter β plays the role of an inverse temperature acting
on local portions of the contours. The model at each β > 0 has reversible dynamics and, contrary
to the Glauber dynamics for the zero temperature Ising model, the dynamics is not monotonous.
When β = ∞, the update rules of the contour dynamics are exactly the same as the Ising ones.
Large deviations for the contour dynamics are studied using the method initiated by Kipnis, Olla
and Varadhan in [KOV89] (see also Chapter 10 in [KL99]). There are substantial di�culties as
we are dealing with curves, i.e. one-dimensional objects, evolving in two-dimensional space. One
of the advantages of the method is that we no longer rely on monotonicity of the dynamics as
in [LST14a]. Monotonicity appears di�cult to use for large deviations in any case, as atypical
events, such as closeness to some atypical trajectory, are in general not monotonous. At each large
enough β > 0, we prove that the dynamics approaches anisotropic motion by curvature in the large
size limit, with a dependence on the parameter β. At the formal level, the β = ∞ case indeed
corresponds to anisotropic motion by curvature in the sense of [LST14b]. We then obtain large
deviations for the model, with a rate function that agrees with (1.4) for su�ciently nice trajectories.

The rest of this article is structured as follows. In Section 2, we introduce the microscopic model
and �x notations. The dynamics is introduced in details using the zero temperature Glauber
dynamics as comparison, while useful topological facts are collected in Appendix B. The main
results of the paper are listed in Section 2, with Section 2.4 presenting the structure of the proof as
well as a connection of the contour dynamics with the exclusion process, a guideline of the paper.

In Section 3, following the large deviation approach of [KOV89], we compute Radon-Nikodym
derivatives for a large class of tilted dynamics. Under the assumption that trajectories live in a nice
enough space, we show how motion by curvature emerges from the microscopic computations as well
as the in�uence of the parameter β. The computations of the Radon-Nikodym derivatives are then
used to prove large deviations, with the upper bound in Section 4 and the lower bound in Section 5.
A number of technical results and sub-exponential estimates are postponed to Section 6 and
Appendices A�B. In particular, Section 6 is a collection of estimates that are genuinely particular
to our model, concerning the dynamical behaviour of the poles, i.e. the sections of the contours
on which the parameter β a�ects the dynamics.
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2 Model and results

2.1 Zero temperature Glauber dynamics for the Ising model

The contour dynamics studied in this paper is closely related to the Glauber dynamics of the
zero temperature, two-dimensional Ising model on (Z∗)2 (henceforth zero temperature Glauber
dynamics), with Z∗ := 1/2 + Z the dual graph of Z. Looking at (Z∗)2 rather than Z2 is meant to
ensure that contours are lattice paths on Z2, see below. Let us �rst de�ne this zero temperature
Glauber dynamics.

On the space Σ := {−1, 1}(Z∗)2 of all spin con�gurations σ = (σ(i))i∈(Z∗)2 ∈ Σ, de�ne the
dynamics as follows: each site i ∈ (Z∗)2 is updated independently at rate 1. The spin σ(i) at site
i takes the same value as the majority of its neighbours, where spins σ(j), σ(k) are neighbours
for j, k ∈ (Z∗)2 if ∥j − k∥1 = 1. If spin σ(i) has exactly two neighbours of each sign, then: with
probability 1/2, σ(i) remains unchanged; with probability 1/2, it is �ipped, i.e. changed to −σ(i).
A spin with three or more neighbours of the same sign is not changed, while a spin with three or
more neighbours of opposite sign is �ipped instantaneously, and the process is repeated until no
such spin remains. This is summarised in the following jump rates (see also Figure 1): for each
con�guration σ and each i ∈ (Z∗)2,

c(σ, σi) =


0 if σ(i) and at least three neighbours have the same sign,

1/2 if σ(i) has two neighbours of each sign,

+∞ if σ(i) has at least three neighbours with opposite sign.

(2.1)

Above, the con�guration σi is the same as σ, except that the spin at i has been �ipped:

∀j ∈ (Z∗)2 \ {i}, σi(j) = σ(j), σi(i) = −σ(i). (2.2)

Rather than spins, the zero temperature Glauber dynamics can alternatively be de�ned in terms
of blocks : a block is a subset of R2 of the form i + [−1/2, 1/2]2, with i ∈ (Z∗)2 the centre of the
block. Flipping a spin amounts to changing the colour of the corresponding block. The colour
of a block (red or white in Figure 1) is determined by the sign of the spin at its centre. This
alternative terminology will be used preferentially throughout the article. In fact, we will consider
con�gurations of the type depicted in Figure 1, where all red blocks form a bounded connected
region (that we call a droplet, see next paragraph) surrounded by white blocks. We will then not
even focus on colours and instead say that a block is added/deleted to mean that the new droplet
contains one more/one less block.

An important property of the zero temperature Glauber dynamics is that a large region of −
spins surrounded by + spin shrinks : with probability going to 1 as the diameter D of a region
diverges, all spins will have become + spins after a time of order D2.

In [LST14b]�[LST14a], the precise evolution of such a droplet was obtained in the scaling limit
(for a slightly di�erent choice of jump rates, but the result applies to the present case (2.1)). Let
us describe their result. Let γ0 ⊂ R2 be a Jordan curve, i.e. a closed, simple curve. Let Γ0 be the
droplet associated with γ0, meaning the compact subset of R2 with boundary ∂Γ0 = γ0. Assume
for simplicity that Γ0 is convex and γ0 is C∞ (the non-convex case is treated in [LST14a]). Fix
a scaling parameter N ∈ N≥1 and let σN,0 ∈ Σ be the spin con�guration obtained by setting
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1

Figure 1: Some possible updates for the zero temperature Glauber dynamics. Red squares represent −
spins and white squares + spins, assimilating a square with its centre, a point of (Z∗)2. If either of
the lowest two red squares disappear (at rate 1/2, since both have two neighbours of each colour), then
the remaining square has three neighbours of opposite colour and is �ipped instantaneously. Both these
squares thus become white at rate 1. After that move, the Glauber rules preclude any square of the line
from becoming red: the droplet shrinks.

σN,0(i) = −1 if i ∈ NΓ0, σN,0(i) = 1 if i /∈ NΓ0. Up to adding a �nite number of − spins, we
may assume that each − spin in σN,0 has at least two − neighbours as in Figure 1. The zero
temperature Glauber dynamics (2.1) starting from σN,0 is then well de�ned for all time.

In [LST14b], the authors prove that, rescaling space by 1/N and time by N2, the rescaled
droplet converges uniformly in time, in Hausdor� distance, to the unique solution of an anisotropic
motion by curvature starting from Γ0. To state a precise result, we need some notation. A solution
(Γt)t≥0 of motion by curvature (1.3) with initial condition Γ0 is a �ow of droplets starting at Γ0

and satisfying the following: there is a time Tf > 0 such that, for t < Tf , the boundaries (γt)t<Tf

of (Γt)t<Tf
, parametrised on the unit torus T, solve (1.3):

∀u ∈ T,∀t < Tf , ∂tγt(u) = a(θ(t, u))∂2sγ(t, u) = a(θ(t, u))k(t, u)N(t, u). (2.3)

Moreover, after time Tf , each droplet Γt is reduced to a point. In (2.3), the letter s denotes the
arclength coordinate on the curve γt for t < Tf , while k(t, u) is the curvature and θ(t, u) is the
angle between the tangent vector at point γt(u) and the �rst basis vector b0 := (1, 0). The vector
N(t, u) is the unit inwards normal at γt(u). The π/2-periodic anisotropy factor a is a quantity
with symmetries re�ecting those of the square lattice. It reads:

a(θ) :=
1

2(| sin(θ)|+ | cos(θ)|)2
, θ ∈ [0, 2π]. (2.4)

Existence and uniqueness of a �ow of sets solving (2.3) is part of the results of [LST14b]�[LST14a].
For a set Γ ⊂ R2 and ε > 0, let Γ(−ε) (resp.: Γ(ε)) denote its ε-shrinking (resp.: ε-fattening):

Γ(ε) =
⋃
x∈Γ

B1(x, ε), Γ(−ε) =
[ ⋃
x/∈Γ

B1(x, ε)
]c
, (2.5)
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where B1(x, ε) is the ball of centre x and radius ε in 1-norm. For future reference, recall:

∀(u, v) ∈ R2, ∥(u, v)∥1 := |u|+ |v|, ∥(u, v)∥2 =
√
u2 + v2, ∥(u, v)∥∞ = max{|u|, |v|}. (2.6)

The main result of [LST14b] is then the following. Denote as before by (Γt)t≥0 the �ow of droplets
satisfying (2.3) with initial condition Γ0. Let P denote the probability associated with the zero
temperature Glauber dynamics starting from the con�guration σ0, and let ΓN be the notation for
a microscopic droplet of − spins. Then the rescaled droplet trajectory evolves in di�usive time
and satis�es (2.3), in the sense that:

∀ε > 0, lim
N→∞

P
(
∀t ≥ 0, Γ

(−ε)
t ⊂ N−1ΓN

tN2 ⊂ Γ
(ε)
t

)
= 1 (2.7)

and:
∀ε > 0, lim

N→∞
P
(
∀t ≥ Tf + ε, ΓN(tN2) = ∅

)
= 1. (2.8)

For future reference, note that (2.7) is a statement on the Hausdor� distance dH of N−1ΓN
tN2 and

Γt at each time t ≥ 0. The Hausdor� distance between two non-empty, compact sets A,B ⊂ R2

reads:
dH(A,B) = inf

{
ε > 0 : A ⊂ B(ε) and B ⊂ A(ε)

}
. (2.9)

The proof of (2.7)�(2.8) relies strongly on two ingredients. The �rst ingredient is the fact that
the zero temperature Glauber dynamics has the monotonicity property (see e.g. Section 3.3 in
[Mar99]): for two spin con�gurations σ, η, write σ ≤ η when σ(i) ≤ η(i) for each i ∈ (Z∗)2. There
is then a coupling such that, with probability 1, σt ≤ ηt for all t ≥ 0.

The second ingredient is the observation that local portions of the interface can be mapped
to one-dimensional interacting particle processes, in particular to the symmetric simple exclusion
process (SSEP), which is well known. This mapping will also be used in the present paper and is
detailed in Section 2.4.

2.2 The contour dynamics

In this article, we consider a microscopic interface dynamics that we call the contour dynamics. It is
closely related to the zero temperature Glauber dynamics, with a number of interesting contrasting
features. In this section, we �rst describe the state space, then de�ne the dynamics. A connection
of the contour dynamics with the simple exclusion process is also presented (and further discussed
in Section 2.4). Throughout the article, this connection will be used as a guideline for the study
of the contour dynamics at both microscopic and macroscopic level.

2.2.1 The state space

We �rst de�ne the state space of the contour dynamics using results of [LST14b]�[LST14a] for the
Ising model as a guide to formulate conditions on the shape of the contours we consider.

The arguably simplest yet interesting case where the scaling limit of the zero temperature
Glauber dynamics is known is when the starting droplet of − spins is (the discretisation of) a
convex droplet with smooth boundary. At the microscopic level convexity is not preserved and we
instead consider curves that can be split into four parts as de�ned next. Let b0, bπ/2 and bθ for
θ ∈ [0, 2π] be the vectors:

b0 := (1, 0), bπ/2 := (0, 1), bθ := cos(θ)b0 + sin(θ)bπ/2. (2.10)
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De�nition 2.1 (The set Ω). De�ne Ω as the set of Lipschitz closed curves γ ⊂ R2 surrounding 0
(including {0}) and satisfying the following condition when γ ̸= {0}.

The curve γ can be split into four (intersecting) connected regions of maximal length. In region
k with 1 ≤ k ≤ 4, the tangent vector T to the interface, de�ned with clockwise orientation, satis�es
T · b−(k−1)π/2 ≥ 0 and T · b−kπ/2 ≥ 0 (see Figure 2).

In particular all Lipschitz closed curves that are the boundary of a convex droplets belong to
Ω. The advantage of Ω, however, is that it also contains approximations of convex curves by closed
lattice paths, as well as much more general curves.

Convention 2.2. Interfaces in this article will always be oriented clockwise.

ΓN

γ

Direction
   of T

region 1

region 2

region 3

region 4

Figure 2: The convex interface γ and the droplet ΓN associated with the discretisation γN := ∂ΓN of γ.
The four regions of both γ and γN are materialised by opening and closing brackets (for γ) or parentheses
(for γN ), with each region starting with an opening symbol and ending with a closing one. Note that
regions overlap at the poles. This is the case for the north pole of γ and all poles of γN as the latter
must contain at least two edges. To avoid confusion the delimiters of regions 1,3 are in grey and the other
two in black. As an example, region 2 of γN corresponds to the thick dashed lines. In each region, the
quarterplane to which the tangent vector T belongs is indicated by a cyan square. The spins (i.e. the
blocks) which have an edge belonging to a pole are coloured in green.

Note that, for a discrete interface, the tangent vector can only be one of the four vectors bkπ/2

(1 ≤ k ≤ 4), corresponding to ±b0,±bπ/2.
For an interface in Ω, the intervals corresponding to the intersection of two consecutive regions

will play a special role. These intervals (see Figure 2) are called poles, and can equivalently be
de�ned as points of the interface with extremal abscissa or ordinate. Pole k (1 ≤ k ≤ 4) is de�ned
as the intersection of regions k − 1 and k, where by convention k − 1 := 4 if k = 1. We shall also
refer to poles in terms of cardinal directions: pole 1 is the north pole, corresponding to the interval
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of points with maximal ordinate. Pole 2 is the east pole, made of points with maximal abscissa, etc.

We can now de�ne the state space of the contour dynamics. In view of the hydrodynamic
behaviour (2.7), we directly work with rescaled microscopic curves, i.e. lattice paths on (N−1Z)2
with N ∈ N≥1 the scaling parameter. In the following, an edge of the graph (N−1Z)2 is identi�ed
with a segment of length 1/N between two neighbouring vertices.

De�nition 2.3 (State space ΩN
mic). For N ∈ N≥1, the microscopic state space ΩN

mic
is the subset

of Ω such that:

� Each curve γN ∈ ΩN
mic

is a simple, closed lattice path on (N−1Z)2.

� Each of the four poles of γN contains at least two edges, i.e. it is a segment of length at
least 2/N .

Remark 2.4. We are only interested in the shape of interfaces, not their position in R2. The
condition that elements of Ω ⊃ ΩN

mic surround 0 should therefore be understood as a way to lift
degeneracies: it ensures that the state space ΩN

mic does not contain in�nitely many curves that are
translations one of the other (and this is its only use). ■

Notation: to avoid confusion between microscopic and macroscopic interfaces in the following,
whenever both microscopic and macroscopic interfaces are considered, microscopic interfaces are
denoted with a superscript N : γN ∈ ΩN

mic, with associated droplet ΓN . In that case, the letters
γ,Γ without the N superscript are used for macroscopic objects.

2.2.2 The dynamics

We now de�ne the contour dynamics on ΩN
mic (see Figure 3), starting with some notations.

The segments that we call poles (see Figure 2) are going to play an important role in the
dynamics. Take a curve γ ∈ Ω and let Pk = Pk(γ) denote its pole k (1 ≤ k ≤ 4). Write
Pk = [Lk, Rk], where the points Lk, Rk = Lk(γ), Rk(γ) of R2 are respectively the left and right
extremities of Pk when γ is oriented clockwise as always, see Figure 3 below. The length of pole k
is denoted by |Pk|.

In analogy with the Ising case, the block Ci with centre i ∈ (N−1Z∗)2 is de�ned as:

Ci := i+
1

2N
[−1, 1]2. (2.11)

Consider now a microscopic curve γN ∈ ΩN
mic. We say that a block in the droplet ΓN delimited by

γN is in pole k (1 ≤ k ≤ 4) if one of the edges in the boundary of the block is included in pole k.
Blocks in a pole are in green on Figure 2. Let pk = pk(γ

N) denote the number of blocks in pole k.
It is related to the length |Pk| of the pole by:

pk := N |Pk|, 1 ≤ k ≤ 4. (2.12)

With these notations, we proceed to de�ne dynamical moves.
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Let γN ∈ ΩN
mic and ΓN denote the associated droplet as usual. If i ∈ (N−1Z∗)2, adding to or

deleting from ΓN the block Ci := i+ 1
2N

[−1, 1]2 is the operation ΓN → (ΓN)i, with:

(ΓN)i :=

{
ΓN ∪ Ci if i /∈ ΓN ,

ΓN \ Ci if i ∈ ΓN .
(2.13)

De�ne then (γN)i := ∂
(
(ΓN)i

)
.

Consider now moves a�ecting the poles. For k with 1 ≤ k ≤ 4, assume that pole k of γN

contains exactly two blocks. De�ne then (γN)−,k as the boundary of (ΓN)−,k, where (ΓN)−,k is
obtained from ΓN by deleting the two blocks in pole k:

(ΓN)−,k := ΓN \
⋃

i∈(N−1Z∗)2:Ci is in Pole k

Ci, (γN)−,k = ∂
(
(ΓN)−,k

)
. (2.14)

De�ne conversely a transformation that makes a droplet grow at the pole as follows. Let x ∈
(N−1Z)2 ∩ Pk (1 ≤ k ≤ 4) be any point of Pk di�erent from Rk, Lk. De�ne then (γN)+,x as the
boundary of (ΓN)+,x, with:

(ΓN)+,x := ΓN ∪
⋃

i∈(N−1Z∗)2\ΓN :x∈Ci

Ci, (γN)+,x = ∂
(
(ΓN)+,x

)
. (2.15)

In words, (ΓN)+,x is the droplet ΓN to which the two blocks with boundary that contains x (e.g.
for the north pole, the block for which x is at the lower right corner and the block for which it
is at the lower left) and that are not in pole k have been added. We can now de�ne the contour
dynamics, illustrated on Figure 3.

De�nition 2.5. The contour dynamics on ΩN
mic

at inverse temperature β ≥ 0 is de�ned through
the jump rates c(γN , γ̃N) for curves γN , γ̃N ∈ ΩN

mic
:

� c
(
γN , (γN)i

)
= (1/2)1(γN )i∈ΩN

mic

for i ∈ (N−1Z∗)2;

� c
(
γN , (γN)−,k

)
= 1pk(γN )=21(γN )−,k∈ΩN

mic

, with pk de�ned in (2.12) (1 ≤ k ≤ 4);

� (Growth at the poles) c
(
γN , (γN)+,x

)
= e−2β for each x ∈ (N−1Z)2 ∩ Pk(γ

N) with x /∈
{Rk(γ

N), Lk(γ
N)}, 1 ≤ k ≤ 4;

� c(γN , γ̃N) = 0 for any other γN , γ̃N .
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L2
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Figure 3: Some moves and associated jump rates for the contour dynamics acting on an element of ΩN
mic.

Positions of the extremities Lk, Rk, 1 ≤ k ≤ 4 of the poles are represented by dark dots. Possible positions
of Lk, Rk after a jump are represented by light dots. Dynamical moves amount to adding or deleting
squares of side-length 1/N ("blocks"). The pole P3 contains two blocks, i.e. p3 = 2, thus both of its blocks
can be simultaneously deleted by an update.

Remark 2.6. Let us comment on De�nition 2.5.

� If β = +∞, then the contour dynamics and the zero temperature Glauber dynamics (2.1)
act on a contour γN ∈ ΩN

mic in the same way, provided the resulting contour is in ΩN
mic. In

particular, the contour dynamics at β = +∞ is monotonous.

� At each β ∈ [0,+∞), the contour dynamics is not monotonous (see Figure 4). However, it
is built to be reversible with respect to the measure νNβ , de�ned by:

νNβ (γ) :=
1

ZN
β

e−βN |γN |, γN ∈ ΩN
mic, ZN

β a normalisation factor. (2.16)

Recall that elements of ΩN
mic must surround the point 0 by De�nition 2.3. This breaks

translation invariance so that νNβ is well-de�ned as soon as β > log 2 (the number of curves
of length n/N in ΩN

mic is bounded by cn42n for some c > 0 and each n ∈ N≥1).

� The regrowth moves are an important di�erence from the zero temperature Glauber dy-
namics (2.1), where regrowth of the droplet was not possible. This regrowth is designed
to make the dynamics reversible with respect to the measure νNβ . Compared to the Dirac
at the con�guration with only − spins that is invariant for the zero temperature Glauber
dynamics, the measure νNβ is much more convenient to work with: it has full support, and
can be used for explicit computations. These properties make avalaible the entropy method
of Guo, Papanicolaou and Varadhan [GPV01].

The downside of the regrowth term is that one has to carefully control the motion of the
poles, which turns out to be the main di�culty to study the contour dynamics.
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� The contour dynamics is non-local: one cannot �nd ρ ∈ N≥1 independent of N such that,
for any γN ∈ ΩN

mic and any x ∈ γN ∩ (N−1Z)2, deciding whether c
(
γN , (γN)x

)
> 0 require

only the knowledge of all points of the curve at 1-distance at most ρ/N from x.

The non-locality is due to the fact that regions 1 and 3, or 2 and 4 of a curve in ΩN
mic may

be very close to each other as subsets of R2, so that deleting a single block would create
self-intersections in the interface, which is forbidden. This point is illustrated on Figure 4.

xe+
y

e-
y

y

e+
z

e-
zz   w

ξw=1     w'
ξw' = 0

Figure 4: Left �gure: two microscopic curves equal everywhere except at the north pole: the con�guration
represented by the black line has a pole containing 2 blocks, the one with the red line a pole containing
6 blocks. Initially, the droplet delimited by the black line contains the one delimited in red. A possible
update after which the inclusion does not hold is represented in dashed red lines: the contour dynamics
at β < ∞ is not monotonous.
Right-�gure: only looking at points of the interface in a neighbourhood of x, the update indicated by an
arrow should be allowed, as the corresponding block has two neighbours in and two neighbours out of
the droplet. However, this update is forbidden as the resulting curve would not belong to ΩN

mic (it would
not be simple). The contour dynamics is therefore non local. The vectors e±y , e

±
z are indicated for two

points y, z of the interface. The edges [y + e−y , y] and [y, y + e+y ] are perpendicular: a block can be added
or removed at y (in this example, added). The same situation occurs at site w: the edge [w,w + e+w ] is
vertical, corresponding to ξw = 1, while the edge [w′, w] = [w + e−w , w] is horizontal, i.e. ξw′ = 0.

Link with simple exclusion. The jump rates c
(
γN , (γN)i

)
, γN ∈ ΩN

mic, i ∈ (N−1Z∗)2 appear to
involve the entire space as i ∈ (N−1Z∗)2. They however vanish when i is not at distance 1/(2N)
from γN and it is in fact possible to express these jump rates only in terms of points of the interface.
This connects the contour dynamics to the Symmetric Simple Exclusion Process (SSEP for short)
as we now explain.

For γN ∈ ΩN
mic, let V (γN) denote the set of vertices of γN :

V (γN) := (N−1Z)2 ∩ γN . (2.17)

If x ∈ V (γN), let e+x = n(x, γN)−x and e−x = p(x, γN)−x where n(x, γN), p(x, γN) are respectively
the next and previous points relative to x when going through V (γN) clockwise (see Figure 4).

Let ξx = ξx(γ
N) be the state of the edge [x, x+ e+x ], de�ned by:

ξx = 1 if [x, x+ e+x ] is vertical, ξx = 0 if [x, x+ e+x ] is horizontal. (2.18)

A block can be added/deleted to a droplet provided it has at least two neighbours of opposite
colours, see Figure 3. This means that the interface has a corner at this block, i.e. there is a point
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x ∈ V (γN) (corresponding to the corner of the block) such that the two edges [x + e−x , x] and
[x, x+e+x ] are perpendicular. Orthogonality of the two edges can equivalently be stated as follows:

1e+x · e−x =0 = 1 ⇔ ξx+e−x
(1− ξx) + ξx(1− ξx+e−x

) = 1. (2.19)

Associating a site with each edge of γN and viewing ξ· as a con�guration of particles (with e.g. ξx =
1 if there is a particle at x; the precise mapping is given later in Figure 7), the right-hand side
of (2.19) says that a jump may occur in the contour dynamics when there is a particle at site
x + e−x but not at site x (or vice versa). This is precisely the exclusion condition of the SSEP. If
i ∈ (N−1Z)2 is the centre of the block with corner x, we can now de�ne the curve (γN)x (involving
the point x of the interface) as the curve (γN)i of (2.13), and set:

c
(
γN , (γN)x

)
= 1(γN )x∈ΩN

mic

cx(γ
N), cx(γ

N) :=
1

2

[
ξx+e−x

(1− ξx) + ξx(1− ξx+e−x
)
]
. (2.20)

The indicator function above is related to the non-locality of the dynamics, see the right �gure of
Figure 4 and the second point of Remark 2.6. We will also say that "x is �ipped" to mean that
the block with centre i is added or deleted. The connection with the SSEP is further discussed in
Section 2.4.

Recalling the jump rates at the poles in De�nition 2.5, the generator Lβ of the contour dynamics
at β > 0 then acts on functions f : ΩN

mic → R according to:

∀γN ∈ ΩN
mic, N2Lβf(γ

N) = N2
∑

x∈V (γN )

1(γN )x∈ΩN
mic

cx(γ
N)
[
f
(
(γN)x

)
− f(γN)] (2.21)

+N2

4∑
k=1

[
1pk(γN )=21(γN )−,k∈ΩN

mic

[
f
(
(γN)−,k)− f(γN)

]
+

∑
x∈V (γN )∩Pk(γ

N )

x+e±x ∈Pk(γ
N )

e−2β
[
f
(
(γN)+,x

)
− f(γN)

]]
.

In (2.21), the �rst line corresponds to the SSEP-like updates, and the second line to the poles, with
the last term corresponding to regrowth moves. Note the N2 factor in the generator corresponding
to a di�usive rescaling of time, which already appeared in the hydrodynamics (2.7).

2.2.3 Initial condition of the dynamics, topology and e�ective state space

In this section, we explain how a suitable choice of initial condition, not restrictive at the macro-
scopic level, makes the contour dynamics local and prevents various pathologies.

The contour dynamics and state space ΩN
mic have to be de�ned with great generality, which

means that the following degenerate microscopic curves have to be considered:

(i) curves with two non-consecutive regions at microscopic distance as in Figure 4, corresponding
to self-intersecting curves in the limit;

(ii) curves with two poles at microscopic distance from one-another, corresponding to curves
which have one or more regions reduced to a point in the limit;

(iii) curves at microscopic distance from the origin 0;
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(iv) curves with one or more poles such that the volume of all blocks at macroscopic distance
beneath that pole vanishes in the N → ∞ limit. This corresponds in the limit to droplets
with poles at strictly positive (possibly in�nite) distance from the interior of the droplet, see
the right-hand side of Figure 6.

Let us discuss how to avoid these degenerate cases.
Starting from a curve that does not feature the pathologies of items (i)-(iii), we will see in

Lemma 2.7 below that a change in the volume of the droplet (i.e. order N2 blocks) is required for
any of these pathologies to arise. One expects a change in volume to require a di�usive amount
of time in analogy with the zero temperature Glauber dynamics (this is indeed the case, see
Proposition 2.11). Thus to avoid (i)-(iii) it will be enough to start from a nice enough initial
condition as de�ned below.

The last item is di�erent and responsible for much of the di�culty in the study of the dynamics.
Indeed, growth at the poles can occur independently of the shape of the curves and could therefore
occur on time scales much shorter than di�usive. This is independent of the initial condition and
will have to be ruled out by a separate dynamical estimate (see Proposition 2.11).

Initial condition. We now explain how to choose the initial condition to avoid situations in items
(i)-(iii). For γ ∈ Ω (see De�nition 2.3)), recall that Γ denotes the associated droplet. Introduce
Γ′ ⊂ Γ as the largest droplet with simple boundary such that dL1(Γ,Γ′) = 0 (see Figure 18 in
Appendix B). When γ is simple one has simply Γ′ = Γ. The volume distance dL1 between bounded
sets A,B ⊂ R2 is de�ned by:

dL1(A,B) =

∫
R2

∣∣1A − 1B

∣∣ du dv. (2.22)

Notation: in the rest of the article, to avoid constantly alternating between interfaces and their
associated droplets, we chose as much as possible to state results in terms of interfaces γ, γ̃ ∈ Ω
exclusively. In particular, we will use the convention:

dL1(γ, γ̃) := dL1(Γ, Γ̃). (2.23)

De�ne now q(γ) as the distance between 0 and γ and let r(γ) denote the smallest vertical or
horizontal distance between consecutive poles of ∂Γ′. De�ne also r′(γ) as the minimum of the
distances between regions 1, 3 and between regions 2, 4 of ∂Γ′ (see (B.18)�(B.19)�(B.20) for precise
de�nitions).

Lemma 2.7. Let γ ∈ Ω be such that q(γ) > 0, r(γ) > 0 and r′(γ) > 0. There is then r0 = r0(γ) > 0
such that:

� all droplets Γ̃ associated with a curve γ̃ ∈ Ω and such that dL1(γ, γ̃) ≤ r20 satisfy q(γ̃) >
q(γ)/2, r(γ̃) > r(γ)/2 and r′(γ̃) > r′(γ)/2.

� The jump rates c(γ̃N , ·) of any γ̃N ∈ ΩN
mic

with dL1(γ, γ̃N) ≤ r20 are local: there is N(γ) ∈ N≥1

such that, for any N ≥ N(γ) and any x ∈ V (γ̃N), the value of c(γ̃N , (γ̃N)x) can be determined
through the knowledge of points at 1-distance at most 3 from x.
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Note that r′(γ) > 0 is true as soon as γ is a simple curve. Note also that r′(γ) > 0 ensures the
locality of the jump rates for all microscopic curves close enough to γ since it forbids the situation
in the right �gure of Figure 4. Lemma 2.7 is proven in Appendix B, see Lemma B.6.

How to choose an initial condition to avoid pathologies and to have a local dynamics is now
clear and stated next.

De�nition 2.8 (Initial condition of the dynamics). Let γref ∈ Ω be such that q(γref) > 0 and
r(γref) > 0. Assume also that γref is a simple curve (thus r′(γref) > 0).

The dynamics is started from the microscopic curve γref,N ∈ ΩN
mic

de�ned as follows. Let Γref,N

be the droplet obtained by discretising Γref according to:

Γref,N =
⋃

i∈(N−1Z∗)2:Ci⊂Γref

Ci, Ci := i+
1

2N
[−1, 1]2. (2.24)

Then ∂Γref,N is a simple curve for large enough N ∈ N. Further, if N is large enough, up to
adding blocks at the poles to ensure each pole of ∂Γref,N contains at least two blocks, we may
assume ∂Γref,N ∈ ΩN

mic
. We then set γref,N := ∂Γref,N .

Starting from γref,N , proving that in the large N limit no pathology arise after a positive time
is one of the di�culties, treated in Proposition 2.11.

E�ective state space. Starting from γref , we will study the dynamics on a subset of Ω composed
of curves that, like γref , do not fall under the degenerate situations of items (i)�(iii). Such curves
satisfy the following property.

Property 2.9. A curve γ ∈ Ω satis�es Property 2.9 if q(γ), r(γ), r′(γ) > 0, where these quantities
are de�ned informally above (2.22) and rigorously above Lemma B.6.

We could then carry out the study of the contour dynamics focussing on elements of Ω satisfying
Property 2.9. Results in that direction are stated in Theorem 2.19.

However, this choice creates di�culties at the level of the topology. To simplify the exposition
and focus on the probabilistic aspects of the droplet evolution, we choose to study the contour
dynamics acting on curves in a small volume neighbourhood of γref , which in view of Lemma 2.7
is enough to ensure Property 2.9 still holds. In this sense, all results stated in Section 2.3 apart
from Theorem 2.19 can be understood as short-time results, as we only consider interfaces close
to the initial condition of the dynamics.

De�nition 2.10 (E�ective state space E). The e�ective state space E is the subset of Ω made of
curves γ satisfying dL1(γref , γ) ≤ r20, with r0 = r0(γ

ref) the quantity in Lemma 2.7. In particular,
all curves in E satisfy Property 2.1 by item 1 of Lemma 2.7.

At the microscopic level, we will consider elements of ΩN
mic

∩ E. The jump rates of the contour
dynamics for each such curve are local by item 2 of Lemma 2.7.
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2.2.4 Test functions and tilted dynamics

In the breakthrough paper [KOV89], a powerful method was introduced to study large deviations
for interacting particle systems. As a basic ingredient, it relies on the introduction of suitable
tilted dynamics. In our case, these dynamics are de�ned as follows. Consider the following set C
of test functions:

C := C2
c

(
R+ × R2

)
. (2.25)

In (2.25), the subscript c means compactly supported. We will frequently write Gt for the function
x ∈ R2 7→ G(t, x), for t ≥ 0. For H ∈ C, de�ne another (time-inhomogeneous) Markov chain with
generator N2Lβ,H by modifying the jump rates as follows. If γ ∈ Ω, recall that Γ stands for the
droplet associated with γ and let:〈

Γ, Ht

〉
:=

∫
Γ

Ht(u, v) du dv, t ≥ 0. (2.26)

Then, for each γN , γ̃N ∈ ΩN
mic ∩ E and associated droplets ΓN , Γ̃N , the tilted jump rates are:

∀t ≥ 0, cHt(γN , γ̃N) := c(γN , γ̃N) exp
[
N
〈
Γ̃N , Ht

〉
−N

〈
ΓN , Ht

〉]
. (2.27)

As each site is associated with a block of area 1/N2, the tilt by N
〈
Γ, Ht

〉
can be thought of as

adding a small magnetic �eld of size O(N−1) at each site. This magnetic �eld is inhomogeneous
but regular in space and time. The probability measure associated with the speeded-up generator
N2Lβ,H will be denoted by PN

β,H , or simply PN
β when H ≡ 0 (recall that the di�usive, N2 scaling is

the correct one for motion by curvature). The corresponding expectations are denoted by EN
β,H ,EN

β

respectively.

2.3 Results

Our �rst result is a stability estimate. It states that, in the large N limit, trajectories starting
from the discretisation γref,N of the curve γref of De�nition 2.8 typically have length bounded
independently of N and stay close to γref in volume for short time, thereby avoiding the pathologies
of items (i)�(iv) of Section 2.2.3.

Proposition 2.11. Let β > log 2 and H ∈ C. Recall that the initial condition of the dynamics
γref,N for N ∈ N≥1 is given in De�nition 2.8. Then:

1. The length of an interface is of order 1 in the following sense. For each time T > 0, there
are constants C(β,H, T ), C(H) > 0 independent of γref such that:

∀A > 0, lim sup
N→∞

1

N
logPN

β,H

(
sup
t≤T

|γNt | ≥ A
)
≤ −C(β,H, T )A+ |γref |β + C(H). (2.28)

2. There is a time t0(β,H, r0, |γref |) > 0, with r0 given in De�nition 2.10 of E, such that:

lim
N→∞

PN
β,H

(
∀t ≤ t0(β,H, γ

ref), γNt ∈ E
)
= 1. (2.29)
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  ϵN
edges

proportion
  +,ϵN ≈ e-β of 
vertical edges
ξL1

θ(L1)- θ(L1)+

Figure 5: North pole of a curve with the proportion ξ+,εN
L1

of vertical edges to the right of the pole. For

drawing convenience, ξ+,εN
L1

is assumed to be close to e−β (this is only shown to be true for its time average
in Proposition 2.12). The corresponding angles θ(L1)± are also drawn.

We use item 2) in Proposition 2.11 to only work with trajectories taking values in the e�ective
state space E at each time (except Theorem 2.19, where general trajectories are treated).

The second result, Proposition 2.12, concerns the role of the parameter β. This result is
perhaps the most striking feature of the contour dynamics. To state it, we need some notations.
For γN ∈ ΩN

mic ∩ E , ℓ ∈ N≥1 and a vertex x ∈ V (γN) = (N−1Z)2 ∩ γN , recall the de�nition (2.18)
of ξx and denote by ξ+,ℓ

x the local average (see Figure 5):

ξ+,ℓ
x =

1

ℓ+ 1

∑
y∈V (γN )∩B1(x,ℓ/N)

y≥x

ξy, (2.30)

where B1(x, a) is the ball of centre x and radius a > 0 in 1-norm (2.6). By y ≥ x we mean that
y is encountered after x when travelling on γN clockwise. The parameter ℓ will always be chosen
much smaller than the number of points in V (γN), so that no vertex is counted twice in ξ+,ℓ

x .
We shall informally refer to ξ+,ℓ

x as the slope (on the right-side of x). The slope ξ−,ℓ
x on the left

of x is de�ned similarly by averaging over points y ≤ x.

Proposition 2.12. Take β > log 2 and a time T > 0. Then, for any bias H ∈ C, any test function
G ∈ C and any δ > 0, if k ∈ {1, 3}:

lim
ε→0

lim sup
N→∞

1

N
logPN

β,H

(
∀t ∈ [0, T ], γNt ∈ E ;∣∣∣∣ ∫ T

0

G(t, Lk(γ
N
t ))
(
ξ±,εN

Lk(γ
N
t )

− e−β
)
dt

∣∣∣∣ ≥ δ

)
= −∞. (2.31)

If on the other hand k ∈ {2, 4}:

lim
ε→0

lim sup
N→∞

1

N
logPN

β,H

(
∀t ∈ [0, T ], γNt ∈ E ;∣∣∣∣ ∫ T

0

G(t, Lk(γ
N
t ))
(
1− ξ±,εN

Lk(γ
N
t )

− e−β
)
dt

∣∣∣∣ ≥ δ

)
= −∞. (2.32)

Proposition 2.12 shows that, as long as trajectories remain in the e�ective state space E , the
time average of the slopes on either side of the poles are �xed in terms of β. As we explain in
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 : 1/N

γ1
γ2

Figure 6: Portions of two curves γ1, γ2 ∈ Ω and of one element of a sequence of microscopic curves in
ΩN
mic, N ∈ N≥1 that converges to γ1 in Hausdor� distance. The north poles of γ1, γ2 are point-like and

represented by the magenta dots. The black dots delimit the �at portion on which the vertical line beneath
the north poles of γ1, γ2 rest. This portion may (γ2) or may not (γ1) be reduced to a point. This possibility
causes di�culties at the level of the topology, in Appendix B.

Section 2.4, Proposition 2.12 can be understood as a statement that the pole dynamics has an
e�ect similar to reservoirs at density e−β or 1− e−β in the simple exclusion process.

In the following, it will be useful to rephrase the condition on the slope described in Proposi-
tion 2.12 in terms of a condition that makes sense for general curves in E . We shall say that a curve
γ ∈ E has slope e−β at pole k with 1 ≤ k ≤ 4 (see Figure 5) if the angle θ(Lk(γ)±) between the
tangent vector T approaching Lk(γ) from the left (−) or the right (+) and the vector b0 = (1, 0)
satis�es:

tan
(
θ(Lk(γ)−) +

(k − 1)π

2

)
=

e−β

1− e−β
= − tan

(
θ(Lk(γ)+) +

(k − 1)π

2

)
. (2.33)

Hydrodynamic limit
Next, we investigate the typical evolution, in the large N limit, of interfaces following the contour
dynamics with a bias H ∈ C. We prove that they evolve according to an anisotropic motion
by curvature as in (2.3), but with an in�uence of the parameter β. To prove such a result, a
suitable topology on trajectories is required. In the proof of the hydrodynamic limit for the zero
temperature stochastic Ising model in [LST14b]�[LST14a], the authors prove uniform convergence
in time for the topology associated with the Hausdor� distance (2.9). The Hausdor� distance
between sets appears as a natural distance to put on the state space. Indeed, away from each pole,
portions of the interface can be mapped to a SSEP (see Section 2.4). Hausdor� convergence of
the interface can then be shown to be equivalent to weak convergence of the empirical measure in
the associated SSEP, a topology in which hydrodynamics are known for this model. In the case
of the contour dynamics, the Skorokhod topology associated with the Hausdor� distance seems
like a suitable choice. However, this topology turns out to be too strong. Indeed, although it is
possible to control the volume of droplets pointwise in time (in terms of the volume distance dL1

de�ned in (2.22)), a pointwise control seems out of reach for the poles. This is because poles can
grow regardless of the shape of the interface, making it very di�cult to prove their macroscopic
di�usive motion.

Still, some information on the poles needs to be present in the topology as we need to char-
acterise curves with degenerate poles as in Figure 6. It turns out to be possible and su�cient to

18



control the trajectory of the poles in a time-integrated way. For each T > 0, de�ne the set:

E([0, T ],Ω) := DL1([0, T ],Ω) ∩
{
(γt)t≤T :

∫ T

0

|γt| dt <∞
}
,

E([0, T ], E) := E([0, T ],Ω) ∩
{
(γt)t≤T : γt ∈ E for t ∈ [0, T ]

}
. (2.34)

Notation: we often use the subscript · (as in γ· in (2.35)) to denote a trajectory, provided the
time interval on which it is de�ned is clear from the context.

Let dSL1 denote the Skorokhod distance associated with the volume distance dL1 between curves
(recall the convention (2.23) that the L1 distance between two curves is by de�nition the L1

distance between the droplets they delimit), see e.g. [KL99, Chapter 4 Section 1] for the classical
construction of the Skorokhod distance. Recall also that dH is the Hausdor� distance (2.9) on Ω.
The set E([0, T ], E) is then equipped with the distance:

∀γ·, γ̃· ∈ E([0, T ], E), dE(γ·, γ̃·) := dSL1(γ·, γ̃·) +

∫ T

0

dH(γt, γ̃t) dt. (2.35)

Note that, since trajectories in E([0, T ], E) have almost always �nite length, the associated droplets
are almost always bounded subsets of R2, thus the Hausdor� distance in (2.35) is almost always
well-de�ned. Properties of (E([0, T ], E), dE) are established in Appendix B.2.

Informally stated, our hydrodynamic limit result is the following. Introduce the mobility µ of
the model:

µ(θ) :=
| sin(2θ)|

2(| sin(θ)|+ | cos(θ)|)
, θ ∈ [0, 2π]. (2.36)

The sequence (PN
β,H)N∈N≥1

of laws of the trajectory of interfaces converges weakly to a probability
measure concentrated on trajectories in E([0, T ], E) that are weak solutions, in the sense de�ned
below in (2.39), of:{

∂tγ ·N = a∂2sγ ·N− µH = ak − µH away from the poles,

γt satis�es (2.33) at almost every t ∈ [0, T ].
(2.37)

Above,N is the inwards normal vector, s the arclength coordinate, k the curvature. The anisotropy
a (recall (2.4)) and mobility µ are functions of the angle θ(x) ∈ [0, 2π] between the tangent T(x)
at a point x ∈ γt (t ∈ [0, T ]) and the �rst basis vector b0 (recall (2.10)).

The precise hydrodynamic limit result is given next, for su�ciently short time only (see however
Remark 2.14). To state it, let α denote a primitive of the anisotropy a de�ned in (2.4), in the
sense that α′(θ) = −a(θ) for each θ ∈ [0, 2π] \ (π/2)Z:

α(θ) =
a(θ)

2

sin(2θ) cos(2θ)

| sin(2θ)|
=

T(θ) · b0T(θ) · bπ/2

4∥T(θ)∥1

[ 1

|T(θ) · bπ/2|
− 1

|T(θ) · b0|

]
, (2.38)

with T(θ) = cos(θ)b0 + sin(θ)bπ/2.
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Proposition 2.13. Recall De�nition 2.8 of the initial condition γref,N for N ∈ N≥1. Let β > log 2,
H ∈ C and t0 = t0(β,H, r0, |γref |) be the time of Proposition 2.11. Then (PN

β,H)N converges, in
the weak topology associated with dE, to a measure concentrated on trajectories in E([0, t0], E)
that have almost always point-like poles, i.e. for a.e. t ∈ [0, t0] and each 1 ≤ k ≤ 4, the pole
Pk(γt) := [Lk(γt), Rk(γt)] is reduced to the point Lk(γt) = Rk(γt). Moreover, these trajectories are
weak solutions of anisotropic motion by curvature with drift on [0, t0] in the following sense: for
any t ≤ t0 and any test function G in the set C de�ned in (2.25),

〈
Γt, Gt

〉
−
〈
Γref , G0

〉
−
∫ t

0

〈
Γt′ , ∂t′Gt′

〉
dt′ =

∫ t

0

∫
γt′\∪kPk(γt′ )

α(θ(s))∂sG(t
′, γt′(s)) ds dt

′

−
4∑

k=1

∫ t

0

(1
2
− e−β

)
G(t′, Lk(γt′)) dt

′

+

∫ t

0

∫
γt′

µ(θ(s))(HG)(t′, γt′(s)) ds dt
′. (2.39)

Above, Γt is the droplet associated with γt,
〈
Γt, Gt

〉
is the integral of Gt on Γt as in (2.26) and s

is the arclength coordinate on γt at time t ∈ [0, t0].

Remark 2.14. The time t0 = t0(β,H, r0, |γref |) until which Proposition 5.6 is proven does not
make use of the structure of solutions to (2.39), and one can in fact improve the result as follows
(this improvement is carried out in Section 5.2.3). Take H ∈ C, T ≥ t0(β,H, |γref |) and make the
following assumptions:

1. Equation (2.39) admits only one solution on [0, T ], call it γH· = (γHt )t≤T .

2. γH· remains in E until time T , in the sense:

∃ζH > 0, BdE

(
γH· , ζH

)
⊂ E([0, T ], E). (2.40)

Then (PN
β,H)N , as a sequence of measures on E([0, T ],Ω), converges weakly to the measure δγH

·
. ■

Remark 2.15. The term on the second line of (2.39) �xes the value of the slope at the pole of
curves to the one prescribed by Proposition 2.12. To see why, assume that the curvature (kt)t≤t0

on a solution (γt)t≤t0 of (2.39) is, say, continuous and bounded on γt \ ∪kPk(γt) at each time
t ≤ t0. By de�nition, the tangent angle s 7→ θ(s) = θ(γt(s)) then satis�es ∂sθ(s) = −kt(s) for
each arclength coordinate s corresponding to a point in γt \ ∪kPk(γt), with the − sign due to the
clockwise parametrisation of γt. Let G ∈ C. Integrating α∂sG(t, ·) by parts on each region in (2.39)
for a �xed t ∈ [0, t0], one �nds by de�nition (2.38) of α:∫

γt\∪kPk(γt)

α(θ(s))∂sG(t, γt(s)) ds

=
4∑

k=1

[
α
(
θ(Lk+1(γt))−

)
G(t, Lk+1(γt))− α

(
θ(Rk(γt))+

)
G(t, Rk(γt))

]
−
∫
γt\∪kPk(γt)

a(θ(s))k(γt(s))G(t, γt(s)) ds. (2.41)
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Since each pole is almost always reduced to a point, Lk(γt) = Rk(γt) for each k and almost every
t ∈ [0, t0] and the sum in (2.41) compensates the second line of (2.39) provided α

(
θ(Lk+1(γt))−

)
=

1/4− e−β/2 = −α
(
θ(Lk(γt))+

)
. This can be shown to hold when the tangent angle on either side

of each pole satis�es (2.33). ■

Large deviations
We obtain upper-bound large deviations for the contour dynamics at each β > log 2. Assuming
solutions of (2.39) to be unique, lower-bound large deviations can also be derived. Upper and
lower bounds match for suitably regular trajectories. Speci�c to our model is, again, the control
of the poles of the curves.
Let T > 0 and β > log 2. Given γref as in De�nition 2.8 a trajectory γ· ∈ E([0, T ], E) with
associated droplets (Γt)t≤T , de�ne, recalling that Lk, Rk are the extremities of the pole Pk:

ℓβH(γ·) =
〈
ΓT , HT

〉
−
〈
Γref , H0

〉
−
∫ T

0

〈
Γt, ∂tHt

〉
dt−

∫ T

0

dt

∫
γt\∪kPk(γt)

α(θ(s))∂sH(t, γt(s)) ds

+
(1
4
− e−β

2

)∫ T

0

4∑
k=1

[
H(t, Lk(γt)) +H(t, Rk(γt))

]
dt. (2.42)

De�ne also:

Jβ
H(γ·) = ℓβH(γ·)−

1

2

∫ T

0

∫
γt

µ(θ(s))H2(t, γt(s)) ds dt, γ· ∈ E([0, T ], E), (2.43)

where the mobility µ is de�ned in (2.36).
To build the rate function, we will have to restrict the state space to control the behaviour of the
poles. Introduce thus the subset Epp([0, T ], E) ⊂ E([0, T ], E) of trajectories with almost always
point-like poles:

Epp([0, T ], E) =
{
γ· ∈ E([0, T ], E) :

4∑
k=1

∫ T

0

∥Lk(γt)−Rk(γt)∥∞dt = 0

}
. (2.44)

Recall that Rk (Lk) is the right (left) extremity of pole k ∈ {1, ..., 4}. Let us now de�ne the rate
function Iβ(γ·|γref) for trajectories γ· ∈ E([0, T ], E):

Iβ(γ·|γref) =

{
supH∈C J

β
H(γ·) if γ· ∈ Epp([0, T ], E),

+∞ otherwise.
(2.45)

Remark 2.16. � It is possible by Proposition 2.12 to enforce that only trajectories with slope
e−β at the poles at almost every time have �nite rate function. One would expect this
condition to already be present in (2.45), but the very weak topology at the poles makes it
more complicated to see than e.g. for a SSEP with reservoirs, as done in [BLM09].

� If β = ∞ and γ· is a su�ciently regular trajectory in C([0, T ], E) starting from γref (say, with
well-de�ned, continuous and bounded normal speed and curvature at each time t ∈ (0, T ]),
then setting β = ∞ in (2.45) one formally obtains:

I∞(γ·|γref) =
1

2

∫ T

0

∫
γt

(
v
(
γt(s)

)
− a
(
θ(s)

)
k
(
γt(s)

))2
µ
(
θ(s)

) ds dt. (2.46)
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As conjectured in (1.4), the rate function I∞(·|γref) thus measures the quadratic cost of
deviations from anisotropic motion by curvature. At β < ∞, Iβ(·|γref) can also be written
in the form (2.46), but only for trajectories that are not smooth: they must have kinks at
the poles, in the sense that they satisfy the condition (2.33) at almost every time. ■

De�ne the set Aβ,T ⊂ Epp([0, T ], E) of trajectories that can be obtained as a solution of the
anisotropic motion by curvature with a smooth drift H ∈ C (2.39):

Aβ,T =
{
γ· ∈ Epp([0, T ], E) : there is a bias H ∈ C such that (2.39) has a

unique solution in E([0, T ], E), and this solution is γ·

}
. (2.47)

Theorem 2.17. Let T > 0 and β > log 2. For any closed set C ⊂ E([0, T ], E):

lim sup
N→∞

1

N
logPN

β

(
γN· ∈ C

)
≤ − inf

C
Iβ(·|γref). (2.48)

Moreover, for any open set O with O ⊂ E([0, T ], E):

lim inf
N→∞

1

N
logPN

β

(
γN· ∈ O

)
≥ − inf

O∩Aβ,T

Iβ(·|γref). (2.49)

Remark 2.18. � The set Aβ,T is expected to contain a large class of trajectories. In the
β = ∞ case, it would for instance contain all classical solutions of the equation v = ak−µH,
H ∈ C, which can be studied by the method of [LST14b][LST14a]. When β < ∞ however,
even classical solutions of (2.37) are extremely di�cult to study due to the poles. A fortiori,
the study of uniqueness and regularity of solutions of the weak formulation (2.39) is di�cult.

� A possible application of Theorem 2.17 is the analysis of metastability. For instance, applying
a small, uniform �eld of the form h/N (h > 0), one can use Theorem 2.17 to study the optimal
trajectory for a nucleated droplet to cover the whole space.
One can also ask about the typical speed at which such a droplet grows. This speed is
conjectured to be proportional to the size of the applied �eld [SS98], i.e. of order 1/N . For
the contour dynamics, curves move di�usively, which readily con�rms the conjecture. The
interested reader will �nd much more on metastability and its relation to large deviations in
the book [OV05]. ■

We conclude this section by rephrasing Theorem 2.17 in a more general context. Elements of
E are, by assumption (see De�nition 2.10), in a small neighbourhood of the initial condition γref

for the volume distance. Working with curves in E is useful to avoid topology-related problems
and obtain a large deviation bound valid for general sets. As claimed above De�nition 2.10 of E ,
however, it is not important that microscopic curves be close to γref (i.e. in E), only that they satisfy
Property 2.9. The next theorem therefore improves on Theorem 2.17 for events corresponding to
small balls around a given trajectory possibly far from γref , but satisfying the same Property 2.9
as γref at each time.

To state it, assume that Jβ
H is de�ned on the entire space E([0, T ],Ω) with the same expres-

sion (2.43) (rather than on E([0, T ], E)). The rate function Iβ(·|γref) is correspondingly given for
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γ· ∈ E([0, T ],Ω) by:

Iβ(γ·|γref) =

{
supH∈C J

β
H(γ·) if γ· has almost always point-like poles,

+∞ otherwise.
(2.50)

Similarly, Aβ,T is now assumed to contain trajectories in E([0, T ],Ω) with almost always point-like
poles and that satisfy Property 2.9 at each time, rather than trajectories in Epp([0, T ], E).

Theorem 2.19. Let β > log 2 and let γ̄· ∈ E([0, T ],Ω) be such that γ̄t satis�es Property 2.9 at
each time t ≤ T . Then:

lim sup
ζ→0

lim sup
N→∞

1

N
logPN

β

(
γN· ∈ BdE

(
γ̄·, ζ

))
≤ −Iβ(γ̄·|γref). (2.51)

Moreover, if γ̄· is in Aβ,T , then:

lim inf
ζ→0

lim inf
N→∞

1

N
logPN

β

(
γN· ∈ BdE

(
γ̄·, ζ

))
≥ −Iβ(γ̄·|γref). (2.52)

2.4 Heuristics on large deviations: link with the SSEP

In this section, we highlight the relationship between the contour dynamics away from the poles
and the SSEP. This relationship serves as a guideline in the proof of large deviations (the structure
of the proof is detailed in Section 2.5). A heuristic derivation of the rate function of Theorem 2.17
is proposed below using the link with the SSEP.

Take a curve γN ∈ ΩN
mic (see De�nition 2.3) as in Figure 2. By De�nition 2.1 of Ω, γN can

be split into four regions. Let 1 ≤ k ≤ 4. Rotating the canonical reference frame (b0,bπ/2) by
π/4+ (k− 1)π/2, region k of the boundary is turned into the graph of a 1-Lipschitz function fN,k

with derivative ±1. The k = 1 case is illustrated on Figure 7.
There is a well-known bijection between the graph of fN,k and a particle con�guration which

goes as follows. With each edge in region k, associate a site. Put a particle in the site if the
corresponding edge corresponds to an interval on which fN,k has derivative −1 and no particle if
fN,k has derivative 1. Updates of the contour dynamics away from the poles then correspond to
SSEP updates, as remarked in (2.19).
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+π/4

- spins

+ spins fN,1

Figure 7: The mapping from a portion of region 1 (left �gure), delimited by the two big black dots, to
the graph of a Lipschitz function fN,1 (upper right �gure). This Lipschitz function is then mapped to a
particle con�guration (lower right �gure). Each edge of the initial interface corresponds to a possible site
for particles. In the portion of the original interface delimited by the black dots, dynamical updates (blue
arrows) do not change the length of the portion. These updates correspond to SSEP moves.

If ηN,k = (ηN,k(i))i denotes the particle con�guration obtained in region k by the above map-
ping, with the index i ∈ N labelling particles sites with the convention that the site associated
with the �rst edge of region k has label 0, then ηN,k and fN,k are related through:

ηN,k(i) :=
1

2
+

(−1)k
√
2N

2

[
fN,k

( i+ 1√
2N

)
− fN,k

( i√
2N

)]
. (2.53)

Above, the (−1)k comes from the fact that the fk are de�ned in di�erent referent frames (f 1 in
(b−π/4,bπ/4), f

2 in (b−3π/4,b−π/4), etc.).
Through this correspondence, the contour dynamics inside each region of an interface can be

viewed as a SSEP. The dynamics at the poles (deletion or growth of two blocks at respective rates
1 and e−2β) can then be viewed as a boundary dynamics that couples these SSEP. In Proposi-
tion 2.12, we saw that the dynamics at each pole acts like a moving reservoir, �xing the density of
particles at the extremity of each SSEP in terms of β. As a �rst, informal approximation, it thus
makes sense to view the contour dynamics as four SSEP coupled with reservoirs.

This approximation is further vindicated by the fact that using large deviation results for the
SSEP on each region and rewriting them as quantities depending only on the associated curve
yields the rate function (1.4) as we now explain.

From [BSG+03], the rate function for a SSEP with reservoirs, evaluated at a trajectory (ρkt )t≤T

de�ned at time t on [akt , b
k
t ] (with all these objects smoothly varying in space and/or time) and

starting from a pro�le (ρ0)k, is known explicitly and should be �nite only if the value of ρkt is �xed
at akt , b

k
t to the value of the density of the reservoir (the argument in [BSG+03] applies only when

the interval [akt , b
k
t ] does not depend on time, but we assume their result extends to the present

case for the purpose of this discussion).
In view of Proposition 2.12, for the SSEP associated with the contour dynamics the condition

at the extremity of the interval should be:

∀t ∈ (0, T ], ρkt
(
ak(γt)

)
= e−β = 1− ρkt

(
bk(γt)

)
, 1 ≤ k ≤ 4. (2.54)
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For such a SSEP trajectory, the rate function of [BSG+03] reads:

ISSEP,k

(
(ρkt )t≤T |(ρ0)k

)
=

∫ T

0

∫ bkt

akt

(
∂tf

k − (1/4)∆fk
)2

2ρk(1− ρk)

√
2 du dt. (2.55)

The
√
2 factor in (2.55) is again related to the reference frame being tilted, and fk

t a 1-Lipschitz
function built from ρkt in analogy with (2.53) at each time t ∈ [0, T ] according to:

ρkt (u) =
1 + (−1)k∂uf

k(u/
√
2)

2
, u ∈ [akt , b

k
t ]. (2.56)

Note that Equation (2.56) only de�nes fk
t up to a constant. For the graph of fk

t in an appropriate
tilted reference frame to coincide with region k of an element γt ∈ Ω as we will use below, this
constant must be chosen as (k − 1 = 4 if k = 1):

fk
t (a

k
t ) = ak−1

t . (2.57)

Let us now use (2.55) to connect with the contour dynamics rate function obtained in Theorem 2.17.
As in the microscopic case, a macroscopic curve γ ∈ E can be associated with "particle densities�
on each region. Indeed, for 1 ≤ k ≤ 4, region k is by de�nition of Ω ⊃ E the graph of a 1-Lipschitz
function fk on an interval [ak(γ), bk(γ)], where (Rk+1 := R1 if k = 4):

ak(γ) := Lk · bπ/4−kπ/2, bk(γ) = Rk+1 · bπ/4−kπ/2. (2.58)

The function fk is then associated with a function ρk through (2.56).
Let γ· ∈ E([0, T ], E) start from γref and consider the associated (ρk· , f

k
· )1≤k≤4. We focus on

k = 1. The tangent vector at a point x = ub−π/4 + f 1(u)bπ/4 of region 1, corresponding to an
angle θ = θ(x) ∈ [0, 2π], reads:

T(θ) = cos(θ)b0 + sin(θ)bπ/2 =
[
1 + (∂uf

1)2
]−1/2(

b−π/4 + ∂uf
1bπ/4

)
. (2.59)

From (2.59) one can check, as done in Section 3.3 of [LST14a], that the heat equation for f 1

corresponds to anisotropic motion by curvature (2.3) for the graph of f 1. On the other hand, (2.56)
and (2.59) yield for ρ1(1− ρ1):

ρ1(1− ρ1) =
1

4

(
1− (∂uf

1)2
)
=

1√
2
[
1 + (∂uf 1)2

]µ(θ), (2.60)

with µ the mobility coe�cient obtained by Spohn [Spo93]:

µ(ϑ) :=
| sin(2ϑ)|

2(| sin(ϑ)|+ | cos(ϑ)|)
=

|T(ϑ) · b0||T(ϑ) · bπ/2|
∥T(ϑ)∥1

, ϑ ∈ [0, 2π]. (2.61)

Using the relation ds = [1+(∂uf
1)2]1/2 du between x and the arclength coordinate s and generalising

the above discussion to the other three regions, (2.55) yields for the conjectured rate function
Iheurβ (·|γref) of the contour dynamics:

Iheurβ

(
γ·|γref

)
=

k∑
k=1

ISSEP,k

(
(ρkt )t≤T |(ρ0)k

)
=

∫ T

0

∫
γt

(
v − ak)2

2µ
ds dt. (2.62)
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This is indeed the rate function of Theorem 2.17 for trajectories satisfying the boundary condi-
tions (2.54) (compare with the β = ∞ case in (2.46), where the formula is the same, but for smooth
trajectories rather than those satisfying (2.54)).

The analogy (2.55) with the SSEP thus gives the correct rate function at a formal level. To
establish Theorem 2.17, we will have to look at the contour dynamics both at and away from the
poles simultaneously. The dynamics at the poles modi�es the size of each of the SSEP. This makes
it di�cult to directly use the analogy with the SSEP in the proofs and a more global approach is
necessary. However, this analogy is used as a guideline throughout the article.

2.5 Outline of the proof of large deviations

The proof of Theorem 2.17 is structured as follows.

� Before looking at rare events speci�cally, an understanding of the dynamics at the poles is
required. This is perhaps the most di�cult part of the paper and is the object of Section 6.
In particular, we show there that poles behave like reservoirs in the sense of Proposition 2.12.

� The proof of large deviations starts in Section 3 where we compute the Radon-Nikodym
derivative, on a bounded time interval, between the original dynamics and the dynamics
tilted by a bias H ∈ C introduced in (2.27) and express it in terms of the functional Jβ

H

of (2.43). To avoid pathological issues with the contour dynamics such as non-locality,
the computation is carried out for trajectories with values in the e�ective state space E of
De�nition 2.10.

The computation at the microscopic level is inspired by the link with the SSEP as highlighted
in Figure 7. This link is useful to perform discrete integration by parts and replacement
lemma-type estimates.

The resulting expressions are not easily interpreted as line integrals involving tangent vectors
as in Jβ

H . This interpretation is carried out in a second time, using similar ideas to what was
done at the macroscopic level to go from SSEP to curves in Section 2.4.

� Section 4 contains upper bound large deviations. The proof technique is standard and consists
in estimating the cost of tilting the dynamics by a bias H ∈ C.
The di�culty comes from the need to control the poles. The poles in particular prevent the
functional Jβ

H , from which the rate function is built, from having nice continuity properties,
even for trajectories taking values in the e�ective state space E of De�nition 2.10. Continuity
is recovered by proving that trajectories must have kinks similarly to Proposition 2.12. In
fact a stronger version of the statement of Proposition 2.12 is needed, with the corresponding
proof carried out in Appendix B.3.

� Section 5 contains the lower bound, which amounts to hydrodynamic limits for the tilted
processes, i.e. Proposition 2.13. As a �rst step, we need to make sure that the (tilted) contour
dynamics takes a di�usive time to exit E as stated in Proposition 2.11. The hydrodynamic
limit results are then obtained in two steps: �rst in short time using the stability result of
Proposition 2.11. Secondly, by extending the hydrodynamic limit to longer times through
an iteration procedure.
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3 Change of measures

3.1 Motivations

To investigate rare events, we consider tilted dynamics as in Chapter 10 of [KL99]. Fix a time
T > 0 throughout the rest of Section 3 and introduce a magnetic �eldH ∈ C (C is de�ned in (2.25)).
When restricted to trajectories on [0, T ], PN

β,H is absolutely continuous with respect to PN
β (and

vice versa). Let DN,T
β,H = dPN

β,H/dPN
β |T denote their Radon-Nikodym derivative on [0, T ]Ω

N
mic , so

that for any measurable set X ⊂ [0, T ]Ω
N
mic :

PN
β (γ

N
· ∈ X) = EN

β [1γN
· ∈X ] = EN

β,H

[
(DN,T

β,H )−11γN
· ∈X

]
. (3.1)

In the following, the dependence on T will be clear from the context and we write DN
β,H for DN,T

β,H . It

acts on a trajectory γN· = (γNt )t≤T ⊂ ΩN
mic, delimiting droplets (ΓN

t )t≤T , according to (see Appendix
A.7 in [KL99]):

N−1 logDN
β,H(γ

N
· ) =

〈
ΓN
T , HT

〉
−
〈
ΓN
0 , H0

〉
−
∫ T

0

e−N⟨ΓN
t ,Ht⟩

(
∂t +N2Lβ

)
eN⟨ΓN

t ,Ht⟩ dt. (3.2)

In (3.2), recall that, for a domain ΓN with boundary γN ∈ ΩN
mic and a bounded J : R2 → R,〈

ΓN , J
〉
stands for

∫
ΓN J(u, v) du dv. The rest of Section 3 is devoted to the computation of

N2e−N⟨ΓN
t ,Ht⟩Lβe

N⟨ΓN
t ,Ht⟩ for t ≤ T .

3.2 Action of the generator

Take an interface γN ∈ ΩN
mic ∩ E . As usual let ΓN denote the associated droplet. In view of the

form (2.45) of the rate function, the quantity N2e−N⟨ΓN ,Ht⟩Lβe
N⟨ΓN ,Ht⟩ will be expressed as line

integrals on γN , as well as boundary terms involving the poles. We obtain such an expression in two
steps. The �rst step relies on microscopic computations and replacement of local quantities by local
averages, guided by the link of Section 2.4 with the SSEP. The second step is the interpretation of
the resulting quantities in terms of line integrals. We �rst state a result involving discrete sums on
vertices of a curve (Proposition 3.2). The counterpart in terms of line integrals, Proposition 3.11,
is presented and proven later.

To state Proposition 3.2, let us �x some notations. For N ∈ N≥1, x ∈ V (γN) and ε > 0, the
local density of vertical edges ξεNx around x is de�ned as:

ξεNx =
1

2εN + 1

∑
y∈B1(x,ε)∩V (γN )

ξy. (3.3)

The ball B1(x, ε) is taken with respect to the 1-norm ∥ · ∥1 (recall (2.6)). We assume that εN is an
integer for simplicity. In our case, it will be convenient to write ξεNx as a function of the tangent
vector at x. Recall that we always enumerate elements of V (γN) clockwise and that e+x is the
microscopic tangent vector with norm 1/N given below (2.17). The direction of e+x is �xed by the
region x belongs to, see Figure 8. For instance, if x belongs to the �rst region and y to the second:

Ne+x = (1− ξx)b0 − ξxbπ/2, Ne+y = −(1− ξy)b0 − ξybπ/2. (3.4)
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The following de�nition will be used below to keep track of the di�erent signs depending on the
region.

De�nition 3.1. For γN ∈ ΩN
mic

, recall that bθ (θ ∈ [0, 2π]) is de�ned in (2.10). De�ne then a
vector m(γN) : γN \ ∪kPk(γ

N) → R2 to be constant on each region, with:

∀x ∈ γN \ ∪kPk(γ
N), m(x) := m(γN , x) =


(−1,−1) if x is in region 1,

(−1, 1) if x is in region 2,

(1, 1) if x is in region 3,

(1,−1) if x is in region 4.

(3.5)

If x is at 1-distance at least ε to the poles, then all vertices in B1(x, ε) are in the same region.
De�ne then the averaged tangent vector tεNx on the ball B1(x, ε):

tεNx =
N

2εN + 1

∑
y∈B1(x,ε)∩V (γN )

e+y ∈
{
ζ1(1− ξεNx )b0 + ζ2ξ

εN
x bπ/2 : ζ1, ζ2 ∈ {−,+}

}
. (3.6)

The signs in (3.6) only depend on the region of γN that x belongs to. For instance, if B1(x, ε)∩γN
is included in the �rst region,

Ne+x = (1− ξx)b0 − ξxbπ/2 ⇒ tεNx = (1− ξεNx )b0 − ξεNx bπ/2. (3.7)

We stress the fact that tεNx is a unit vector in 1-norm, but not in 2-norm: ∥tεNx ∥1 = 1 ̸= ∥tεNx ∥2.
This has important consequences later on when expressing discrete sums as line integrals, see
Section 3.2.3. It will be useful to introduce the 2-norm and 2-normalised tangent vector:

∀x ∈ V (γN), vεNx := ∥tεNx ∥2, TεN
x = tεNx /vεNx . (3.8)

As ∥tεN∥1 = 1, we get:

vεNx = ∥tεNx ∥2 =
(
∥TεN

x ∥1
)−1

. (3.9)

We may now state Proposition 3.2.

Proposition 3.2. Fix a time T > 0 and β > log 2. For any δ, ε > 0 and any trajectory (γNt )t≤T ∈
E([0, T ], E) of microscopic curves (the set E([0, T ], E) is de�ned in (2.34)), one has:

1

N

∫ T

0

N2e−N⟨ΓN
t ,Ht⟩Lβe

N⟨ΓN
t ,Ht⟩ dt

= −
(
1

4
− e−β

2

)∫ T

0

4∑
k=1

[
H(t, Lk(γ

N
t )) +H(t, Rk(γ

N
t ))
]
dt

+
1

4N

∫ T

0

dt
∑

x∈V ε(γN
t )

(vεNx )2
[
TεN

x ·m(x)
]
TεN

x · ∇H(t, x) dt

+
1

2N

∫ T

0

dt
∑

x∈V ε(γN
t )

(vεNx )2|TεN
x · b0||TεN

x · bπ/2|H(t, x)2 +

∫ T

0

ω̃(Ht, δ, ε, γ
N
t ) dt. (3.10)
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The vector TεN
x and normalisation vεNx are de�ned in (3.8) and m(x) = (±1,±1) is the sign vector

of De�nition 3.1. For γN ∈ ΩN
mic

∩ E, V ε(γN) ⊂ V (γN) is the subset of vertices at 1-distance at
least ε from the poles.

The quantity ω̃(Ht, δ, ε, ·) is an error term controlled as follows: there is C(H) > 0 and a set
Z̃ = Z̃(β,H, δ, ε) ⊂ (ΩN

mic
)[0,T ] such that, for trajectories γN· ∈ Z̃ ∩ E([0, T ], E):∣∣∣ ∫ T

0

ω̃(Ht, δ, ε, γ
N
t ) dt

∣∣∣ ≤ 2δ + C(H)

(
εT +

T

N
+

1

N2

∫ T

0

|γNt | dt
)
. (3.11)

Moreover, for each A > 0, the following super-exponential estimate holds:

lim
ε→0

lim sup
N→∞

1

N
logPN

β,H

(
γN· ∈ Z̃c ∩ E([0, T ], E) ∩

{∫ T

0

|γNt | dt ≤ AT
})

= −∞. (3.12)

The proof of Proposition 3.2 (and the line integral version, Proposition 3.11) takes up the rest
of this section. It is obtained as a by-product of the study of the dynamics at (Section 3.2.2) and
away from the poles (Section 3.2.1). To lighten notation, we compute N2e−N⟨ΓN ,Ht⟩Lβe

N⟨ΓN ,Ht⟩

at a time t ∈ [0, T ], �xed throughout the section, with ΓN the droplet associated with a curve
γN ∈ ΩN

mic. We sometimes also omit the explicit dependence of Pk, Rk, Lk (1 ≤ k ≤ 4) on γN .

In the following, we only compute the action of the generator on curves that additionally belong
to the e�ective state space E . In that way, the jump rates of the contour dynamics are local (see
the last point of Remark 2.6). Moreover, for γN ∈ ΩN

mic ∩ E , each (γN)−,k, 1 ≤ k ≤ 4 is still in the
state space ΩN

mic. Recalling the de�nition (2.21) of the generator of the contour dynamics, one can
then write:

N2e−N⟨ΓN ,Ht⟩Lβe
N⟨ΓN ,Ht⟩ = Bt(γ

N) + Pt(γ
N). (3.13)

The bulk term Bt contains all updates a�ecting a single block, corresponding to the simple exclusion
moves as discussed around (2.20). It is convenient in the computations to also include, in Bt,
�ctitious moves that delete just a single block in a pole containing exactly two blocks, so that:

Bt(γ
N) :=

N2

2

∑
x∈V (γN )

[
ξx+e−x

(1− ξx) + ξx(1− ξx+e−x
)
][
eN⟨(ΓN )x,Ht⟩−N⟨ΓN ,Ht⟩ − 1

]
. (3.14)

These �ctitious moves (the last line of (3.15) below) are not allowed in the contour dynamics, thus
their contribution is subtracted in the term Pt which otherwise encompasses all contributions from
the pole dynamics. Recalling that pk is the number of blocks in pole k (1 ≤ k ≤ 4), Pk reads:

Pt(γ
N) := N2

4∑
k=1

∑
x∈Pk(γ

N )∩V (γN )

x+e±x ∈Pk(γ
N )

{
1pk(γN )=2

[
eN⟨(ΓN )−,k,Ht⟩−N⟨ΓN ,Ht⟩ − 1

]

+ e−2β
[
eN⟨(ΓN )+,x,Ht⟩−N⟨ΓN ,Ht⟩ − 1

]}
− N2

2

4∑
k=1

1pk(γN )=2

∑
x∈{Rk(γN ),Lk(γN )}

[
eN⟨(ΓN )x,Ht⟩−N⟨ΓN ,Ht⟩ − 1

]
. (3.15)
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3.2.1 Estimate of the pole terms

In this section, we estimate the pole term Pt.

Lemma 3.3. For each β > log 2 and δ > 0, one has:

1

N

∫ T

0

Pt(γ
N
t ) dt =

e−β

2

∫ T

0

4∑
k=1

[
H(t, Rk(γ

N
t )) +H(t, Lk(γ

N
t ))
]
dt+

∫ T

0

ωP (Ht, δ, γ
N
t ) dt. (3.16)

The term ωP is an error term, estimated as follows: there is a constant C(H) > 0 and a set
ZP = ZP (δ) of trajectories such that, for trajectories in ZP ∩ E([0, T ], E):∣∣∣ ∫ T

0

ωP (Ht, δ, γ
N
t ) dt

∣∣∣ ≤ 2δ +
C(H)T

N
. (3.17)

Moreover, the following super-exponential estimate holds:

lim
N→∞

1

N
logPN

β,H

(
γN· ∈ (ZP )

c ∩ E([0, T ], E)
)
= −∞. (3.18)

Proof. Fix a time t ∈ [0, T ] and consider γN ∈ ΩN
mic ∩ E as before. To estimate Pt, let us �rst look

at the di�erence
〈
(ΓN)+,x, Ht

〉
−
〈
ΓN , Ht

〉
for one of the vertices x appearing in the sum in the

�rst line of (3.15). For concreteness, consider e.g. the north pole. A regrowth move ΓN → (ΓN)+,x

then amounts to adding the two blocks with centre x+N−1(bπ/2±b0)/2 (recall Figure 3), so that:〈
(ΓN)+,x, Ht

〉
−
〈
ΓN , Ht

〉
=

∫
x+ 1

N
[−1,1]×[0,1]

Ht(z) dz =
2

N2
Ht(x) +O(N−3), (3.19)

where we used the smoothness of H to obtain the second equality. A similar estimate holds for
the move γN → (γN)−,1 through which blocks in the north pole of γN are deleted (recall the
notation (2.14)); as well as for the other poles. As a result, the quantity Pt(γ

N) de�ned in (3.15)
reads:

1

N
Pt(γ

N) =
4∑

k=1

∑
x∈Pk(γ

N )∩V (γN )

x+e±x ∈Pk(γ
N )

2
(
e−2β − 1pk(γN )=2

)
Ht(x)

+
1

2

4∑
k=1

1pk(γN )=2

∑
x∈{Rk(γN ),Lk(γN )}

Ht(x) + ηP (t, γ
N), (3.20)

where the �rst term in the second line corresponds to the �ctitious updates and ηP (t, γ
N) satis�es:

∣∣ηP (t, γN)∣∣ ≤ 2∥H∥2∞
4∑

k=1

pk(γ
N)

N
. (3.21)

To prove the claim of Lemma 3.3, we need to estimate the time average of the number of blocks
pk in pole k (1 ≤ k ≤ 4), of 1pk=2 and of their di�erence. This is done in the following lemmas,
the proof of which are postponed to Section 6. The �rst lemma states that the pole contains a
number of block that scales with β, but is independent of N , with large probability.
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Lemma 3.4. For each pole k ∈ {1, ..., 4},

lim
N→∞

1

N
logPN

β,H

(
(γNt )t≤T ∈ E([0, T ], E);

1

T

∫ T

0

e−2β
(
pk(γ

N
t )− 1

)
dt ≥ 2

)
= −∞. (3.22)

The next lemma estimates the di�erence between growth or deletion of two blocks.

Lemma 3.5. Let G ∈ Cc(R+ × R2) be Lipschitz in space, uniformly in time. Let WGt be de�ned,
for t ≥ 0 and γN ∈ ΩN

mic
, by:

WGt(γN) =
4∑

k=1

∑
x∈Pk(γ

N )∩V (γN )

x+e±x ∈Pk(γ
N )

[
1pk(γN )=2 − e−2β

]
Gt(x). (3.23)

Then:

∀δ > 0, lim
N→∞

1

N
logPN

β,H

(
(γNt )t≤T ∈ E([0, T ], E);

∣∣∣∣ ∫ T

0

WGt(γNt ) dt

∣∣∣∣ > δ

)
= −∞. (3.24)

It remains to compute the time integral of the 1pk=2 terms (1 ≤ k ≤ 4). Remarkably, this
quantity is �xed by the dynamics in terms of β, as stated in the next lemma. The proof of this
lemma, in Section 6.3, is the main di�culty of the paper at the microscopic level.

Lemma 3.6. For pole k ∈ {1, ..., 4} and each δ > 0:

lim
N→∞

1

N
logPN

β,H

(
(γNt )t≤T ∈ E([0, T ], E);∣∣∣∣ ∫ T

0

H(t, Lk(γ
N
t ))
(
1pk(γ

N
t )=2 − e−β

)
dt

∣∣∣∣ > δ

)
= −∞. (3.25)

Let us conclude the proof of Lemma 3.3, using the last three lemmas to de�ne the set ZP ,
which controls the error term ωP of Lemma 3.3. Let BN

P (β) denote the set of trajectories with
poles containing less than 2e2β blocks:

BN
P (β) :=

4⋂
k=1

{
(γNt )t∈[0,T ] ⊂ ΩN

mic :
1

T

∫ T

0

(
pk(γ

N
t )− 1

)
e−2β dt ≤ 2

}
. (3.26)

On this set, the term
∫ T

0
dt
∑

k pk(γ
N
t )/N is bounded by 4(2e2β + 1)T/N and therefore negligible.

De�ne then ZP = ZP (β, δ) as:

ZP = BN
P (β) ∩

{∣∣∣ ∫ T

0

WHt dt
∣∣∣ ≤ δ

}
∩
{ 4∑

k=1

∣∣∣ ∫ T

0

H(t, Lk(γ
N
t ))
(
1pk(γ

N
t )=2 − e−β

)
dt
∣∣∣ ≤ δ

}
. (3.27)
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From (3.20), for a trajectory (γNt )t≤T ∈ ZP ∩ E([0, T ], E) of microscopic interfaces, we �nd:

1

N

∫ T

0

Pt(γ
N
t ) dt =

e−β

2

∫ T

0

[
H(t, Rk(γ

N
t )) +H(t, Lk(γ

N
t ))
]
dt+

∫ T

0

ωP (Ht, δ, γ
N
t ) dt, (3.28)

with ωP (Ht, δ, ·) an error term satisfying (3.17). Moreover, the last three lemmas give the following
super-exponential estimate:

lim
N→∞

1

N
logPN

β

(
γN· ∈ (ZP )

c ∩ E([0, T ], E)
)
= −∞. (3.29)

This completes the proof of Lemma 3.3.

3.2.2 Estimate of the bulk terms at the microscopic level

In this section, we compute the bulk term Bt, introduced in (3.14), expressing it in terms of discrete
analogues of quantities that can be de�ned on a curve at the macroscopic level (such as the tangent
vector and arclength derivative). To do so, we use the link of Section 2.4 between the dynamics
in each region and the SSEP to perform discrete integration by parts and obtain a replacement
lemma (Lemma 3.8). One then has to recover expressions that do not explicitly depend on the
region any more.

Lemma 3.7. Let δ, ε > 0. For each trajectory (γNt )t∈[0,T ] ∈ E([0, T ], E) of microscopic curves:

1

N

∫ T

0

Bt(γ
N
t ) dt = −1

4

∫ T

0

4∑
k=1

[
H(t, Lk(γ

N
t )) +H(t, Rk(γ

N
t ))
]
dt+

∫ T

0

ωB(Ht, δ, γ
N
t ) dt

+
1

2N

∫ T

0

∑
x∈V ε(γN

t )

∣∣tεNx · b0

∣∣∣∣tεNx · bπ/2

∣∣H(t, x)2 dt

+
1

4N

∫ T

0

∑
x∈V ε(γN

t )

[
tεNx ·m(x)

]
tεNx · ∇H(t, x) dt. (3.30)

Recall that tεNx is de�ned in (3.6) and m(x) is the sign vector of De�nition 3.1. For γ̃N ∈ ΩN
mic

,
the subset of vertices V ε(γ̃N) ⊂ V (γ̃N) denotes all points of V (γ̃N) at 1-distance at least ε from
the poles of γ̃N .

In addition, there is a set ZB = ZB(H, δ, ε) ⊂ E([0, T ],ΩN
mic

) on which the error term ωB can
be controlled: for some constant C(H) > 0 and all trajectories γN· in ZB ∩ E([0, T ], E),∣∣∣ ∫ T

0

ωB(Ht, δ, ε, γ
N
t ) dt

∣∣∣ ≤ δ + C(H)
(
εT +

1

N2

∫ T

0

|γNt | dt
)
. (3.31)

The following super-exponential estimates holds for Z̃B: for each A > 0,

lim
ε→0

lim sup
N→∞

1

N
logPN

β,H

(
γN· ∈ (ZB)

c ∩ E([0, T ], E) ∩
{∫ T

0

|γNt | dt ≤ AT
})

= −∞. (3.32)

32



Proof of Lemma 3.7. As for the pole terms Pt in Section 3.2.1, we work at �xed time t ∈ [0, T ]
and �x γN ∈ ΩN

mic ∩ E . The starting point is the expression (3.14) of Bt. Let us �rst compute the
change in

〈
ΓN , Ht

〉
when x ∈ V (γN) is �ipped. Recall that e+x , e

−
x are the vectors with origin x

and norm 1/N de�ned below (2.17) (see also Figure 8). One can then write:〈
(ΓN)x, Ht

〉
−
〈
ΓN , Ht

〉
= εx(γ

N)

∫
[x,x+e−x ]×[x,x+e+x ]

Ht(z) dz (3.33)

=
εx(γ

N)

N2

∫
[0,1]2

Ht

(
x+ ue−x + ve+x

)
du dv.

Above, εx(γ
N) ∈ {−1, 1} is set to 1 if �ipping x means adding one block to ΓN and to −1 if it

means deleting one (see Figure 8). Let us expand Ht around the point x. Recall that the vectors
e±x have norm 1/N . As a result, e.g. if e+x = bπ/2/N :

∂e+xHt(x) =
1

N
∂2Ht(x), (3.34)

and Equation (3.33) becomes:

〈
(ΓN)x, Ht

〉
−
〈
ΓN , Ht

〉
=
εx(γ

N)

N2

(
Ht(x) +

1

2

(
∂e−x + ∂e+x

)
Ht(x)

)
+
η(Ht)

N4
, (3.35)

for an error term η(Ht) satisfying |η(Ht)| ≤ ∥∇2Ht∥∞. Recalling:

cx(γ
N) :=

1

2

[
ξx+e−x

(1− ξx) + ξx(1− ξx+e−x
)
]
, (3.36)

we �nd that the bulk term (3.14) can be written as follows:

1

N
Bt(γ

N) =
1

2N

∑
x∈V (γN )

cx(γ
N)Ht(x)

2 +
∑

x∈V (γN )

cx(γ
N)εx(γ

N)Ht(x)

+
1

2

∑
x∈V (γN )

cx(γ
N)εx(γ

N)
(
∂e−x + ∂e+x

)
Ht(x) +

η′(Ht)|γN |
N2

, (3.37)

where η′(Ht) is bounded by a constant depending on Ht and its derivatives. The �rst and third
sums above are bounded by |V (γN)|/N , which we expect to be bounded with N at each time
for typical trajectories under the contour dynamics on E([0, T ], E) (see Proposition 2.11). At �rst
glance however, the second sum in the �rst line of (3.37) appears to be of order |V (γN)|. To prove
that it is in fact also of order 1 in N , we use the link with the SSEP in each region of γN to perform
integration by parts. This link is also used to compute the other terms (3.37).

To compute (3.37) we are going to split V (γN) into four pieces, essentially corresponding to
the four regions of γN . In each region the mapping with the SSEP of Section 2.4 will be used to
express cx(γ

N), εx(γ
N) in terms of the local edge states ξx+e−x

, ξx. Mirroring similar results for the
SSEP, these ξ· will then replaced by local averages thanks to a replacement lemma-type result,
Lemma 3.8. For points in each region at 1-distance at least ε from the poles, these averages will
be rewritten as components of the microscopic tangent vector tεN· (de�ned in (3.6)), which will
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V1
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y+e+y+e
-
y

e+x

e-x

Figure 8: De�nition of the Vk, k ∈ {1, ...4} for a curve γN ∈ ΩN
mic. The black dots are the �rst vertices and

the light dots the last vertices of each Vk. Three points are marked by empty circles, with the corresponding
value of ε·(γ

N ). The block that is deleted if y is �ipped is materialised by dashed lines and the two arrows
with origin y correspond to e+y (left arrow) and e−y (up arrow).

allow us below to recover a region-independent expression.

For 1 ≤ k ≤ 4, consider thus the set Vk(γ
N) ⊂ V (γN) containing all vertices from Rk to Lk+1

(comprised), see Figure 8, with Lk+1 := L1 if k = 4. Then Vk is included in region k of γN and:

V (γN) =
4⋃

k=1

Vk(γ
N) ∪

4⋃
k=1

Pk(γ
N). (3.38)

In the following, we often abbreviate Vk(γ
N) as Vk and similarly Rk(γ

N), Lk(γ
N) as Rk, Lk.

As cx(γ
N) = 0 for each x ∈ ∪kPk(γ

N) \ {Rk(γ
N), Lk(γ

N)}, all sums in (3.37) reduce to sums
on Vk, 1 ≤ k ≤ 4. With this splitting along the Vk, (3.37) becomes:

1

N
Bt(γ

N) =
1

2N

∑
x∈V (γN )

cx(γ
N)Ht(x)

2 +
4∑

k=1

Bk
t +

4∑
k=1

B̃k
t +

η′(Ht)|γN |
N2

, (3.39)

where:

Bk
t :=

∑
x∈Vk

cx(γ
N)εx(γ

N)Ht(x), B̃k
t :=

1

2

∑
x∈Vk

cx(γ
N)εx(γ

N)
(
∂e−x + ∂e+x

)
Ht(x). (3.40)

For future reference note that, inside each Vk, the quantity cx(γ
N)εx(γ

N) can be expressed in terms
of the edge state ξ:

2cx(γ
N)εx(γ

N) =

{
ξx+e−x

− ξx if x ∈ V1 ∪ V3,
ξx − ξx+e−x

if x ∈ V2 ∪ V4.
(3.41)

Let us �rst treat the sums Bk
t , B̃

k
t (1 ≤ k ≤ 4) that involve εx(γ

N).

34



1) Bk
t terms. Using Equation (3.41), one has e.g. for k = 1:

B1
t =

∑
x∈V1(γN )

cx(γ
N)εx(γ

N)Ht(x) =
1

2

∑
x∈V1(γN )

Ht(x)(ξx+e−x
− ξx)

=
1

4

∑
x∈V1(γN )

Ht(x)
[
ξx+e−x

− ξx + (1− ξx)− (1− ξx+e−x
)
]
. (3.42)

The passage from �rst to second line is nothing more than a symmetrisation of the expression.
Recall that V1 contains vertices between R1 and L2 (included). By de�nition, the edge with right
extremity R1, corresponding to [R1 + e−R1

, R1], is always horizontal: 1 − ξR1+e−R1

= 1. Similarly,

ξL2 = 1 by de�nition of L2. Integrating (3.42) by parts, some of the boundary term vanish, whence:

B1
t = −1

4

(
Ht(R1) +Ht(L2)

)
+

1

4

∑
x∈V1\{R1,L2}

[
ξx

[
Ht(x+ e+x )−Ht(x)

]
− (1− ξx)

[
Ht(x+ e+x )−Ht(x)

]]
= −1

4

(
Ht(R1) +Ht(L2)

)
+

1

4

∑
x∈V1\{R1,L2}

[
ξx∂e+xHt(x)− (1− ξx)∂e+xHt(x)

]
+ η1(Ht, γ

N), (3.43)

with η1t (Ht, γ
N) an error term bounded by:∣∣η1(Ht, γ

N)
∣∣ ≤ ∥∇2Ht∥∞|V1(γN)|

4N2
. (3.44)

Note that, as e±x has norm 1/N , the sum in (3.43) is bounded by C(H)|V1|/N for some C(H) > 0.
This is one factor of 1/N smaller than apparent in the expression (3.40) of B1

t as desired.
The other Vk, 2 ≤ k ≤ 4 are treated similarly, with signs depending on the region due to

both (3.41) and the fact that Ne+x takes values in {±b0,±bπ/2} as the region varies. The point is
now, from the expression of each Bk

t , to obtain an expression independent of the region of γN . To
do so, introduce region-dependent signs σ1, σ2:

σ1 :=

{
1 if x ∈ V1 ∪ V4
−1 if x ∈ V2 ∪ V3

, σ2 :=

{
−1 if x ∈ V1 ∪ V2
1 if x ∈ V3 ∪ V4

. (3.45)

The idea behind (3.45) is that (σ1, σ2) is "the direction of the tangent vector to a curve" in each
region, in the spirit of De�nition 2.1 of Ω. For instance, in the �rst region, the tangent vector can
be either b0 or −bπ/2, and (σ1, σ2) = (1,−1). In region 2 where the tangent vector is either −b0

or −bπ/2, (σ1, σ2) = (−1,−1), etc. One can then check that:

∀x ∈ V (γN), Ne+x = (1− ξx)σ1b0 + ξxσ2bπ/2. (3.46)

Compare with m(x) in De�nition 3.1, which gives "the direction of the inwards normal" in the
region x belongs to:

m(x) = −(−σ2, σ1) = (σ2,−σ1) = σ2b0 − σ1bπ/2. (3.47)
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With De�nition 3.45 and the error bound (3.44), recalling also from (3.34) that di�erentiating
along e+x incurs a factor 1/N compared to di�erentiating with respect to b0 or bπ/2, B

1
t can be

written as:

B1
t = −1

4

(
Ht(R1) +Ht(L2)

)
+

1

4N

∑
x∈V1\{R1,L2}

(
− ξxσ1∂2 + (1− ξx)σ2∂1

)
Ht(x) + η1(Ht, γ

N). (3.48)

Recalling the sign change (3.41) between regions, one can check that the expression of the last
summand is independent from the region and obtain:

4∑
k=1

Bk
t = −1

4

4∑
k=1

[
Ht(Rk(γ

N)) +Ht(Lk(γ
N))
]

+
1

4N

∑
x∈V (γN )\∪kPk(γN )

(
− ξxσ1∂2 + (1− ξx)σ2∂1

)
Ht(x) +

4∑
k=1

ηk(Ht, γ
N). (3.49)

2) B̃k
t terms (de�ned in (3.40)). Recall that εx(γ

N) is de�ned in (3.33). The key observation is
the following: for x ∈ V (γN), if cx(γ

N) ̸= 0, then εx(γ
N)(∂e+x +∂e−x ) is the same whether �ipping x

corresponds to adding or deleting a block and it only depends on the region of the curve. Indeed,
recall De�nition (3.45) of σ1, σ2. Using e−x = −e+

x+e−x
(see Figure 8) and the expression (3.46) of

e+x , one has:

∂e−x + ∂e+x =
(
ξx+e−x

− ξx
)(σ1
N
∂1 −

σ2
N
∂2

)
. (3.50)

Using the expression (3.41) for cx(γ
N)εx(γ

N), elementary manipulations then yield:

∀x ∈ V (γN), cx(γ
N)εx(γ

N)(∂e+x + ∂e−x ) =
cx(γ

N)

N

(
− σ2∂1 + σ1∂2

)
= −cx(γ

N)

N
m(x) · ∇, (3.51)

with m(x) the sign vector of De�nition 3.1. As a result:

4∑
k=1

B̃k
t (γ

N) = − 1

2N

∑
x∈V (γN )\∪kPk(γN )

cx(γ
N)m(x) · ∇Ht(x). (3.52)

For ε > 0, Let V ε(γN) be the subset of V (γN) made of vertices at 1-distance at least ε from each
pole. At this point the bulk term Bt can be written as:

1

N
Bt(γ

N) =
1

2N

∑
x∈V ε(γN )

cx(γ
N)Ht(x)

2 − 1

4

4∑
k=1

[
Ht(Rk(γ

N)) +Ht(Lk(γ
N))
]

+
1

4N

∑
x∈V ε(γN )

(
− ξxσ1∂2 + (1− ξx)σ2∂1

)
Ht(x) (3.53)

− 1

2N

∑
x∈V ε(γN )

cx(γ
N)m(x) · ∇Ht(x) + η(Ht, ε, γ

N),
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where η(Ht, ε, γ
N) satis�es, for some constant C(H) > 0 independent of γN :

∣∣∣η(Ht, ε, γ
N)− η′(Ht)|γN |

N2
−

4∑
k=1

ηk(Ht, γ
N)
∣∣∣ ≤ C(H)ε. (3.54)

To obtain the expression in Lemma 3.7 from (3.39)�(3.49)�(3.52), we will now replace ξ· and
c·(γ

N) by local averages on boxes containing order εN vertices; then express them in terms of the
microscopic tangent vector tεN· de�ned in (3.6).

We start by replacing c·(γ
N), ξ· by local averages. For ξ·, an integration by parts and the

smoothness of Ht yield the existence of an error term ω∇Ht(ε, γN) such that:

1

4N

∑
x∈V ε(γN )

(
− ξxσ1∂2 + (1− ξx)σ2∂1

)
Ht(x)

=
1

4N

∑
x∈V εN (γN )

(
− ξεNx σ1∂2 + (1− ξεNx )σ2∂1

)
Ht(x) + ω∇Ht(ε, γN), (3.55)

with, for a constant C(Ht) > 0 involving ∇2Ht but independent of γ
N :

|ω∇Ht(ε, γN)
∣∣ ≤ C(Ht)ε. (3.56)

Replacing c·(γ
N) by a local average is much more involved. It is the content of a so-called replace-

ment lemma, stated below and proven in Appendix A.

Lemma 3.8 (Replacement lemma). Let G : R+ × R2 → R be bounded, A, ε > 0 and 1 ≤ k ≤ 4.
De�ne WG,k

εN (t, ·) for t ≥ 0 by:

WG,k
εN (t, γ̃N) :=

1

N

∑
x∈Vk(γ̃N )

G(t, x)

[
cx(γ̃

N)− ξεNx
(
1− ξεNx

)]
, γ̃N ∈ ΩN

mic
. (3.57)

Then, for each δ > 0, the following super-exponential estimate holds:

lim
ε→0

lim sup
N→∞

1

N
logPN

β,H

(
(γNt )t≤T ∈E([0, T ], E) ∩

{
sup
t≤T

|γNt | ≤ A
}
;∣∣∣∣ ∫ T

0

WG,k
εN (t, γNt ) dt

∣∣∣∣ > δ
)
= −∞. (3.58)

Using Lemma 3.8, we are going to conclude the proof of Lemma 3.7. De�ne, for each bounded
function G:

BG(δ, ε) =

{
(γNt )t≤T ⊂ ΩN

mic : ∀1 ≤ k ≤ 4,

∣∣∣∣ ∫ T

0

WG,k
εN (t, γNt ) dt

∣∣∣∣ ≤ δ/4

}
. (3.59)

By Lemma 3.8, for each A, δ > 0, one has:

lim
ε→0

lim sup
N→∞

1

N
logPN

β,H

(
BG(δ, ε)

c ∩ E([0, T ], E) ∩
{
sup
t≤T

|γNt | ≤ A
})

= −∞. (3.60)
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De�ne then the set ZB appearing in Lemma 3.7 and controlling the error terms:

ZB = ZB(H, δ, ε) := B∂1H(δ, ε) ∩B∂2H(δ, ε) ∩BH2(δ, ε). (3.61)

We may now write the bulk term Bt (recall (3.53)) as:

1

N
Bt(γ

N) =
1

2N

∑
x∈V ε(γN )

ξεNx
(
1− ξεNx

)
Ht(x)

2 − 1

4

4∑
k=1

[
Ht(Rk(γ

N)) +Ht(Lk(γ
N))
]

+
1

4N

∑
x∈V ε(γN )

(
− ξεNx σ1∂2 + (1− ξεNx )σ2∂1

)
Ht(x) (3.62)

− 1

2N

∑
x∈V ε(γN )

ξεNx
(
1− ξεNx

)
m(x) · ∇Ht(x) + ωB(Ht, δ, ε, γ

N),

where ωB(Ht, δ, ε, γ
N) is de�ned, with a slight abuse of notation, by:

ωB(Ht, δ, ε, γ
N) := η(Ht, ε, γ

N) + ω∇Ht(ε, γN) +
4∑

k=1

[
Wm·∇H,k

εN (t, γN) +WH2,k
εN (t, γN)

]
. (3.63)

In particular, for microscopic trajectories (γNt )t≤T ∈ ZB∩E([0, T ], E), there is a constant C(H) > 0
such that: ∣∣∣ ∫ T

0

ωB(Ht, δ, ε, γ
N
t ) dt

∣∣∣ ≤ 2δ + C(H)
(
εT +

1

N2

∫ T

0

|γNt | dt
)
. (3.64)

With the above estimate of ωB(·) and the expression (3.62) of Bt, we see that the proof of Lemma 3.7
now reduces to the third step in the program outlined below (3.37), i.e. the interpretation of ξεNx
and m(x) ·∇ in terms of components of the microscopic tangent vector tεNx , which we now perform.

Recall from (3.6) the following identity: for γ̃N ∈ ΩN
mic ∩ E and x ∈ V (γ̃N),

|tεNx · bπ/2| = ξεNx = 1− |tεNx · b0|. (3.65)

As a result:

1

2N

∑
x∈V ε(γN )

ξεNx
(
1− ξεNx

)
Ht(x)

2 =
1

2N

∑
x∈V ε(γN )

|tεNx · b0||tεNx · bπ/2|Ht(x)
2. (3.66)

To establish the expression (3.30), we therefore only need to prove:

1

4N

∑
x∈V ε(γN )

(
− ξεNx σ1∂2 + (1− ξεNx )σ2∂1

)
Ht(x) (3.67)

− 1

2N

∑
x∈V ε(γN )

ξεNx
(
1− ξεNx

)
m(x) · ∇Ht(x) =

1

4N

∑
x∈V ε(γN )

[
tεNx ·m(x)

]
tεNx · ∇Ht(x).

38



To do so, we use the following shorthand notations:

tε := tεNx , tεi := tεNx · bi, i ∈ {1, 2}. (3.68)

Recalling that m(x) = (σ2,−σ1), the left-hand side of (3.67) reads:

1

4N

∑
x∈V ε(γN )

[(
− |tε2|σ1 + 2|tε1||tε2|σ1

)
∂2 +

(
|tε1|σ2 − 2|tε1||tε2|σ2

)
∂1

]
Ht(x)

=
1

4N

∑
x∈V ε(γN )

[
σ1|tε2|

(
− 1 + 2|tε1|

)
∂2 + σ2|tε1|

(
1− 2|tε2|σ2

)
∂1

]
Ht(x)

=
1

4N

∑
x∈V ε(γN )

[
σ1|tε2|

(
|tε1| − |tε2|

)
∂2 + σ2|tε1|

(
|tε1| − |tε2|

)
∂1

]
Ht(x). (3.69)

To obtain the third line, we used |tε1| + |tε2| = 1, see (3.65). Recall from (3.45) the de�nition of
(σ1, σ2) and that V ε(γN) ⊂ V (γN) is the set of vertices at 1-distance at least ε to the poles to
obtain:

∀x ∈ V ε(γN), |tε1| := |tεNx · b0| = σ1t
ε
1, |tε2| := |tεNx · bπ/2| = σ2t

ε
2. (3.70)

This is because all points in the 1-norm ball B1(x, ε) around x are in the same region of γN when
x ∈ V ε(γN), thus σ1, σ2 are constant on V (γN) ∩ B1(x, ε). As a result, the last line of (3.69) is
equal to:

1

4N

∑
x∈V ε(γN )

[
σ1σ2t

ε
2

(
σ1t

ε
1 − σ2t

ε
2

)
∂2 + σ2σ1t

ε
1

(
σ1t

ε
1 − σ2t

ε
2

)
∂1

]
Ht(x)

=
1

4N

∑
x∈V ε(γN )

[
σ2t

ε
1 − σ1t

ε
2

][
tε1∂1 + tε2∂2

]
Ht(x)

=
1

4N

∑
x∈V ε(γN )

[
tε ·m(x)

]
tε · ∇Ht(x). (3.71)

This concludes the proof of Lemma 3.7. Indeed, the set ZB was de�ned in (3.61). Equation (3.30)
then follows from the expression (3.62) with the two identities (3.66)�(3.71).

Lemmas 3.3 and 3.7 yield the statement of Proposition 3.2, setting:

ω̃(Ht, δ, ε, γ
N) := ωB(Ht, δ, ε, γ̃

N) + ωP (Ht, δ, γ̃
N), γ̃N ∈ ΩN

mic, (3.72)

as well as (recall (3.27)�(3.61)):
Z̃ := ZB ∩ ZP ; (3.73)

recalling also the normalisation tεNx = vεNx TεN
x from (3.8).

We conclude the section with a useful bound on the Radon-Nikodym derivative, obtained as
a consequence of the computations in the proofs of Lemmas 3.3�3.7. We stress that the result
below does not require an estimate of the error terms and is therefore valid for any trajectory in
E([0, T ], E).
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Corollary 3.9. Let H ∈ C. Recall from (4.1) the de�nition of the Radon-Nikodym derivative DN
β,H

up to time T > 0. There is a constant C(H) > 0 such that, for each T > 0 and each trajectory
(γNt )t≤T with values in ΩN

mic
∩ E:

−C(H)− C(H)

∫ T

0

|γNt | dt
]
≤ 1

N
logDN

β,H((γ
N
t )t≤T ) ≤ C(H) + C(H)

∫ T

0

|γNt | dt
]
. (3.74)

The same bounds hold for
∣∣ ∫ T

0
eN⟨ΓN

t ,H⟩N2Lβe
N⟨ΓN

t ,H⟩ dt
∣∣ without the ±C(H).

3.2.3 From microscopic sums to line integrals

The goal of this section is to turn the expression of Proposition 3.2 into an N -independent object,
with nice continuity properties with respect to the topology on E([0, T ], E) (de�ned in (2.35)). The
statement of the result, Proposition 3.11, requires some notations, which we introduce together
with an explanation of the di�culties.

In Proposition 3.2, for each T > 0, we �nd a set Z̃ of trajectories such that, if (γNt )t≤T ∈
Z̃ ∩E([0, T ], E), the action of the generator in the Radon-Nikodym derivative (4.1) contains terms
of the form: ∫ T

0

1

N

∑
x∈V (γN

t )

f(t, γNt , x) dt, (3.75)

with f a bounded function that depends on a neighbourhood of the vertex x inside γNt at each
time t ∈ [0, T ]. To make sense of such an expression when N is large, we would like:

� to prove that there is a set Z ⊂ Z̃ on which the Replacement Lemma 3.8 holds and micro-
scopic curves have length of order N at each time, so that the sum in (3.75) is typically of
order 1 when N is large;

� to then prove that this discrete sum can be seen as the discretisation of a suitable line integral
on γNt at each time t ∈ [0, T ]. Informally, this line integral should have the same continuity
property as the discrete version: if γN ∈ ΩN

mic∩E , a small change of γN in Hausdor� distance
should correspond to a small change in the corresponding line integral.

The �rst point is treated in the following lemma, proven in Section 5.2.1.

Lemma 3.10. Let β > log 2. For each T ′ > 0, there is C(β,H, T ′) > 0 such that:

∀A > 0, lim sup
N→∞

1

N
logPN

β

(
sup
t≤T ′

|γNt | ≥ A
)
≤ −C(β,H, T ′)A. (3.76)

It will thus be enough to de�ne Z as the intersection of Z̃ and a set where the length is well-
controlled, as done below in (3.90).

Let us now focus on the second point. Let γ̃ ∈ Ω ∩ E be a Lipschitz Jordan curve. Let
(γ̃(u))u∈[0,1) denote a parametrisation of γ̃. The line integral of a continuous f : R2 → R on γ̃ is
by de�nition: ∫

γ̃

f ds :=

∫ 1

0

f(γ̃(u))∥γ̃′(u)∥2 du, (3.77)
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A

B

x= ub-π/4 
      + f1(u)bπ/4

B1(x,�)
f1(u)

b-π/4

bπ/4

u

1

: 1/N

Figure 9: Left �gure: a lattice path on (N−1Z)2 between the two extremities A and B of the unit square.
The path has length 2 in both one- and two-norms. It converges in Hausdor� distance to the diagonal of
the unit-square, which has 2-norm length

√
2.

Right �gure: neighbourhood of a point x at distance at least ε from the poles in one-norm. In the ball
B1(x, ε), the curve corresponds to the graph of a function f1 in the reference frame (b−π/4,bπ/4).

where s denotes the arclength coordinate on γ̃. Assume that γ̃ = γN with γN ∈ ΩN
mic ∩ E . In this

case, γ̃′(u) is proportional to either b0 or bπ/2 and the line integral reads:∫
γ̃

f ds =
∑

x∈V (γN )

f(x)[s(x+ e+x )− s(x)] =
1

N

∑
x∈V (γN )

f(x). (3.78)

For a microscopic curve, the discrete sums of Proposition 3.2 could therefore be replaced with line
integrals without loss of information.

The problem with (3.78), however, is that the right-hand side is continuous in Hausdor� dis-
tance, while this is in general not true for the left-hand side. Indeed, consider the simplest case
f ≡ 1. Recall that |γN | is the length of γN in 1-norm and let |γN |2 be its length in 2-norm. Then:

|γN |2 :=
∫
γN

1 ds =
1

N

∑
x∈V (γN )

1 = |γN |, (3.79)

It is easy to see that the length | · | in one-norm (recall (2.6)) is continuous in Hausdor� distance,
using e.g.:

|γ| = 2
[
L1(γ)− L3(γ)

]
· bπ/2 + 2

[
L2(γ)− L4(γ)

]
· b0, γ ∈ Ω. (3.80)

The continuity of the above functionals is established below (B.3). The length | · |2 in two-norm is
however not continuous in Hausdor� distance. Indeed, assume that (γN)N converges in Hausdor�
distance to a curve γ∞ and suppose γ∞ is not a lattice path: γ∞ /∈

⋃
N ΩN

mic. Then |γ∞|2 ̸= |γ∞|,
see Figure 9. However if | · |2 were continuous, (3.79) would yield:

|γ∞|2 =
∫
γ∞

1ds = lim
N→∞

1

N

∑
x∈V (γN )

1 = |γ∞|, (3.81)
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which is a contradiction. We claim that, to preserve continuity of the right-hand side of (3.78) in
Hausdor� distance, it must be written in terms of the following line integral:

1

N

∑
x∈V (γN )

f(x) =
1

N

∑
x∈V (γN )

f(x)∥Tx∥1 =
∫
γN

fv−1 ds, (3.82)

where, for x ∈ V (γN), Tx is the unit vector in ∥ · ∥2-norm, tangent to the edge [x, x + e+x ]. The
quantity v is given by v−1 := ∥T∥1 and plays the same role as the ∥γ′(u)∥2 term in (3.78). Note
that v is identically equal to 1 for microscopic curves, for which Tx is either ±b0 or ±bπ/2.

The claim that (3.82) is the correct way to write the discrete sums is proven in Appendix B.2.2
where it is stated that, for continuous f : R2 → R:

γ ∈ E 7→
∫
γ

fv−1ds is continuous in Hausdor� distance. (3.83)

The argument in Appendix B.2.2 is actually carried out only for the integrands appearing in
Proposition 3.11, but could be generalised to the above setting.

Admitting the claim (3.83), we now rewrite the expression of Proposition 3.2 in terms of line
integrals. To do so, we need some notations. Let γ ∈ Ω be a macroscopic interface. For ε > 0,
let γ(ε) denote all points of γ at 1-distance at least ε from each poles and let x ∈ γ(ε). For
de�niteness, assume x be in the �rst region of γ. By De�nition 2.1 of Ω, the portion γ ∩ B1(x, ε)
of γ is the graph of a 1-Lipschitz function f 1 in the reference frame (b−π/4,bπ/4) (see Figure 9):

γ ∩B1(x, ε) =
{
wb−π/4 + f 1(w)bπ/4 : w ∈ u+ [−ε/

√
2, ε/

√
2]
}
, u := x · b−π/4. (3.84)

The curve γ has well-de�ned tangent vector at almost every point as it is Lipschitz. Let t and T
denote two di�erent normalisations of the same tangent vector, so that:

t = vT, ∥t∥1 = 1, ∥T∥2 = 1, v = ∥t∥2 = (∥T∥1)−1, (3.85)

with the tangent t at a point wb−π/4 + f 1(w)bπ/4 given by:

t
(
wb−π/4 + f 1(w)bπ/4

)
:=

√
2

2

(
b−π/4 + ∂wf

1(w)bπ/4

)
. (3.86)

Coming back to the point x ∈ γ(ε) in the �rst region of γ, de�ne the continuous counterpart tε(x)
of the microscopic averaged tangent vector tεN· introduced in (3.6) by:

tε(x) =
1√
2ε

∫ u+ε/
√
2

u−ε/
√
2

t
(
wb−π/4 + f 1(w)bπ/4

)
dw, (3.87)

The corresponding object in other regions reads, for y ∈ γ(ε) in region k of γ:

tε(y) =
1√
2ε

∫ y·bπ/4−kπ/2+ε/
√
2

y·bπ/4−kπ/2−ε/
√
2

t
(
wbπ/4−kπ/2 + fk(w)bπ/4−(k−1)π/2

)
dw. (3.88)
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The vector tε(x) indeed satis�es ∥tε(x)∥1 = 1 for x ∈ γ(ε). It coincides with tεNx if γ is in fact in
ΩN

mic and x is a vertex of γ. As in (3.85) for the tangent vectors at a single point, introduce �nally
a di�erent normalisation Tε of the vector tε and vε as follows:

Tε := tε/∥tε∥2, vε := ∥tε∥2 =
1

∥Tε∥1
. (3.89)

Using (3.88)�(3.89) and de�ning, for A > 0:

Z = Z(β,H, δ, ε, A) := Z̃(β,H, δ, ε) ∩
{
(γNt )t≤T : sup

t≤T

∫ T

0

|γNt | dt ≤ AT
}
, (3.90)

we obtain a version of Proposition 3.2 where discrete sums are replaced with line integrals and the
tangent vectors appearing are the usual 2-normed ones.

Proposition 3.11. Let A > 0. For each δ, ε > 0 and trajectory (γNt )t∈[0,T ] ∈ E([0, T ], E), one has:

1

N

∫ T

0

N2e−N⟨ΓN
t ,Ht⟩Lβe

N⟨ΓN
t ,Ht⟩ dt

=
1

4

∫ T

0

dt

∫
γN
t (ε)

(vε)2

v

[
Tε ·m

(
γNt (s)

)]
Tε · ∇H

(
t, γNt (s)

)
ds

+
1

2

∫ T

0

dt

∫
γN
t (ε)

(vε)2

v
|Tε · b0||Tε · bπ/2|H

(
t, γNt (s)

)2
ds+

∫ T

0

ω(Ht, δ, ε, A, γ
N
t ) dt

− 1

2

∫ T

0

4∑
k=1

(1/2− e−β)
[
H(t, Lk(γ

N
t )) +H(t, Rk(γ

N
t ))
]
dt, (3.91)

where s is the arclength coordinate on γNt , γ(ε) is the set of points in γ at 1-distance at least ε from
the poles for each curve γ ∈ E and m = (±1,±1) is the sign vector in De�nition 3.1. The vector
Tε and vε are de�ned in (3.89). Distinguish v and vε in (3.91): the factor v−1 is the additional
factor of (3.82) needed for continuity, while vε comes from the averaging of the microscopic tangent
vectors.

The error term ω can be controlled on the set Z = Z(β,H, δ, ε, A) of (3.90): there is C(H) > 0
such that, for trajectories (γNt )t≤T ∈ Z ∩ E([0, T ], E), ω satis�es:∣∣∣ ∫ T

0

ω(Ht, δ, ε, A, γ
N
t ) dt

∣∣∣ ≤ 2δ + C(H)T
(
ε+

A+ 1

N

)
. (3.92)

Moreover, for each δ > 0, there is C(β,H, T ) > 0 and ε0(δ) > 0 such that, for each A > 0,
Z = Z(β,H, δ, ε, A) satis�es:

sup
0<ε≤ε0(δ)

lim sup
N→∞

1

N
logPN

β,H

(
γN· ∈ Z(β,H, δ, ε, A)c ∩ E([0, T ], E)

)
≤ max

{
− δ−1,−C(β,H, T )A

}
. (3.93)

Remark 3.12. To connect the line integrals in (3.91) with those in the weak formulation (2.39)
of anisotropic motion by curvature with drift, take a curve γ ∈ E . Notice from (3.88) that
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limε→0 t
ε(x) = t(x) for almost every point x of γ at 1-distance ε or more to the poles. Parametrise

γ by the tangent angle θ, de�ned as the angle such that T = cos(θ)b0+sin(θ)bπ/2. Then, for almost
every point that is not in the pole, Tε, vε, de�ned in (3.89), converge a.e. to T, v respectively and:

lim
ε→0

[
(vε)2

v
|Tε

1T
ε
2|
]
= v|T1T2| =

| sin(2θ)|
2(| sin(θ)|+ | cos(θ)|)

. (3.94)

This quantity is precisely the mobility µ(θ), see (2.61). Similarly, for almost every point associated
with θ ∈ [0, 2π] \ π

2
Z:

lim
ε→0

[
(vε)2

v
[Tε ·m]

][
Tε · ∇

]
=
[
v[T ·m]

] [
T · ∇

]
= α(θ)∂s, (3.95)

where α is de�ned in (2.38) and ∂s = ∂T is the derivative with respect to the arclength coordinate,
well-de�ned almost everywhere on a Lipschitz curve. ■

4 Large deviation upper-bound and properties of the rate

functions

In this section, we prove upper bound large deviations, i.e. the upper bound in Theorem 2.17. This
is done by adapting the method of [KOV89] to the present case, introducing the tilted dynamics
PN
β,H , H ∈ C and quantifying the cost of tilting. A time T > 0 is �xed throughout the section, as

well as the value of β > log 2. Before we start, let us �x and recall some notations.

For a bias H ∈ C, the Radon-Nikodym derivative DN
β,H = dPN

β,H/dPN
β |T until time T reads:

N−1 logDN
β,H((γ

N
t )t≤T ) =

〈
ΓN
T , HT

〉
−
〈
ΓN
0 , H0

〉
−N−1

∫ T

0

e−N⟨ΓN
t ,Ht⟩

(
∂t +N2Lβ

)
eN⟨ΓN

t ,Ht⟩ dt. (4.1)

For each A, δ, ε > 0, recall from (3.90) the de�nition of:

Z := Z(β,H, δ, ε, A), (4.2)

the set of trajectories in which error terms arising in the computations of Section 3 can be estimated.
Recall also the expression of m from De�nition 3.1. For a trajectory γN· = (γNt )t≤T in E([0, T ], E),
Proposition 3.11 tells us that there is a function ω such that DN

β,H reads:

N−1 logDN
β,H(γ

N
· ) = Jβ

H,ε(γ
N
· ) +

∫ T

0

ω(Ht, δ, ε, γ
N
t ) dt, (4.3)

with, for some C(H) > 0 and each trajectory γN· ∈ Z ∩ E([0, T ], E):∣∣∣ ∫ T

0

ω(Ht, δ, ε, A, γ
N
t ) dt

∣∣∣ ≤ 2δ + C(H)T
(
ε+

A+ 1

N

)
. (4.4)
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The functional Jβ
H,ε is de�ned on trajectories γ· ∈ E([0, T ], E) by (refer to Appendix B.2 for

properties of E([0, T ], E)):

Jβ
H,ε(γ·) := ℓβH,ε(γ·)−

1

2

∫ T

0

∫
γt(ε)

|Tε · b0||Tε · bπ/2|
(vε)2

v
H2(t, γt(s)) ds dt. (4.5)

Recall that v = ∥T∥−1
1 = ∥t∥2 and vε = ∥tε∥2. Moreover, for t ∈ [0, T ], γt(ε) is the set of points in

γt at 1-distance at least ε from the poles, and s is the arclength coordinate. Recall also that, for a
curve γ ∈ E , the letter Γ denotes the associated droplet. The functional ℓβH,ε acts on trajectories
γ· ∈ E([0, T ], E) according to:

ℓβH,ε(γ·) :=
〈
ΓT , HT

〉
−
〈
Γref , H0

〉
−
∫ T

0

〈
Γt, ∂tHt

〉
dt

− 1

4

∫ T

0

dt

∫
γt(ε)

(vε)2

v

[
Tε ·m(γt(s))

]
Tε · ∇H(t, γt(s)) ds (4.6)

+
(1
4
− e−β

2

)∫ T

0

4∑
k=1

[
H(t, Lk(γt)) +H(t, Rk(γt))

]
dt.

The proof of the upper bound large deviations in Theorem 2.17 is done in two steps. In Section 4.1,
we establish an upper bound on the probability of observing a given trajectory. This bound is
then used, in Section 4.2, to establish an upper bound for closed sets.

4.1 Upper bound around a given trajectory

In this section, all trajectories are de�ned on [0, T ], so we systematically write γ· for (γt)t≤T .
Let γ̄· ∈ E([0, T ], E) be �xed throughout. Let BdE(γ̄·, ζ) denote the open ball of centre γ̄· and

radius ζ > 0 in dE-distance, de�ned in (2.35), and let us estimate the quantity:

lim
ζ→0

lim
N→∞

1

N
logPN

β

(
γN· ∈ BdE(γ̄·, ζ)

)
. (4.7)

To highlight the important points and di�culties, we �rst estimate (4.7) in Section 4.1.1 for "nice"
trajectories, placing convenient assumptions on γ̄·. General trajectories are treated in Section 4.1.2.

4.1.1 Upper bound around nice trajectories

Let us estimate (4.7). Following [KOV89], we estimate (4.7) using the expression (4.3) of the
Radon-Nikodym derivative DN

β,H = DN,T
β,H between PN

β,H and PN
β for trajectories on the time-interval

[0, T ]. Let us �rst assume that, for some ζ > 0 henceforth �xed:

BdE(γ̄·, ζ) ⊂ E([0, T ], E). (4.8)

Take a bias H ∈ C. For any measurable set X̃, we may write:

PN
β

(
γN· ∈ BdE(γ̄·, ζ)

)
= PN

β

(
γN· ∈ BdE(γ̄·, ζ) ∩ X̃

)
+ PN

β

(
γN· ∈ BdE(γ̄·, ζ) ∩ X̃c

)
≤ EN

β,H

[(
DN

β,H

)−1
1γN

· ∈BdE
(γ̄·,ζ)∩X̃

]
+ PN

β

(
γN· ∈ X̃c ∩ E([0, T ], E)

)
. (4.9)

45



To estimate the right-hand side of (4.9), we choose the set X̃ to only contain trajectories on which
the expression of Proposition 3.11 holds. In view of (4.3)�(4.4) set, for each A, δ, ε > 0:

X̃ := Z = Z(β,H, δ, ε, A). (4.10)

With this choice, (4.9) becomes:

PN
β

(
γN· ∈ BdE(γ̄·, ζ)

)
≤ sup

BdE
(γ̄·,ζ)∩Z

exp

[
N
[
− Jβ

H,ε + 2δ + C(H)T
(
ε+

A+ 1

N

)]]
+ PN

β

(
γN· ∈ Zc ∩ E([0, T ], E)

)
. (4.11)

The �rst term in the right-hand side of (4.11) is typically of size e−cN for some c > 0 as we shall
see. For the decomposition into Z and Zc to be useful, Zc must therefore have smaller probability.
This is the case by (3.93) provided ε is su�ciently small and A su�ciently large: there is c(β) > 0
and ε0(δ) > 0 such that, for each A > 0:

sup
0<ε≤ε0(δ)

lim sup
N→∞

1

N
logPN

β

(
γN· ∈ Zc ∩ E([0, T ], E)

)
≤ max

{
− δ−1,−c(β)A

}
. (4.12)

For each δ > 0 and each ε ≤ ε0(δ), Equation (4.11) thus becomes:

lim sup
N→∞

1

N
logPN

β

(
γN· ∈ BdE(γ̄·, ζ)

)
≤ max

{
sup

BdE
(γ̄·,ζ)

(
− Jβ

H,ε

)
+ 2δ + C(H)εT,−δ−1,−c(β)A

}
. (4.13)

To relate (4.13) to the upper bound in terms of the functionals Jβ
H appearing in the de�nition (2.45)

of the rate function Iβ(·|γref) of Theorem 2.17, we need to know a bit more about the functional

Jβ
H,ε. Let us momentarily make the following assumption:

For each ε > 0 and H ∈ C, γ̄· is a point of continuity of the functional Jβ
H,ε. (⋆)

Under Assumption (⋆), there is a modulus of continuity mβ
H,ε,γ̄·

(ζ) ≥ 0 such that:

sup
BdE

(γ̄·,ζ)

(
− Jβ

H,ε

)
≤ −Jβ

H,ε(γ̄·) +mβ
H,ε,γ̄·

(ζ), lim
ζ′→0

mβ
H,ε,γ̄·

(ζ ′) = 0. (4.14)

Thus, taking the small ζ limit in (4.13), then the limits in ε, δ, A, one �nds:

lim sup
ζ→0

lim sup
N→∞

1

N
logPN

β

(
γN· ∈ BdE(γ̄·, ζ)

)
≤ −Jβ

H(γ̄), (4.15)

where we used limε→0 J
β
H,ε(γ̄·) = Jβ

H(γ̄·), see Proposition 4.1 below. Optimising on H ∈ C then
yields the desired upper bound under Assumption (⋆):

lim sup
ζ→0

lim sup
N→∞

1

N
logPN

β

(
γN· ∈ BdE(γ̄·, ζ)

)
≤ − sup

H∈C
Jβ
H(γ̄·). (4.16)
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In full generality, however, Assumption (⋆) is false: the functional Jβ
H,ε is not continuous at γ̄· for

every H, ε without further assumptions on γ̄·. This can be seen by taking a uniform in space and
time, small enough H and a large T , in which case the dominating contribution in the expres-
sion (4.5) of Jβ

H,ε(γ̄·) comes from the following pole term:

1

2

∫ T

0

4∑
k=1

(1/2− e−β)
[
H(t, Lk(γ̄t)) +H(t, Rk(γ̄t))

]
dt. (4.17)

One can check that Lk, Rk are not continuous functionals on E (this is discussed in Lemma B.2).
The motion of the poles is thus responsible for a lack of continuity of Jβ

H,ε on E([0, T ], E), pre-
venting Assumption (⋆) from being true in general. The fact that the functionals Jβ

H,ε are not
continuous is a notable di�erence from the large deviations for the SSEP with reservoirs, where
continuity does hold [BSG+03].

For Assumption (⋆) and thus the upper bound (4.16) to hold, we therefore impose a further
condition on the poles of γ̄·, namely:

for almost every t ∈ [0, T ], γ̄t has point-like poles: Rk(γt) = Lk(γt) for each 1 ≤ k ≤ 4. (4.18)

The su�ciency of this condition is stated next and proven in Appendix B.2.2.

Proposition 4.1. Let H ∈ C. For ε > 0, recall the de�nition (4.5) of the functional Jβ
H,ε. Let

Epp([0, T ], E) ⊂ E([0, T ], E) be the subset of trajectories with point-like poles at almost every time.

Then each γ· ∈ Epp([0, T ], E) is a point of continuity of Jβ
H,ε for the distance dE (de�ned in (2.35)),

thus Assumption (⋆) holds at γ·. In addition, the following convergence result holds on the whole
of E([0, T ], E):

∀γ· ∈ E([0, T ], E), lim
ε→0

Jβ
H,ε(γ·) = Jβ

H(γ·). (4.19)

So far, we have proven the following upper bound. If γ̄· ∈ Epp([0, T ], E),

lim sup
ζ→0

lim sup
N→∞

1

N
logPN

β

(
γN· ∈ BdE(γ̄·, ζ)

)
≤ − sup

H∈C
Jβ
H(γ̄·) = Iβ(γ̄·|γref), (4.20)

with the rate function Iβ(·|γref) de�ned in (2.45). In the next section, we explain how to extend
this bound to trajectories that do not have point-like poles, thus do not satisfy (4.18).

4.1.2 Upper bound around a general trajectory

In Section 4.1, we established upper bound large deviations around a trajectory having point-like
poles at almost every time (and, for convenience, in the interior of E([0, T ], E), recall (4.8)). In
this section, we explain how to estimate the probability of a ball around a trajectory that does not
have these properties and prove:

∀γ̄· ∈ E([0, T ], E),

lim sup
ζ→0

lim sup
N→∞

1

N
logPN

β

(
γN· ∈ BdE(γ̄·, ζ) ∩ E([0, T ], E)

)
≤ −Iβ(γ̄·|γref). (4.21)
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L1 b2=z2

L1
L1

L1

b2

b1 η η

η

Figure 10: Neighbourhood of the north pole of three di�erent curves. The position of the left extremity
L1 of the pole is marked by black dots. The volume V1,η at distance η beneath the poles is the volume of
the red area, which may vanish (left �gure) if the ordinate z1 = L1 · bπ/2 of the north pole is at distance
η or more from the interior of the droplet associated with the curve.

Note the presence of the set E([0, T ], E) in the probability in (4.21) to account for the fact that we
no longer work under the assumption 4.8 that a ball around γ̄· is in E([0, T ], E). This assumption
merely simpli�ed notations.

If γ̄· has almost always point-like poles, (4.21) is just (4.20). When γ̄· does not have almost
always point-like poles, one has Iβ(γ̄·|γref) = +∞ by de�nition. Proving (4.21) thus boils down to
proving:

∀γ̄· ∈ E([0, T ], E), (4.22)

γ̄· /∈ Epp([0, T ], E) ⇒ lim
ζ→0

lim sup
N→∞

1

N
logPN

β

(
γN· ∈ BdE(γ̄·, ζ) ∩ E([0, T ], E)

)
= −∞.

To prove (4.22), we show that, with probability super-exponentially close to 1, microscopic trajec-
tories are close to having almost always point-like poles (the precise statement is given in (4.28)
below). This is done in a similar spirit to energy estimates for the SSEP [BLM09], proving that,
when N is large, the proportion of the time interval during which poles are not reduced to a point
vanishes.

Controlling the pole dynamics. We saw in Proposition 2.12 that the time integrated slope at
the pole only depends on the parameter β with probability super-exponentially close to 1. Here,
we explain how to use an improved version of this result to de�ne a large enough set X (in fact
a sequence of sets), on which trajectories will have almost point-like poles most of the time. This
statement is made precise in Lemma 4.2 below. We then use this sequence of sets X (4.22).

To control the poles, we start by reformulating the statement of Proposition 2.12 in terms of
a bound on the volume beneath a pole (rather than on the slope at the pole). For γ ∈ Ω, let
(zk)1≤k≤4 = (zk(γ))1≤k≤4 denote the extremal coordinates of points in γ (see Figure 10):

z1 = sup{x · bπ/2 : x ∈ γ}, z3 = inf{x · bπ/2 : x ∈ γ},
z2 = sup{x · b0 : x ∈ γ}, z4 = inf{x · b0 : x ∈ γ}. (4.23)

For η > 0 and 1 ≤ k ≤ 4, de�ne then the volume Vk,η beneath pole k as follows (recall that Γ is
the droplet with boundary γ):

Vk,η(γ) =

{∣∣{x ∈ Γ : |zk(γ)− x · bπ/2| ≤ η
}∣∣ if k ∈ {1, 3},∣∣{x ∈ Γ : |zk(γ)− x · b0| ≤ η
}∣∣ if k ∈ {2, 4},

γ ∈ E . (4.24)
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Compared to the slope, the volume Vk,η is more robust to changes in the position of the pole: it
is not hard to check that Vk,η is continuous on E in Hausdor� distance dH (see (2.9)). Moreover,
informally speaking, pole k of a curve is point-like if and only if Vk,η is of order η2 for η small,
see the proof of Lemma 4.2. We will therefore prove (4.22) by showing that the volume beneath a
pole is controlled in a su�ciently strong sense.

The basic ingredient is the following bound established in Lemma B.17: for each q, n ∈ N≥1,
there is η(q, n) = η(q, n, T, γref) > 0 such that:

sup
η≤η(q,n)

lim sup
N→∞

1

N
logPN

β

(
γN· ∈ E([0, T ], E);

1

T

∫ T

0

1
{∣∣η−2Vk,η(γ

N
t )− (eβ − 1)

∣∣ > 1

n

}
dt >

1

n

)
≤ −q. (4.25)

In words and informally, (4.25) states that it is very unlikely for trajectories to spend longer than
T/n without the pole dynamics �xing the volume of a su�ciently small portion beneath each pole.
Simply by inclusion between the sets in the above probability, n 7→ η(q, n) can be taken to be
decreasing. Up to reducing η(q, n), we may also assume:

∀q ∈ N≥1, lim
n→∞

η(q, n) = 0. (4.26)

De�ne then a set Dq,n with the following control of the poles:

Dq,n := E([0, T ], E) ∩
4⋂

k=1

{
∀m ∈ {1, ..., n}, (4.27)

1

T

∫ T

0

1
{∣∣∣η(q,m)−2Vk,η(q,m)(γt)− (eβ − 1)

∣∣∣ > 1

m

}
dt ≤ 1

m

}
.

Since Vk,η is continuous on E for the Hausdor� distance and the indicator function of an open
set is lower semi-continuous, the set Dq,n is closed in E([0, T ], E) for each q, n ∈ N≥1. Moreover,
by (4.25):

lim sup
N→∞

1

N
logPN

β

(
γN· ∈ Dc

q,n ∩ E([0, T ], E)
)
≤ −q. (4.28)

By construction, for q ∈ N≥1, Dq,n′ ⊂ Dq,n if n ≤ n′. As a result, as n increases, poles of trajectories
in Dq,n are controlled more and more precisely. For q ∈ N≥1, de�ne then Dq as:

Dq :=
⋂
n≥1

Dq,n. (4.29)

As stated in the next lemma, trajectories in each Dq, q ∈ N≥1 not only have almost always
point-like poles (thus satisfy (4.18)) but also have kinks with slope e−β at each pole.

Lemma 4.2. Fix q ∈ N≥1 and let (γt)t≤T ∈ Dq. Then, for each k with 1 ≤ k ≤ 4:

for a.e. t ∈ [0, T ], lim inf
η→0

∣∣η−2Vk,η(γt)− (eβ − 1)
∣∣ = 0. (4.30)

In particular, (γt)t≤T has almost always point-like poles. Note thus, for future reference, that γt is
almost always a Jordan curve.
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Before proving the lemma, let us establish the general upper bound (4.22). For ζ > 0, n, q ∈ N≥1

and β > log 2, write using (4.28):

lim sup
N→∞

1

N
logPN

β

(
γN· ∈ BdE(γ̄·, ζ) ∩ E([0, T ], E)

)
≤ max

{
lim sup
N→∞

1

N
logPN

β

(
γN· ∈ BdE(γ̄·, ζ) ∩Dq,n

)
,−q

}
. (4.31)

By assumption, γ̄· does not have point-like poles. It thus does not belong to Dq = ∩nDq,n by
Lemma 4.2. Since Dq,n ⊂ Dq,n′ for n ≥ n′, there is nq ∈ N≥1 such that γ̄· /∈ Dq,n for each n ≥ nq.
By construction, each Dq,n is a closed set. There is thus ζq > 0 such that:

∀ζ ∈ (0, ζq), ∀n ≥ nq BdE

(
γ̄·, ζ

)
∩Dq,n = ∅. (4.32)

Injecting this in (4.31) proves the upper bound (4.22):

∀q ∈ N≥1,∀ζ ∈ (0, ζq), lim sup
N→∞

1

N
logPN

β

(
γN· ∈ BdE(γ̄·, ζ) ∩ E([0, T ], E)

)
≤ −q. (4.33)

Remark 4.3 (Upper bound in Theorem 2.19). To obtain (4.21)�(4.22), it is nowhere necessary
that the trajectory γ̄· take values in E (i.e. that it be close to γref in volume at each time, see
De�nition 2.10). The only property of γ̄· that is used is that it satis�es Property 2.9. Rewriting the
proof with this more general condition, Equations (4.21)�(4.22) correspond to the general upper
bound in Theorem 2.19. ■

We conclude the section with the proof of Lemma 4.2.

Proof of Lemma 4.2. Consider the north pole k = 1, the others being similar. Due to De�nition 2.1
of Ω ⊃ E , a curve γ̃ ∈ E does not have point-like north pole if and only if there is c > 0 (the width
of the north pole) such that, for any η > 0 smaller than some η0(γ̃):

V1,η(γ̃) ≥ ηc. (4.34)

In particular, γ̃ has point-like north pole as soon as:

lim inf
η→0

η−1V1,η(γ̃) = 0. (4.35)

Fix a trajectory (γt)t≤T ∈ Dq and let ε > 0. For each integer n ≥ 1/ε, one has by de�nition of Dq:

1

T

∫ T

0

1
{∣∣η(q, n)−2V1,η(q,n)(γt)− (eβ − 1)

∣∣ > ε
}
dt ≤ 1

n
. (4.36)

Since η(q, n) vanishes when n is large by de�nition (see (4.26)), this implies:

lim inf
η→0

∫ T

0

1
{∣∣η−2V1,η(γt)− (eβ − 1)

∣∣ > ε
}
dt = 0. (4.37)

Using Fatou inequality, we �nd:

lim inf
η→0

∣∣η−2V1,η(γt)− (eβ − 1)
∣∣ ≤ ε for a.e t ∈ [0, T ]. (4.38)
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Since ε is arbitrary, γ· has almost always point-like north pole recalling (4.35). Moreover, the last
equation, also valid for pole k ̸= 1, implies that there are d1, d2 > 0 such that, for almost every
t ∈ [0, T ], there is a sequence ηℓ(t) ∈ (0, 1) (ℓ ∈ N) converging to 0 such that:

∀1 ≤ k ≤ 4,∀ℓ ∈ N, ηℓ(t)
2d1 ≤ Vk,ηℓ(t)(γt) ≤ ηℓ(t)

2d2. (4.39)

For each such time t, the poles are point-like by (4.34) and at zero distance to the interior of the
droplet: γt is thus a Jordan curve.

4.2 Upper bound on compact and closed sets

Equipped with the bound (4.21), let us prove a large deviation bound for compact and closed sets
in E([0, T ], E). The arguments are classical and reproduced here for completeness.

Upper bound for compact sets. Let �rst K ⊂ E([0, T ], E) be a compact set. Let η > 0.
By (4.21), for each γ̄· ∈ E([0, T ], E), there is ζ(γ̄·) > 0 such that:

lim sup
N→∞

1

N
logPN

β

(
γN· ∈ BdE

(
γ̄·, ζ(γ̄·)

)
∩ E([0, T ], E)

)
≤ −Iβ(γ̄·|γref) + η. (4.40)

Cover the compact set K by kη ∈ N≥1 balls BdE

(
γ̄i· , ζ

i(γ̄·)
)
, to �nd:

lim sup
N→∞

1

N
logPN

β

(
γN· ∈ K

)
≤ max

1≤i≤kη

(
− Iβ(γ̄

i
· |γref)

)
+ η

≤ − inf
K
Iβ(·|γref) + η. (4.41)

This proves the upper bound for compact sets.

Upper bound for closed sets. The upper bound for closed sets follow from the exponential
tightness of

(
PN
β (·, E([0, T ], E)

)
N
in M1(E([0, T ], E)), see Lemma 1.2.18 in [DZ10]. Establishing

exponential tightness is quite technical due to the poles, so we postpone it to Appendix B.3 and
conclude here the upper bound of Theorem 2.17.

5 Lower bound large deviations and hydrodynamic limits

In this section, we prove the lower bound in Theorem 2.17. The method is classical (see [KL99,
Chapter 10]). It consists in using Jensen inequality and an expression of the Radon-Nikodym
derivative between the unbiased dynamics and the dynamics with bias H ∈ C on a �nite time
interval to turn the proof of the lower bound into a proof of the hydrodynamic limit for the tilted
probability PN

β,H (see Section 5.1).
The subtlety is that the contour dynamics is only well-controlled inside the e�ective state

space E . As basic ingredient to prove hydrodynamics, we thus need to know that trajectories
under tilted dynamics typically remain in the e�ective state space E for short time. This is proven
in Section 5.2.1. We then prove hydrodynamics in short time (Section 5.2.2) assuming there is
only one solution γH· to the weak formulation (2.39) with bias H ∈ C.

If γH· stays in the interior of the e�ective state space E on a longer time interval, then the
hydrodynamic limit can correspondingly be extended to later time. This is carried out in Sec-
tion 5.2.3.

51



5.1 A �rst lower-bound

In this section, we reduce the proof of the lower bound to the proof of hydrodynamic limits for the
tilted processes. Recall the de�nition of the set Z̃(β,H, δ, ε) for β > log 2, ε, δ, T > 0 and H ∈ C
from Proposition 3.2.

Proposition 5.1. Let β > log 2, T > 0, H ∈ C and let γH· ∈ Epp([0, T ], E) solve the weak
formulation (2.39) of anisotropic motion by curvature with drift H (uniqueness is not needed
here). Assume that γH· is in the interior of E([0, T ], E):

∃ζ0 > 0, BdE(γ
H
· , ζ0) ⊂ E([0, T ], E), (5.1)

with BdE(γ
H
· , ζ0) the open ball of centre γH· and radius ζ0 in dE-distance. Then:

lim inf
ζ→0

lim inf
N→∞

1

N
logPN

β

(
γN· ∈ BdE(γ

H
· , ζ)

)
≥ −Iβ(γH· |γref) (5.2)

+ inf
δ>0

lim inf
ε→0

lim inf
ζ>0

lim inf
N→∞

1

N
logPN

β,H

(
γN· ∈ BdE(γ

H
· , ζ) ∩ Z̃(β,H, δ, ε)

)
.

Proof. Let H ∈ C be as in the proposition and ζ, δ, ε > 0. Write for short:

X := BdE(γ
H
· , ζ) ∩ Z̃(β,H, δ, ε). (5.3)

Then:

logPN
β

(
γN· ∈ BdE(γ

H
· , ζ)

)
≥ logPN

β,H

(
γN· ∈ X

)
= log

(
EN

β,H

[(
DN

β,H

)−1
1γN

· ∈X

]
PN
β

(
γN· ∈ X

) )
+ logPN

β,H

(
γN· ∈ X

)
. (5.4)

Jensen inequality applied to the logarithm then yields, dividing by N :

1

N
logPN

β

(
γN· ∈ O

)
≥ −

EN
β,H

[
N−1 logDN

β,H1γN∈X·

]
PN
β,H

(
γN· ∈ X

) +
1

N
logPN

β,H

(
γN· ∈ X

)
. (5.5)

Taking the limits and in�ma as in the statement of Proposition 5.1, the second term already has
the desired form. Let us compute the expectation. Notice �rst that elements of BdE(γ

H
· , ζ) have

well controlled-length. Indeed, γH· ∈ E([0, T ], E) means that its length is integrable in time, so
that there is c(H,T ) > 0 with: ∫ T

0

|γHt | dt ≤ c(H,T ). (5.6)

One readily checks that the length of a curve γ ∈ E in 1-norm is given in terms of the distance
between the poles:

|γ| = 2
[
L1(γ)− L3(γ)

]
· bπ/2 + 2

[
L2(γ)− L4(γ)

]
· b0. (5.7)
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Each functional in the right-hand side is 1-Lipschitz in Hausdor� distance (see below (B.3)), thus:

∀γ· ∈ BdE(γ
H
· , ζ),

∫ T

0

|γt| dt ≤ 8

∫ T

0

dH(γ
H
t , γt) dt+ c(H,T ) ≤ 8ζ + c(H,T ). (5.8)

Recall now the formula (4.3) for N−1 logDN
β,H : for γ

N
· ∈ E([0, T ], E),

N−1 logDN
β,H(γ

N
· ) = −Jβ

H,ε(γ
N
· ) +

∫ T

0

ω(Ht, δ, ε, γ
N
t ) dt. (5.9)

There is moreover C(H) > 0 such that, for each A > 0, on the set Z̃(β,H, δ, ε) ∩ E([0, T ], E) ∩
{
∫ T

0
|γNt | dt ≤ AT}, the quantity ω satis�es:∣∣∣ ∫ T

0

ω(Ht, δ, ε, γ
N
t ) dt

∣∣∣ ≤ 2δ + C(H)T
(
ε+

A+ 1

N

)
. (5.10)

In view of the bound (5.8) on the length, the above bound on ω is valid on X. Taking the lim inf
in N , the expectation in (5.5) is thus bounded from below as follows:

lim inf
N→∞

−
EN
β,H

[
N−1 logDN

β,H1γN
· ∈X

]
PN
β,H

(
γN· ∈ X

) ≥ lim inf
N→∞

EN
β,H

[(
− Jβ

H,ε

)
1γN

· ∈X

]
PN
β,H

(
γN· ∈ X

) − 2δ − C(H)εT. (5.11)

Since γH· ∈ Epp([0, T ], E), it is a point of continuity of Jβ
H,ε by Proposition 4.1. There is consequently

a real function mβ,γH
· ,H,ε(·) ≥ 0 such that:

sup
γ·∈BdE

(γH
· ,ζ)

∣∣Jβ
H,ε(γ·)− Jβ

H,ε(γ
H
· )
∣∣ = mβ,γH

· ,H,ε(ζ), lim
ζ→0

mβ,γH
· ,H,ε(ζ) = 0. (5.12)

As X ⊂ BdE(γ
H
· , ζ), we deduce:

lim inf
ζ→0

lim inf
N→∞

−
EN

β,H

[
N−1 logDN

β,H1γN
· ∈X

]
PN
β,H

(
γN· ∈ X

) ≥ −Jβ
H,ε(γ

H
· )− 2δ − C(H)εT. (5.13)

By Proposition 4.1, Jβ
H,ε(γ

H
· ) converges to Jβ

H(γ
H
· ) when ε vanishes. Taking the liminf in ε, then

the in�mum on δ in the last equation thus turns its right-hand side into:

inf
δ>0

lim inf
ε→0

{
− Jβ

H,ε(γ
H
· )− 2δ − C(H)εT

}
= −Jβ

H(γ
H
· ). (5.14)

To establish the claim of Proposition 5.1, it only remains to prove that Jβ
H(γ

H
· ) = Iβ(γ

H
· |γref). For

G ∈ C, recall the de�nition (2.43) of Jβ
G:

Jβ
G(γ

H
· ) = ℓG(γ

H
· )− 1

2

∫ T

0

∫
γH
t

G2
(
t, γHt (s))µ(θ(s)

)
ds dt, (5.15)
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where ℓβG is the functional de�ned in (2.42). Above, recall that, for a point γHt (s), θ(s) is the angle
of the tangent vector T(θ(s)) = cos(θ(s))b0 + sin(θ(s))bπ/2 with the horizontal axis at γHt (s).
From the weak formulation (2.39) of anisotropic motion by curvature, one has, for each G ∈ C:

ℓβG(γ
H
· ) =

∫ T

0

∫
γH
t

G(t, γHt (s))H
(
t, γHt (s)

)
µ(θ(s)) ds dt. (5.16)

As a result,

Iβ(γ
H
· |γref) := sup

G∈C
Jβ
G(γ

H
· )

=
1

2

∫ T

0

∫
γH
t

H2
(
t, γHt (s)

)
µ(θ(s)) ds dt+ sup

G∈C

{
− 1

2

∫ T

0

∫
γH
t

[
G−H

]2(
t, γHt (s)

)
µ(θ(s)) ds dt

}
=

1

2

∫ T

0

∫
γH
t

H2
(
t, γHt (s)

)
µ(θ(s)) ds dt = Jβ

H(γ
H
· ). (5.17)

This concludes the proof of Proposition 5.1.

5.2 Hydrodynamic limits for the tilted processes

In this section, we prove hydrodynamics for PN
β,H (H ∈ C) under a uniqueness condition, thereby

proving lower bound large deviations by showing that the probability in Proposition 5.1 vanishes.
Fix β > log 2 and H ∈ C throughout the section. Let T > 0 and γH· ∈ Epp([0, T ], E) solve the

weak formulation (2.39) of anisotropic motion by curvature with drift H on [0, T ]. Assume as in
Proposition 5.1 that γH· is in the interior of E([0, T ], E): for some ζ0 > 0,

BdE(γ
H
· , ζ0) ⊂ E([0, T ], E). (5.18)

Proposition 5.2. Under the above assumptions,

inf
δ>0

lim inf
ε→0

lim inf
ζ>0

lim inf
N→∞

1

N
logPN

β,H

(
γN· ∈ BdE(γ

H
· , ζ) ∩ Z̃(β,H, δ, ε)

)
= 0. (5.19)

The proof of Proposition 5.2 takes up Sections 5.2.1 to 5.2.3. We proceed as follows. First,
we get rid of the technical condition that trajectories belong to Z̃(β,H, δ, ε), in Lemma 5.3. We
then prove that trajectories typically stay in E([0, T ], E) for su�ciently small time T > 0, in Sec-
tion 5.2.1, thereby proving the �rst item of Proposition 2.11. This result is used in Section 5.2.2 to
establish short time hydrodynamics for the tilted processes. This proves Proposition 5.2 for short
time. Finally, in Section 5.2.3, we extend the short time hydrodynamics to the whole time interval
[0, T ], concluding the proof of Proposition 5.2.

Let us �rst deal with Z̃(β,H, δ, ε).

Lemma 5.3. With the notations of Proposition 5.1,

inf
δ>0

lim inf
ε→0

lim inf
ζ>0

lim inf
N→∞

1

N
logPN

β,H

(
γN· ∈ BdE(γ

H
· , ζ) ∩ Z̃(β,H, δ, ε)

)
= lim inf

ζ>0
lim inf
N→∞

1

N
logPN

β,H

(
γN· ∈ BdE(γ

H
· , ζ)

)
. (5.20)
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Proof. Write �rst:

PN
β,H

(
γN· ∈ BdE(γ

H
· , ζ) ∩ Z̃(β,H, δ, ε)

)
= PN

β,H

(
γN· ∈ BdE(γ

H
· , ζ)

)
− EN

β

[
DN

β,H1γN
· ∈BdE

(γH
· ,ζ)∩(Z̃(β,H,δ,ε))c

]
(5.21)

Corollary 3.9 bounds the Radon-Nikodym derivative for trajectories in E([0, T ], E) as follows.
There is C(H) > 0 such that:

∀γN· ∈ E([0, T ], E), DN
β,H(γ

N
· ) ≤ exp

[
C(H)N + C(H)

∫ T

0

|γNt | dt
]
. (5.22)

Since BdE(γ
H
· , ζ) ⊂ E([0, T ], E) for small enough ζ by Assumption (5.1), the above bound is valid

for microscopic trajectories in BdE(γ
H
· , ζ).

For trajectories in BdE(γ
H
· , ζ), the time integral of the length in (5.22) is bounded by c(H,T )+

8ζ, see (5.8). As a result, for δ, ε > 0:∣∣∣PN
β,H

(
γN· ∈ BdE(γ

H
· , ζ) ∩ Z̃(β,H, δ, ε)

)
− PN

β,H

(
γN· ∈ BdE(γ

H
· , ζ)

)∣∣∣
≤ eC(H)N+C(H)N(c(H,T )+8ζ)PN

β

(
γN· ∈ BdE(γ

H
· , ζ) ∩

(
Z̃(β,H, δ, ε)

)c)
. (5.23)

Moreover, we know by Proposition 3.2 that, for each A > 0:

lim
ε→0

lim sup
N→∞

1

N
logPN

β

(
γN· ∈ E([0, T ], E) ∩

{∫ T

0

|γt| dt ≤ AT
}
∩
(
Z̃(β,H, δ, ε)

)c)
= −∞. (5.24)

Since Assumption (5.1) and the bound (5.8) on the length imply BdE(γ
H
· , ζ) ⊂ E([0, T ], E) ∩{ ∫ T

0
|γt| dt ≤ AT

}
for any AT ≥ c(H,T )+8ζ, the above bound applies to estimate the right-hand

side of (5.23). Taking the logarithm, dividing by N and taking the liminf in N , then in ζ, then in
ε in (5.23) yields the claim of the lemma.

5.2.1 The droplet moves on a di�usive scale

In this section, we prove that trajectories typically stay in the e�ective state space E on a short
di�usive time scale, corresponding to item 2 of Proposition 2.11. Recall the convention that, for
two interfaces γ, γ̃ ∈ Ω with associated droplets Γ, Γ̃:

dL1(γ, γ̃) := dL1(Γ, Γ̃), with dL1(Γ, Γ̃) =

∫
R2

|1Γ − 1Γ̃| du dv. (5.25)

Lemma 5.4 (Short-time stability of E). Recall that the e�ective state space E = BdL1 (γ
ref , r20) is

de�ned in De�nition 2.10. For each ε < r0, there is a time t(ε) = t(β,H, ε, |γref |) > 0, independent
of γref except through its length, such that:

lim
N→∞

PN
β,H

(
sup
t≤t(ε)

dL1

(
γNt , γ

ref
)
≤ ε2

)
= 1. (5.26)

For other initial conditions, for any r̃ ∈ (0, r0) and each κ larger than some κ(H, γref) > 0, there
is a time t0 := t0(β,H, r̃, κ) > 0 such that:

lim
N→∞

inf
γN∈ΩN

mic
:|γN |≤κ

dL1 (γref ,γN )≤r̃2

PγN

β,H

(
γN· ∈ E

(
[0, t0], E

))
= 1. (5.27)

55



Proof. The proof of (5.26) is similar to the proof of the same statement in [CMST11] for the
stochastic Ising model. In both cases, the idea is that changing the volume of the droplet requires
adding or deleting a number of blocks of order N2, which takes time. The additional di�culty in
the present case comes from the pole dynamics: droplets can grow.

To deal with growth, we prove in Lemma 6.1 that, under PN
β,H , the length of a curve typically

stays of order N on a di�usive time-scale. More precisely, for each T > 0, there is C(β,H, T ) > 0
such that, for each A > 0:

lim sup
N→∞

1

N
logPN

β,H

(
γN· ∈ E([0, T ], E) ∩

{
sup
t≤T

|γNt | ≥ A
})

≤ −C(β,H, T )A+ |γref |β. (5.28)

In the following, κH > 0 is a constant such that the right-hand side of (5.28) is strictly negative.
For trajectories with length bounded by κH , we will be able to use the following result. Recall

the convention (5.25) that the volume distance between two curves is the volume distance between
their respective droplets.

Lemma 5.5. Let ε > 0. There are functions J1, J2 ∈ C2
c (R2, [0, 1]), with gradient bounded in terms

of ε, |γref | only, such that for any curve γ ∈ E with dL1(γ, γref) ≥ ε2 the following holds:

max
i∈{1,2}

∣∣〈Γ, Ji〉− 〈Γref , Ji
〉∣∣ ≥ ε2/4, where

〈
Γ, Ji

〉
:=

∫
Γ

Ji(u, v) du dv. (5.29)

Let us momentarily admit Lemma 5.5, established at the end of the section, and prove (5.26).
Let ε > 0, let t stε denote the �rst time t ≥ 0 such that:

dL1

(
γNt , γ

ref
)
≥ ε2. (5.30)

Take ε ∈ (0, r0) so that trajectories take values in E at least until time t stε . Introduce the dynamics
PN,st
β,H , corresponding to PN

β,H , but stopped at time t stε . Then, for each t ≥ 0:

PN
β,H

(
t stε ≤ t

)
= PN,st

β,H

(
t stε ≤ t

)
= PN,st

β,H

(
γN· ∈ E([0, t], E) ∩

{
t stε ≤ t

})
= PN,st

β,H

(
γN· ∈ E([0, t], E) ∩

{
sup
t′≤t

|γNt′ | ≤ κH

}
∩
{
t stε ≤ t

})
+ oN(1). (5.31)

The last equality follows from (5.28). By Lemma 5.5, there are functions J1, J2 ∈ C2
c (R2, [0, 1])

depending only on γref , ε, κH , such that:

PN,st
β,H

(
γN· ∈ E([0, t], E) ∩

{
sup
t′≤t

|γNt′ | ≤ κH

}
∩
{
t stε ≤ t

})
(5.32)

≤ PN,st
β,H

(
γN· ∈ E([0, t], E) ∩

{
sup
t′≤t

|γNt′ | ≤ κH

}
∩
{

max
i∈{1,2}

sup
t′≤t

∣∣〈ΓN
t′ , Ji

〉
−
〈
Γref , Ji

〉∣∣ ≥ ε2/4
})

≤ PN
β,H

(
γN· ∈ E([0, t], E) ∩

{
sup
t′≤t

|γNt′ | ≤ κH

}
∩
{

max
i∈{1,2}

sup
t′≤t

∣∣〈ΓN
t′ , Ji

〉
−
〈
Γref , Ji

〉∣∣ ≥ ε2/4
})
.
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To estimate the last probability, let us write, for each i ∈ {1, 2} and t′ ≤ t:〈
ΓN
t′ , Ji

〉
−
〈
Γref , Ji

〉
=

1

N
logAJi

t′ +
1

N
logDN,t′

β,H,Ji

(
(γNu )u≤t′

)
, (5.33)

with DN,t′

β,H,Ji
:=

dPN
β,H+Ji

dPN
β,H

∣∣∣
t′
the Radon-Nikodym derivative up to time t′ de�ned as in (4.1) (setting

Ji(u, ·) = Ji(·) for each u ≥ 0) and:

∀i ∈ {1, 2},∀t′ ≤ t, logAJi
t′ :=

∫ t′

0

N2e−N⟨ΓN
u ,Ji⟩Lβ,He

N⟨ΓN
u ,Ji⟩ du. (5.34)

For trajectories with values in E , Corollary 3.9 can be used to estimate AJi
· (the bound in Corol-

lary 3.9 is for Lβ rather than Lβ,H but this latter case is identical): for some Ci(H, ε, |γref |) > 0,

∀γN· ∈ E([0, T ], E), sup
t′≤t

1

N

∣∣ logAJi
t′ (γ

N
· )
∣∣ ≤ Ci(H, ε, |γref |)

∫ t

0

|γNt | dt. (5.35)

As a result, for each i ∈ {1, 2}, one has:

PN
β,H

(
γN· ∈ E([0, t], E) ∩

{
sup
t′≤t

|γNt′ | ≤ κH

}
∩
{
sup
t′≤t

∣∣〈ΓN
t′ , Ji

〉
−
〈
Γref , Ji

〉∣∣ ≥ ε2/4
})

= PN
β,H

(
γN· ∈ E([0, t], E) ∩

{
sup
t′≤t

|γNt′ | ≤ κH

}
∩
{
sup
t′≤t

DN,t′

β,H,Ji
≥ eNε2/4−Ci(H,ε,|γref |)κH t

})
. (5.36)

Since (DN,t′

β,H,Ji
)t′≤t is a mean-1 martingale under PN

β,H , Doob's maximal inequality yields:

PN
β,H

(
sup
t′≤t

DN,t′

β,H,Ji
≥ eNε2/4−Ci(H,ε,|γref |)κH t

)
≤ e−Nε2/4+Ci(H,ε,|γref |)κH tEN

β,H

[
DN,t

β,H,Ji

]
= e−Nε2/4+Ci(H,ε,|γref |)κH t. (5.37)

Equation (5.31) and the last inequality imply that PN
β,H(t

st
ε ≤ t) vanishes with N as soon as

t < ε2/(4κH max{C1(H, ε, |γref |), C2(H, ε, |γref |)}). This proves (5.26) admitting Lemma 5.5.
To prove (5.27), notice that the functions J1, J2 built below in Lemma 5.5 for γref can be built

similarly for any γ ∈ E with |γ| ≤ κ. The only change is that the constants Ci(H, ε) appearing
above now depend on κ.

Proof of Lemma 5.5. Let ε > 0 and γ ∈ E be such that:

dL1(γ, γref) ≥ ε2. (5.38)

Let Γ be the associated droplet. One has:

either |Γ \ Γref | ≥ ε2/2, or |Γref \ Γ| ≥ ε2/2. (5.39)

Let J1 ∈ C2
c (R2, [0, 1]) be a smooth approximation of 1Γref equal to 1 on Γref . Let also J2 ∈

C2
c (R2, [0, 1]) be a smooth approximation of 1(Γref)c supported on the interior of (Γref)c. We claim

that J1, J2 can be chosen as functions of Γref and ε in such a way that:

|Γ \ Γref | ≥ ε2/2 ⇒
〈
Γ, J2

〉
−
〈
Γref , J2

〉
≥ ε2/4,

|Γref \ Γ| ≥ ε2/2 ⇒
〈
Γref , J1

〉
−
〈
Γ, J1

〉
≥ ε2/4. (5.40)
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Indeed, consider e.g. J1. Due to the fact that γ
ref ∈ Ω can be split into four pieces by De�nition 2.1

of Ω, for any curve γ at Hausdor� distance at most η > 0 from γref , there is a universal C > 0 such
that the distance dL1(γ, γref) is bounded by Cη|γref |. It is therefore enough to ask for J1 : R2 → [0, 1]
to be supported on points at distance at most ε2/(4C|γref |) from Γref , as this implies:〈

Γref , J1
〉
−
〈
Γ, J1

〉
≥
∣∣Γref \ Γ

∣∣− ∣∣Γ \ Γref
∣∣ ≥ ε2

2
− ε2

4
=
ε2

4
. (5.41)

J2 is treated similarly, and we may choose the gradients of J1, J2 to be bounded in terms of ε, |γref |
only. This concludes the proof of Lemma 5.5, thus of Lemma 5.4.

5.2.2 Short-time hydrodynamics

We can now prove hydrodynamics for short time, under an additional uniqueness assumption.

Proposition 5.6 (Short time hydrodynamics). Let r̃ ∈ [0, r0], so that (recall De�nition 2.10 of
E):

BdL1

(
γref , r̃2

)
⊂ E . (5.42)

Let also t0 = t0(β,H, r̃, κ) ∈ (0, T ] be the time of Lemma 5.4 with a large enough κ > 0 in
terms of H, γref . Assume that the weak formulation (2.39) with drift H has a unique solution
γH· ∈ E([0, t0], E) starting from the initial condition γref of De�nition 2.8 (in other words, with the
notations of Theorem 2.17, assume γH· ∈ Aβ,t0). Let (µN)N be a sequence of probability measures
on
(
E , dL1

)
, converging weakly to δγref and such that:

lim
N→∞

µN
(
|γN | ≥ κ

)
= 0. (5.43)

Then:

∀ζ > 0, lim
N→∞

PµN

β,H

(
γN· /∈ BdE

(
(γHt )t≤t0 , ζ

))
= 0. (5.44)

Proposition 5.6 is implied by the following lemma, in which hydrodynamics for (PN
β,H)N are es-

tablished in short time thanks to Lemma 5.4 and the uniqueness assumption on solutions of (2.39).
The proof of Lemma 5.7 in particular contains the proof of Proposition 2.13.

Lemma 5.7. Let κ, t0 and the sequence (µN)N be as in Proposition 5.6. Then (PN
β,H)N converges

to δ(γH
t )t≤t0

in the weak topology of probability measures on (E([0, t0],Ω), dE), with Ω the general

state space given in De�nition 2.3. In particular (5.44) holds.

Proof. The complementary of the open ball BdE((γ
H
t )t≤t0 , ζ) is closed in E([0, t0],Ω) for each ζ > 0.

Equation (5.44) is therefore a direct consequence of the weak convergence result, which we now
prove.

The hypothesis (5.43) on the initial law µN ensures, by Lemma 5.4, that:

lim
N→∞

PµN

β,H

(
γN· ∈ E([0, t0], E)

)
= 1. (5.45)

Under this condition, in Appendix B.3 (see Corollary B.14), the sequence {PµN

β,H : N ∈ N≥1} is
proven to be relatively compact in E([0, t0],Ω), with limit points supported on E([0, t0], E) that are
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continuous in dL1 distance. Let P∗
β,H be one of its limit points. In view of (4.28) and Lemma 5.4,

P∗
β,H is supported on trajectories starting from a curve γ0 with dL1(γ0, γref) = 0 and with almost

always point-like poles (for each q ∈ N≥1, they are in the set Dq de�ned as in (4.29) with t0 instead
of T ).

To prove that P∗
β,H = δ(γH

t )t≤t0
, let us prove that P∗

β,H concentrates on trajectories that satisfy

the weak formulation (2.39) of anisotropic motion by curvature on [0, t0]. This is su�cient to
conclude the proof of Lemma 5.7, because we have assumed that (γHt )t≤t0 is the unique solution
of (2.39) on [0, t0].

To prove this concentration property, the standard idea (see e.g. Chapter 4 in [KL99]) is to
start from the following semi-martingale representation: if t ≥ 0, G ∈ C and (ΓN

t )t≥0 is as usual
the trajectory of droplets associated with microscopic curves (γNt )t≥0,

〈
ΓN
t , Gt

〉
=
〈
ΓN
0 , G0

〉
+

∫ t

0

〈
Γu, ∂uGu

〉
du+

∫ t

0

N2Lβ,H

〈
ΓN
u , Gu

〉
du+MN,G

t , (5.46)

where (MN,G
t )t is a martingale. By assumption, γN0 converges in dL1-distance to the initial condition

γref of the trajectory γH· . Computing the action of the generator Lβ,H , (de�ned with the jump
rates cH of (2.27)) is done in exactly the same way as the computation of the Radon-Nikodym
derivative in Section 3.2. This gives, for each ζ > 0 and G ∈ C, the existence of ε0(ζ) > 0 with:

∀ε ∈ (0, ε0(ζ)),∀t ≤ t0, lim
N→∞

PN
β,H

(
|XG,ε,t| ≤ ζ

)
= 1, (5.47)

where for γ· ∈ E([0, t0], E), and t ≤ t0, recalling the de�nition of α, µ in (2.36)�(2.38):

XG,ε,t(γ·) =
〈
Γt, Gt

〉
−
〈
Γref , G0

〉
−
∫ t

0

〈
Γt′ , ∂t′Gt′

〉
dt′

− 1

4

∫ t

0

∫
γt′ (ε)

(vε)2

v

[
Tε ·m

(
γt′(s)

)]
Tε · ∇G

(
t, γt′(s)

)
ds dt′

+
4∑

k=1

∫ t

0

(1
4
− e−β

2

)[
G(t′, Lk(γt′)) +G(t′, Rk(γt′))

]
dt′

−
∫ t

0

∫
γt′ (ε)

(vε)2

v
|Tε · b0||Tε · bπ/2|(HG)

(
t, γt′(s)

)2
ds dt′. (5.48)

In view of the ε → 0 convergence results of Proposition 4.1 (see more precisely the proof in
Section B.2.2), if we can prove (5.47) also holds under P∗

β,H , then we are done. This is not
immediate because XG,ε,t is not continuous on E([0, t],Ω) due to the poles. Recall however that
P∗
β,H is supported on the closed setDq (de�ned as in (4.29) with t0 instead of T there) for all q larger

than some q(H, t0) as follows from the estimate (4.28) and Corollary 6.2 to transfer this estimate
to PN

β,H . Trajectories in Dq have almost always point-like poles and are therefore continuity points
of XG,ε,t by Proposition 4.1. For q ≥ q(H, t0) henceforth �xed, this implies:{

|XG,ε,t| ≤ ζ
}
∩Dq =

{
|XG,ε,t| ≤ ζ

}
∩Dq, (5.49)

where U denotes the closure of a set U ⊂ E([0, t0],Ω) for dE (de�ned as in (2.35) with t0 instead
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of T ). Thus, for each ε ∈ (0, ε0) and each t ≤ t0:

1 = lim sup
N→∞

PN
β,H

({
|XG,ε,t| ≤ ζ

})
≤ P∗

β,H

({
|XG,ε,t| ≤ ζ

})
= P∗

β,H

({
|XG,ε,t| ≤ ζ

}
∩Dq

)
= P∗

β,H

(
|XG,ε,t| ≤ ζ

)
. (5.50)

This concludes the proof of Lemma 5.7, thus of Proposition 5.6.

5.2.3 Extension to later times

In this section, we extend the hydrodynamic limit result of Proposition 5.6 to the whole time
interval [0, T ] on which γH· is assumed to take values in the interior of E in the sense of (5.1).
This concludes the proof of Proposition 5.2, which together with Lemma 5.3 and Proposition 5.1
concludes the proof of lower bound large deviations in Theorem 2.17.

Proposition 5.8. Let T > 0 and assume that there is a unique solution (γHt )t≤T ∈ E([0, T ], E)
of the weak formulation (2.39) of anisotropic motion by curvature with drift H. Assume that γH·
stays in the interior of E until time T in the following sense:

∃rH > 0,∀t ∈ [0, T ], BdL1

(
γHt , r

2
H

)
⊂ E . (5.51)

Then:

∀ζ > 0, lim
N→∞

PN
β,H

(
γN· ∈ E([0, T ], E) ∩BdE(γ

H
· , ζ)

)
= 1. (5.52)

Remark 5.9 (Lower bound in Theorem 2.19). Proposition 5.8 states that, if γH· stays inside E up
to a time T larger than the time t0 of Lemma 5.4, then hydrodynamics are valid up to time T .

However, the only properties of E that were used are 1) that curves in E satisfy Property 2.9
which enables us to compute Radon-Nikodym derivatives and 2) that if a curve is in E , then all
curves in a small volume neighbourhood satisfy Property 2.9 (see Lemma 2.7). Thus Proposition 5.8
extends to any trajectory satisfying Property 2.9 at each time. This in particular implies the general
lower bound in Theorem 2.19. ■

Proof. The claim of Proposition 5.8 is proven in Proposition 5.6 up to the time t0(β,H, rH , |γref |) ∈
(0, T ] of Lemma 5.6. The point here is to show that the result holds up to time T . To do so, we
iterate the results of Section 5.2.2 on small time intervals, built so that the length and volume of
the droplet stay well controlled on each of these intervals.

The intervals are built thanks to the condition (5.51) and a bound on the length as follows. By
Lemma 6.1, there is κH > 0 such that, for each t ≤ T :

lim
N→∞

PN
β,H

(
γN· ∈ E([0, t], E) ∩

{
sup
t′≤t

|γNt′ | ≥ κH

})
= 0. (5.53)

Recalling the times in Lemma 5.4 and the de�nition of rH from (5.51), one can then consider
intervals of length:

tH := min
{
t(β,H, rH , |γref |), t0(β,H, rH , κH)

}
> 0 (5.54)
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and apply Proposition 5.6 on each of these intervals as we shall see. Let n := ⌊T/tH⌋ + 1 and let
us prove by recursion on 1 ≤ i ≤ n that hydrodynamics hold up to time itH , i.e.:

∀ζ > 0, lim
N→∞

PN
β,H

(
γN· ∈ E([0, itH ], E) ∩BdE

(
(γHt )t≤itH , ζ

))
= 1. (5.55)

On [0, tH ], Proposition 5.6 yields:

∀ζ > 0, lim
N→∞

PN
β,H

(
γN· ∈ E([0, tH ], E) ∩BdE

(
(γHt )t≤tH , ζ

))
= 1, (5.56)

which is the i = 1 claim. Assume the claim holds up to i− 1 < n. To prove that it holds at rank
i, it is enough to prove:

∀ζ > 0, lim
N→∞

PN
β,H

(
E([(i− 1)tH , itH ], E) ∩BdE

(
(γHt )(i−1)tH≤t≤itH , ζ

))
= 1. (5.57)

To prove the last equation, we would like to use the Markov property, then apply Proposition 5.6.
To do so, we need to check that the law PN

β,H(γ
N
(i−1)tH

∈ ·) of γN(i−1)tH
concentrates on curves with

bounded lengths in the sense of (5.43) and converges to δγH
(i−1)tH

for the weak topology associated

with dL1 . We prove it as follows.
Equation (5.53) applied to t = (i − 1)tH and the recursion hypothesis bounds the length of

supported trajectories:

lim
N→∞

PN
β,H

(
sup

t≤(i−1)tH

|γNt | ≥ κH

)
= 0. (5.58)

Moreover, as γH· is continuous in dL1-distance, the mapping γ· ∈ E([0, T ], E) 7→ dL1(γt, γ
H
t ) is

continuous for the distance dE for each time t ∈ [0, T ]. The hydrodynamic limit up to time
(i − 1)tH , given by the recursion hypothesis, then yields the desired convergence (in fact also in
probability rather than only weakly):

∀η > 0, lim
N→∞

PN
β,H

(
γN(i−1)tH

∈ BdL1

(
γH(i−1)tH

, η
))

= 1. (5.59)

For short, write µN
i−1 for the law of γN(i−1)tH

. As a result of the last two estimates and the Markov

property, (5.57) holds as soon as:

∀ζ > 0, lim
N→∞

PµN
i−1

β,H

(
γN· ∈ E([0, itH ], E) ∩BdE

(
(γHt )(i−1)tH≤t≤itH , ζ

))
= 1. (5.60)

By Assumption (5.51), γH(i−1)tH
satis�es the property (5.42) demanded of γref in Proposition 5.6,

with r̃ there replaced by rH . We also just checked that the initial condition µN
i−1 satis�es the same

properties as the initial condition of Proposition 5.6, with γref replaced by γH(i−1)tH
. Proposition 5.6

thus applies to prove (5.60). This completes the induction step and the proof of Proposition 5.8.

6 Behaviour of the poles and 1pk=2 terms

In this section, we focus on the speci�city of the contour dynamics: the behaviour of the poles.
There are two main results. The �rst is the control of the length of a curve, which is the �rst item
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of Proposition 2.11. The second is the proof of Proposition 2.12, which states that the regrowth,
e−2β term in the generator (2.21) can be seen as the action of a moving reservoir of particles,
�xing the density of vertical edges in its vicinity (i.e. the tangent vector at each pole) in terms of
β. This fact is proven in Subsection 6.3. Preliminary estimates are established in Subsection 6.2
which presents a useful bijection argument, used to both bound the pole size and establish local
equilibrium at the poles. In addition to being useful for Section 6.3, these two results were used
in Sections 3�4. A bias H ∈ C is �xed throughout.

6.1 Control of the length of a curve

This section is devoted to the proof of the �rst item of Proposition 2.11, i.e. the control of the
supremum of the length of a trajectory. This estimate is central to the proof of large deviations: it
enables one to prove, in Corollary 6.2, that if an event has probability decaying super-exponentially
fast under PN

β , then this remains true under the tilted dynamics PN
β,H , H ∈ C.

Lemma 6.1. Let β > log 2 and T > 0. There is then C(β) > 0 such that:

∀A > 0, lim sup
N→∞

1

N
logPN

β

(
sup
t≤T

|γNt | ≥ A
)
≤ −C(β)A+ |γref |β. (6.1)

Moreover, take a bias H ∈ C. There are constants C(β,H, T ), C(H) > 0 with t 7→ C(β,H, t)
increasing, such that:

∀T,A > 0, lim sup
N→∞

1

N
logPN

β,H

(
E([0, T ], E) ∩

{
sup
t≤T

|γNt | ≥ A
})

≤ −C(β,H, T )A+ |γref |β + C(H). (6.2)

Proof. The proof relies on the structure of the invariant measure. We start with the H ≡ 0 case.
First, as β > log 2, the partition function ZN

β normalising νNβ (see (2.16)) is bounded. One has,

for some c0 > 0 such that |γN,0| ≤ |γref |+ c0/N for each N :

PN
β

(
sup
t≤T

|γNt | ≥ A
)
≤ νNβ (γref,N)−1P

νNβ
β

(
sup
t≤T

|γNt | ≥ A
)

≤ ZN
β e

β(N |γref |+c0)P
νNβ
β

(
sup
t≤T

|γNt | ≥ A
)
. (6.3)

Let b > 0 to be �xed later and split the time interval [0, T ] into N b slices of length TN−b to obtain,
using the invariance of νNβ :

PN
β

(
sup
t≤T

|γNt | ≥ A
)
≤ ZN

β N
beβN(|γref |+c0)P

νNβ
β

(
sup

t≤N−bT

|γNt | ≥ A
)
. (6.4)

To estimate the last probability, let us decompose |γN· |: for each t ≥ 0,

|γNt | = |γN0 |+ 1

N
log Vt +

1

N
logDt, (6.5)
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where D· is a mean-1 exponential martingale and V· is the �nite variation process given by:

∀t ≥ 0,
1

N
log Vt :=

1

N

∫ t

0

e−N |γN
s |N2Lβe

N |γN
s |dt (6.6)

= N

∫ t

0

4∑
k=1

[
e−2β(pk(γ

N
u )− 1)

(
e2 − 1

)
+ 1pk(γN

u )=21(γN )−,k∈ΩN
mic

(
e−2 − 1)

]
du.

To estimate the probability in (6.4), it is enough to separately estimate the probability that
|γN0 | ≥ A and the probability of the suprema of each of the other two terms in (6.5). Let us start
with |γN0 |. Since the number of curves in ΩN

mic with n ∈ N≥1 edges is bounded by cn42n for some
c > 0, the following equilibrium estimate holds:

νNβ

(
|γN | ≥ A

)
≤ 1

ZN
β

∑
n≥AN

cn42ne−βn = O
(
e−ANβ′)

, 0 < β′ < β − log 2. (6.7)

Consider now the �nite variation term (6.6). Bounding each pk by CN for some C > 0 and using
Chebychev inequality to obtain the second line below, we �nd:

P
νNβ
β

(
sup

t≤N−bT

1

N
log Vt ≥ A

)
≤ P

νNβ
β

(N2
(
e2 − 1

)
2

∫ TN−b

0

4∑
k=1

pk(γ
N
s ) ds ≥ ANe2β

4

)
≤ exp

[
− ANe2β

4(e2 − 1)

]
eCTN3−b/2

≤ eCT/2e−ANe2β(e2−1)−1/4 for b ≥ 3. (6.8)

Consider �nally the martingale term 1
N
logDt in (6.5). As Dt is a mean-1 positive martingale,

Doob's martingale inequality gives:

P
νNβ
β

(
sup

t≤N−bT

1

N
logDt ≥ A

)
≤ e−ANE

νNβ
β

[
DN−bT

]
= e−AN . (6.9)

Putting (6.7)�(6.8)�(6.9) together yields the claim of Lemma 6.1 when H ≡ 0.

Take now H ∈ C and let us prove (6.2). Recall from Corollary 3.9 that there is C(H) > 0 such
that the Radon-Nikodym derivative DN

β,H = dPN
β,H/dPN

β |T until time T satis�es, for each T > 0:

∀γN· ∈ E([0, T ], E), logDN
β,H(γ

N
· ) ≤ exp

[
C(H)N + C(H)N

∫ T

0

|γNt | dt
]
. (6.10)

We will prove the following: until time t∗ = t∗(β,H) := C(β)/(2C(H)), for each A > 0, κ > 0 and
each initial condition γN0 ∈ E with length bounded by κ:

lim sup
N→∞

1

N
logPN

β,H

(
E([0, t∗], E) ∩

{
sup
t≤t∗

|γNt | ≥ A
})

≤ −C(β)A
2

+ κβ + C(H). (6.11)

Assuming (6.11), let us conclude the proof of Lemma 6.1. Let n∗ ∈ N be such that (n∗ − 1)t∗ ≤
T ≤ n∗t∗ and de�ne a sequence (bi)i∈N through:

b0 = 0,
C(β)bi+1

2
= C(β) + bi(β + log 2), i ∈ N. (6.12)
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Write then:

PN
β,H

(
E([0, T ], E) ∩

{
sup
t≤T

|γNt | ≥ bn∗A
})

≤ PN
β,H

(
γ(n∗−1)t∗ ∈ E , sup

t≤n∗t∗

|γNt | ≥ bn∗A, sup
t≤(n∗−1)t∗

|γNt | < bn∗−1A
)

+ PN
β,H

(
E([0, (n∗ − 1)t∗], E) ∩

{
sup

t≤(n∗−1)t∗

|γNt | ≥ bn∗−1A
})

≤
n∗∑
i=2

PN
β,H

(
γN(i−1)t∗ ∈ E , sup

t≤it∗

|γNt | ≥ biA, sup
t≤(i−1)t∗

|γNt | < bi−1A
)

+ PN
β,H

(
E([0, t∗], E) ∩

{
sup
t≤t∗

|γNt | ≥ b1A
})
. (6.13)

The last probability is estimated by (6.11). On the other hand, apply Markov inequality to each
term of the sum to �nd, for 2 ≤ i ≤ n∗:

PN
β,H

(
γN(i−1)t∗ ∈ E , sup

t≤it∗

|γNt | ≥ biA, sup
t≤(i−1)t∗

|γNt | < bi−1A
)

≤ sup
γN∈ΩN

mic
∩E

|γN |<bi−1A

PγN

β,H

(
sup
t≤t∗

|γNt | ≥ biA
)
. (6.14)

Using (6.11) and the fact that there is c > 0 such that the number of curves with ℓ edges in ΩN
mic

is less than cℓ42ℓ, we �nd for 2 ≤ i ≤ n∗:

lim sup
N→∞

1

N
logPN

β,H

(
sup
t≤it∗

|γNt | ≥ biA, sup
t≤(i−1)t∗

|γNt | < bi−1A
)

≤ −C(β)biA
2

+ bi−1(β + log 2)A+ C(H) = −C(β)A+ C(H). (6.15)

This estimate and (6.11) corresponding to i = 1 prove (6.2) assuming (6.11), with C(β,H, T ) :=
b−1
n∗ .
Let us now prove the short time estimate (6.11). Starting again from (6.10), one has, for each
T > 0:

PN
β,H

({
sup
t≤T

|γNt | ≥ A
}
∩ E([0, T ], E)

)
≤ eC(H)NEN

β

[
eC(H)NT supt≤T |γN

t |1supt≤T |γN
t |≥A

]
. (6.16)

By (6.1), this expectation reads:

EN
β

[
eC(H)NT supt≤T |γN

t |1supt≤T |γt|≥A

]
≤
∫ ∞

A

eC(H)NTλPN
β

(
sup
t≤T

|γNt | ≥ λ
)
dλ

≤
∫ ∞

A

eC(H)NTλ−c(β)Nλ+|γref |βN dλ. (6.17)

Setting t∗(β,H) := C(β)/(2C(H)) concludes the proof of (6.11), thus of Lemma 6.1.
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The following corollary explains how to use Lemma 6.1 to argue that events with super-
exponentially small probability under PN

β also have super-exponentially small probability under
the tilted dynamics PN

β,H for H ∈ C. Typical examples are the sets (Dn,q)q for �xed n, see (4.27)
and Z = Z(β,H, ε, δ) for ε ≤ ε0(δ) and δ > 0, see (4.12).

Corollary 6.2 (Sub-exponential estimates for tilted dynamics). For a time T > 0, let (χA,T )A>0 ⊂
E([0, T ],Ω) be a family of sets such that, for some C(β) > 0:

∀T > 0,∀A > 0, lim sup
N→∞

1

N
logP

νNβ
β

(
χc
A,T ∩ E([0, T ], E)

)
≤ −C(β)A. (6.18)

Then, for each H ∈ C and each time T > 0, there are constants C(β,H, T ), C(H) > 0 (di�erent
from those of Lemma 6.1) with t 7→ C(β,H, t) increasing, such that:

∀T,A > 0, lim sup
N→∞

1

N
logPN

β,H

(
χc
A,T ∩ E([0, T ], E)

)
≤ −C(β,H, T )A+ C(H) + |γref |β. (6.19)

Proof. Let A′ > 0 and write �rst, using Corollary 3.9:

PN
β,H

(
χc
A,T ∩ E([0, T ], E)

)
≤ EN

β

[
1χc

A,T∩E([0,T ],E)∩{supt≤T |γN
t |≤A′}D

N
β,H

]
+ PN

β,H

(
sup
t≤T

|γNt | ≥ A′
)

≤ eC(H)N(1+A′T )PN
β

(
χc
A,T ∩ E([0, T ], E) ∩

{
sup
t≤T

|γNt | < A′})
+ PN

β,H

(
sup
t≤T

|γt| ≥ A′
)
. (6.20)

The �rst probability is controlled by (6.18), the second by the tail estimates for the length obtained
in Lemma 6.1, so we conclude the proof here.

6.2 Size of the poles and local equilibrium

In this section, we prove Lemmas 3.4�3.5, i.e. we estimate the time integral of the number of
blocks p1 in the north pole P1 and of the following term, for any test function G ∈ C:

WG
t (γN) :=

∑
x∈P1(γN )

x+e±x ∈P1(γN )

(
1p1(γN )=2,(γN )−,1∈ΩN

mic

− e−2β
)
G(t, x), γN ∈ ΩN

mic, t ≥ 0. (6.21)

Notation: As we only work with the north pole in the following, we drop the subscript 1 and
simply write P = P1 and p for its number of blocks. Moreover, as we only consider microscopic
curves, we remove the superscript N on curves, writing γ for γN ∈ ΩN

mic. We also write ν for νNβ .

Lemma 6.3. Let T > 0. For each N ∈ N≥1 and each 0 < a < N/2,

Eν
β

[
exp

[
aN

∫ T

0

e−2β(p(γt)− 1) dt
]]

≤ exp
[
NaT +

2Na2T

N − 2a

]
, (6.22)

so that for each A > 1:

lim
N→∞

1

N
logPN

β

(
1

T

∫ T

0

e−2β(p(γt)− 1) dt ≥ A

)
= −∞. (6.23)
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Moreover, for each δ > 0 and G ∈ C,

lim
N→∞

1

N
logPN

β

(∣∣∣∣ 1T
∫ T

0

WG
t (γt) dt

∣∣∣∣ > δ

)
= −∞. (6.24)

By Corollary 6.2, the limits (6.23)�(6.24) hold also under PN
β,H with the additional condition that

trajectories belong to E([0, T ], E).

The proof of Lemma 6.3 relies on a bijection argument, stated in the following lemma, for
which more notations are required.
If γ ∈ ΩN

mic (recall that we drop the N superscript on microscopic curves), let p′(γ) denote the
number with centre at height z1(γ) − 3

2N
in the associated droplet Γ (i.e. blocks directly below

those that form the poles, see Figure 11):

p′(γ) :=
∣∣∣{blocks in Γ with centre i with i · bπ/2 = z1(γ)−

3

2N

}∣∣∣, (6.25)

where z1 is the largest ordinate of points in a curve:

z1(γ) := sup
{
x · bπ/2 : x ∈ γ

}
. (6.26)

Write Eν for the expectation under the static measure ν = νNβ and Eνf for the expectation under
fν when f is a density for ν and νf denotes the associated probability. De�ne the Dirichlet form
DN of the contour dynamics:

DN(g) := −Eν

[
gLβg

]
=

1

2

∑
γ,γ̃∈ΩN

mic

ν(γ)c(γ, γ̃)
[
g(γ)− g(γ̃)

]2
, g : ΩN

mic → R. (6.27)

Lemma 6.4. Let f be a density with respect to the contour measure ν. Then, for any integer
A ≥ 2, [

νf
(
p = 2, γ−,1 ∈ ΩN

mic
, p′ ≥ A

)1/2 − Eνf

[
(p− 1)e−2β1p≥A

]1/2]2 ≤ 2DN(f
1/2). (6.28)

The indicator function 1γ−,1∈ΩN
mic

in the �rst probablity ensures that the deletion of a pole is a
dynamically allowed move (it is not true for all curves as the point 0 must belong to droplets
associated with curves γ ∈ ΩN

mic
and deleting the north pole could make this fail).

Equation (6.28) also holds with p′ ≤ A, p ≤ A instead of p′ ≥ A, p ≥ A respectively in the probability
and in the expectation.

Proof. We prove the result with A = 2 (i.e. without constraint on p′), the general case is similar.
Fix a density f for ν and de�ne U on ΩN

mic as follows:

∀γ ∈ ΩN
mic, U(γ) = e−2β(p(γ)− 1). (6.29)

Let us �rst prove that νf (p = 2, γ−,1 ∈ ΩN
mic) and Eνf [U ] are comparable, up to an error that can

be expressed in terms of the Dirichlet form DN(f
1/2).
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p=5

  γ(1) γ(2) γ(4)γ(3)

p'=6

b2

ymax

ymax-1/(2N)

ymax-3/(2N)

Figure 11: Neighbourhood of the north pole of a curve γ ∈ ΩN
mic (thick line) and the γ(n), n ≤ p− 1 = 4.

γ(3) is the curve γ to which the two blocks delimited by dashed lines are added. Conversely, any of the
γ(n), n ≤ 4 is in {p = 2, γ−,1 ∈ ΩN

mic} and deleting the two blocks constituting their poles turns them into
γ. The curve γ has p = 5 blocks in the pole, corresponding to blocks with centre at height z1 − 1

2N , and
p′ = 6 blocks on the level below, i.e. with centre at height z1 − 3

2N .

Each γ ∈ ΩN
mic can be turned into any one of the curves γ(1), ..., γ(p−1) with two blocks added

atop the north pole, where γ(n) is identical to γ except that two blocks sitting on the edges n, n+1
are added, counting the edges from the left extremity of the pole (see Figure 11). Note that the
γ(n) correspond to the γ+,x with x, x+ e±x ∈ P in De�nition 2.5, where n stands for the number of
the block at x.
Conversely, the north pole of each curve γ̃ with p = 2 and γ̃−,1 ∈ ΩN

mic can be deleted to obtain
a curve γ = (γ̃)−,1 which is still in ΩN

mic. The resulting curve γ has length |γ| = |γ̃| − 2/N . The
same curve γ can be obtained p− 1 = p(γ)− 1 times by deleting the pole of size 2 of a certain γ̃,
with these γ̃ corresponding to curves in {γ(n) : 1 ≤ n ≤ p− 1}, see Figure 11. Thus:

νf
(
p = 2, γ1,− ∈ ΩN

mic

)
=

∑
γ̃∈{p=2,γ̃−,1∈ΩN

mic
}

ν(γ̃)f(γ̃)

=
∑

γ̃∈{p=2,γ̃−,1∈ΩN
mic

}

∑
γ∈ΩN

mic

1{∃n≤p−1:γ̃=γ(n)}ν(γ)e
−2βf(γ(n))

=
∑

γ∈ΩN
mic

ν(γ)e−2β

p−1∑
n=1

f(γ(n)). (6.30)

Add and subtract the quantities needed to bound the second line by the Dirichlet form DN(f
1/2):

νf
(
p = 2, γ−,1 ∈ ΩN

mic

)
=
∑

γ∈ΩN
mic

ν(γ)e−2β

p−1∑
n=1

[
f(γ(n)) + f(γ)− 2f 1/2(γ)f 1/2(γ(n))

]
−
∑

γ∈ΩN
mic

ν(γ)e−2β
[
(p− 1)f(γ)− 2

p−1∑
n=1

f 1/2(γ)f 1/2(γ(n))
]
. (6.31)
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To estimate the second line of (6.31), apply Cauchy-Schwarz inequality to the sum
∑p−1

k=1 to obtain:

νf
(
p = 2, γ−,1 ∈ ΩN

mic

)
≤ 2DN(f

1/2)− Eνf

[
e−2β(p− 1)

]
+ 2

∑
γ∈ΩN

mic

ν(γ)e−2β(p− 1)1/2f 1/2(γ)
[ p−1∑

n=1

f(γ(n))
]1/2

. (6.32)

Recall the de�nition of U from (6.29) and again use Cauchy-Schwarz on the sum on γ ∈ ΩN
mic to

�nd:

νf
(
p = 2, γ−,1 ∈ ΩN

mic

)
≤ 2DN(f

1/2)− Eνf [U ]

+ 2
[ ∑
γ∈ΩN

mic

ν(γ)e−2β(p− 1)f(γ)
]1/2[ ∑

γ∈ΩN
mic

ν(γ)e−2β

p−1∑
n=1

f(γ(n))
]1/2

= 2DN(f
1/2)− Eνf [U ] + 2Eνf [U ]

1/2νf
(
p = 2, γ−,1 ∈ ΩN

mic

)1/2
. (6.33)

Putting things together yields the claim of the lemma:[
νf
(
p = 2, γ−,1 ∈ ΩN

mic

)1/2 − Eνf [U ]
1/2
]2

≤ 2DN(f
1/2). (6.34)

Proof of Lemma 6.3. We now explain how to obtain Lemma 6.3 from Lemma 6.4. We need to do
two things:

1. Bound from above the probabilities appearing in the claim by an expression involving the
measure νf as in (6.28).

2. Prove that (6.24) holds for WG
· , with G ∈ C. The �rst point only gives the result for

1p=2,γ−,1∈ΩN
mic

− U , which corresponds to W 1
· ;.

The �rst point relies on a classical Feynman-Kac estimate. Since a similar reasoning is used re-
peatedly in the article, we present it here once and for all. The second point, however, requires
some care; in order to apply the bounds of Lemma 6.4 to integrals depending on a function G ∈ C.

Let us explain the general idea for the �rst point using (6.23) as an example. We wish to
estimate:

PN
β

(
1

T

∫ T

0

e−2β(p(γt)− 1) dt ≥ A

)
. (6.35)

We do so using Feynman-Kac formula. Let a ∈ (0, N/2) and apply the exponential Chebychev
inequality to obtain

1

N
logPN

β

(
1

T

∫ T

0

e−2β(p(γt)− 1) dt ≥ A

)
(6.36)

≤ −aAT +
1

N
logEN

β

[
exp

[
aN

∫ T

0

e−2β(p(γt)− 1) dt

]]
.
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Consider the generator N2Lβ + aNU , with U de�ned in (6.29). This generator is self-adjoint for
the contour measure νβ and Feynman-Kac inequality plus a representation theorem for the largest
eigenvalue of a symmetric operator (Lemma A.1.7.2 in [KL99]) yield that, with the equilibrium
measure ν = νNβ as an initial condition:

Eν
β

[
exp

[
aN

∫ T

0

U(γt) dt

]]
≤ exp

[ ∫ T

0

sup
f≥0:Eν [f ]=1

{
aNEνf [U ]−N2DN(f

1/2)
}
dt

]
. (6.37)

In the present, G ≡ 1 case, the supremum in (6.37) does not depend on time.
One can bound PN

β , where the initial condition is the deterministic curve γN,ref , by the probability
Pν
β starting from the equilibrium measure ν:

PN
β (·) ≤ ZN

β e
βN |γN,ref |Pν

β(·) ≤ eCβNPν
β(·), (6.38)

for some constant C > 0. Using (6.37)�(6.38), (6.36) becomes:

1

N
logPN

β

(
1

T

∫ T

0

U(γt)dt ≥ A

)
≤ −aAT + Cβ + T sup

f≥0,
Eν [f ]=1

{
aEνf [U ]−NDN(f

1/2)
}
. (6.39)

At this point, we can use Lemma 6.4 to bound the supremum in the right-hand side of (6.39):
by (6.28),

Eνf [U ] ≤
[
1 + (2DN(f

1/2))1/2
]2
. (6.40)

As a result, the supremum in (6.39) satis�es (recall a < N/2):

sup
f≥0,

Eν [f ]=1

{
aEνf [U ]−NDN(f

1/2)
}
≤ sup

u≥0

{
a+ 2a

√
2u+ 2au−Nu

}
= a+

2a2

N − 2a
. (6.41)

Injecting this result in (6.37) gives (6.22). On the other hand, injecting it in (6.39), then taking
N large, then a large concludes the proof of (6.23).
We claim that Equation (6.24) in the G ≡ 1 case follows similarly. Indeed, for W 1, using the
identity x− y = (

√
x−√

y)(
√
x+

√
y) valid for x, y ≥ 0, the quantity in the supremum in (6.39)

is now aEνf [W
1]−NDN(f

1/2), where by de�nition:

W 1 =
∑
x∈P

x+e±x ∈P

[
1p=2,γ−,1∈ΩN

mic

− e−2β
]

= 1p=2,γ−,1∈ΩN
mic

− (p− 1)e−2β = 1p=2,γ−,1∈ΩN
mic

− U. (6.42)

As a result, Eνf [W
1] can be bounded from above as follows using (6.34) and (6.40):∣∣Eνf

[
W 1
]∣∣ = ∣∣∣νf(p = 2, γ−,1 ∈ ΩN

mic

)1/2 − Eνf [U ]
1/2
∣∣∣[νf(p = 2, γ−,1 ∈ ΩN

mic

)1/2
+ Eνf [U ]

1/2
]

≤ (2DN(f
1/2))1/2

[
2 + (2DN(f

1/2))1/2
]
. (6.43)
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Elementary computations again yield:

sup
f≥0,

Eν [f ]=1

{
aEνf [W

1]−NDN(f
1/2)
}
≤ 2a2

N − 2a
. (6.44)

Using this estimate in (6.39), with W 1 there instead of U ; taking the large N , then the large a
limits conclude the proof of the �rst point.

Let us now deal with the second point, i.e. proving (6.24) for any G and not just G ≡ 1. As
G may not have constant sign, one cannot directly use the bounds in the proof of Lemma 6.4.
However, if G is positive, it is not complicated to repeat the bijection argument of Lemma 6.4 to
obtain, for each t ≤ T :[

Eνf

[
e−2β

∑
x∈P

x+e±x ∈P

G(t, x)
]1/2

− Eνf

[
1p=2,γ−,1∈ΩN

mic

∑
x∈P

x+e±x ∈P

G(t, x)
]1/2]2

≤ ∥Gt∥∞DN(f
1/2) +

∥∇Gt∥∞
N

Eνf [U ], (6.45)

where the second term in the right-hand side comes from the fact that the point at which Gt is
evaluated depends on the position of the pole. Recall also that the summation on x ∈ P such that
x+ e±x ∈ P is just a way of enumerating all positions where two blocks can appear atop the pole.
For general G ∈ C, the result then follows by applying (6.45) to the positive and negative parts
G+ and G− of G, i.e. G := G+ −G− with G+, G− ≥ 0.

6.3 Convergence of the 1pk=2 term at �xed β and slope around the poles

This section is devoted to the proof of Proposition 2.12: poles act as reservoirs that �x the value
e−β of the slopes ξ±,εN

L1
, 1− ξ±,εN

L1
at the poles.

We prove this statement in several steps. First, we explain how to use the condition that
trajectories belong to E([0, T ], E) to project the contour dynamics onto a local one. This is a key
technical argument to compare the contour dynamics to simpler 1-dimensional ones.

We then prove that the 1pk=2 term �xes the slope around the poles, in the sense that the time

integrals of 1pk=2 and ξ
±,εN
Lk

are close, see Section 6.3.2. This should not come as a surprise if one
remembers that, in a Symmetric Simple Exclusion Process (SSEP) with reservoirs, the density
close to the reservoirs is �xed. The time average of 1pk=2 is then proven to be equal to e−β

in Section 6.3.4. Preliminary microscopic estimates used in this computation are carried out in
Section 6.3.3.

6.3.1 Turning the contour dynamics into a local dynamics

The next lemma shows that if trajectories belong to the set E([0, T ], E) where the contour dynamics
is local (recall the discussion following De�nition 2.8), then exponential moments of time-integrated
observables can be estimated in terms of quantities de�ned on the e�ective state space E only. This
Lemma is proven in Section A.1.
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Lemma 6.5 (Projection onto a local dynamics in the e�ective state space E). Let ψ : [0, T ] ×
ΩN
mic

→ R be bounded. Then, for some C = C(γref) > 0:

1

N
logEN

β

[
1γN

· ∈E([0,T ],E) exp

[
N

∫ T

0

ψ(t, γNt ) dt

]]
≤ Cβ +

∫ T

0

sup
f≥0:νf (E)=1

{
Eνf

[
ψ(t, ·)

]
−NDN(f

1/2)
}
dt. (6.46)

Remark 6.6. Equation (6.46) looks like a standard Feynman-Kac estimate. Note however that
the supremum in (6.46) is on densities with full support in E . In general, if f is a ν-density, there
is no way to control DN(f

1/2) by DN

(
f 1/21E

)
. Indeed, if f̃ = f1E , DN(f̃

1/2) contains terms of the
form: ∑

γN∈ΩN
mic

∩E
γ̃N /∈E

[
ν(γN)c(γN , γ̃N)f(γN) + ν(γ̃N)c(γ̃N , γN)f(γN)

]
, (6.47)

which have a priori no reason to be comparable to di�erences [f(γN)1/2 − f(γ̃N)1/2]2.
Note also that Lemma 6.5 is not a statement about the contour dynamics conditioned to stay

inside E , but about the full dynamics. This is an important point: the jump rates of a conditioned
dynamics would be non-local, whereas we really need locality to later project the dynamics onto
1-dimensional particle dynamics. ■

6.3.2 The 1p=2 term coincides with the slope around the pole

Inside each region, the contour dynamics has the same updates as an SSEP, as explained in
Section 2.4 and presented more thoroughly in the proof of Lemma 6.7 below. Here, we treat the
poles as the extremal sites of an SSEP, viewing 1p1=2 as the edge state of the �rst (in region 1) or
last (in region 4) site of a SSEP, see (6.51) below. We use this observation to prove estimates of
the slope at the pole in terms of 1p1=2. Recall that, for γ

N ∈ ΩN
mic, x ∈ V (γN) and ℓ ∈ N≥1:

ξ+,ℓ
x =

1

ℓ+ 1

∑
y≥x

∥y−x∥1≤ℓ/N

ξy, ξ−,ℓ
x =

1

ℓ+ 1

∑
y≤x

∥y−x∥1≤ℓ/N

ξy. (6.48)

Recall also the de�nition of the space E([0, T ], E) from (2.34). We focus on the north pole, using
the notations P := P1 and p := p1 as well as ν := νNβ . The superscript N is also dropped for
microscopic curves.

Lemma 6.7. For each T > 0, β > log 2, δ > 0 and each G ∈ C, the slope on each side of the pole
satis�es a one block estimate:

lim
ℓ→∞

lim sup
N→∞

1

N
logPN

β

(
γN· ∈ E([0, T ], E);∣∣∣∣ 1T

∫ T

0

G(t, L1(γ
N
t ))
(
1p1(γN

t )=2 − ξ±,ℓ

L1(γN
t )+2b0/N

)
dt

∣∣∣∣ ≥ δ

)
= −∞, (6.49)
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and a two block estimate:

lim
ε→0

lim sup
N→∞

1

N
logPN

β

(
γN· ∈ E([0, T ], E);∣∣∣∣ 1T
∫ T

0

G(t, L1(γ
N
t ))
(
1p1(γN

t )=2 − ξ±,εN

L1(γN
t )+2b0/N

)
dt

∣∣∣∣ ≥ δ

)
= −∞. (6.50)

Both estimates are valid under PN
β,H by Corollary 6.2.

Proof. The proof relies on the key observation that the quantity 1p=2 can be controlled in terms
of the edges at the extremities L1, R1 of the poles. Indeed, abusing notations and respectively
writing L1 + 2, R1 − 3 for the vertex at distance 2/N to L1 clockwise and the vertex at distance
3/N from R1 anticlockwise:

1p=2 = ξL1+2 = ξR1−3. (6.51)

Here, we focus on the slope to the right of the pole, for which we use the identity 1p=2 = ξL1+2.
The slope to the left of the pole is treated similarly using 1p=2 = ξR1−3.

As long as no growth/deletion move at the poles occurs, 1p=2 can thus be thought of as the
occupation number of the closest site to a reservoir in a SSEP, in which case (6.49)�(6.50) are
well-known (see [ELS90]). We �rst prove (6.49). Building on the observation (6.51), de�ne ϕℓ as
the function:

ϕℓ(γ) = ξL1+2 − ξ+,ℓ
L1+2, γ ∈ ΩN

mic. (6.52)

To estimate the probability in (6.49), it is enough to consider, for each a > 0, the quantity:

1

N
logPN

β

(
γ· ∈ E([0, T ], E); exp

[
aN

∫ T

0

G(t, L1(γt))ϕℓ(γt) dt

]
≥ exp[aNTδ]

)
≤ −aTδ + 1

N
logEN

β

[
1E([0,T ],E) exp

[
aN

∫ T

0

1γt∈E G(t, L1(γt))ϕℓ(γt) dt

]]
. (6.53)

Let Dex
N ≤ DN be the Dirichlet form of the contour dynamics excluding moves at the pole:

Dex
N (g) =

1

2

∑
γ∈ΩN

mic

ν(γ)
∑

x∈V (γ)\∪kPk(γ)

c(γ, γx)
[
g(γx)− g(γ)

]2
, g : ΩN

mic → R. (6.54)

If g is supported in E , then the c(γ, γx) are local (see De�nition 2.10) and:

Dex
N (g) =

1

2

∑
γ∈ΩN

mic

ν(γ)
∑

x∈V (γ)\∪kPk(γ)

cx(γ)
[
g(γx)− g(γ)

]2
, (6.55)

with:

cx(γ) =
1

2

[
ξx(1− ξx+e−x

) + ξx+e−x
(1− ξx)

]
. (6.56)

Apply Lemma 6.5 to ψ = aGϕℓ to obtain that (6.53) is bounded from above by:

− aδT + Cβ +

∫ T

0

dt sup
f≥0:νf (E)=1

{
aEνf [G(t, L1)ϕℓ]−NDex

N (f 1/2)
}
. (6.57)
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Let us now compare the contour dynamics in the �rst region to a SSEP. To do so, we partition
curves in ΩN

mic according to their �rst region.
Fix t ∈ [0, T ] and a ν-density f with support in E . We �rst split the expectation in the supre-

mum in (6.57) depending on the possible positions of L1 so that G(t, L1) becomes deterministic.
For x ∈ (N−1Z)2, de�ne:

M(x) :=
{
γ ∈ ΩN

mic : L1(γ) +
2b0

N
= x

}
. (6.58)

Note that, since γ ∈ ΩN
mic∩E is associated to a droplet that is by de�nition in a volume neighbour-

hood of the bounded droplet Γref , only a �nite number of M(x) are actually non-empty. Then:

Eνf [G(t, L1)ϕℓ] =
∑

x∈(N−1Z)2
G
(
t, x− 2b0

N

)[ ∑
γ∈M(x)

ν(γ)f(γ)ϕℓ(γ)

]
. (6.59)

In (6.59), recall that the constraint that curves belong to E is enforced by the density f .

In the following, for γ ∈ M(x), we refer to the edge [x, x+ e+x ] as edge 1, to the one following
it as edge 2, etc, up to edge ℓ; and write ξ1(γ), ..., ξℓ(γ) for the corresponding values of the edge
labels (as usual, curves are oriented clockwise). As we work with curves in E for which each region
contains a number of sites of order N at least, all these edges are in region 1. Con�gurations in
{0, 1}ℓ =: Ωℓ, are denoted by the letter ξ. The function ϕℓ depends only on edges 1 to ℓ, so that
the expectation in (6.59) reads, letting fℓ,x denote the marginal for the uniform measure on Ωℓ of
f restricted to M(x):

Eνf [G(t, L1)ϕℓ] =
∑

x∈(N−1Z)2
νf (M(x))G

(
t, x− 2b0

N

) 1

|Ωℓ|
∑
ξ∈Ωℓ

fℓ,x(ξ)ϕℓ(ξ), (6.60)

where |Ωℓ| = 2ℓ and, if ξ(γ) denotes the collection ξ1(γ), ..., ξℓ(γ) for a given γ ∈ ΩN
mic,

∀ξ ∈ Ωℓ, fℓ,x(ξ) :=
1

νf (M(x))

∑
γ∈M(x):ξ(γ)=ξ

|Ωℓ|ν(γ)f(γ). (6.61)

Note that we need only consider points x and densities f with νf (M(x)) > 0. This ensures that
fℓ,x is unambiguously de�ned. Moreover, fℓ,x is a density for the uniform measure on Ωℓ.

Let us do the same splitting on the Dirichlet form Dex
N in (6.57) in order to bound it from

below by the Dirichlet form of a SSEP on con�gurations with ℓ sites. The mapping to go from
a portion of length ℓ of a region of a curve γ ∈ ΩN

mic ∩ E to an associated SSEP con�guration
ξ(γ) ∈ Ωℓ is represented on Figure 12 for the �rst region: each edge is tilted clockwise by π/4,
turning the portion of γ into the graph of a 1-Lipschitz function, constant on segments of the form
[(j− 1)

√
2, j

√
2], 1 ≤ j ≤ ℓ. A particle is then put at site 1 ≤ j ≤ ℓ if the path goes down between

j
√
2 and (j + 1)

√
2, or this site is left empty if the path goes up.
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γ

Figure 12: On the left, a portion of region 1 of an interface γ ∈ ΩN
mic, delimited by the two black dots. On

the right, the corresponding path and simple exclusion particle con�guration. The mapping is possible if
the left-extremity of the interface as well as its length are �xed.

Recall the de�nition (6.55) of the SSEP part of the Dirichlet form of the contour dynamics.
De�ne then the Dirichlet form Dex

ℓ associated with the SSEP on Ωℓ (we use the same notation as
for Dex

N in (6.55) to emphasize the analogy): for any g : Ωℓ → R,

Dex
ℓ (g) =

1

2|Ωℓ|
∑
ξ∈Ωℓ

∑
1≤u≤v≤ℓ
|u−v|=1

1

2
[ξu(1− ξv) + ξv(1− ξu)][g(ξ

u,v)− g(ξ)]2, (6.62)

with ξu,v the con�guration where the state of sites u, v are exchanged. In view of the expres-
sion (6.55) of Dex

N (g), a simple upper-bound and convexity yield:

Dex
N (f) ≥ 1

2

∑
x∈(N−1Z)2

∑
γ∈M(x)

ν(γ)
∑

y∈V (γ)
x≤y, ∥y−x∥1≤ℓ−1

cy(γ)
[
f 1/2(γy)− f 1/2(γ)

]1/2
≥

∑
x∈(N−1Z)2

νf (M(x))Dex
ℓ (fℓ,x). (6.63)

Let Uℓ denote the uniform measure on Ωℓ with associated expectation EUℓ
. Using the expres-

sions (6.60)�(6.63), the supremum in (6.57) at time t ∈ [0, T ] can be bounded from above by:

sup
f≥0:νf (E)=1

{ ∑
x∈(N−1Z)2

νf (M(x))
[
aG
(
t, x− 2b0

N

)
EUℓ

[
fℓ,xϕℓ

]
−NDex

ℓ (fℓ,x)
]}

≤ sup
f≥0:νf (E)=1

{ ∑
x∈(N−1Z)2

νf (M(x)) sup
g≥0:EUℓ

[g]=1

{
aG
(
t, x− 2b0

N

)
EUℓ

[gϕℓ]−NDex
ℓ (g)

}}

≤ sup
f≥0:νf (E)=1

{ ∑
x∈(N−1Z)2

νf (M(x))a∥G∥∞
}

sup
g≥0:EUℓ

[g]=1

Dex

ℓ (g)≤2a∥G∥∞/N

EUℓ
[gϕℓ]. (6.64)

The �rst supremum is bounded by a∥G∥∞. Bounding (6.49) therefore reduces to a one-block
estimate for a SSEP of size ℓ, which is well known. Indeed, the expectation in (6.64) satis�es (see
e.g. [ELS90]):

lim sup
N→∞

sup
g≥0:EUℓ

[g]=1

Dex

ℓ (g)≤2a∥G∥∞/N

∣∣∣EUℓ
[gϕℓ]

∣∣∣ = O(ℓ−1). (6.65)
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This concludes the proof of the one block estimate (6.49). The two block estimate (6.50) is proven
similarly using [ELS90].

Now that we know that the time integral of 1p=2 and of the slope at the poles are close, it
remains to compute their common value. This is the goal of the next two sections.

6.3.3 A compactness result

In the previous section, the 1p=2 term was viewed as an occupation number in a SSEP. In this
section and the next, we compute its time average by looking directly at the pole dynamics and
comparing it with well-chosen zero-range dynamics. A similar comparison is made in the proof
of the hydrodynamic limit in [LST14a] using the monotonicity of the zero temperature Glauber
dynamics (with a di�erent zero-range dynamics as the parameter β was not present there).

Monotonicity is very useful to cut out a portion of the interface around the pole that can be
compared to a zero-range process. The lack of monotonicity in the contour dynamics makes the
de�nition of such a portion challenging. To do so, we give below a number of estimates on the
shape of the interface around the poles. In the SSEP picture, these estimates say that the slope
around the pole is bounded away from 0 and 1. Slope 0 and 1 respectively correspond to very
�at/very peaked curves around the pole. In terms of zero-range con�gurations, the estimates on
the slope in particular imply a compactness result. Indeed, they imply that the number of particles
in a zero-range process of size ℓ ∈ N≥1 is bounded by C(ℓ) independently of the scaling parameter
N .

The �rst estimate is a control of the 1p=2 term. As shown in Section 6.3.2, this term coincides
with the slope around each pole, so that the next result can be understood as proving that poles
are typically not �at, a statement made precise afterwards.

Lemma 6.8 (Tail estimate on the �atness of the pole). For γ ∈ ΩN
mic

with associated droplet Γ,
let p′(γ) be the number of blocks in Γ composing the next level below the north pole, as de�ned
in (6.25). If C > 0 and A ≥ 2 is an integer:

lim
N→∞

sup
f≥0:Eν [f ]=1

DN (f1/2)≤C/N

νf

(
p = 2, γ−,1 ∈ ΩN

mic
, p′ ≥ A

)
≤ 1

logA
. (6.66)

Proof. Fix a density f with DN(f
1/2) ≤ C/N throughout. By de�nition of ΩN

mic, one has p′ ≥ p
(recall that p is the number of blocks in the pole). The idea is to estimate νf

(
p = 2, γ−,1 ∈

ΩN
mic, p

′ ≥ A
)
for A ≥ 2 in terms of νf (p = A, γ−,1 ∈ ΩN

mic) by a bijection argument similar to the
one of Lemma 6.4. The claim will then follow from a summation using the straightforward bound:∑

B≥2

νf

(
p = B, γ−,1 ∈ ΩN

mic

)
≤ 1. (6.67)

Let us present the aforementioned bijection argument. Fix an integer A ≥ 2. A curve γ in{
p = 2, γ−,1 ∈ ΩN

mic, p
′ ≥ A

}
can be turned into a curve F (γ) of

{
p = A, γ−,1 ∈ ΩN

mic

}
as follows.

Blocks in the north pole of γ have centre at height z1(γ) − 1
2N

by de�nition. By de�nition there
are at least A blocks in the level below the pole, i.e. with centre at height z1(γ)− 3

2N
.
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p=2, p'=10

p=6, p'=10

A = 6

p=4, p'=10

A = 4

F

Figure 13: The mapping F for di�erent values of A. Here, there are p′ = 10 blocks with centre at height
z1 − 3

2N , in red and delimited by dashed lines. The two cyan blocks mark the position of the pole before
the mapping by F .

Add up to A−2 blocks with centre at height z1(γ)− 1
2N

to the left of the north pole of γ in such
a way that the resulting curve is in ΩN

mic. If exactly A − 2 such blocks can be added, an element
of
{
p = A, γ−,1 ∈ ΩN

mic} has been created. If B < A− 2 blocks only can �t to the left of the pole,
add the remaining A − 2 − B blocks to the right of the pole. The mapping F is illustrated on
Figure 13.

Since p′ ≥ A, the above procedure always makes sense. In order to compare the dynamical cost
of turning γ into F (γ), let us list properties of F .

Notice �rst that F leaves the equilibrium measure ν invariant: ν(γ) = ν(F (γ)). This is because
the length of γ ∈ ΩN

mic and F (γ) are the same.
Notice next that the mapping F is nearly bijective in the following sense. Label each of the

p′ blocks with centre at height z1(γ) − 3
2N

from 1 to p′, starting from the left. We shall say that
a block C in the pole is above the block with label i if the centre of C has the same abscissa and
ordinate higher by 1 than the centre of the block with label i.

� Let {P ≥ A} ⊂ ΩN
mic be the event that the �rst block in the pole of γ is above a block with

label n ≥ A. If γ ∈ {P ≥ A}, then the leftmost block in the pole of F (γ) is above the
one with label n − (A − 2) > 1. In that case F (γ) is di�erent for di�erent values of n, and
deleting the leftmost A− 2 blocks in the pole of F (γ) transforms it back into γ.

� Let γ ∈ ΩN
mic satisfy γ

−,1 ∈ ΩN
mic and have pole of size 2. Let 1 ≤ n ≤ A − 1 and suppose

instead that γ has pole located above the blocks with labels n, n + 1. Denote this event by
P = {n, n + 1}. Then, for any n with 1 ≤ n ≤ A and any γ ∈ {P = {n, n + 1}}, the
procedure described above turns γ into the same F (γ) ∈ {p = A, γ−,1 ∈ ΩN

mic}. This F (γ) is
in {P = 1, ..., A}, de�ned as the event that a curve has north pole composed of the blocks
above those with labels 1, ..., A, see Figure 13.

We shall use the following compact reformulation of the above two cases: for each n ≤ A− 1,

F
({
p = 2, γ−,1 ∈ ΩN

mic, p
′ ≥ A, P = {n, n+ 1}

})
=
{
γ−,1 ∈ ΩN

mic, P = {1, ..., A}
}

(6.68)

and, more generally writing {P ≥ n} (resp.: {P ≤ n}) for the events that all blocks in the pole
are above blocks with labels at least (resp.: at most) n:

F
({
p = 2, γ−,1 ∈ ΩN

mic, p
′ ≥ A, P ≥ A

})
=
{
p = A, γ−,1 ∈ ΩN

mic, P ≥ 2
}
. (6.69)
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The event on the right-hand side is disjoint from the event on the right-hand side of (6.68).
We now prove (6.66). To �x ideas, consider �rst the case where f is the density constant equal

to 1. As F leaves the equilibrium measure ν invariant,

ν
(
p = 2, γ−,1 ∈ ΩN

mic, p
′ ≥ A

)
= ν

(
p = 2, γ−,1 ∈ ΩN

mic, p
′ ≥ A, P ≤ A− 1

)
+ ν
(
p = 2, γ−,1 ∈ ΩN

mic, p
′ ≥ A, P ≥ A

)
= (A− 1)ν

(
γ−,1 ∈ ΩN

mic, P = {1, ..., A}
)
+ ν
(
p = A, γ−,1 ∈ ΩN

mic, P ≥ 2
)
. (6.70)

Each of the above two events only contains curves with p = A, thus:

ν
(
p = 2, γ−,1 ∈ ΩN

mic, p
′ ≥ A

)
≤ (A− 1)ν

(
p = A, γ−,1 ∈ ΩN

mic

)
. (6.71)

To obtain (6.66) in the f = 1 case, �x an integer B ≥ 2 and apply (6.71) to each A ∈ {2, ..., B} to
�nd:

1 ≥
B∑

A=2

ν
(
p = A, γ−,1 ∈ ΩN

mic

)
≥

B∑
A=2

1

A− 1
ν
(
p = 2, γ−,1 ∈ ΩN

mic, p
′ ≥ A

)
. (6.72)

For ℓ ≥ 2, let Hℓ =
∑ℓ

n=2(n− 1)−1, H1 := 0 and integrate the right-hand side of the last equation
by parts:

1 ≥ ν
(
p = 2, γ−,1 ∈ ΩN

mic, p
′ ≥ B

)
HB +

B−1∑
A=2

HAν
(
p = 2, γ−,1 ∈ ΩN

mic, p
′ = A

)
(6.73)

Equation (6.66) when f = 1 follows (in fact also at each N and not just in the limit):

lim sup
N→∞

ν
(
p = 2, γ−,1 ∈ ΩN

mic, p
′ ≥ B

)
≤ H−1

B ≤ 1

logB
. (6.74)

We now prove (6.66) for a general density f for ν satisfying DN(f
1/2) ≤ C/N . By the above

discussion, it is enough to prove that, up to an error that vanishes for N large, (6.71) holds also
under νf . To prove this, the idea is similar to the one used in Lemma 6.4: For each suitable
γ ∈ ΩN

mic, the transformation γ → F (γ) (de�ned below (6.67)) is decomposed into a succession of
dynamical moves. One then notices that the number of required moves does not depend on N . In
this way the di�erence between f(γ) and f(F (γ)) can be expressed in terms of the Dirichlet form.

We only carry out the argument for the {P = {1, ..., A}, γ−,1 ∈ ΩN
mic} term in (6.71), the

{P ≥ 2} term is similar. To lighten notation, de�ned the event EP≤A−1 as follows (as well as
EP≥A for future reference):

EP≤A−1 :=
{
p = 2, γ−,1 ∈ ΩN

mic, p
′ ≥ A, P ≤ A− 1

}
,

EP≥A :=
{
p = 2, γ−,1 ∈ ΩN

mic, p
′ ≥ A, P ≥ A

}
. (6.75)

Start from (6.68) to write:

(A− 1)νf

(
P = {1, ..., A}, γ−,1 ∈ ΩN

mic

)
= (A− 1)

∑
γ̃∈ΩN

mic

1γ̃∈F (EP≤A−1)ν(γ̃)f(γ̃). (6.76)
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As explained above, there are A − 1 di�erent curves in EP≤A−1 with the same image γ̃ by F .
Moreover, F leaves the measure ν invariant, thus:

(A− 1)νf

(
γ−,1 ∈ ΩN

mic, P = {1, ..., A}
)
=
∑

γ̃∈ΩN
mic

1γ̃∈F (EP≤A−1) ν(γ̃)f(γ̃)
∑

γ∈EP≤A−1

1F (γ)=γ̃

=
∑

γ∈EP≤A−1

ν(γ)f(F (γ)). (6.77)

Adding and subtracting appropriate terms, (6.77) can be written as:

(A− 1)νf

(
γ−,1 ∈ ΩN

mic, P = {1, ..., A}
)
=

∑
γ∈EP≤A−1

ν(γ)
[
f 1/2(F (γ))− f 1/2(γ)

]2
+

∑
γ∈EP≤A−1

ν(γ)
[
− f(γ) + 2f 1/2(γ)f 1/2(F (γ))

]
. (6.78)

Cauchy-Schwarz inequality applied to the terms involving f 1/2(·)f 1/2(F (·)) then yields:[
(A− 1)1/2νf

(
P ={1, ..., A}, γ−,1 ∈ ΩN

mic

)1/2
− νf

(
EP≤A−1

)1/2]2
≤

∑
γ∈EP≤A−1

ν(γ)
[
f 1/2(F (γ))− f 1/2(γ)

]2
. (6.79)

It remains to bound the right-hand side of (6.79) in terms of the Dirichlet form. Decompose the
transformation γ → F (γ) into �ips adding a single block to the pole: γ = γ0 → γ1 → ...→ γA−2 =
F (γ) and apply Cauchy-Schwarz inequality to �nd:∑
γ∈EP≤A−1

ν(γ)
[
f 1/2(F (γ))− f 1/2(γ)

]2 ≤ (A− 2)
∑

γ∈EP≤A−1

ν(γ)
A−2∑
j=1

[
f 1/2(γj)− f 1/2(γj−1)

]2
. (6.80)

Each transition γj−1 → γj is authorised in the contour dynamics, at rate 1/2. A given curve
corresponding to one of the γj can occur at most A−1 times in all paths γ → F (γ) for γ ∈ EP≤A−1.
As a result and since ν(γj) = ν(γ) for all 1 ≤ j ≤ A− 2:[

(A− 1)1/2νf

(
P = {1, ..., A}, γ−,1 ∈ ΩN

mic

)1/2
− νf

(
EP≤A−1

)1/2]2 ≤ 4(A− 1)2DN(f
1/2). (6.81)

Similar computations give the same kind of bound for the second term in (6.71) under νf (recall
the de�nition (6.75) of EP≥A):[

νf

(
P ≥ 2, p = A, γ−,1 ∈ ΩN

mic

)1/2
− νf

(
EP≥A

)1/2]2 ≤ 4(A− 1)DN(f
1/2). (6.82)

Let us use (6.81)�(6.82) to prove that (6.71) still holds under νf with a small error in N (recall
that DN(f

1/2) ≤ C/N). Equation (6.81) yields:

νf
(
EP≤A−1

)
≤ (A− 1)νf

(
P = {1, ..., A}, γ−,1 ∈ ΩN

mic

)
+ C(A)

[
DN(f

1/2)1/2 +DN(f
1/2)
]

≤ (A− 1)νf

(
P = {1, ..., A}, γ−,1 ∈ ΩN

mic

)
+ C(A)N−1/2, (6.83)
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where the constant C(A) > 0 changes between inequalities. Similarly, (6.82) yields:

νf
(
EP≥A

)
≤ νf

(
P ≥ 2, p = A, γ−,1 ∈ ΩN

mic

)
+ C(A)N−1/2, (6.84)

whence the following counterpart of (6.71) for νf :

νf

(
p = 2, γ−,1 ∈ ΩN

mic, p
′ ≥ A

)
= νf

(
EP≤A−1

)
+ νf

(
EP≥A

)
≤ (A− 1)νf

(
p = A, γ−,1 ∈ ΩN

mic

)
+ C(A)N−1/2. (6.85)

Equation (6.85) is su�cient to conclude the proof of the upper bound as in the f ≡ 1 case,
see (6.72) to (6.74). Indeed, the bound in (6.74) requires only the use of A independent from N ,
so that C(A)N−1/2 vanishes when N is large. We therefore conclude the proof here.

In the next two lemmas, we use Lemma 6.8 to control the number of horizontal edges in a
curve as a function of the vertical distance to the north pole (Lemma 6.9) as well as, conversely,
the vertical distance to the north pole as a function of the number of blocks (Lemma 6.10). More
precisely, let γ ∈ ΩN

mic ∩ E and let n ∈ N≥1. The line y = z1(γ)− n/N contains a certain number
of horizontal edges in γ (recall that z1 is the ordinate of the highest points in γ, de�ned in (6.26)).
Let ℓ(n) be the number of these edges to the right of L1 and ℓ(−n) be the number of edges to the
left of L1. De�ne also ℓ(0) := p(γ)− 2. For N large enough, γ ∈ ΩN

mic ∩ E implies that each of the
ℓ(i), |i| ≤ n≪ N are well de�ned, see Figure 14.

Lemma 6.9 (Width of a curve at depth n below the pole). For n ∈ N≥1, C > 0, A ≥ 2,

∀|i| ≤ n, lim sup
N→∞

sup
f≥0:Eν [f ]=1

DN (f1/2)≤C/N

νf

(
E , ℓ(i) ≥ A

)
≤ e2β

(A+ 1) log(A+ 2)
. (6.86)

As a result, the numbers w+
n = 2+

∑n
i=0 ℓ(i) and w

−
k =

∑n
i=1 ℓ(−i) of blocks with centres at height

z1(γ) − (n + 1/2)/N in a droplet Γ associated to γ ∈ E, respectively to the right/to the left of L1

(see Figure 14), satisfy:

lim sup
N→∞

sup
f≥0:Eν [f ]=1

DN (f1/2)≤C/N

νf

(
E , w±

n ≥ n2
)
≤ 3e2β

log n
. (6.87)

Proof. Equation (6.87) follows from (6.86) by a union bound. Let us prove (6.86) by recursion on
|i| ≤ n.

The set E , given in De�nition 2.10 as a volume neighbourhood of a �xed curve, is not stable
under the contour dynamics around the poles. Rather than work directly with E , it is convenient
to consider a subset that has this stability property. Introduce then the set Qn of curves for which
there is at least n vertical edges between pole 1 and poles 2, 4 (recall that Lk/Rk is the left/right
extremity of pole k with 1 ≤ k ≤ 4):

Qn :=
{
γ ∈ ΩN

mic : [R1(γ)− L2(γ)] · bπ/2 >
n

N
, [R1(γ)−R4(γ)] · bπ/2 >

n

N

}
. (6.88)
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L

l(-5)

l(0)

l(2)

δ(-2)
δ(-1) δ(5)

w+2=10

Δ-2

Figure 14: De�nition of the δ(±i), ℓ(±i),∆±
n , w

±
n . Here w+

2 = 10, the number of blocks to the right of L1

with centre at height z1 − 5
2N . The small black dots mark the centre of each horizontal edge. The shaded

areas highlight which edges make up the represented ℓ(±i), δ(±i). Here, ℓ(−2) = δ(−3) = 0.

Note the factor 1/N as elements of ΩN
mic are rescaled by de�nition. Contrary to E , Qn is stable

under any dynamical move 1) a�ecting points at vertical distance at most n below the pole and any
horizontal distance; 2) that do not change the height of the north pole. Moreover, for large enough
N ∈ N≥1, it holds that E ⊂ Qn as E only contains curves with positive distance between each
pole, recall De�nition 2.10. Fix one such N , C > 0 and a density f for ν with DN(f

1/2) ≤ C/N
throughout. We are going to prove (6.86) with Qn replacing E . To start the recursion, consider
ℓ(0). Recall that p = ℓ(0) + 2 by de�nition. Thus:

(A+ 1)νf

(
Qn, ℓ(0) ≥ A

)
≤ e2βEνf

[
(ℓ(0) + 1)e−2β1ℓ(0)≥A

]
= e2βEνf

[
(p− 1)e−2β1p≥A+2

]
. (6.89)

Lemma 6.4 gives:∣∣∣νf(p = 2, γ−,1 ∈ ΩN
mic, p

′ ≥ A+ 2
)1/2

− Eνf

[
(p− 1)e−2β1p≥A+2

]1/2∣∣∣2 ≤ 2DN(f
1/2),

Eνf

[
(p− 1)e−2β1p≥A+2

]1/2
≤ 1 +

(
2DN(f

1/2)
)1/2

. (6.90)

Using the identity a− b = (
√
a−

√
b)(

√
a+

√
b) for a, b ≥ 0, we then �nd (here Qn plays no special

role): ∣∣∣νf(p = 2, γ−,1 ∈ ΩN
mic, p

′ ≥ A+ 2
)
− Eνf

[
(p− 1)e−2β1p≥A+2

]∣∣∣ (6.91)

≤
(
2DN(f

1/2)
)1/2[

2 +
(
2DN(f

1/2)
)1/2] ≤ C ′N−1/2, C ′ = 2C + 2

√
2C.

The bound (6.86) for i = 0 then follows:

(A+ 1)νf

(
E , ℓ(0) ≥ A

)
≤ (A+ 1)νf

(
Qn, ℓ(0) ≥ A

)
(6.89)−(6.91)

≤ e2βνf

(
p = 2, γ−,1 ∈ ΩN

mic, p
′ ≥ A+ 2

)
+
e2βC ′

N1/2

(6.66)

≤ e2β

log(A+ 2)
+ oN(1). (6.92)
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Assume now that, for some integer i with |i| < n:

lim sup
N→∞

sup
f≥0:Eν [f ]=1

DN (f1/2)≤C/N

νf

(
Qn, ℓ(i) ≥ A

)
≤ e2β

(A+ 1) log(A+ 2)
. (6.93)

For de�niteness, assume i ≥ 0. To show (6.93) for i+ 1, we are going to prove:

νf

(
Qn, ℓ(i+ 1) ≥ A

)
= νf

(
Qn, ℓ(i+ 1) ≥ 0, ℓ(i) ≥ A

)
+O

(
DN(f

1/2)1/2 +DN(f
1/2)
)
. (6.94)

Equation (6.94) implies (6.86) up to i+1, since E ⊂ Qn for large N and the Dirichlet form vanishes.
The idea behind (6.94) is the following. Take a curve γ ∈ {ℓ(i + 1) ≥ A} ∩Qn (see Figure 14

for a representation of ℓ(i)). One can then add at least A blocks to Γ with centre at height
z1(γ) − (i + 1/2)/N , one above each of the edges ensuring ℓ(i + 1) ≥ A. This is where working
with curves in Qn instead of E is convenient: the resulting curve F ′(γ) is still in Qn although it
might not belong to E . The above procedure therefore bijectively yields a curve F ′(γ) ∈ Qn with
ℓ(i) ≥ A. Moreover, γ and F ′(γ) have the same length. The two events on either side of (6.94)
thus have the same ν-measure.

Under νf , though, the two events in (6.94) may have di�erent probability. However, the
mapping γ 7→ F ′(γ) can be decomposed into a sequence of A curves γ = γ1 → ... → γA = F ′(γ),
each di�ering from the previous one by a single block. Each curve γj (j ≤ A) appears at most A+1
times when e�ecting the procedure for all curves in {ℓ(i+1) ≥ A}∩Qn. The cost of turning γ into
F ′(γ) under νf is then estimated by the Dirichlet form in a very similar fashion to the bijection
argument of Lemma 6.8, so we give no more details.

The next lemma controls the depth at �xed horizontal distance to the pole. For n ∈ N≥1 and
|i| ≤ n, de�ne δ(i) as the number of vertical edges with abscissa L1 ·b0 +

i+1
N

that belong to either
region 4 (if i ≤ 0) or region 1 (i ≥ 0), see Figure 14. Note that δ(0) = 0, corresponding to the fact
that the pole contains at least two horizontal edges.

Lemma 6.10 (Height of a curve at horizontal distance n to the pole). Let β > log 2. For n ∈ N≥1

and C > 0, A ≥ 1,

∀1 ≤ i, j ≤ n, lim sup
N→∞

sup
f≥0:Eν [f ]=1

DN (f1/2)≤C/N

νf

(
E , δ(i) ≥ A, δ(−j) ≥ A

)
≤ e−2β(A−1). (6.95)

Let ∆±
n =

∑n
i=1 δ(±i) be the number of vertical edges in a curve between the point L1 +

b0

N
and the

�rst point at horizontal distance n+ 1 to the right (for ∆+
n ) or to the left (for ∆−

n ), see Figure 14.
Then:

lim sup
N→∞

sup
f≥0:Eν [f ]=1

DN (f1/2)≤C/N

νf

(
E ,∆+

n ≥ n(1 + 2 log n),∆−
n ≥ n(1 + 2 log n)

)
≤ 1

n4β−2
= on(1). (6.96)

Proof. Let n ∈ N≥1 be �xed. Equation (6.96) follows from (6.95) by a union bound. The proof
of (6.95) resembles that of Lemma 6.9. We �rst treat the case i = j = 1. {δ(1) ≥ A, δ(−1) ≥ A}
is the event that the north pole is on top of a stack which contains two blocks in width and at
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least A blocks in height, the highest two blocks being those in the pole. With each γ ∈ {δ(1) ≥
A, δ(−1) ≥ A} associate a curve F̃ (γ) ∈ {δ(1) ≥ 1, δ(−1) ≥ 1} in which the top A− 1 pairs of two
blocks have been deleted. The curve F̃ (γ) has length |γ| − 2(A− 1), thus has higher equilibrium
probability. In fact, if γ−q denotes the curve γ in which the highest q ∈ N≥1 groups of two blocks
have been deleted, F̃ is a bijection between the sets

{
δ(1) ≥ A, δ(−1) ≥ A, γ−(A−1) ∈ ΩN

mic

}
and{

δ(1) ≥ 1, δ(−1) ≥ 1
}
. In addition:

ν
(
δ(1) ≥ A, δ(−1) ≥ A, γ−(A−1) ∈ ΩN

mic

)
= e−2β(A−1)ν

(
δ(1) ≥ 1, δ(−1) ≥ 1

)
≤ e−2β(A−1). (6.97)

In the same way as in Lemma 6.8, (6.97) holds under νf for any ν-density f up to an error term
which quanti�es the cost of consecutively deleting the two blocks in the pole of a curve A−1 times.
As a result:

sup
f≥0:Eν [f ]=1

DN (f1/2)≤C/N

νf

(
δ(1) ≥ A, δ(−1) ≥ A, γ−(A−1) ∈ ΩN

mic

)
≤ e−2β(A−1) +O

(
N−1/2

)
. (6.98)

As E ⊂ {γ−(A−1) ∈ ΩN
mic} for all large enough N , (6.95) holds for i = j = 1.

To prove (6.95) for each (i, j) ∈ {1, ..., n}, let us �rst prove it for j = 1, i > 1. As for Lemma 6.9,
it is convenient to not work directly with E , which does not have nice stability properties under
the contour dynamics, but with the set Q̃n of curves with regions 1, 4 each containing at least n
horizontal edges in addition to those in the north pole:

Q̃n :=
{
γ ∈ ΩN

mic :
[
L1(γ)−R4(γ)

]
· b0 >

n

N
,
[
L2(γ)−R1(γ)

]
· b0 >

n

N

}
. (6.99)

We claim that, for each C > 0:

lim
N→∞

sup
f≥0:Eν [f ]=1

DN (f1/2)≤C/N

∣∣∣νf(Q̃n, δ(i) ≥ A, δ(−1) ≥ A
)
−νf

(
Q̃n, δ(i−1) ≥ A, δ(−1) ≥ A

)∣∣∣ = 0. (6.100)

The idea is the same as in Lemma 6.9. The set Q̃n ensures that δ(i), |i| ≤ n are well de�ned
and involve only edges in region 4 (i ≤ 0) or 1 (i ≥ 0). One has again E ⊂ Q̃n for large enough
N as curves in E have positive distance between each pole. In addition, Q̃n is stable under any
dynamical move that 1) involves points at horizontal distance at most n from the north pole and
2) do not change the lateral position of the north pole.

A curve in Q̃n with δ(i) ≥ A is transformed into one with δ(i − 1) ≥ A by deleting A blocks
with centres at abscissa L1 · b0 − i

N
+ 1

2N
. These deletions are SSEP moves, which do not change

the length of the curve (and under which Q̃n is stable). Their cost is estimated in terms of the
Dirichlet form, which vanishes with N .

Iterating (6.100) from i to 1 and using (6.98) yields (6.95) for indices (i,−1). Now if j ̸= 1,
the same argument applies to go from −j to −1. This concludes the proof of (6.95).

6.3.4 Value of the slope at the pole

We now have all prerequisites to prove that the motion of the north pole imposes a particle
density of e−β on each side, as stated in Lemma 6.11. The proof relies in a central way on the
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fact that the contour dynamics around the pole is irreducible, owing to the e−2β regrowth updates.
These updates are the main di�erence with the zero temperature stochastic Ising model and the
irreducibility is the main technical reason for the introduction of the parameter β.

Lemma 6.11. Let β > log 2. For each T, δ > 0 and each test function G ∈ C,

lim
N→∞

1

N
logPN

β

(
γN· ∈ E([0, T ], E);∣∣∣∣ 1T
∫ T

0

G(t, L1(γ
N
t ))
(
1p=2 − e−β

)
dt

∣∣∣∣ ≥ δ

)
= −∞. (6.101)

The claim is also valid under PN
β,H for H ∈ C by Corollary 6.2.

Proof. The proof only deals with H = 0 as generalisations to PN
β,H for H ∈ C follow as in the proof

of Lemma 6.7. We �rst write the proof in the case where the test function G is equal to 1 and
explain at the end how to adapt it to non-constant G. To lighten notations, we do not explicitly
write integer parts and drop the superscript N for microscopic curves and trajectories.

The proof is structured as follows. We �rst use Lemma 6.5 to project the dynamics inside
E . The compactness results provided by Section 6.3.3 are then incorporated to the probability
in (6.101). This enables us to de�ne a proper frame around the pole. After conditioning to this
frame, the quantity to estimate in (6.101) can be retrieved from an equilibrium computation, which
is the last step of the proof.

Let ϕ = 1p=2 − e−β and a > 0. By Markov inequality and Lemma 6.5, the left-hand side
of (6.101) without the limits is bounded from above by:

−aδT + Cβ + T sup
f≥0:νf (E)=1

{
aEνf [ϕ]−NDN(f

1/2)
}
. (6.102)

It is therefore enough to estimate the supremum in (6.102).

Step 1: de�nition of a suitable frame around the pole.
The �rst step consists in writing the expectation in (6.102) as a quantity that depends only on the
dynamics around the pole. The idea is to compare the contour dynamics to a zero-range process
with two species of particles. The number of particles is given by the height di�erence between
consecutive columns around the pole. The species is determined by the sign of the height di�er-
ence. This process is irreducible and its invariant measure can be made explicit. More is said on
this dynamics below, see also Figure 16. To make such a comparison, we de�ne a frame around
the pole, in which to study the pole dynamics. This is done as follows.

Fix an integer n ∈ N≥1, which will be the typical size of the frame around the pole. In the
following, for a curve γ ∈ ΩN

mic ∩ E , we talk of blocks at level q ∈ N to denote all blocks in Γ
with centre at height z1(γ) − N−1(q + 1/2), see Figure 15. With this notation, blocks at level 0
correspond to blocks in the poles.
Consider the following partition of ΩN

mic ∩ E . For any curve γ ∈ ΩN
mic ∩ E , let hn(γ) be the smallest
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integer such that the number of blocks in Γ (the droplet delimited by γ) at level z1−N−1
(
hn(γ)+

1
2

)
is strictly larger than n (see Figure 15):

hn(γ) = min
{
q ∈ N : Nq(γ) > n}, (6.103)

where:

Nq(γ) =
∣∣∣{blocks in Γ at level q, i.e. with centre at height z1(γ)−

(q + 1/2)

N

}∣∣∣. (6.104)

hn

blocks at level hn

xn yn

n

ln

Figure 15: De�nition of hn, ℓn and xn, yn for a given curve. The �rst level of blocks with width strictly
larger than n corresponds to the �lled area. In this case there are n+1 such blocks, with centres indicated
by black dots. The number ℓn of blocks in the last level containing at most n blocks is equal here to n−1.
The portion of the curve a�ected by the ZRP dynamics (see Figure 16 below) is delimited by dashed lines
and the segment [xn, yn].

These objects are well de�ned for elements of ΩN
mic ∩ E as soon as N is large enough compared

to n, which we henceforth assume. Let xn(γ) ≤ yn(γ) ∈ V (γ) denote the extremal vertices of level
hn(γ)− 1, i.e. the last level of Γ with at most n blocks; and let ℓn = ℓn(γ) denote the number of
blocks of this level (see Figure 15):

ℓn(γ) := N∥yn(γ)− xn(γ)∥1. (6.105)

The rescaling by N comes from the fact that xn(γ), yn(γ) are points of (N−1Z)2. The quantity
ℓn(γ) is thus an integer. For 2 ≤ ℓ ≤ n, consider the set:

Mℓ =
{
γ ∈ ΩN

mic ∩ E : ℓn(γ) = ℓ
}
. (6.106)

Then (Mℓ)2≤ℓ≤n is a disjoint family which partitions ΩN
mic ∩ E by construction. The expectation

in (6.102) thus reads, for each ν-density f supported on E :

Eνf [ϕ] =
∑

2≤ℓ≤n

Eνf [1Mℓ
ϕ]. (6.107)

At this point, the splitting of curves in the di�erent Mℓ in (6.107) su�ers from two �aws. On the
one hand, the width ℓ, which will correspond to the number of sites in a zero-range process, may
be bounded independently of n. This makes a local equilibrium argument impossible to apply. On
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the other hand, the pole may be macroscopically higher than the points xn(γ), yn(γ). The point
is thus to �nd diverging sequences hmax(n), ℓmin(n) such that, for any C > 0:

lim sup
N→∞

sup
f≥0:Eν [f ]=1

DN (f1/2)≤C/N

νf

(
γ ∈ E , hn(γ) ≥ hmax(n) or ℓn(γ) ≤ ℓmin(n)

)
= on(1). (6.108)

Lemmas 6.9�6.10 enable the construction of such sequences, as we now explain.

Consider �rst the height hn(γ), de�ned in (6.103). Then either hn(γ) = 0, which corresponds
to having at least n blocks in the north pole P : p(γ) ≥ n. Or hn(γ) ≥ 1 and there are strictly less
than n blocks at level hn(γ) − 1, thus strictly less than n blocks both with abscissa smaller and
larger than L1 ·b0 at this level. In both cases, recalling from Lemma 6.10 that ∆+

n (γ) (respectively:
∆−

n (γ)) is the number of vertical edges between the pole and the �rst point at horizontal distance
n+ 1 of L1 +

b0

N
to its right (respectively: to its left), we �nd:

hn(γ)− 1 ≤ min
{
∆+

n (γ),∆
−
n (γ)

}
. (6.109)

Lemma 6.10 then gives for each C > 0:

lim sup
N→∞

sup
f≥0:Eν [f ]=1

DN (f1/2)≤C/N

νf

(
γ ∈ E , hn(γ) ≥ hmax(n)

)
= on(1), hmax(n) := n(1 + 2 log n). (6.110)

We now turn to an estimate of the number of blocks ℓn = ℓn(γ) at level hn(γ)− 1. Recalling the
de�nition of the widths w± from Lemma 6.9, notice �rst the identity:

∀γ ∈ ΩN
mic ∩ E , ℓn(γ) = w+

hn−1(γ) + w−
hn−1(γ). (6.111)

Let us use (6.111) and a bound on hn to estimate ℓn. Let an > 0 to be chosen later, �x C > 0 and
a ν-density f with DN(f

1/2) ≤ C/N . According to (6.111), one has:{
γ ∈ E , ℓn(γ) ≤ an

}
⊂
{
γ ∈ E , w−

hn−1(γ) ≤ an

}
∩
{
γ ∈ E , w+

hn−1(γ) ≤ an

}
. (6.112)

Consider e.g. the event involving w−
hn−1. In that event, if one travels a horizontal distance an to

the left of L1, it must then be that at least hn − 1 vertical edges have been encountered, so that:{
γ ∈ E : w−

hn−1(γ) ≤ an

}
⊂
{
γ ∈ E : ∆−

an(γ) ≥ hn(γ)− 1
}
. (6.113)

Proceeding similarly for w+
hn−1 implies:{

γ ∈ E , ℓn(γ) ≤ an

}
⊂
{
γ ∈ E : min

{
∆−

an(γ),∆
+
an

}
≥ hn(γ)− 1

}
. (6.114)

To bound the probability of the event {γ ∈ E , ℓn(γ) ≤ an}, the idea is then to show that hn − 1
has to be larger than some bn > 0 with large probability, then to choose an as a function of bn
such that {γ ∈ E ,∆±

an(γ) ≥ bn} is unlikely by Lemma 6.10. To choose bn > 0, we make use of
Lemma 6.9 and the following observation which holds by de�nition of hn:

hn ≤ bn ⇒ w−
bn
+ w+

bn
> n. (6.115)
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Lemma 6.9 controls the width on either side of L1: choosing bn =
√
n/2,

lim sup
N→∞

sup
f≥0:Eν [f ]=1

DN (f1/2)≤C/N

νf
(
γ ∈ E , hn(γ) ≤ bn

)
≤ 2 lim sup

N→∞
max

ε∈{−,+}
sup

f≥0:Eν [f ]=1

DN (f1/2)≤C/N

νf

(
γ ∈ E , wε

bn(γ) ≥ n/2
)
= on(1). (6.116)

From (6.112) and (6.113) one can therefore write:{
γ ∈ E , ℓn(γ) ≤ an

}
⊂
{
γ ∈ E ,min

{
∆−

an(γ),∆
+
an(γ) ≥ hn(γ)− 1

}
∩
({
γ ∈ E , hn(γ)− 1 ≥ bn

}
∪
{
γ ∈ E , hn(γ) ≤ bn

})
. (6.117)

The event involving {hn ≤ bn} is estimated through (6.116), so that it only remains to bound
min{∆−

an ,∆
−
an} when hn ≥ bn + 1:

lim sup
N→∞

sup
f≥0:Eν [f ]=1

DN (f1/2)≤C/N

νf

(
γ ∈ E , ℓn ≤ an

)
≤ lim sup

N→∞
sup

f≥0:Eν [f ]=1

DN (f1/2)≤C/N

νf

(
γ ∈ E ,∆−

an(γ) ≥ hn(γ)− 1 ≥ bn

)
+ on(1). (6.118)

We now choose an as a function of bn =
√
n/2 so that the probability in the right-hand side

of (6.118) vanishes for large n. By Lemma 6.10, min{∆−
an ,∆

+
an} is typically smaller than an(1 +

2 log(an)). It thus su�ces to take an with an(1 + 2 log(an)) ≤ bn, e.g. for large enough n:

an =

√
n

4 log n
=: ℓmin(n). (6.119)

With this choice of an = ℓmin(n), (6.118) yields the desired control on ℓn:

lim sup
N→∞

sup
f≥0:Eν [f ]=1

DN (f1/2)≤C/N

νf

(
γ ∈ E , ℓn(γ) ≤ ℓmin(n)

)
= on(1). (6.120)

We now use the bounds (6.110)�(6.120) on hn and ℓn to restrict admissible con�gurations around
the pole, thus concluding the de�nition of the frame around the pole. Recall that hmax(n) =
n(1+ 2 log n) and ℓmin(n) :=

√
n/(4 log n). From the splitting (6.107) of curves in the di�erent Mℓ

(2 ≤ ℓ ≤ n) and the above discussion on bounds of hn, ℓn, as also ϕ = 1p=2−e−β is bounded, (6.102)
is bounded from above by:

−aδT + Cβ + T sup
f≥0:νf (E)=1

{
a

∑
ℓmin(n)≤ℓ≤n

Eνf

[
1Mℓ

1hn≤hmax(n)ϕ
]
− N

2
DN(f

1/2)
}
+ TωN,n, (6.121)

where ωN,n satis�es, by (6.110) and (6.120):

lim sup
N→∞

ωN,n

≤ a∥ϕ∥∞ lim sup
N→∞

sup
f≥0:Eν [f ]=1

DN (f1/2)≤2∥ϕ∥∞a/N

νf

(
γ ∈ E , hn > hmax(n) or ℓn < ℓmin(n)

)
= on(1). (6.122)
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It is thus su�cient to estimate the supremum in (6.121).

Step 2: conditioning and mapping to a two-species zero-range process.

L1 R1

L R

xn yn

hn-1

Figure 16: Portion of the interface of a curve around the north pole [L1, R1] and associated path and
particle con�gurations. Particles are represented by red dots, antiparticles by blue dots; and empty sites
are white with a dark contour. In the particle con�guration, the rightmost particle (in red) is at site
L, the leftmost antiparticle (in blue) at site R. The quantity |ηj | at site 0 ≤ j ≤ ℓ is the number of
particles/antiparticles at site j, with ηj ≥ 0 for particles, ηj ≤ 0 for antiparticles. Here, one has e.g.
η0 = 0, η2 = 4, ηR = −2. The height hn − 1 is the total number of particles (or of antiparticles).
The grey arrows on the particle con�guration correspond to jumps allowed by the contour dynamics that
conserve the particle number. A move reducing the length of the curve, materialised on the curve by the
vertical arrows, corresponds to a particle-antiparticle pair annihilation, represented by the black crosses.
No particle creation is represented here.

We now study the expectation in (6.121) on each Mℓ for ℓmin(n) ≤ ℓ ≤ n, where the set Mℓ is
de�ned in (6.106). The goal is to obtain a local description of the contour dynamics around the
pole, rewriting the expectation in (6.121) and the variables it contains in terms of quantities that
only depend on possible shapes of curves in a neighbourhood of the pole. We claim that to each
con�guration in Mℓ corresponds a unique particle con�guration in Ωℓ = Zℓ+1. The mapping goes
as follows. If γ ∈ Mℓ, de�ne, for 0 ≤ j ≤ ℓ, a particle number ηj corresponding to the number
of vertical edges with abscissa xn(γ) + j/N that correspond to points above xn(γ), i.e. to points
z ∈ γ with ordinate [z − xn(γ)] · bπ/2 ≥ 0 (see Figure 16):

ηj = εj
∑

z∈V (γ):z·b0=xn(γ)·b0+j/N
[z−xn(γ)]·bπ/2≥0

ξz, εj =

{
1 if j/N ≤ L1 · b0,

−1 if j/N > L1 · b0.
(6.123)
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In words, ηj ≥ 0 if j is smaller than the abscissa L1 · b0 of L1 and ηj ≤ 0 if j is larger. If ηj < 0
for some j, we say that there are |ηj| antiparticles at site j. Note that the (ηj)j are related to the
(δ(i))i of Lemma 6.10 through:

ηj = (−1)1j≥L1·b0+1δ(j − 1− L1 · b0), j ∈ {1, ..., ℓ− 1}. (6.124)

We prefer the parametrisation in terms of (ηj)j here for two reasons: we do not wish to label
points according to the position of the poles and only vertical edges at level hn − 1 count (recall
Figure 15) towards the particle/antiparticle number whereas δ is not cut o�.

The constraint z · bπ/2 > z1(γ)−N−1(h(γ)− 1) guarantees that only the vertical edges above
xn(γ), yn(γ) are counted as particles. We let η(γ) denote the unique particle con�guration in Ωℓ

associated with γ ∈ Mℓ (see Figure 16). Conversely, with each η ∈ Ωℓ can be associated one or
more interface in Mℓ that are identical above xn(γ). Note that, as xn(γ) and yn(γ) have the same
ordinate, the number of particles and antiparticles is the same. Note also, importantly, that to any
con�guration η ∈ Ωℓ corresponds a curve in Mℓ. Said di�erently, the condition that con�gurations
are associated to curves in Mℓ has no other e�ect on the resulting ZRP con�gurations than �xing
the number of sites.

The quantity hn corresponds to the number of particles (or equivalently of antiparticles). For
curves in Mℓ, the event {hn ≤ hmax(n)} appearing in (6.121) can thus be rewritten as:

Wℓ := {ρℓ ≤ Cℓ}, where ρℓ =
1

ℓ+ 1

ℓ∑
j=0

|ηj|, Cℓ = Cℓ,n =
2

ℓ+ 1

(
hmax(n)− 1

)
=

4n log n+ 2(n− 1)

ℓ+ 1
. (6.125)

For ℓ ∈ {ℓmin(n), ..., n}, de�ne the probability measure µ̄ℓ on Ωℓ:

∀η ∈ Ωℓ, µ̄ℓ(η) = Z̄−1
ℓ exp

[
− βℓ− β

ℓ∑
j=0

|ηj|
]
, (6.126)

where Z̄ℓ is a normalisation factor and
∑ℓ

j=0 |ηj| + ℓ is the number of edges in the portion of γ
which is mapped to the particle con�guration η. Though we could factor it out as it is common
to all η, the e−βℓ factor in the de�nition of µ̄ℓ will be convenient later on.

Let f be a ν-density supported on E with νf (Mℓ) > 0 and de�ne its marginal f̄ℓ for µ̄ℓ:

∀η ∈ Ωℓ, f̄ℓ(η) :=
1

νf (Mℓ)

∑
γ∈Mℓ:η=η(γ)

Z−1
β f(γ) exp

[
− β

(
N |γ| − ℓ−

ℓ∑
j=0

|ηj|
)]
. (6.127)

With the above de�nitions, the expectation in (6.121) can be rewritten in terms of particle con-
�gurations:

Eν

[
f1Mℓ

1hn≤hmax(n)ϕ
]
= νf (Mℓ)Eµ̄ℓ

[
f̄ℓ1Wℓ

ϕ
]
. (6.128)

The constraint 1Mℓ
is implicitly contained in the de�nition of µℓ as a measure on ell + 1 sites.
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From (6.128) it follows that we know how to estimate the supremum in (6.102) as soon as we
can estimate (recall ℓmin(n) =

√
n/(4 log n)):

sup
f≥0:νf (E)=1

{ n∑
ℓ=ℓmin(n)

aνf (Mℓ)Eµ̄ℓ

[
f̄ℓ1Wℓ

ϕ
]
− N

2
DN(f

1/2)
}
, ϕ := 1p=2 − e−β. (6.129)

Step 3: local equilibrium.
We now prove that estimating the supremum in (6.129) reduces to an equilibrium computation.
At this stage, the technique is the same as in [KL99]. Denote by D̄ℓ the reduced Dirichlet form
on Ωℓ, de�ned as follows. For η ∈ Ωℓ, let P (η) denote the vertices making up the "pole" of η,
i.e. P (η) = {L, ..., R}, with L,R such that ηL is the last ηj that is strictly positive (or L = 0
if there are no such ηj) and ηR the �rst to be strictly negative (or R = ℓ if none exist). Let
also p(η) = |P (η)| − 1. For any two con�gurations η, η̃ ∈ Ωℓ, let γ, γ̃ ∈ Mℓ respectively be two
associated interfaces and de�ne a jump rate:

c(η, η̃) := c(γ, γ̃), with c(γ, γ̃) given in De�nition 2.5. (6.130)

Since the positions of the extremal sites 0, ℓ (corresponding for curves γ compatible with a given
con�guration to the points xn(γ), yn(γ)) are unchanged by dynamical updates involving vertices
with ordinate higher than that of xn(γ) or yn(γ), the last level of γ with less than n blocks, which
de�nes the position of xn(γ), yn(γ), is never modi�ed. The jump rates c(η, η′) therefore only depend
on η, η′ and not on the rest of the curves γ, γ′. For any µ̄ℓ-density g, let D̄ℓ denote the associated
Dirichlet form:

D̄ℓ(g
1/2) =

1

2

∑
η,η̃∈Ωℓ

µ̄ℓ(η)c(η, η̃)
[
g1/2(η̃)− g1/2(η)

]2
. (6.131)

Convexity then yields, recalling that ℓmin(n) is de�ned in (6.119):

DN(f
1/2) ≥

n∑
ℓ=ℓmin(n)

νf (Mℓ)D̄ℓ(f̄
1/2
ℓ ). (6.132)

Injecting (6.132) into the supremum in (6.129), we see that it is enough to estimate:

sup
f≥0:νf (E)=1

{ n∑
ℓ=ℓmin(n)

νf (Mℓ)
[
aEµ̄ℓ

[
f̄ℓ1Wℓ

ϕ
]
− N

2
D̄ℓ(f̄

1/2
ℓ )

]}
. (6.133)

We are nearly done with conditioning to a frame where we can compute the expectation in (6.133).
The remaining step is to reduce the state space Ωℓ = Zℓ+1 to something that is compact. By
de�nition of f̄ℓ, µ̄ℓ, D̄ℓ in (6.127)�(6.126)�(6.131) respectively, it is enough to delete all jumps that
increase the number of particles above what is allowed by Wℓ (de�ned in (6.134)). Indeed, de�ne
µℓ as a measure on Wℓ as follows:

∀η ∈ Wℓ =
{
ρℓ ≤ Cℓ =:

2hmax(n)

ℓ+ 1

}
, µℓ(η) := Z−1

ℓ exp
[
−βℓ−β

ℓ∑
j=0

|ηj|
]
=

Z̄ℓ

Zℓ

µ̄ℓ(η), (6.134)
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where Zℓ is a normalisation factor on Wℓ. The marginal f̄ℓ is correspondingly modi�ed into a
µℓ-density fℓ:

∀η ∈ Wℓ, fℓ(η) :=
Zℓ

Z̄ℓ

1

Eµ̄ℓ

[
f̄ℓ1Wℓ

] f̄ℓ(η). (6.135)

Finally, the Dirichlet form Dℓ for the reduced dynamics reads, for any µℓ-density g:

Dℓ(g
1/2) =

∑
η,η̃∈Wℓ

µℓ(η)c(η, η̃)[g
1/2(η′)− g1/2(η)]2. (6.136)

Since we simply restricted allowed jumps, one has:

D̄ℓ(f̄ℓ
1/2

) ≥ Dℓ(f
1/2
ℓ )Eµ̄ℓ

[f̄ℓ1Wℓ
]Z̄ℓ/Zℓ. (6.137)

Under µℓ, the supremum to estimate in (6.133) is then bounded from above by:

sup
f≥0:νf (E)=1

{ n∑
ℓ=ℓmin(n)

νf (Mℓ)
Z̄ℓ

Zℓ

Eµ̄ℓ

[
f̄ℓ1Wℓ

][
aEµℓ

[
fℓϕ
]
− N

2
Dℓ(f

1/2
ℓ )

]}

≤ a sup
f≥0:νf (E)=1

{ n∑
ℓ=ℓmin(n)

νf (Mℓ)
Z̄ℓ

Zℓ

Eµ̄ℓ

[
f̄ℓ1Wℓ

][
sup

g≥0:Eµℓ
[g]=1

Dℓ(g
1/2)≤2a∥ϕ∥∞/N

Eµℓ

[
gϕ
]]}

≤ a max
ℓmin(n)≤ℓ≤n

[
sup

g≥0:Eµℓ
[g]=1

Dℓ(g
1/2)≤2a∥ϕ∥∞/N

Eµℓ

[
gϕ
]]

× sup
f≥0:νf (E)=1

{ n∑
ℓ=ℓmin(n)

νf (Mℓ)
Z̄ℓ

Zℓ

Eµ̄ℓ

[
f̄ℓ1Wℓ

]}
. (6.138)

The second supremum is bounded by 1. The proof of Lemma 6.11 will therefore be concluded if
we can prove that, for �xed n and N large, the supremum on g in the right-hand side of (6.138)
is bounded by on(1) uniformly in ℓ with ℓmin(n) ≤ ℓ ≤ n.
Fix ℓ ∈ {ℓmin(n), ..., n}. As Wℓ is compact, the supremum on g in (6.138) is achieved by a density
gNℓ for each N . Up to taking a subsequence, by lower semi-continuity of Dℓ and continuity of the
expectation in (6.138) with respect to weak convergence, we can take the large N limit and restrict
ourselves to studying:

sup
g∞≥0:Eµℓ

[g∞]=1

Dℓ((g
∞)1/2)=0

Eµℓ
[g∞ϕ]. (6.139)

By de�nition of Dℓ, the zero-range dynamics is irreducible on Wℓ. This is the major di�erence
between the contour dynamics and the 0-temperature stochastic Ising model, which motivated the
introduction of the temperature-like parameter β to allow for regrowth at the poles. Irreducibility
means that any g∞ satisfying Dℓ(g

∞) = 0 is constant equal to 1 and we are left with the estimate
of:

Eµℓ
[ϕ] with ϕ = 1p=2 − e−β. (6.140)

Step 4: equilibrium computations
The expectation (6.140) is taken under the equilibrium measure of the zero-range dynamics. Prop-
erties of the measure µℓ are analysed in Appendix A.3. In particular, it is proven there that,
recalling the de�nition (6.119) of ℓmin(n):

lim
n→∞

max
ℓmin(n)≤ℓ≤n

∣∣Eµℓ
[ϕ]
∣∣ = 0. (6.141)
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Equation (6.141) concludes the proof of Lemma 6.11 when G = 1.

Let us now discuss the case G ̸= 1. In this case we need to bound:

−aδT + Cβ +

∫ T

0

sup
f≥0:νf (E)=1

{
aEνf [ϕG(t, L1)]−NDN(f

1/2)
}
dt. (6.142)

Fix t ∈ [0, T ] and consider the supremum at time t. Since G is bounded, it is still possible to
localise around the pole through bounds on hn, ℓn, so that it is su�cient to estimate the following
analogue of (6.121) for each t ≤ T and ν-density f supported in E :

n∑
ℓ=ℓmin(n)

Eνf

[
1Mℓ

1hn≤hmax(n)ϕ G(t, L1)
]

=
n∑

ℓ=ℓmin(n)

Eνf

[
1Mℓ

1hn≤hmax(n)1xn(γ)=xϕ G(t, xn)
]
+ oN(1), (6.143)

with an error term uniform in f , accounting for the di�erence G(t, L1) − G(t, xn). This error
term vanishes for N large due to the conditions ℓn ≤ n, hn ≤ hmax(n) which imply ∥xn − L1∥1 ≤
C(G, n)/N for some C(G, n) > 0 independent of N .

To reduce to the G = 1 case, we further split the expectation depending on the position of
xn(γ). The �rst term in the right-hand side of (6.143) is then equal to:

n∑
ℓ=ℓmin(n)

∑
x∈(N−1Z)2

∥G∥∞
∣∣∣Eνf

[
1Mℓ

1hn≤hmax(n)1xn(γ)=xϕ
]∣∣∣. (6.144)

At this point G dose not play a role any more and we can proceed as in the G = 1 case. Indeed, the
position of the left extremity xn(γ) of the frame around the pole is unchanged by the zero-range
dynamics, see the discussion following (6.131). Conditioning on its position therefore does not
a�ect the projection on the ZRP. As such, the rest of the arguments in the proof of Lemma 6.11
go through unchanged, except that one has to rewrite everything with x �xed, e.g. to consider
Mℓ,x =Mℓ ∩ {xn(γ) = x} instead of Mℓ, fℓ,x, f̄ℓ,x instead of fℓ, f̄ℓ for the new marginal of f under
µℓ, µ̄ℓ respectively, etc. In particular, the supremum in (6.142) is bounded at each time t ≤ T by
the following variant of (6.138):

sup
f≥0:νf (E)=1

{ n∑
ℓ=ℓmin(n)

∑
x∈(N−1Z)2

νf (Mℓ,x)
Z̄ℓ

Zℓ

Eµ̄ℓ

[
f̄ℓ,x1Wℓ

][
a∥G∥∞

∣∣∣Eµℓ

[
fℓ,xϕ

]∣∣∣− N

2
Dℓ(f

1/2
ℓ,x )

]}

≤ a∥G∥∞ max
ℓmin(n)≤ℓ≤n

[
sup

g≥0:Eµℓ
[g]=1

Dℓ(g
1/2)≤2a∥ϕ∥∞∥G∥∞/N

∣∣∣Eµℓ

[
gϕ
]∣∣∣]

× sup
f≥0:νf (E)=1

{ n∑
ℓ=ℓmin(n)

∑
x∈(N−1Z)2

νf (Mℓ,x)
Z̄ℓ

Zℓ

Eµ̄ℓ

[
f̄ℓ,x1Wℓ

]}
. (6.145)

The second supremum is bounded by 1 and the supremum on the zero-range process is the same
quantity as in (6.138).

91



The method of proof of Lemma 6.11 can be used to obtain tighter estimates on the slope at the
poles. An example is given in the following corollary, used in Appendix B.3 to obtain exponential
tightness.

Corollary 6.12 (One and two block estimates for deviations from the average). Let β > log 2.
For each δ, η > 0:

lim
q→∞

lim sup
N→∞

1

N
logPN

β

(
γN· ∈ E([0, T ], E); 1

T

∫ T

0

1|ξ±,q

L1(γ
N
t )

−e−β |≥δ dt > η

)
= −∞. (6.146)

and:

lim
q→∞

lim sup
ε→0

lim sup
N→∞

1

N
logPN

β

(
γN· ∈ E([0, T ], E);

1

T

∫ T

0

1|ξ±,q

L1(γ
N
t )

−ξ±,εN

L1(γ
N
t )

|≥δ dt > η

)
= −∞. (6.147)

Equations (6.146)�(6.147) are valid under PN
β,H for H ∈ C by Corollary 6.2.

Remark 6.13. Note that 1|ξ±,q
L1

−e−β |≥δ is simply a cylindrical function, which has average oq(1)

under the invariant measure ν. Corollary 6.12 thus says no more than the usual replacement
lemmas. ■

Proof. Consider �rst (6.147). Using Feynman-Kac inequality as usual, it is enough to prove that,
for each a > 0:

lim
q→∞

lim sup
ε→0

lim sup
N→∞

sup
f≥0:νf (E)=1

{
aEνf

[
1|ξ±,q

L1(γ
N )

−ξ±,εN

L1(γ
N )

|≥δ

]
−NDN(f

1/2)
}
= 0. (6.148)

For each density f , the expectation is bounded above using Markov inequality by δ−1Eνf [|ξ
±,q
L1(γN )

−
ξ±,εN
L1(γN |]. At this point the proof of Equation (6.147) boils down to the proof of a two block estimate
using only the SSEP part of the dynamics. The method of proof is then the same as in Lemma 6.7.

Consider now (6.146). By the same approach, we only need to prove:

lim
q→∞

lim sup
ε→0

lim sup
N→∞

sup
f≥0:νf (E)=1

{a
δ
Eνf

[
|ξ±,q

L1(γN )
− e−β|

]
−NDN(f

1/2)
}
= 0. (6.149)

Since we need to compute the exact value of the slope, we have to project on the ZRP around the
pole as in the proof of Lemma 6.11. This is done as for Lemma 6.11, with the only di�erence that
we need to project on a frame around the pole that has at least q edges to the right (for ξ+,q) or
to the left (for ξ−,q) of the pole.

To do so, it is enough to choose the parameter n in the de�nition of the reference frame such
that there are typically at least q vertical edges (as there will then be at least q edges to either
side of the pole). Written formally, we only need to prove:

lim sup
N→∞

sup
f≥0:Eν [f ]=1

DN (f1/2)≤C/N

νf

(
E , hn(γ)− 1 ≤ q

)
= oq(1). (6.150)

This estimate was already established in (6.116). With the only di�erence that n is taken large
before q, the proof of (6.146) thus reduces, as in Lemma 6.11, to an elementary (though more
involved) equilibrium computation under the measure µℓ (ℓmin(n) ≤ ℓ ≤ n) de�ned in (6.134).
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A Projection of the dynamics, replacement lemma and equi-

librium estimates

A.1 Projection of the contour dynamics on the good state space

In this section, we prove Lemma 6.5 which states that the contour dynamics can be projected to
the e�ective state space E . We state and prove a more general result.
Let (Xt)t≥0 be a continuous time Markov chain on a �nite state space E, reversible with respect to
a measure ν. If x0 ∈ E, let PX

x0
,EX

x0
be the associated probability and expectation. The jump rates

of the chain between states (x, y) ∈ E2 are denoted by c(x, y), with associated Dirichlet form:

∀g : E → R, D(g) =
1

2

∑
(x,y)∈E2

ν(x)c(x, y)
[
g(y)− g(x)

]2
. (A.1)

Lemma A.1. Let B ⊂ E and x0 ∈ B. Let also T > 0 and ψ : [0, T ]× E → R be bounded. Then:

EX
x0

[
1{∀t∈[0,T ],Xt∈B} exp

[ ∫ T

0

ψ(t,Xt) dt

]]
≤ 1

ν(x0)1/2
exp

[ ∫ T

0

sup
f≥0:νf (B)=1

{
Eν

[
fψ(t, ·)

]
−D(f 1/2)

}
dt

]
. (A.2)

Proof. As (Xt)t≥0 is right-continuous with left limits,

EX
x0

[
1{∀t∈[0,T ],Xt∈B} exp

[ ∫ T

0

ψ(t,Xt) dt

]]
= lim

n→∞
EX

x0

[
1{XT∈B} exp

[
− n

∫ T

0

1Xt∈B dt+

∫ T

0

ψ(t,Xt) dt

]]
. (A.3)

For n ∈ N ∪ {∞} and t ∈ [0, T ], introduce the E × E matrix LB de�ned by:

Ln
t (x, y) =

{
−c(x, y) if x ̸= y ∈ E∑

z∈E c(x, z) + ψ(t, x)− n1x/∈B if x = y.
(A.4)

Write also P n
t (t ∈ [0, T ]) for the associated semigroup de�ned through the Chapman-Kolmogorov

equation:
∂P n

t = Ln
t P

n
t , t ∈ [0, T ], P n

0 (x, y) = 1y=x,x∈B, (x, y) ∈ E2. (A.5)

The right-hand side of (A.3) is then equal to:

lim
n→∞

∑
y∈B

P n
T (x0, y) =

∑
y∈B

P∞
T (x0, y) =

∥∥ 1x0

ν(x0)
P∞
T

∥∥
L1(ν)

≤
∥∥ 1x0

ν(x0)
P∞
T

∥∥
L2(ν)

. (A.6)

Note that Ln
t is self adjoint in L2(ν). If λnt denotes its largest eigenvalue, one has in particular

when n = ∞:

λ∞t = sup
f≥0:ν(f)=1

{
Eν [fψ(t, ·)]−∞Eν [f1x/∈B]−D(f 1/2)

}
= sup

f≥0:ν(f1B)=1

{
Eν [fψ(t, ·)]−D(f 1/2)

}
. (A.7)
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As a result, for t ∈ [0, T ],

d

dt

∥∥ 1x0

ν(x0)
P∞
t

∥∥2
L2(ν)

= 2Eν

[ 1x0

ν(x0)
P∞
t Lt

( 1x0

ν(x0)
P∞
t

)]
≤ 2λ∞t

∣∣ 1x0

ν(x0)
P∞
T

∥∥2
L2(ν)

. (A.8)

Gronwall inequality and ∥ 1x0

ν(x0)
P∞
0

∥∥
L2(ν)

= ν(x0)
−1/2 conclude the proof.

A.2 Replacement lemma

In this section, we prove the Replacement Lemma 3.8. Let us �rst introduce and recall some
notations. Fix a time T > 0 and A > 0 throughout the section, such that all trajectories considered
here will be in the set: {

(γNt )t≤T ⊂ ΩN
mic ∩ E : sup

t≤T
|γNt | ≤ A

}
. (A.9)

For each ε > 0 and x ∈ R2, recall that B1(x, ε) ⊂ R2 is the subset of points at distance less than
ε to x in 1-norm. For γN ∈ ΩN

mic and x ∈ V (γN), de�ne

ϕ(γN , x) = cx(γ
N) =

1

2

[
ξx+e−x

(1− ξx) + ξx(1− ξx+e−x
)
]
. (A.10)

Recall from (3.3) that ξεNx is the quantity

ξεNx =
1

2εN + 1

∑
y∈V (γN )∩B1(x,ε)

ξy, (A.11)

and de�ne ϕ̃ by:
ϕ̃(ρ) = ρ(1− ρ), ρ ∈ [0, 1]. (A.12)

Let G ∈ Cc(R+ × R2) be a bounded function. By Chebychev exponential inequality and the
Projection lemma A.1 applied to the set E([0, T ], E) ∩

{
supt≤T |γNt | ≤ A

}
, Lemma 3.8 holds if,

uniformly on t > 0 and for each a > 0:

lim
ε→0

lim sup
N→∞

(A.13)

sup
f≥0:νf (EA)=1

{
Eνf

[
a

{
1

N

∑
x∈V (γN )

G(t, x)

[
ϕ(γN , x)− ϕ̃(ξεNx )

]}2
]
−NDN(f

1/2)

}
= 0.

Above, EA is the set:
EA := E ∩

{
|γ| ≤ A

}
. (A.14)

Following [ELS90], it is su�cient to prove the following two estimates.

Lemma A.2. (One and two block estimates)
Let ε > 0, ℓ ∈ N≥1 and let (Vj)1≤j≤J denote a partition of {−εN, ..., εN} in J intervals of length ℓ
(except maybe the last one that is of size at most 2ℓ), such that maxVj = minVj+1−1 for j ≤ J−1.
For γN ∈ ΩN

mic
, x ∈ V (γN) and 1 ≤ j ≤ J , let Vj(x) be the set of vertices in B1(x, ε) ∩ V (γN),
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with numbering relative to x corresponding to elements of Vj (i.e. x corresponds to 0, x + e±x to
±1, etc.). De�ne also:

S(ϕ, Vj(x)) :=
1

|Vj(x)|
∑

y∈Vj(x)

ϕ(γN , y), ξVj(x) :=
1

|Vj(x)|
∑

y∈Vj(x)

ξy. (A.15)

For any a > 0, one has then (one block estimate):

lim
ℓ→∞

lim sup
ε→0

lim sup
N→∞

max
1≤j≤J

sup
f≥0:νf (EA)=1

{
aEνf

[
1

N

∑
x∈V (γN )

∣∣∣S(ϕ, Vj(x))− ϕ̃(ξVj(x))
∣∣∣2]−NDN(f

1/2)

}
= 0, (A.16)

and (two block estimate):

lim
ℓ→∞

lim sup
ε→0

lim sup
N→∞

max
1≤b,c≤J

sup
f≥0:νf (EA)=1

{
aEνf

[
1

N

∑
x∈V (γN )

∣∣∣S(ϕ, Vb(x))− S(ϕ, Vc(x))
∣∣∣2]−NDN(f

1/2)

}
= 0. (A.17)

Proof. Only microscopic curves occur in this proof, so we drop the superscript N and write γ ∈
ΩN

mic. All distances are in 1-norm.
The proof is written for a function ϕ of range R ∈ N, i.e. ϕ(γ, x) depends only on B1(x,R/N)∩V (γ)
for each γ ∈ ΩN

mic and x ∈ V (γ). It in particular applies to (A.10), for which R = 1. The
proof of (A.16)�(A.17) consists in showing that the one and two block estimates for the contour
dynamics amount to the same estimates for the SSEP, which are well known [ELS90]. We do it
for (A.16), (A.17) is similar.

The �rst step is to discard all points in the sum in (A.16) that are close to the poles so that
the pole dynamics can be neglected. De�ne thus, for u > 0, the set W u(γ), which contains all
points of V (γ) at distance at least u/N from each Lk(γ), k ∈ {1, ..., 4} (compare with V u(γ), see
Figure 8, which contains points at 1-distance at least u/N from the whole poles rather than their
left extremities). For any γ ∈ ΩN

mic,

1

N

∑
x∈V (γ)

∣∣∣S(ϕ, Vj(x))− ϕ̃(ξVj(x))
∣∣∣2 ≤ 1

N

∑
x∈W εN+R+3(γ)

∣∣∣S(ϕ, Vj(x))− ϕ̃(ξVj(x)
x )

∣∣∣2
+ C∥ϕ∥∞ε. (A.18)

The second term in the right-hand side of (A.18) is independent of N, ℓ and vanishes for ε small.
We now estimate the sum. To do so, we split curves depending on their four regions. We then use
the mapping to the SSEP for the dynamics on each region.

Let 1 ≤ k ≤ 4 and let Mk denote the set of all lattice paths compatible with region 1 ≤ k ≤ 4,
de�ned as follows. For γ ∈ ΩN

mic, let γk denote the part of γ that comprises the edges between the
vertex Lk + 2e+Lk

, and the vertex before Lk+1, these two vertices included (with Lk+1 := L1 when
k = 4). De�ne then:

Mk :=
{
ρ ⊂ (N−1Z)2 : ∃γ ∈ ΩN

mic, γk = ρ
}
. (A.19)
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One can check that, e.g. when k = 1, any lattice path on (N−1Z)2 allowed to only go right or
down and starting in the upper half plane x · bπ/2 ≥ 0 is an element of M1. A similar statement
holds for other values of k for the corresponding lattice paths directions.

De�ne now µk as the marginal of the contour measure ν = νNβ (de�ned in (2.16)) on Mk:

∀ρ ∈Mk, µk(ρ) =
e−βN |ρ|

Zk

, Zk =
∑
ρ∈Mk

e−βN |ρ|. (A.20)

Let f be a ν-density supported on EA. De�ne the corresponding µk-marginal fk:

∀ρ ∈Mk, fk(ρ) =
1

µk(ρ)

∑
γ∈ΩN

mic

1γk=ρf(γ)ν(γ). (A.21)

For γ ∈ ΩN
mic, if γ \ γk is �xed, then so are all poles. Moreover, if γ is in E , then the contour

dynamics is local. The de�nition of Mk then implies that dynamical updates a�ecting an edge of
γk correspond to SSEP moves. As a result, the Dirichlet form DN(f

1/2) is bounded from below by
convexity according to:

DN(f
1/2) ≥ 1

2

4∑
k=1

∑
ρ∈Mk

µi(ρ)
∑

x∈V (ρ)

cx(ρ)
[
f
1/2
k (ρx,x+e−x )− f

1/2
k (ρ)

]2
=:

4∑
k=1

Dex,k
N (f

1/2
k ), (A.22)

where V (ρ) is the set of vertices in ρ and, for k ∈ {1, ..., 4} and a µk-density h, the Dirichlet form
Dex,k

N corresponding to the SSEP dynamics in region k is given by:

Dex,k
N (h1/2) =

∑
ρ∈Mk

µk(ρ)
∑

x∈V (ρ)

cx(ρ)
[
h1/2(ρx,x+e−x )− h1/2(ρ)

]2
. (A.23)

We now use the decomposition on the Mk, 1 ≤ k ≤ 4 to estimate the sum appearing in the
right-hand side of (A.18). For short, de�ne Φj for 1 ≤ j ≤ J by:

Φj(γ, x) =
∣∣∣S(ϕ, Vj(x))− ϕ̃(ξVj(x))

∣∣∣2, γ ∈ ΩN
mic, x ∈ V (γ). (A.24)

Note that Φj(γ, x) depends only on the orientation (horizontal or vertical) of the edges of γ at
1-distance at most ℓ/N from x and in particular does not depend on the absolute position of x as
a point of R2. We thus only need to keep track of the label of x in a well chosen parametrisation
of γ. We have:

(E) :=
∑

γ∈ΩN
mic

ν(γ)f(γ)
1

N

∑
x∈W εN+R+3(γ)

Φj(γ, x)

≤
4∑

k=1

∑
ρ∈Mk

µk(ρ)fk(ρ)
1

N

∑
x∈W εN+R(ρ)

Φj(ρ, x), (A.25)

where Φj(ρ, ·) is de�ned as in (A.24) replacing γ ∈ ΩN
mic by a path ρ ∈ Mk (1 ≤ k ≤ 4). Since ϕ

depends only locally on the curve, this is not ambiguous for x ∈ W εN+R(ρ).
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So far, we proved that the one block estimate (A.16) holds as soon as:

lim
ℓ→∞

lim sup
ε→0

lim sup
N→∞

max
1≤j≤J

sup
f≥0:νf (EA)=1

{ 4∑
k=1

[
a
∑
ρ∈Mk

µk(ρ)fk(ρ)
1

N

∑
x∈W εN+R(ρ)

Φj(ρ, x)−NDex,k
N (f

1/2
k )

]}
= 0. (A.26)

The estimate for each 1 ≤ k ≤ 4 is identical, so we only do it for k = 1. Further split paths in
M1 according to their number of vertices and let M1(n) be the subset of M1 of paths with n + 1
vertices. All such paths have the same probability under µ1, thus the marginal of µ1 on M1(n)
is the uniform measure Un on paths with n + 1 vertices or, equivalently, by the correspondence
expounded in Section 6.3.2 (see Figure 12), of SSEP con�gurations with n sites. De�ne f1,n as the
corresponding Un-marginal of f1 on M1(n):

∀ρ ∈M1(n), f1,n(ρ) := Eµ1

[
f11M1(n)

]−1
f1(ρ)µ1(ρ)|M1(n)| if Eµ1

[
f11M1(n)

]
> 0. (A.27)

It is a density for Un, thus convexity of the Dirichlet form yields:

Dex,1
N (f

1/2
1 ) ≥

∑
n≥2

Eµ1

[
f11M1(n)

]
Dex,1

N,n(f
1/2
1,n ), (A.28)

where Dex,1
N,n is de�ned as in (A.23), but with Un instead of µ1 and paths in M1(n) rather than M1.

Note also that, as f is supported on EA, f1,n is supported on paths with at most AN edges. In
addition, for any ρ ∈M1(n) with n < 2εN + 2R, W εN+R(ρ) is empty. Thus:∑

ρ∈M1

µ1(ρ)f1(ρ)
1

N

∑
x∈W εN+R(ρ)

Φj(ρ, x)

=
AN∑

n=2εN+2R

Eµ1

[
f11M1(n)

] 1

|M1(n)|
∑

ρ∈M1(n)

1

N

∑
x∈W εN+R(ρ)

Φj(ρ, x). (A.29)

Now that paths appearing in (A.29) have �xed length, it is possible to give a numerical label
i ∈ {εN + R + 1, ..., n − εN − R} to each point in W εN+R(ρ), independent from the choice of
the path ρ ∈ M1(n). One can then associate a SSEP con�guration σ ∈ {0, 1}n with each ρ (see
Figure 12) and rewrite the quantity Φj(ρ, x) for x ∈ W εN+R(ρ) as:

∀x ∈ W εN+R(ρ), Φj(ρ, x) = Φ(τiσ), (A.30)

where i ∈ {εN + R + 1, ..., n − εN − R} is the label of the point x and τiσ(i
′) = σ(i′ − i) is the

translation operator. The average on M1 in (A.29) is then equal to:

AN∑
n=2εN+2R

Eµ1

[
f11M1(n)

] 1

|M1(n)|
∑

σ∈{0,1}n
g1,n(σ)

1

N

n−εN−R∑
i=εN+R+1

Φj(τiσ). (A.31)

In the last line, g1,n is de�ned for σ ∈ {0, 1}n by g1,n(σ) = g1,n(ρ(σ)), with ρ(σ) the unique
path in M1(n) corresponding to the particle con�guration σ, as represented in Figure 12. In view
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of (A.26)�(A.28)�(A.31), to prove the one block estimate (A.16), it is su�cient to prove:

lim
ℓ→∞

lim sup
ε→0

lim sup
N→∞

max
1≤j≤J

max
n∈{2εN+2R,...,AN}

sup
g≥0:EUn [g]=1

{
a

N
EUn

[
g

n−εN−R∑
i=εN+R+1

Φj(τi·)
]
−NDex

n (g1/2)

}
= 0. (A.32)

The notation Dex
n , already used in Section 6, stands for the Dirichlet form associated with a SSEP

on n sites. We are left with a usual one block estimate for a SSEP of size n, proven e.g. in [ELS90].
The size n of the SSEP becomes irrelevant in the large N limit since only the 2ℓ + 1 site closest
to each i matter. This concludes the proof of (A.16). The two block estimate (A.17) is proven
similarly.

A.3 Equilibrium estimates at the pole

In this section, we investigate the equilibrium measure µℓ (see (6.134)) of the zero-range process
at the poles. We prove:

Proposition A.3. The sequence of the laws of the top height of a path under µℓ (ℓ ∈ N≥1) satis�es
a large deviation principle at speed ℓ (equivalently: the number of particles or of antiparticles) with
good, convex rate function given by:

∀u ≥ 0, C(u) = 2βu− 2u log
(
1 + 1/(2u)

)
− log(1 + 2u)− log

(
1− e−β

)
. (A.33)

In particular, recalling that ℓmin(n) :=
√
n/(4 log n):

lim
n→∞

max
ℓmin(n)≤ℓ≤n

∣∣Eµℓ
[ϕ]
∣∣ = 0, ϕ = 1p=2 − e−β. (A.34)

Proof. We prove (A.33) �rst. We say that a path is a north-east path if it goes either up or right,
a south-east path if it goes either down or right and an up-down path if it is the concatenation of
a north-east path followed by a south-east path (see Figure 17).

Recall that up-down paths correspond to possible con�gurations of the neighbourhood of the
north pole of microscopic interfaces γN ∈ ΩN

mic. In contrast, the north-east paths appearing on the
left of Figure 17 below do not have any interpretation in terms of microscopic interfaces.

We speak alternately of up-down paths or of particle/antiparticle con�gurations in the proof
depending on what is easier to use, the height of a path corresponding to

∑
x≤L1

ηx = −
∑

x>L1
ηx.

Here, the point L1 is the left extremity of the pole of an up-down path. This pole and L1 for an
up-down path are de�ned analogously to the north pole of a curve γN ∈ ΩN

mic and its left extremity
L1(γ). We similarly write p for the length of the pole of an up-down path.

Fix ℓmin(n) ≤ ℓ ≤ n throughout. Let us �rst study the probability to observe a given height
under µℓ. There are exactly

(
2q+ℓ−2

2q

)
con�gurations with height q ∈ N. To see it, notice that this

is the number of north-east paths with length 2q + ℓ− 2 and 2q vertical edges. To each such path
ρ, one can associate a unique up-down path of length 2q + ℓ as follows (see also Figure 17).

� Travelling on the path ρ from its origin, stop at the �rst point at height q, call it X, and cut
the path there in two parts ρ≤X and ρ>X .
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� Add two horizontal edges to ρ≤X immediately after X, call ρX+2 the resulting path.

� Change ρ>X into its symmetrical ρ̃>X with respect to the horizontal, i.e. change every
upwards edge into a downwards one, leaving the horizontal edges unchanged. Stitch the last
edge of ρX+2 to the �rst of ρ̃>X to obtain an up-down path of height q and length 2q + ℓ.

One easily checks that this mapping is a bijection, mapping the point X onto the left extremity
L1 of the pole of the up-down path, whence:

∀q ≤ hmax(n) = n(1 + 2 log n), µℓ

(∑
j≤L1

ηj = q
)
=

(
2q + ℓ− 2

2q

)
e−2βq−βℓ/Zℓ. (A.35)

Let us investigate the dependence of this quantity in q < hmax(n):

µℓ

(∑
j≤L1

ηj = q + 1
)
/µℓ

(∑
j≤L1

ηj = q
)
= e−2β (2q + ℓ)(2q + ℓ− 1)

(2q + 2)(2q + 1)
. (A.36)

This quantity increases until some value qc of q, given by

qc =
1

2
(eβ − 1)−1ℓ+ o(ℓ) =: ucℓ+ o(ℓ). (A.37)

In particular, due to the logarithm in the large deviation bounds for the measure µℓ that we are
trying to prove, only the maximum value of

(
2q+ℓ−2

2q

)
e−2βq−βℓ will matter. One thus needs only

consider heights of order ℓ in the large ℓ limit. For �xed u > 0, elementary computations give:

1

ℓ
log

[(
2⌊ℓu⌋+ ℓ− 2

2⌊ℓu⌋

)
e−2β⌊ℓu⌋−βℓ

]
= −β−2βu+2u log

(
1+1/(2u)

)
+log(1+2u)+oℓ(1). (A.38)

De�ne the function D(·) on R∗
+ by;

D(u) = β + 2βu− 2u log
(
1 + 1/(2u)

)
− log(1 + 2u) ≥ 0, u ≥ 0. (A.39)

From (A.38) and with uc =
1
2
(eβ − 1)−1, we obtain for the normalisation Zℓ:

lim
ℓ→∞

1

ℓ
logZℓ = D(uc) = β + log

(
1− e−β

)
. (A.40)

We now turn to the large deviation principle for the height of a path. From (A.38) and (A.40), we
obtain

1

ℓ
log µℓ

(∑
j≤L1

ηj = ⌊ℓu⌋
)
= −(D(u)−D(uc)) + oℓ(1). (A.41)

De�ne the rate function C(·) on R∗
+ by

C(u) = D(u)−D(uc) ≥ 0, u ≥ 0. (A.42)

The function C is C∞ on R∗
+ and satis�es:

C(uc) = 0 = C ′(uc), C ′′(u) =
2

u+ 2u2
> 0 for each u > 0, (A.43)
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so that C is strictly convex and a good rate function. The large deviation principle follows
from (A.41).

X

 

X

ρ≤X

ρX+2 ρ>X

ρ>X

X

X

ρ≤X

ρX+3 ρ>X

ρ>X

p=2

general case

q

q

q

q-1

 ℓ-2  ℓ

Figure 17: Bijection argument to count the number of up-down paths with height q and length 2q + ℓ,
with (bottom �gure) or without (top �gure) conditions on the size p of the pole. Black dots delimit
the extremities of the paths. Without conditions on p, an up-down path is obtained by transforming a
north-east path with length 2q + ℓ− 2 and height 2q (top left �gure). If p = 2, then instead the length is
2q+ℓ−3 and height 2q−1 (bottom left �gure). Dashed lines delimit the two portions ρ≤X and ρ>X of the
north-east paths. The red dot is the place at which the initial north-east path is split and the red, thick
lines on the right-hand side are the edges added to the initial path to obtain an up-down con�guration
with height q and length 2q + ℓ (with also p = 2 in the bottom �gure).

It remains to prove (A.34). This follows from the large deviations principle (A.41) and the
following observation. Constructing a path with p = 2 and height q ∈ N≥1 is done by building a
north-east path of length 2q − 1 + ℓ − 2 with 2q − 1 vertical edges, then cutting it as described
previously and taking the symmetric part of the path after the �rst point X at height q. The only
di�erence is that one now sticks not just two horizontal edges after X, but two horizontal edges
followed by a vertical one hanging from below, before stitching back the two parts of the path (see
Figure 17). There are thus

(
2q+ℓ−3
2q−1

)
con�gurations with p = 2 and height q ∈ N≥1 and:

µℓ

(
p = 2,

∑
j≤L1

ηj = q
)
= Z−1

ℓ e−βℓ−2βq

(
2q + ℓ− 3

2q − 1

)
=

2q

2q + ℓ− 2
µℓ

(∑
j≤L1

ηj = q
)
. (A.44)

As the height q of a path corresponds to
∑

j≤L1
ηj, the expectation in (A.34) at ℓ then reads:

Eµℓ
[ϕ] = −e−β +

∑
q≥1

µℓ

(
p = 2,

∑
j≤L1

ηj = q
)

(A.44)
= Eµℓ

[
2
∑

j≤L1
ηj

2
∑

j≤L1
ηj + ℓ− 2

− e−β

]
. (A.45)

100



Let ζ > 0. The integrand in (A.45) is bounded and, for all ℓ large enough,

1

ℓ
log µℓ

(1
ℓ

∑
j≤L1

ηj /∈ [uc − ζ, uc + ζ]
)
≤ −C(uc + ζ)/2 < 0. (A.46)

As a result, since 2uc/(2uc + 1) = e−β, the expectation in (A.45) is recast as follows:

Eµℓ
[ϕ] = Eµℓ

[(
2ℓ−1

∑
j≤L1

ηj

2ℓ−1
∑

j≤L1
ηj + 1

− e−β

)
1uc−ζ≤ 1

ℓ

∑
j≤L1

ηj≤uc+ζ

]
+O(ℓ−1)

= O(ζ) +O(ℓ−1). (A.47)

The O(ζ) is independent of ℓ ∈ {ℓmin(n), ..., n} and ℓmin(n) =
√
n/(4 log n) diverges with n. This

proves (A.34).

B Topology results

At the microscopic level, elements of ΩN
mic are simple curves. Macroscopically, however, curves may

be non-simple, for instance when the situation of Figure 6 occurs. Microscopic estimates on the
poles, such as Proposition 2.12, indicate that macroscopic trajectories should have well-behaved
poles and thus be simple at almost every time.

To turn the information provided by Proposition 2.12 into a property of limiting curves (e.g.
for lower bound large deviations), it is necessary to �rst be able to de�ne a limiting object (for
lower bound large deviations, a limiting probability measure) on general, possibly pathological
trajectories.

This means that we have to de�ne a topology on trajectories that is strong enough to handle
pathological cases, yet weak enough for microscopic estimates to be available (which for instance
excludes pointwise in time estimates in Hausdor� distance).

The following appendix builds this topological setting, �rst on curves (Section B.1), then on
trajectories (Section B.2); concluding with a proof of exponential tightness (Section B.3).

B.1 Topological properties of Ω and E
In preparation for the de�nition of the topology on trajectories, we investigate in this section
topological properties of Ω, E for Hausdor� and volume distances, expressing the Hausdor� distance
between curves in Ω as a function of the volume distance and the distance between the poles only.
We also prove Lemma 2.7 on the locality of jump rates of the contour dynamics.

The Hausdor� distance dH(A,B) between two non-empty compact sets A,B is de�ned in (2.9)
and equivalently by:

dH
(
A,B) = max

{
sup
y∈B

inf
x∈A

∥x− y∥1, sup
x∈A

inf
y∈B

∥x− y∥1
}
= dH

(
∂A, ∂B). (B.1)

Recall also the convention:

∀γ, γ̃ ∈ Ω, dL1(γ, γ̃) := dL1(Γ, Γ̃) =

∫
R2

|1Γ − 1Γ̃| du dv, (B.2)
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where Γ, Γ̃ are the droplets associated with γ, γ̃ respectively.
For 1 ≤ k ≤ 4, recall that the zk = zk(γ) are the extremal coordinates of a curve γ ∈ Ω (see

Figure 18 and recall that Lk is the left extremity of pole k):

z1 = sup{x · bπ/2 : x ∈ γ} = L1 · bπ/2, z3 = inf{x · bπ/2 : x ∈ γ} = L3 · bπ/2,

z2 = sup{x · b0 : x ∈ γ} = L2 · b0, z4 = inf{x · b0 : x ∈ γ} = L4 · b0. (B.3)

Equation (B.1) directly yields that the zk are 1-Lispchitz functions in Hausdor� distance. In
addition, since each curve γ ∈ Ω surrounds 0, it holds that z1, z2 ≥ 0 and z3, z4 ≤ 0.

We �rst prove that Ω, E are closed with respect to convergence in Hausdor� and/or volume
distances.

Proposition B.1. The sets Ω and E are closed in the topology associated with the Hausdor�
distance dH. Moreover, E is closed in Ω for the volume distance dL1, de�ned in (B.2). In addition,
Ω ∩ {|γ| ≤ κ} is compact in Hausdor� topogy (thus E ∩ {|γ| ≤ κ} as well) for each κ > 0.

Proof. If a sequence converges in Hausdor� distance, then it converges in volume distance dL1 . In
particular E , de�ned as a closed ball in Ω in dL1-distance, is a closed subset of Ω for both volume
and Hausdor� distances. It is thus enough to prove that Ω is closed and Ω∩{∥γ∥ ≤ κ} is compact
in Hausdor� distance for κ > 0. We start with the closeness.

Let γn ∈ Ω (n ∈ N) converge to γ in Hausdor� distance. Then by de�nition (2.9) or (B.1) γ
delimits a bounded region that must contain 0. The curve {0} is in Ω by assumption, so let us
assume that γ is not reduced to a point. Convergence of the (zk(γ

n))n (1 ≤ k ≤ 4) guarantees
that γ has poles, i.e. that regions with extremal ordinate or abscissa are connected. It thus also
makes sense to talk of the regions of γ (some of them possibly reduced to a point).

Let k ∈ {1, ..., 4} be such that region k of γ is not reduced to a point. To prove γ ∈ Ω,
it remains to prove that its region k is a Lipschitz curve with tangent vector T of γ satisfying
T · b−(k−1)π/2 ≥ 0 and T · b−kπ/2 ≥ 0. This is equivalent to proving that region k of γ is the
graph of a 1-Lipschitz function in the reference frame (b−kπ/4,b−kπ/4+π/2) (in particular this is
true for the γn). Let x be in region k of γ. If x is in one of the poles, there is nothing to prove
since the poles are horizontal or vertical segments (possibly reduced to a point). Suppose instead
d(x, P (γ)) > 0 and assume k = 1 so that x is in the �rst region, the others being similar. Let
ε > 0 be such that:

x · bπ/2 ≤ z1(γ)− ε, x · b0 < z2(γ)− ε. (B.4)

Then all points y ∈ γ with:

y · b−π/4 ∈ I :=
{
u ∈ R : u ∈ x · b−π/4 +

[
− ε

2
√
2
,
ε

2
√
2

]}
(B.5)

satisfy y · bπ/2 < z1(γ) − ε/2 and y · b0 < z2(γ) − ε/2. This implies that, for n large enough, all
points in I correspond to a point yn in region 1 of γn. Write then the set of such yn ∈ γn as the
graph of a 1-Lipschitz function:{

yn in region 1 of γn : yn · b−π/4 ∈ I
}
:=
{
ub−π/4 + fn(u)bπ/4 : u ∈ I

}
. (B.6)

Hausdor� convergence of γn to γ implies uniform convergence of the fn on I. It follows that their
limit f is 1-Lipschitz, with:{

y in region 1 of γ : y · b−π/4 ∈ I
}
=
{
ub−π/4 + f(u)bπ/4 : u ∈ I

}
. (B.7)
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L1=(w1,z1)

L2=(z2,w2)
L4=(z4,w4)

L3=(w3,z3)

Γ

Γ'

Figure 18: A droplet Γ associated with a curve in Ω with point-like north and east poles. The left
extremities Lk = (wk, zk) (1 ≤ k ≤ 4) of each pole are indicated by black dots. Here, for u, v ∈ R, (u, v)
is the point ub0 + vbπ/2. The droplet Γ

′ de�ned in Lemma B.3 corresponds to the red shaded area.

The fact that x /∈ P (γ) was an arbitrary point of region 1 concludes the proof: γ ∈ Ω.

Consider now the compactness claim. For κ > 0, γ ∈ Ω ∩ {|γ| ≤ κ} implies that |zk(γ)| ≤ κ/2
for each k with 1 ≤ k ≤ 4. Since γ surrounds 0 by De�nition 2.3 of Ω, the set Ω ∩ {|γ| ≤ κ}
is closed in Hausdor� topology in the set of non-empty compact sets in [−κ/2, κ/2]2, which is
compact. This concludes the proof.

To control Hausdor� convergence, we will need to control the position of the poles. The
next lemma characterises the continuity of the other coordinate wk of the left extremity of pole
k ∈ {1, ..., 4} (see Figure 18). Continuity properties of the zk, wk are summarised on Figure 19.

Lemma B.2. For γ ∈ Ω, let wk(γ) (1 ≤ k ≤ 4) be the other four coordinates of the left extremities
Lk(γ) of each pole: wi(γ) = Li(γ) · b0 for i ∈ {1, 3}, wi(γ) = Li(γ) · bπ/2 for i ∈ {2, 4}.

The function γ 7→ wk(γ) (1 ≤ k ≤ 4) satis�es wk ∈ [zk−1, zk+1] with the convention k + 1 := 1
if k = 4 and k − 1 := 4 if k = 1. It is not continuous in Hausdor� distance on Ω, but wk is lower
semi-continuous if k ∈ {1, 4}, upper semi-continuous if k ∈ {2, 3}.

In addition, if γ ∈ Ω has point-like pole k ∈ {1, ..., 4}, then γ is a point of continuity of wk for
the Hausdor� distance. That is, for (γn)n ⊂ Ω converging to γ in Hausdor� distance:

lim
n→∞

∥∥Lk(γ
n)− Lk(γ)

∥∥
1
∨
∥∥Rk(γ

n)−Rk(γ)
∥∥
1
= 0. (B.8)

Proof. Note that the zk (1 ≤ k ≤ 4) are the extremal coordinates of points of an interface by
de�nition, see Figure 18. E.g. for k = 1, w1 is the abscissa of the left extremity L1 of the north
pole while z4 is the lowest abscissa and z2 the highest. Thus w1 ∈ [z4, z2] and similarly for wk for
k ∈ {2, 3, 4}.

The lack of continuity of wk is best explained on a picture (see right picture in Figure 21). The
idea is the following. E.g. for the north pole k = 1, let γ ∈ E be a simple curve with north pole not
reduced to a point: |P1(γ)| > 0. Then w1(γ) is always the abscissa of the leftmost point of the pole
by de�nition, but one can build a sequence (γn)n of curves with point-like north pole at ordinate
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z1(γ) + 1/n and abscissa R1(γ) · b0 ̸= w1(γ). Then limn dH(γ
n, γ) = 0, but w(γn) converges to

R1(γ) · b0 ̸= w1(γ).
The fact that w1(γ) is the abscissa of the leftmost point of the pole also implies the lower

semi-continuity of γ ∈ Ω 7→ w1(γ) for the Hausdor� distance. Indeed, let γn ∈ Ω (n ∈ N) converge
to γ ∈ Ω for dH. Then L1(γ

n) · bπ/2 = z1(γ
n) converges to z1(γ) while w1(γ

n) = L1(γ
n) · b0 ∈

[z4(γ
n), z2(γ

n)] is bounded. Let L := lim infn→∞ L1(γ
n) ∈ γ. As L ∈ γ has maximal ordinate

z1(γ), it belongs to the north pole of γ, hence L · b0 ≥ w1(γ) and the lower semi-continuity.
Finally, let us prove that γ ∈ Ω with point-like pole 1 is a point of continuity of w1. Let

(γn)n ⊂ E converge to γ in Hausdor� distance. Recall that z1 = L1 · bπ/2 is continuous in
Hausdor� distance as noticed below (B.3). We just saw that w1 = L1 ·b0 is lower semi-continuous.
One can similarly show that R1 · b0 is upper semi-continuous (see Figure 19). Thus, since Γ has
point-like pole 1:

L1(γ) · b0 ≤ lim inf
n→∞

L1(γ
n) · b0 ≤ lim sup

n→∞
R1(γ

n) · b0 ≤ R1(γ) · b0 = L1(γ) · b0. (B.9)

This concludes the proof of (B.8) for the north pole. The other poles are similar.

The last ingredient we need to compare convergence in Hausdor� distance and convergence of
the poles and volume is a control of the poles of the largest droplet at 0 volume distance of a given
droplet. This is stated next (see also Figure 19), together with continuity estimates in volume
distance that will be used in the proof of the locality of the dynamics in Lemma B.6.

Lemma B.3. For γ = ∂Γ ∈ Ω with volume |Γ| > 0, de�ne Γ′ ⊂ Γ as the largest droplet with
simple boundary such that dL1(Γ,Γ′) = 0. In other words, Γ′ is the closure of the interior of Γ (see
Figure 18). De�ne then Ω′ ⊂ Ω as the set of boundaries of all such droplets:

Ω′ := {∂(Γ′) : γ = ∂Γ ∈ Ω}. (B.10)

Then, in both Hausdor� and volume distances, γ ∈ {γ̃ ∈ Ω : |Γ̃| > 0} 7→ zk(Γ
′) is lower semi-

continuous if k ∈ {1, 2}, upper semi-continuous if k ∈ {3, 4}. In addition γ 7→ wk(Γ
′) is upper

semi-continuous in volume distance on the same set of curves if k ∈ {1, 4}, lower semi-continuous
if k ∈ {2, 3}, and similar statements hold for the Rk · b(k−1)π/2 (1 ≤ k ≤ 4).

Proof. Note that upper semi-continuity of z′k := γ 7→ zk(Γ
′) (k ∈ {3, 4}) is the same as lower

semi-continuity of z′1, z
′
2 up to rotating all curves by π. We focus on the lower semi-continuity of

z′1 on Ω, z′2 being similar. Since convergence in Hausdor� distance implies convergence in volume,
it is enough to work with the latter. Let γn ∈ Ω (n ∈ N) converge to γ in volume distance. Then
either (z′1(γ

n))n diverges to +∞, in which case the lower semi-continuity holds, or it is bounded
along a subsequence that we still denote by (z′1(γ

n))n. Taking yet another subsequence, we may
assume (z′1(γ

n))n converges. Suppose by contradiction that its limit z̄′1 satis�es z̄
′
1 ≤ z′(γ)− ε for

some ε > 0. Then, for all large enough n:

z′1(γ
n) ≤ z′1(γ)− ε/2. (B.11)

The last equation implies that the intersection of the strip {(u, v) ∈ R2 : v ∈ z′1(γ) + [−ε/2, 0]}
with the droplet Γn associated with γn has vanishing volume when n is large. On the other hand,
the volume of this strip intersected with Γ (the droplet associated with γ) is strictly positive. This
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L1(Γ) 

L3(Γ)

Γ

L1(Γ
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n)') L1(Γ') 
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L3(Γ
n)=R3(Γ

n) 

R3(Γ)

L2(Γ)L4(Γ)

Figure 19: Continuity properties of the zk, wk and γ 7→ zk(Γ
′). A droplet Γ and an element Γn of a sequence

of droplets converging to Γ in Hausdor� distance (Γn di�ers from Γ in the portions materialised by red
lines) are represented. The extremities of the poles of Γ,Γn are given by dark dots and the positions of
Lk(Γ

′), Lk((Γ
n)′) by light blue dots. Arrows indicate the evolution of Γn when n is large. The convergence

at each pole illustrates di�erent possible behaviours.
The droplet Γ has point-like pole 1, thus limn L1(Γ

n) = L1(Γ). However, on this �gure, Γn is chosen in
such a way that lim infn z1((Γ

n)′) > z1(Γ
′). Similarly, at pole 2 of Γ, Γn is such that limL2(Γ

n) = L2(Γ),
but infn z2((Γ

n)′) > z2(Γ
′): γ 7→ zi(Γ

′) is lower semi-continuous if i ∈ {1, 2}.
At pole 3, where L3(Γ

n) = R3(Γ
n), the point L3(Γ

n) does not converge to L3(Γ
n) = L3(Γ), as w3(Γ

n) =
L3(Γ

n) ·b0 satis�es limnw3(Γ
n) < w3(Γ). The functionals R3 ·b0 and L3 ·b0 = w3 are respectively lower-

and upper semi-continuous (while instead w1 = L1 ·b0 is lower- and R1 ·b0 upper semi-continuous, etc.).

is absurd, since limn dL1(γn, γ) = 0 by assumption. Thus z̄′1 > z′1(γ) − ε for arbitrary ε > 0 and
the lower semi-continuity.

We now prove that lim supnw
′
1(γ

n) ≤ w′
1(γ) where w

′
1 := γ̃ 7→ w1(Γ̃

′). We may suppose without
loss of generality that γ, γn are simple, so that w1(γ) = w1(Γ

′) and idem for γn (n ∈ N). Suppose
�rst that the �rst region of γ is reduced to a point. Then the structure of elements of Ω implies
that |Γ ∩ H| = 0, with H the half plane of points to the right of L1(γ). Thus limn |Γn ∩ H| = 0
which, Γn being simple, implies that lim supnw1(γ

n) ≤ w1(γ).
Assume now that the �rst region of Γ is not reduced to a point and suppose by contradiction

that there is ε > 0 such that w1(γ
n) ≥ w1(γ) + ε along some subsequence still denoted by n. We

can assume that ε is small enough that there is a point xε in region 1 of γ with abscissa w1(γ)+ ε.
Let ε′(γ) > 0 be the drop in height between the pole P1(γ) and the point xε:

xε · bπ/2 = z1(γ)− ε′(γ). (B.12)

The lower semi-continuity of z′1 and the fact that γ, γn are simple implies that z1(γ
n) ≥ z1(γ) −

ε′(γ)/2 for all large enough n. There are now two cases to consider. De�ne the set (see Figure 20):

A :=
{
(u, v) ∈ R2 : u ∈

[
xε · b0, w1(Γ

n)
]
, v ∈

[
xε · bπ/2, z1(Γ

n)
]}
. (B.13)

105



u=�+w1(�)L1(�)

x�

�'(�)

�'(�)/2

L1(�n)

B

A

Figure 20: Representation of the sets A,B (shaded areas) for a curve γ (solid black line), with two possible
γn (cyan and magenta curves). The cyan curve corresponds to case 1 (lim infn |Γn ∩A| > 0), the magenta
curve to case 2 (lim infn |Γn ∩B| = 0, |Γ ∩B| > 0).

Then either lim infn |Γn ∩A| > 0, or lim infn |Γn ∩A| = 0. Due to the the structure of curves in Ω
(see De�nition 2.3), it always holds that |Γ∩A| = 0. In the �rst case (cyan line on Figure 20), this
fact and the convergence limn dL1(γ, γn) = 0 give a contradiction. In the second case (magenta line
on Figure 20), the structure of elements in Ω implies that, up to taking a subsequence, the height
of a point in Γn with abscissa xε · b0 (if such a point exists) is smaller than xε · bπ/2 + ε′(γ)/2 for
large enough n. Thus |Γn ∩B| = 0 for large enough n, with:

B :=
{
(u, v) ∈ R2 : u ∈

[
w1(γ), xε · b0,

]
, v ∈

[
z1(γ)− ε′(γ)/2, z1(γ)

]}
. (B.14)

However, the fact that Γ is simple with �rst region not reduced to a point implies |Γ ∩ B| > 0.
This gives a contradiction in this case as well and concludes the proof.

Convergence in volume is weaker than convergence in Hausdor� distance in general. For curves
in Ω, however, we now show that Hausdor� convergence is implied by convergence in volume,
convergence of the zk and, depending on the curves, the wk as well (1 ≤ k ≤ 4). We stress that
convergence of the wk is not always implied by Hausdor� convergence, hence the complicated
formula (B.15) below. We refer to Figure 21 and to Remark B.5 for heuristics.

Lemma B.4. Let ι : R → [0, 1] be a strictly increasing continuous function such that ι(0) = 0.
Consider the distance d̃H on Ω, de�ned for γ, γ̃ ∈ Ω and associated droplets Γ, Γ̃ by:

d̃H(γ, γ̃) = dL1(Γ, Γ̃) +
4∑

k=1

∣∣zk(Γ)− zk(Γ̃)
∣∣

+
4∑

k=1

ι
(
max

{
|zk(Γ)− zk(Γ

′)|, |zk(Γ̃)− zk(Γ̃
′)|
})∣∣wk(Γ)− wk(Γ̃)

∣∣. (B.15)

Then d̃H and dH are topologically equivalent on Ω.
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   (Γ
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Figure 21: Neighbourhood of the north pole of four droplets Γi, 1 ≤ i ≤ 4 assumed to be identical except
in the pictured portion. On the �gure, w′i

1 , z
′i
1 is short for w1((Γ

i)′), z1((Γ
i)′) respectively and wi

1, z
i
1 is

short for w1(Γ
i), z1(Γ

i). Recall that e.g. (Γ2)′ is the largest droplet with simple boundary contained in Γ2

(here (Γ2)′ = Γ1, i.e. (Γ2)′ is Γ2 without the vertical red line), see also Figure 18.
Convergence in volume to the Γi (1 ≤ i ≤ 4) ensures that the limit di�ers from (Γi)′ only by a vertical
segment above the north pole of (Γi)′. To prove convergence in Hausdor� distance, in addition to the
volume, one must therefore control convergence of the height z1 of this segment and, depending on the
limit curve, convergence of its lateral position w1.
For i ∈ {1, 3}, Γi = (Γi)′. Knowing convergence of z1 is then enough, because it shows that this vertical
segment is reduced to a point.
For Γ2 (equal to Γ1 except for the red part), Γ2 ̸= (Γ2)′ (or equivalently z1(Γ

2) > z1((Γ
2)′)), so we in

principle need to know convergence of w1. However, since (Γ2)′ has point-like pole, convergence of w1

is already controlled by the volume convergence. Thus knowing convergence in volume and of z1 is still
enough.
In contrast, Γ4 has point-like north pole while (Γ4)′ = Γ3 ̸= Γ4 satis�es |P1((Γ

4)′)| > 0. Convergence in
Hausdor� distance then requires convergence of the lateral position w1 of the pole (in general only lower
semi-continuous by Lemma B.2) in addition to convergence of z1 and in volume.

Remark B.5. The statement of Lemma B.4 is important. Though already discussed at length in
Figure 21 from another point of view, let us therefore take the time to explain the de�nition (B.15)
of d̃H.

Note �rst that all microscopic curves, i.e. elements of ΩN
mic, are simple. For these curves, Γ = Γ′

and the second line of (B.15) vanishes. This second line is only useful to control singularities at
the poles of elements of Ω.

The volume distance does not control possible singularities at the poles of elements of Ω,
whereas the Hausdor� distance does. The question is then what kind of information must be
added to the volume distance so as to guarantee convergence in Hausdor� distance.

If a curve γ with associated droplet Γ is simple in the neighbourhood of its pole k (1 ≤ k ≤ 4),
then an additional control of the zk is su�cient to guarantee convergence in Hausdor� distance.
This corresponds to Γ1 and Γ3 in Figure 21. Convergence of the wk is not implied by convergence
in Hausdor� distance in that case, as illustrated in the case of Γ3,Γ4. Note that in this case the
function ι in the second line of (B.15) vanishes (this claim is established in the proof of Lemma B.4),
thus convergence for d̃H only amounts to convergence in volume and of the zk but does not require
convergence of the wk either.

Similarly, if γ is not simple around pole k but Γ′ has pole k reduced to a point, then controlling
the volume and zk is enough (as illustrated by Γ2 in Figure 21). Again in this case the second
line of (B.15) vanishes, because convergence in volume implies convergence of the wk to the only
possible value wk(Γ).
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The last situation to consider is when a curve γ has pole k reduced to a point, but pole k of
Γ′ is not reduced to a point (this is the case for Γ4 in Figure 21). In this case convergence in
Hausdor� distance does require convergence of wk, which is why wk appears in the second line
of (B.15) (and ι does not vanish in that situation). ■

Proof of Lemma B.4. Let (γn)n ⊂ Ω converge to γ ∈ Ω for dH, with as usual (Γ
n)n,Γ the associated

droplets. Then limn dL1(Γn,Γ) = 0, and (zk(γ
n))n converges to zk(γ) = zk(Γ) for 1 ≤ k ≤ 4, as

these objects are continuous in Hausdor� distance.
Suppose �rst zk(Γ) = zk(Γ

′) for each k (1 ≤ k ≤ 4). Recall that zk(Γ
n) ≥ zk((Γ

n)′) if
k ∈ {1, 2}, zk(Γn) ≤ zk((Γ

n)′) if k ∈ {3, 4} by de�nition. Moreover, γ ∈ Ω 7→ zk(Γ
′) is lower

semi-continuous for k ∈ {1, 2} and upper semi-continuous for k ∈ {3, 4} by Lemma B.3. The
convergence limn zk(Γ

n) = zk(Γ) then implies limn |zk((Γn)′) − zk(Γ
n)| = 0, thus ι vanishes in the

second line of d̃H(γ
n, γ), and limn d̃H(γ

n, γ) = 0.
If instead zk(Γ) > zk(Γ

′) for some 1 ≤ k ≤ 4, then γ has pole k reduced to a point and ι is
bounded from below at pole k (recall that ι takes values in [0, 1]). However, a point-like pole k
means that wk is a Hausdor�-continuous functional at γ by (B.8), thus limnwk(γ

n) = wk(γ). It
follows that limn d̃H(γ

n, γ) = 0.

Conversely, assume (γn)n ⊂ Ω converges to γ ∈ Ω for d̃H. Convergence of the (zk(γ
n))n

(1 ≤ k ≤ 4) implies convergence of the length (|γn|)n, which is in particular bounded by some
C > 0. The set:

ΩC := {γ̄ ∈ Ω : |γ̄| ≤ C} (B.16)

is compact for the Hausdor� distance by Proposition B.1. Let γ∞ denote a limit point of (γn)n
for dH and write Γ,Γ∞ for the droplets associated with γ, γ∞ respectively. By continuity of the zk
and volume for both dH and d̃H, one has:

dL1(γ, γ∞) = 0 (thus Γ′ = (Γ∞)′), zk(γ) = zk(γ
∞), 1 ≤ k ≤ 4. (B.17)

If zk(Γ
′) = zk(Γ) for each 1 ≤ k ≤ 4, then by (B.17) the same is true for each pole of Γ∞ and we can

conclude Γ = Γ∞. The only possibility for Γ,Γ∞ to di�er is thus when the situation represented
by Γ3 and Γ4 in Figure 21 occurs, i.e. when zk(Γ) > zk(Γ

′) for some 1 ≤ k ≤ 4 and pole k of Γ′ is
not reduced to a point, so that wk(γ) may di�er from wk(γ

∞).
However, as soon as zk(Γ) = zk(Γ

∞) > zk(Γ
′) = zk((Γ

∞)′) for some 1 ≤ k ≤ 4, then γ, γ∞

have point-like pole k, thus wk is in particular continuous in Hausdor� distance at γ∞ by (B.8):
limnwk(γ

n) = wk(γ
∞) up to a subsequence. Since zk(Γ) > zk(Γ

′) implies that ι is bounded
from below at pole k, we also know that limnwk(γ

n) = wk(γ) by De�nition (B.15) of d̃H. Thus
wk(γ) = wk(γ

∞), and γ = γ∞: γ is the limit of (γn) in Hausdor� distance.

We conclude the section by proving Lemma 2.7, stated again as Lemma B.6. Let γ ∈ Ω, and
de�ne q(γ) as the distance of 0 to γ in the following sense:

q(γ) := sup
{
q > 0 : B1(0, q) ⊂ Γ

}
, (B.18)

with the subscript 1 denoting the usual ∥·∥1-norm on R2. Let also r(γ) denote the distance between
consecutive poles of the droplet Γ′ with ∂Γ′ ∈ Ω′ (see Lemma B.3) associated with γ (recall that
k + 1 := 1 if k = 4):

r(γ) := inf
{
r > 0 : ∀1 ≤ k ≤ 4,

∣∣[Rk(Γ
′)− Lk+1(Γ

′)] · bθ

∣∣ ≥ r for θ ∈ {0, π/2}
}
. (B.19)
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Finally, let r′(γ) denote the distance between opposite regions of ∂Γ′ in the following sense. Let
[Lk(Γ

′), Rk+1(Γ
′)]∂Γ′ denote region k of ∂Γ′. Then, writing d1(A,B) = infx∈A,y∈B ∥x− y∥1 for the

distance between bounded sets A,B ⊂ R2 in 1-norm:

r′(γ) = sup
{
ε > 0 : d1

(
[L1(Γ

′), R2(Γ
′)]∂Γ′ , [L3(Γ

′), R4(Γ
′)]∂Γ′

)
≥ ε,

d1

(
[L2(Γ

′), R3(Γ
′)]∂Γ′ , [L4(Γ

′), R1(Γ
′)]∂Γ′

)
≥ ε
}
. (B.20)

Lemma B.6. Let γ ∈ Ω be such that q(γ) > 0, r(γ) > 0 and r′(γ) > 0 (i.e. γ satis�es Prop-
erty 2.9). There is then ε > 0 such that:

� all droplets Γ̃ associated with a curve γ̃ ∈ Ω and such that dL1(γ, γ̃) ≤ ε2 satisfy q(γ̃) >
q(γ)/2, r(γ̃) > r(γ)/2 and r′(γ̃) > r′(γ)/2.

� The jump rates c(γ̃N , ·) of any γ̃N ∈ ΩN
mic

with dL1(γ, γ̃N) ≤ ε2 are local: there is N(γ) ∈ N≥1

such that, for any N ≥ N(γ) and any x ∈ V (γ̃N), the value of c(γ̃N , (γ̃N)x) can be determined
through the knowledge of points at 1-distance at most 3 from x.

Proof. The second item is a consequence of the �rst one since any γN ∈ ΩN
mic satisfying Property 2.9

has local jump rates as discussed in Section 2.2.3. We therefore focus on the �rst item.
Notice that q(γ), r(γ), r′(γ) are de�ned only in terms of volumes or the Γ′. This implies that

q, r, r′ take the same value for γ and for ∂(Γ′) which is a simple curve. It is therefore enough to
work with simple curves exclusively, i.e. to assume that γ is simple and prove the existence of
ε > 0 such that any simple curve γ̃ ∈ Ω with dL1(γ, γ̃) ≤ ε2 satis�es q(γ̃), r(γ̃), r′(γ̃) > 0.

Consider �rst r(·). The continuity results of Lemma B.3 give that γ̃ 7→ [L2(Γ̃
′) − R1(Γ̃

′)] · b0

and γ̃ 7→ [R1(Γ̃
′)− L2(Γ̃

′)] · bπ/2 are lower semi-continuous on the set of curves with |Γ̃| > 0, thus
in particular for simple γ̃. A similar statement is valid in other regions. This yields the claim for
r(·).

Consider now q(·). Recall the de�nition Γ(−δ) := Γ \
⋃

x/∈ΓB1(x, δ), with B1(x, δ) the open ball
in 1-norm (δ ≥ 0). Let us show that, for any δ > 0, there is ε(δ) > 0 such that dL1(γ̃, γ) ≤ ε(δ)
for any simple curve γ̃ ∈ Ω implies Γ̃ ⊃ Γ(−δ). This will imply q(γ̃) ≥ q(γ)/2 for each γ̃ ∈ Ω in a
su�ciently small ball around γ in volume distance. Let δ > 0 be such that Γ(−δ) ̸= ∅; otherwise
there is nothing to prove. For future reference, note that the ball B1(x, δ) around a point x can
be split into four pieces corresponding to the closed sets with boundaries given by the triangles
(x, x+δb(k−1)π/2, x+δbkπ/2) (1 ≤ k ≤ 4). In the following we talk of an "open triangle in B1(x, δ)"
to refer to the interior of one such piece.

Assume by contradiction that there is a sequence of simple curves γ̃n ∈ Ω converging to γ in
volume distance and points xn ∈ Γ(−δ) \ Γ̃n (n ∈ N). As Γ(−δ) is compact, we can assume up to
taking a subsequence that (xn) converges to x ∈ Γ(−δ). This implies:

|B1(x, δ) ∩ Γ| = |B1(x, δ)|. (B.21)

On the other hand, the structure of curves in Ω (recall De�nition 2.3) and the fact that xn /∈ Γ̃n

imply that at least one open triangle in the ball B1(xn, δ) does not intersect Γ̃
n, thus:

|B1(xn, δ) ∩ Γ̃n| ≤ 3

4
|B1(xn, δ)| =

3

4
|B1(x, δ)|. (B.22)
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Equations (B.21)�(B.22) and the fact that limn xn = x contradict limn dL1(γ, γ̃n) = 0.
Consider �nally r′(·). Again we proceed by contradiction. Let δ ∈ (0, r′(γ)) and assume that

there are simple curves γ̃n ∈ Ω and points xn, yn ∈ ∂Γ̃n (n ∈ N), say in regions 1 and 3 respectively
for de�niteness, such that limn dL1(γ, γ̃n) = 0 and ∥xn− yn∥1 ≤ δ. Let us prove that (xn), (yn) are
bounded using the bound on the volume of Γ̃n. By de�nition of the poles one always has:

xn · b0 ∈ [w1(γ̃
n), z2(γ̃

n)], xn · bπ/2 ∈ [R2(γ̃
n) · bπ/2, z1(γ̃

n)]. (B.23)

Similar bounds hold for yn. The semi-continuity results of Lemma B.3 for w1, R2 ·bπ/2 then imply
that, for each ε > 0, there is n(ε) ≥ 0 such that, if n ≥ n(ε):

xn · b0 ≥ w1(γ)− ε, xn · bπ/2 ≥ R2(γ) · bπ/2 − ε,

yn · b0 ≤ w3(γ) + ε, yn · bπ/2 ≤ R4(γ) · bπ/2 + ε. (B.24)

The fact that ∥xn − yn∥1 ≤ δ thus implies that both (xn), (yn) are bounded. Up to taking subse-
quences, let us assume they converge to x, y respectively with ∥x − y∥1 ≤ δ. Since xn, yn are in
γ̃n and due to the structure of curves in Ω, at most three open triangles out of four of any ball
around xn, yn can be included in Γ̃n:

|B1(xn, ζ) ∩ Γ̃n| ≤ 3

4
|B1(xn, ζ)|, |B1(yn, ζ) ∩ Γ̃n| ≤ 3

4
|B1(yn, ζ)|, ζ > 0. (B.25)

Taking limits, this implies that x, y are not in the interior of Γ. We can nonetheless locate x, y
relative to Γ: by the proof for q(·), Γ(−ε) ⊂ Γ̃n for each ε > 0 and each n larger than some n′(ε) ∈ N.
This and (B.24) tell us that x is above and to the right of the �rst region of γ:

∀z ∈ [L1(γ), R2(γ)]γ, [x− z] · bπ/4 ≥ 0. (B.26)

Similarly y is below and to the left of the third region of γ, i.e. [y − z] · b5π/4 ≥ 0 for any z in the
third region of γ. This yields a contradiction, concluding the proof:

r′(γ) > δ ≥ ∥x− y∥1 ≥ d1

(
[L1(γ), R2(γ)]γ, [L3(γ), R4(γ)]γ

)
≥ r′(γ). (B.27)

B.2 The set E([0, T ], E)
For T > 0, the set E([0, T ], E) was de�ned in (2.34) as follows:

E([0, T ], E) := DL1([0, T ], E) ∩
{
γ· :

∫ T

0

|γt| dt <∞
}
. (B.28)

This set is equipped with the distance dE, de�ned by:

dE := dSL1
+

∫ T

0

dH dt, (B.29)

with dSL1 the Skorokhod distance associated with convergence in the topology induced by the
volume distance dL1 (see (B.2)). For properties of the Skorokhod topology, we refer the reader to
Chapter 3 of [EK09].
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The main purpose of this section is to characterise relatively compact subsets of E([0, T ], E),
in Appendix B.2.1, to pave the way for the proof of tightness in Section B.3. We also prove
Proposition 4.1 on the continuity of the functionals appearing in the proof of large deviations, in
Section B.2.2.

To characterise compactness, we �rst exhibit a distance topologically equivalent to dE on
E([0, T ], E), but with explicit dependence on the distance between poles. This result is the analogue
on trajectories of Lemma B.4.

Lemma B.7. Let ι : R → [0, 1] be a strictly increasing continuous function with ι(0) = 0. Let d̃E
be the distance on E([0, T ], E) de�ned for two trajectories γ·, γ̃· with associated droplets Γ·, Γ̃· by:

d̃E(γ·, γ̃·) = dSL1
(γ·, γ̃·) +

4∑
k=1

∫ T

0

∣∣zk(Γt)− zk(Γ̃t)
∣∣ dt

+
4∑

k=1

∫ T

0

ι
(
max

{
|zk(Γt)− zk(Γ

′
t)|, |zk(Γ̃t)− zk(Γ̃

′
t)|
})∣∣wk(Γt)− wk(Γ̃t)

∣∣ dt. (B.30)

Then d̃E and dE are topologically equivalent on E([0, T ], E).

The proof of Lemma B.7 is obtained as a consequence of the following lemma.

Lemma B.8. Let F : E → R be a continuous functional in Hausdor� distance (or, equivalently,
for d̃H) and assume:

∃C,C ′ > 0, |F (γ)| ≤ C|γ|+ C ′, γ ∈ E . (B.31)

Then γ· 7→
∫ T

0
F (γt) dt is a continuous functional on E([0, T ], E) for both the distances

∫ T

0
dH dt and∫ T

0
d̃H dt. The conclusion of the lemma remains valid if F is replaced by a function G : [0, T ]×E →

R such that G(t, ·) is continuous, |G(t, γ)| ≤ C|γ|+ C ′
t with C,C

′
t > 0 and

∫ T

0
C ′

t dt <∞.

Proof. Let F : E → R be a continuous functional and let (γn· )n ⊂ E([0, T ], E) converge to γ· ∈
E([0, T ], E) for

∫ T

0
dH dt (the proof is identical for d̃H). The key argument consists in proving

that one may work with F (γn· ), F (γ·) bounded. One can then use the continuity of F on E and a
compactness argument to conclude.
We will use the following elementary identity: for any c,X ≥ 0,

X1X>c = c1X>c +

∫ ∞

c

1
{
X > λ

}
dλ. (B.32)

Let A > 0 and let us prove that it is enough to consider curves with length bounded in terms of
A. The last equation applied with c = 0 and X = |F (γnt )− F (γt)| for each t ≤ T yields:∫ T

0

∣∣F (γnt )− F (γt)
∣∣ dt = ∫ T

0

∫ A

0

1
{∣∣F (γnt )− F (γt)

∣∣ > λ
}
dλ dt

+

∫ T

0

∫ ∞

A

1
{∣∣F (γnt )− F (γt)

∣∣ > λ
}
dλ dt. (B.33)
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Assume A ≥ 4C ′. By Assumption (B.31) on F and using (B.32) in the last line below, the integral
on the second line of (B.33) can be bounded as follows:∫ T

0

∫ ∞

A

1
{∣∣F (γnt )− F (γt)

∣∣ > λ
}
dλ dt ≤

∫ T

0

∫ ∞

A

1
{
2Cmax{|γt|, |γnt |}+ 2C ′ > λ

}
dλ dt

≤
∫ T

0

∫ ∞

A

1
{
max{|γt|, |γnt |} >

λ

4C

}
1
{∣∣|γnt | − |γt|

∣∣ ≤ λ

8C

}
dλ dt

+

∫ T

0

∫ ∞

A

1
{∣∣|γnt | − |γt|

∣∣ > λ

8C

}
dλ dt

≤
∫ T

0

∫ ∞

A

1
{
|γt| >

λ

8C

}
dλ dt+ 8C

∫ T

0

∣∣|γnt | − |γt|
∣∣ dt. (B.34)

Since the length is Lipschitz in Hausdor� distance, one has limn

∫ T

0

∣∣|γnt | − |γt|
∣∣ dt = 0. In addi-

tion, (B.32) implies that the �rst integral in (B.34) is bounded as follows:∫ T

0

∫ ∞

A

1
{
|γt| >

λ

8C

}
dλ dt ≤ 8C

∫ T

0

|γt|1
{
|γt| >

A

8C

}
dt −→

A→∞
0. (B.35)

To prove that limn

∫ T

0
|F (γnt )− F (γt)| dt = 0, it is therefore enough to prove:

∀A, ε > 0, lim
n→∞

∫ T

0

1
{
|F (γnt )− F (γt)| > ε

}
1
{
max{|γt|, |γnt |} ≤ A

}
dt = 0. (B.36)

For any time t ≤ T for which the integrand above does not vanish, both γt and γ
n
t belong to the

set EA := E ∩
{
|γ| ≤ A

}
. This set is compact for the Hausdor� distance by Proposition B.1. As F

is continuous on EA, thus uniformly continuous, there is a modulus of uniform continuity mA > 0
such that:

∀γ, γ̃ ∈ EA, |F (γ)− F (γ̃)| > ε ⇒ dH(γ, γ̃) > mA(ε). (B.37)

The fact that limn

∫ T

0
dH(γ

n
t , γt) dt = 0 concludes the proof of (B.36), thus of the �rst claim of the

lemma.

Consider now G : [0, T ] × E → R bounded as in the lemma. Then the argument is the same,
except that the decomposition (B.33) now reads:∫ T

0

∣∣Gt(γ
n
t )−Gt(γt)

∣∣ dt ≤ ∫ T

0

∫ A

0

1
{∣∣Gt(γ

n
t )−Gt(γt)

∣∣ > λ
}
dλ dt

+

∫ T

0

∫ ∞

A

1
{∣∣Gt(γ

n
t )−Gt(γt)

∣∣ > λ
}
1
{
C ′

t ≤
λ

4

}
dλ dt

+

∫ T

0

∫ ∞

A

1
{
C ′

t >
λ

4

}
dλ dt (B.38)

The last integral vanishes when A is large and is independent of n. The middle integral is treated
as for F in (B.34).
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Proof of Lemma B.7. Notice that d̃E is topologically equivalent to dSL1 +
∫ T

0
d̃H dt. To prove

Lemma B.7, it is thus enough to prove that
∫ T

0
d̃H dt and

∫ T

0
dH dt are topologically equivalent

on E([0, T ], E). By Lemma B.4, dH is a continuous functional for d̃H and vice-versa. It is thus
enough to check that both distances satisfy the hypotheses of Lemma B.8. Let γ· ∈ E([0, T ], E).
Then:

∀γ ∈ E , Ft(γ) := dH(γ, γt) ≤ |γ|+ |γt|, (B.39)

where the last bound comes from the fact that both γ, γt surround the point 0 and the de�ni-
tion (B.1) of dH. As

∫ T

0
|γt| dt <∞ and each Ft is continuous on E , the lemma applies:

∫ T

0
Ft dt is

continuous on E([0, T ], E), in particular at γ·. Thus convergence for
∫ T

0
d̃H dt implies convergence

for
∫ T

0
dH dt.

To conversely prove that convergence for
∫ T

0
dH dt implies convergence for

∫ T

0
d̃H dt, let t ∈ [0, T ]

and de�ne, for each γ ∈ E :

Gt(γ) := dL1(γ, γt) +
4∑

k=1

∥Lk(γ)− Lk(γt)∥1 ≤ C(|γ|+ |γt|) + C ′, (B.40)

where the C ′ corresponds to the bound supγ,γ̃∈E dL1(γ, γ̃) ≤ C ′ and the C comes from (see be-
low (B.3) and Lemma B.2):

∀1 ≤ k ≤ 4, |zk| ≤ |γ|, wk ∈ [zk−1, zk+1] with zk−1 ≤ 0 ≤ zk+1, (B.41)

with the convention zk−1 = z4 if k = 1, zk+1 = z1 if k = 4. Then Gt satis�es the hypothesis of
Lemma B.8 and Gt(γ) ≥ d̃H(γ, γt), hence the claim.

B.2.1 Compact sets in E([0, T ], E)

Thanks to Lemma B.7, we now have a distance topologically equivalent to dE that involves only the
volume distance and the distance between the poles. This is the key to the following proposition,
giving su�cient condition for compactness for dE.

Proposition B.9 (Compact sets for dE). Suppose that K ⊂ E([0, T ], E) satis�es the following.

� One has:
sup
γ·∈K

sup
t≤T

|γt| <∞. (B.42)

� If mL1

· (Γ·) is the Skorokhod modulus of continuity associated with volume convergence for
trajectories in E([0, T ], E) (see [Bil99, Equation (12.6)]), then:

lim
η→0

sup
h≤η

sup
γ·∈K

{
mL1

h (γ·)+
4∑

k=1

∫ T−h

0

[
|zk(γnt+h)−zk(γnt )|+ |wk(γ

n
t+h)−wk(γ

n
t )|
]
dt
}
= 0. (B.43)

Then K is relatively compact for the topology induced by dE.
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Proof. Recall the de�nition (B.29) of dE and let (γn· )n ⊂ E([0, T ], E) be a sequence in K. By
Lemma B.7, it is enough to prove that a subsequence of (γN· ) converges in d̃E distance. This
means that it is enough to control the convergence in volume and of the time integral of the
distance between the poles.

According to the characterisation of relatively compact sets in the Skorokhod topology in
[EK09, Theorem 6.3], K is relatively compact in the Skorokhod space DL1([0, T ],Ω′ ∩ E) equipped
with dSL1 , where Ω′ is the subset of simple curves in Ω given in (B.10). It follows that, up to a

subsequence, (Γn
· )n converges in dSL1-distance to a trajectory Γ̃∞

· ∈ DL1([0, T ],Ω′ ∩ E).
Let us now control the convergence of the zk, wk for each k with 1 ≤ k ≤ 4. Recall that the

length of a curve γ ∈ E in 1-distance satis�es:

|γ| = 2
[
z1(γ)− z3(γ)

]
+ 2
[
z2(γ)− z4(γ)

]
. (B.44)

Recall also that the droplet associated with γ ∈ E must contain the point 0, thus z1(γ), z2(γ) ≥ 0
and z3(γ), z4(γ) ≤ 0. This observation, (B.44) and the bound (B.42) thus translate into:

max
1≤k≤4

sup
n

sup
t≤T

|zk(γnt )| <∞. (B.45)

Similarly, supn,t |wk(γ
n
t )| < ∞ as wk ∈ [zk−1, zk+1] by Lemma B.2 (with k + 1 := 1 if k = 4,

k − 1 := 4 if k = 1). Equation (B.43) and the Kolmogorov-Riesz theorem [Bre10, Theorem 4.26]
imply that the sets {(zk(γn· ))n}n, {(wk(γ

n
· ))n}n are relatively compact subsets of L1([0, T ],R) for

each k. Up to a subsequence, they thus converge to z∞k , w
∞
k ∈ L1([0, T ],R) respectively.

It remains to build a limit point γ∞· of (γn· )n for dE. De�ne, for each t ≤ T , the curve γ∞t as
the boundary of the droplet Γ∞

t , with:

(Γ∞
t )′ := Γ̃∞

t , zk(Γ
∞
t ) := z∞k (t) for 1 ≤ k ≤ 4, (B.46)

and:

wk(Γ
∞
t ) := w∞

k (t)1
{
z∞k (t) > zk(Γ̃

∞
t )
}
+ wk(Γ̃

∞
t )1

{
z∞k (t) = zk(Γ̃

∞
t )
}

for 1 ≤ k ≤ 4. (B.47)

Then γ∞· ∈ E([0, T ], E) and (γn· ) converges to γ
∞
· for d̃E up to a subsequence by construction. The

fact that dE and d̃E have the same converging sequences by Lemma B.7 concludes the proof.

B.2.2 Continuity properties of the functionals Jβ
H,ε

Let β > log 2 and H ∈ C be �xed. In this section, we prove Proposition 4.1 on the regularity of
the functionals Jβ

H,ε for ε > 0. Let ε > 0. In view of the expression (4.5)�(4.6) of Jβ
H,ε, we need to

prove two things.
The �rst is that elements of the set Epp([0, T ], E) of trajectories with almost always point-

like poles are point of continuity for the distance dE of the following functionals, de�ned for
γ· ∈ E([0, T ], E) by:(

1

4
− e−β

2

) 4∑
k=1

∫ T

0

[
H(t, Rk(γt)) +H(t, Lk(γt))

]
dt, and: (B.48)

−
∫ T

0

∫
γt(ε)

(vε)2

4v

[
Tε ·m

]
Tε · ∇Ht ds dt−

1

2

∫ T

0

∫
γt(ε)

(vε)2

v
|Tε

1T
ε
2|H2

t ds dt. (B.49)
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Recall that m is given by De�nition 3.1, γt(ε) is the subset of γt of points at 1-distance at least ε
from the poles and vε,Tε are de�ned in (3.89).

The second thing is the convergence limε→0 J
β
H,ε(γ·) = Jβ

H(γ·) for each γ· ∈ E([0, T ], E), which
amounts to the convergence of the functional (B.49) when ε→ 0.

Let us start by proving regularity of (B.48)�(B.49). The regularity of (B.48) is the object of
the following lemma.

Lemma B.10 (Convergence of the poles). For n ∈ N, let γn· ∈ E([0, T ], E) and assume that (γn· )
converges to γ· ∈ Epp([0, T ], E) for dE. Then:

∀k ∈ {1, ..., 4}, lim
n→∞

∫ T

0

[
∥Lk(γ

n
t )− Lk(γt)∥1 + ∥Rk(γ

n
t )− Lk(γt)∥1

]
dt = 0. (B.50)

Proof. By Lemma B.4, convergence for dE implies convergence for d̃E, de�ned in (B.30). As the
limiting trajectory has almost always point-like poles, convergence for d̃E implies convergence of
both coordinates of Lk, Rk in the topology of L1([0, T ],R), hence the result.

Let us now show that the functional in (B.49) is continuous at each point of the set Epp([0, T ], E)
of trajectories with almost point-like poles. The proof is quite technical, but the idea is simple:
�rst, control the convergence at the poles using Lemma B.10. Then, express line integrals in each
regions as integrals on the corresponding SSEP by the correspondence presented in Section 2.4.
At this point the desired regularity properties are proven as for the SSEP, see [KL99, Chapter 10].

To prove the continuity of (B.48)�(B.49), we will use Lemma B.4 relating convergence in
Hausdor� distance and convergence of the poles and volume, or more precisely the following
consequence of Lemma B.4.

Lemma B.11. Let (γn)n ⊂ E and γ ∈ E. Let x ∈ γ be away from the poles in the sense that, for
some ζ > 0, the set B′ := B1(x, ζ) ∩ γ only contains points in the same region of γ as x. Then
convergence in volume implies convergence in Hausdor� distance:

lim
n→∞

dL1

(
Γn ∩B′,Γ ∩B′) = 0 ⇒ lim

n→∞
dH
(
Γn ∩B′,Γ ∩B′) = 0. (B.51)

Fix γ· = (γt)t≤T ∈ Epp([0, T ], E) and let (γn· )n ⊂ E([0, T ], E) be a sequence converging to γ· for
dE. Introduce the functionals FHt,ε, F̃Ht,ε on E as follows: for γ ∈ E ,

FHt,ε(γ) =

∫
γ(ε)

(vε)2

4v

[
Tε ·m

]
Tε · ∇Ht ds, F̃Ht,ε(γ) =

∫
γ(ε)

(vε)2

2v
|Tε

1T
ε
2|H2

t ds. (B.52)

To prove the continuity of the functional in (B.49) at γ·, we need to show:

lim
n→∞

∫ T

0

FHt,ε(γ
n
t ) dt =

∫ T

0

FHt,ε(γt) dt, lim
n→∞

∫ T

0

F̃Ht,ε(γ
n
t ) dt =

∫ T

0

F̃Ht,ε(γt) dt. (B.53)

We only deal with FH·,ε, F̃H·,ε being similar. Note that there is C(H) > 0 such that:

∀γ ∈ E ,∀t ≤ T,
∣∣FHt,ε(γ)

∣∣ ≤ C(H)|γ|. (B.54)
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f1

f3
O

bπ/4

b-π/4

b3π/4

b-3π/4

L1=R1= a1 b-π/4 + f1(a1)bπ/4

L2 = b1 b-π/4 + f1(b1)bπ/4

R2

R3= a3 b3π/4 + f3(a3)b-3π/4

L3R3

Figure 22: A curve in E and associated splitting in terms of the poles and the four regions [Rk, Lk+1] (with
Lk+1 := L1 if k = 4) where the curve corresponds to the graph of a function fk in the reference frame
(bπ/4−kπ/2,bπ/4−(k−1)π/2) (1 ≤ k ≤ 4). Region 1 is in magenta, regions 2 and 4 in black and region 3 in
cyan. The coordinates of L1 = R1 and L2 are written in the the �rst reference frame (b−π/4,bπ/4) and
those of R3 in the third reference frame (b3π/4,b−3π/4).

The functional FHt,ε is not continuous on E at each t ∈ [0, T ] because of the lack of continuity at
the poles, so we cannot directly conclude through Lemma B.8. However, each curve with point-like
pole is a point of continuity of FHt,ε for each t. The idea will be to use this fact and the above
control of the length to restrict to times where γt has point-like pole, then mimic the argument of
Lemma B.8 for those times.

By similar arguments as in the proof of Lemma B.8, the fact that limn

∫ T

0

∣∣|γnt | − |γt|
∣∣ dt = 0

implies that it is enough to prove:

∀A > 0, lim
n→∞

∫ T

0

1
{∣∣FHt,ε(γ

n
t )− FHt,ε(γt)

∣∣ ≤ A
}∣∣FHt,ε(γ

n
t )− FHt,ε(γt)

∣∣ dt = 0. (B.55)

This allows us to only prove convergence on a subset of times with length T (1− on(1)), which we
chose as those times where poles of (γn· )n converge to those of γ·. In view of Lemma B.10, it is
enough to prove:

lim
ζ→0

lim sup
n→∞

∫ T

0

1
{

max
1≤k≤4

{
∥Lk(γ

n
t )− Lk(γt)∥1 + ∥Rk(γ

n
t )− Lk(γt)∥1

}
≤ ζ
}

×
∣∣FHt,ε(γ

n
t )− FHt,ε(γt)

∣∣ dt = 0. (B.56)

Now that we have restricted to times where poles are well-behaved, the line integral in the de�-
nition (B.52) will converge at each time. To prove it, we split the line integral between di�erent
regions and map the integrand the the SSEP as in Section 2.4.

Let γ ∈ E . Recall that, by de�nition of Ω ⊃ E , region k (1 ≤ k ≤ 4) of γ is the graph of a
1-Lipschitz function fk in a suitable reference frame (see Figure 22):

γ =
4⋃

k=1

Pk(γ) ∪
4⋃

k=1

{
ubπ/4−kπ/2 + fk(u)bπ/4−(k−1)π/2 : u ∈ [ak, bk]

}
, (B.57)
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where the extremities ak, bk are chosen here to correspond to coordinates of Rk(γ), Lk+1(γ) (with
Lk+1(γ) := L1(γ) if k = 4):

ak = ak(γ) := Rk(γ) · bπ/4−kπ/2, bk = bk(γ) := Lk+1(γ) · bπ/4−kπ/2. (B.58)

For 1 ≤ k ≤ 4, let u ∈ (ak, bk) and write γ(u) for the corresponding point of γ:

γ(u) := ubπ/4−kπ/2 + fk(u)bπ/4−(k−1)π/2. (B.59)

The derivative of w 7→ γ(w) at u, if it exists, is given by:
√
2

2

(
bπ/4−kπ/2 + ∂uf

k(u)bπ/4−(k−1)π/2

)
= t(γ(u)), (B.60)

where t is the 1-normed tangent vector, de�ned in (3.86) in the �rst region. Recall that T := t/v,
where v := ∥t∥2 and the arclength coordinate s(u) satisfy:

ds(u) =
√

1 + (∂ufk(u))2 du =
√
2v(γ(u)) dx. (B.61)

For each t ∈ [0, T ] and each curve γ ∈ E , one can then write for FHt,ε:

FHt,ε(γ) =
1

2
√
2

4∑
k=1

∫ bk−ε/
√
2

ak+ε/
√
2

qkHt,ε(u, γ) du, (B.62)

with, for u ∈ (ak + ε/
√
2, bk − ε/

√
2):

qkHt,ε(u, γ) :=
(
(vε)2

[
Tε ·m

]
Tε
)(
γ(u)

)
· ∇Ht

(
γ(u)

)
. (B.63)

Recall from De�nition 3.1 that m = (±1,±1) has a �xed value inside each region. Recall also the
de�nitions of vε,Tε and their relationship with tε from (3.89)�(3.88): if u ∈ (a1+ε/

√
2, b1−ε/

√
2)

is in the �rst region for de�niteness,

tε(γ(u)) = vε(γ(u))Tε(γ(u)) =
1√
2ε

∫ u+ε/
√
2

u−ε/
√
2

t(γ(w)) dw

=

√
2

2

(
b−π/4 +

f 1
(
u+ ε/

√
2
)
− f 1

(
u− ε/

√
2
)

ε
√
2

bπ/4

)
. (B.64)

For future reference, note that (B.64) implies the continuity of qkHt,ε
(u, ·) on E in Hausdor� dis-

tance for each u ∈ (ak + ε/
√
2, bk − ε/

√
2), in the following sense: if (γn)n ⊂ E , γ ∈ E satisfy

limn dH(γ
n, γ) = 0 and if u ∈

(
ak(γ) + ε/

√
2, bk(γ) − ε/

√
2
)
, then limn q

k
Ht,ε

(u, γn) = qkHt,ε
(u, γ).

Indeed, convergence in Hausdor� distance implies uniform convergence of fk around each such
point u and the expression (B.64) (or a similar one in region k ̸= 1) yields the continuity.

We now apply the decomposition (B.62) to each γnt and use the control of the pole in (B.56)
to express the integral on each region independently of ak(γnt ), b

k(γnt ). Thanks to the indicator
function in (B.62), one has for each ζ < ε/2, each time t and each k with 1 ≤ k ≤ 4:

ak(γt) ≤ ak(γnt ) +
ζ

2
≤ ak(γnt ) +

ε

2
√
2
, bk(γt)−

ε

2
√
2
≤ bk(γt)−

ζ

2
≤ bk(γnt ). (B.65)
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Since qHt,ε is bounded on E :

max
1≤k≤4

sup
t≤T

sup
γ∈E

sup
u∈(ak+ε/

√
2,bk−ε/

√
2)

|qHt,ε(γ, u)| <∞, (B.66)

it is enough to prove:

lim
ζ→∞

lim sup
n→∞

∫ T

0

1
{

max
1≤k≤4

{
∥Lk(γ

n
t )− Lk(γt)∥1 + ∥Rk(γ

n
t )− Lk(γt)∥1

}
≤ ζ
}

×
4∑

k=1

∫ bk(γt)−ε/
√
2

ak(γt)+ε/
√
2

∣∣qkHt,ε(u, γ
n
t )− qkHt,ε(u, γt)

∣∣ du dt = 0. (B.67)

At this point the dependence on the poles has been completely taken care of and it will be enough
to study qkHt,ε

. Let Iζ be the set of times in the �rst line above. To prove (B.67), we prove:

lim
n→∞

qkHt,ε(u, γ
n
t ) = qkHt,ε(u, γt) for each (t, u) ∈ Iζ × (ak(γt) + ε/

√
2, bk(γt)− ε/

√
2). (B.68)

Since qkHt,ε
is bounded on E for each k by (B.66), (B.68) and the dominated convergence theorem

yield (B.67).
To prove (B.68), notice that limn dE(γ

n
· , γ·) = 0 implies convergence in volume at almost every

time: limn dL1(γnt , γt) = 0 for almost every t. Now, by Lemma B.11, for each point x at 1-distance
at least λ > 0 from the poles, convergence in volume of γnt ∩B1(x, λ) implies convergence in Haus-
dor� distance. But we already saw below (B.64) that qkHt,ε

(u, ·) is continuous in Hausdor� distance
for any u corresponding to a point at 1-distance at least ε from the poles. This implies (B.68) and
concludes the proof of the continuity of (B.49).

To conclude the proof of Proposition 4.1, it remains to establish:

∀γ· ∈ E([0, T ], E), lim
ε→0

Jβ
H,ε(γ·) = Jβ

H(γ·). (B.69)

Recalling De�nition (2.43) of Jβ
H , the above statement boils down to proving convergence of the

terms in (B.49). As γ· ∈ E([0, T ], E) implies that
∫ T

0
|γt| dt < ∞, this is an immediate conse-

quence of the expression (B.64) of the tangent vector, of the bound (B.66) and of the dominated
convergence theorem. This concludes the proof of Proposition 4.1.

B.3 Exponential tightness

In this section, we use the characterisation of compact sets of Proposition B.9 to prove exponential
tightness of {PN

β : N ∈ N≥1} for each T > 0, β > log 2 for trajectories in E([0, T ], E). We �rst give
a su�cient condition for exponential tightness, in Corollary B.13, then prove that it is satis�ed in
the rest of the section. The main di�culty lies, once again, in the control of the poles. To start
with, the following characterisation of convergence in the volume distance dL1 will be useful.

Lemma B.12. Let (Gℓ)ℓ≥1 be a family of functions of C2
c (R2,R), dense for the uniform norm

supR2 | · | in the separable set Cc(R2, R). Then dL1 is topologically equivalent to the distance d̃L1

de�ned as follows: if γ1, γ2 ∈ Ω have associated droplet Γ1,Γ2,

d̃L1(Γ1,Γ2) =
∑
ℓ≥1

1

2ℓ

∣∣〈Γ1, Gℓ

〉
−
〈
Γ2, Gℓ

〉∣∣
1 +

∣∣〈Γ1, Gℓ

〉
−
〈
Γ2, Gℓ

〉∣∣ . (B.70)
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In the sequel, d̃L1 and dL1 are identi�ed.

To prove exponential tightness, we replace the condition on the Hausdor� distance, in Propo-
sition B.9, by a condition on the positions of the extremities Lk, Rk, 1 ≤ k ≤ 4 of the poles. This
condition, stated next, is more convenient to check at the microscopic level.

Corollary B.13 (Su�cient condition for tightness). Let T > 0. Assume that, for each G ∈ C2
c (R2)

and each ε > 0,

lim
η→0

lim sup
N→∞

1

N
logPN

β

(
γN· ∈ E([0, T ], E) ∩

{
γ· : sup

|s−t|≤η

∣∣〈Γt, G
〉
−
〈
Γs, G

〉∣∣ (B.71)

+ sup
h≤η

4∑
k=1

∫ T−h

0

∥Lk(γt)− Lk(γt+h)∥1 dt ≥ ε

})
= −∞.

Then for each H ∈ C and q ∈ N≥1, there are compact sets Kq = Kq(H) ⊂ E([0, T ],Ω) such that:

sup
N

1

N
logPN

β,H

(
γN· ∈ E([0, T ], E) ∩ (Kq)

c
)
≤ −q. (B.72)

Proof. As (B.71) also holds under PN
β,H for any H ∈ C, we prove the corollary only for H ≡ 0.

Consider a sequence Gℓ ∈ C2
c (R2), ℓ ≥ 1, dense for the uniform norm. According to (B.71), for

each q, n, ℓ ∈ N∗, there is η = η(q, ℓ, n) and N0 = N0(η) such that:

sup
N≥N0

1

N
logPN

β

(
γN· ∈ E([0, T ], E) ∩

{
sup

|s−t|≤η

∣∣〈Γt, Gℓ

〉
−
〈
Γs, Gℓ

〉∣∣ (B.73)

+ sup
h≤η

4∑
k=1

∫ T−h

0

∥Lk(γt)− Lk(γt+h)∥1 dt ≥
1

n

}
∩
{
sup
t≤T

|γt| ≤
qℓn

C(β)

})
≤ −qnℓ.

For N ≤ N0, each of
〈
ΓN
· , G

〉
Lk(γ

N
· ) and Rk(γ

N
· ) for k with 1 ≤ k ≤ 4 is a càdlàg function

when γN· is a trajectory in the space of ΩN
mic ∩ E ∩ {|γ| ≤ qnℓ/C(β)}-valued trajectories that are

càdlàg in Hausdor� distance. This set is complete and separable, as ΩN
mic ∩ E ∩ {|γ| ≤ qnℓ/C(β)}

is compact by Proposition B.1. As a result, (B.73) holds for N ≤ N0 as well up to choosing
η′ = η′(q, ℓ, n) ≤ η, hence for all N in N≥1. For G ∈ C2

c (R2), let thus mL1

·
(〈
Γ·, G

〉)
be the

Skorokhod modulus of continuity associated with the trajectory
(〈
Γt, G

〉)
t
. It satis�es:

∀θ > 0, mL1

θ

(〈
Γ·, G

〉)
≤ sup

|s−t|≤θ

∣∣〈Γt, G
〉
−
〈
Γs, G

〉∣∣. (B.74)

Recall the control on the length obtained in Lemma 6.1, in particular the de�nition of C(β) > 0.
De�ne then Kq = Ūq, with Uq as follows:

Uq :=
{
sup
t≤T

|γt| ≤
q

C(β)

}
∩
⋂

ℓ,n∈N∗

{
mL1

η′

(〈
Γ·, Gℓ

〉)
+ sup

h≤η′

4∑
k=1

∫ T−h

0

∥Lk(γt)− Lk(γt+h)∥1 dt ≤
1

n

}
. (B.75)
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By Proposition B.9 and Lemma B.4, Kq is compact. Moreover, it satis�es by construction:

sup
N∈N≥1

1

N
logPN

β

(
γN· ∈ E([0, T ], E) ∩ (Kq)

c
)
≤ −q. (B.76)

This concludes the proof of exponential tightness inside E([0, T ], E).

We conclude the section by a proof of relative compactness of the laws of the dynamics for
short time.

Corollary B.14. Let β > log 2, H ∈ C and (µN)N be a sequence of probability measures on(
E , dL1

)
converging weakly to δγref . Assume further that there is t0 > 0 such that:

lim
N→∞

PµN

β,H(γ
N
· ∈ E([0, t0], E)) = 1. (B.77)

Still write dE for the distance (B.29) de�ned on a time interval [0, t0]. Then the set {PµN

β,H : N ∈
N≥1} is relatively compact in the set of probability measures on

(
E([0, t0],Ω), dE

)
and its limit

points are supported on trajectories in E([0, t0], E) that are continuous in dL1 distance.

Proof. By the direct half of Prokhorov theorem (Theorem 5.1 in [Bil99]), relative compactness is
implied by tightness. Let us therefore prove that {PN

β,H}N is tight in E([0, t0],Ω). The proof is a
bit indirect because Corollary B.13 only gives a good control of trajectories in E([0, t0], E), not in
E([0, t0],Ω). For each measurable set B ⊂ E([0, t0],Ω), write:

PµN

β,H(γ
N
· ∈ B) = PµN

β,H

(
γN· ∈ B ∩ E([0, t0], E)

)
+ PµN

β,H

(
γN· ∈ B ∩ E([0, t0], E)c

)
. (B.78)

Fix η > 0. By Assumption (B.77), there is N0(η) ∈ N≥1 such that:

∀N ≥ N0(η), PµN

β,H

(
γN· ∈ E([0, t0], E)c

)
≤ η. (B.79)

On the other hand, the initial conditions (µN)N are probability measures on E , which is separable
and complete for dL1 (seeing E as a closed subset of L1(R2) by identifying curves with the indicator
functions of their associated droplets). It follows from the converse half of Prokhorov's theorem
(Theorem 5.2 in [Bil99]) that (µN)N is tight. For each η > 0, let thus K0

η ⊂ E be a compact set
for the distance dL1 , such that:

∀N ∈ N≥1, PµN

β,H

(
γN0 ∈

(
K0

η

)c)
= µN

(
γN ∈

(
K0

η

)c) ≤ η. (B.80)

Then, for each q ∈ N≥1 with e
−q ≤ η, recalling the de�nition of Kq from Corollary B.13:

∀N ∈ N≥1, PµN

β,H

(
γN· ∈ E([0, t0], E) ∩

(
K0

η ∩Kq

)c) ≤ 2η. (B.81)

As a result, for N ≥ N0(η), we have:

PµN

β,H

(
γN· ∈

(
K0

η ∩Kq

)c) ≤ 3η. (B.82)
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Now, each PµN

β,H for N < N0(η) is a probability measure on the complete, separable setDH([0, t0],Ω)
of càdlàg trajectories in Hausdor� distance with values in Ω. In particular, for each N < N0(η),

PµN

β,H is tight: there is a compact set KN
η ⊂ DH([0, t0],Ω) such that:

PµN

β,H

(
γN· ∈

(
KN

η

)c) ≤ η, N < N0(η). (B.83)

Since convergence in DH([0, t0],Ω) implies convergence for dE, each K
N
η is also a compact set for

dE, whence the proof of tightness in E([0, t0],Ω):

∀N ∈ N≥1, PµN

β,H

(
γN· ∈

(
K0

η ∩Kq

)c ∩ ⋂
M<N0(η)

(
KM

η

)c) ≤ 3η. (B.84)

It remains to check that {PµN

β,H : N ∈ N≥1} concentrates on trajectories that are continuous in
volume, dL1 distance. This is a standard consequence of the estimate (B.71), so we conclude the
proof here.

B.3.1 Estimate in L1(R2) topology

In this section, we prove exponential tightness in volume, i.e. in L1(R2).

Lemma B.15. Let T > 0 and G ∈ C2
c (R2). Then, for each ε > 0:

lim
η→0

lim sup
N→∞

1

N
logPN

β

(
γN· ∈ E([0, T ], E) ∩

{
sup

|t−s|≤η

∣∣〈ΓN
t , G

〉
−
〈
ΓN
s , G

〉∣∣ > ε
})

= −∞. (B.85)

The result also holds under PN
β,H for H ∈ C by Corollary 6.2.

Proof. Compared to Chapter 10 in [KL99], the only subtleties to prove Lemma B.15 are in the
introduction of the condition E([0, T ], E) and in the control of the change in volume induced by
the motion of the poles. As these do not present any particular di�culty, the proof is omitted.

B.3.2 Precise control of the slope and volume around the poles

In this section and the next, we prove the estimate on the poles appearing in (B.71). As preliminary,
we prove in this section that the volume beneath each pole is �xed by the reservoir-like behaviour
induced by the dynamics. This will be used in Section B.3.3 to argue that a displacement of the
poles must result in a change in volume, which is unlikely for short time by Lemma B.15.

The estimate of the volume beneath a pole relies on the microscopic estimate of the slope at
the pole, obtained in Corollary 6.12. All results are stated for PN

β but apply to PN
β,H for H ∈ C by

Corollary 6.2.

Lemma B.16 (Control of the deviations of the width at distance α > 0 below the pole). Let
β > log 2. For α > 0 and γ ∈ E, let g+(α) = g+(α)(γ) be the width of the horizontal segment of
γ at height z1(γ) − α to the right of L1(γ) (see Figure 23). De�ne similarly g−(α) to the left of
L1(γ). For each δ, η > 0:

lim
α→0

lim sup
N→∞

1

N
logPN

β

(
γN· ∈ E([0, T ], E) ∩

{ 1

T

∫ T

0

1|α−1g±(α)−(eβ−1)|≥δ dt > η
})

= −∞. (B.86)
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Figure 23: Neighbourhood of the north pole of a microscopic curve for which g+(α) is drawn (horizontal
magenta arrow). On the left �gure, black dots delimit the ζ1N edges to the right of L1, with ζ1 chosen
to ensure ζ1ξ+,ζ1N ≥ α (this quantity represented by cyan arrows). On the right �gure, ζ2 is similarly
chosen so that ζ2ξ+,ζ2N ≤ α (in cyan arrows again). Since bounds on ζ1ξ+,ζ1N , ζ2ξ+,ζ2N are available in
terms of β, g+(α) can be bounded.

Proof. The proof is a formalisation of Figure 23: since the slope on both sides of the pole is �xed
by Corollary 6.12, we can obtain upper and lower bounds on g± in terms of β.
Take ζ1, ζ2 > 0 to be determined later and θ > 0 which will be small. The proof of the result is
similar for g+ and g−, so we focus on g+. It is su�cient to prove:

lim sup
ζ1,ζ2→0

lim sup
α→0

lim sup
N→∞

1

N
logPN

β

(
γN· ∈ E([0, T ], E); (B.87)

1

T

∫ T

0

1|α−1g+(α)−(eβ−1)|≥δ1|ξ+,ζ1N
L1

−e−β |≤θ
1|ξ+,ζ2N

L1
−e−β |≤θ

dt > η/3

)
= −∞.

Consider the event bearing on ξ+,ζ1N
L1

. It enforces:

ξ+,ζ1N
L1

∈ [e−β − θ, e−β + θ]. (B.88)

Choose ζ1 such that (e−β − θ)ζ1 = α. Then ζ1ξ+,ζ1N
L1

≥ α (see Figure 23). By de�nition, g+(α)

must thus be smaller than ζ1(1− ξ+,ζ1N
L1

):

ξ+,ζ1N
L1

∈ [e−β − θ, e−β + θ] and (e−β − θ)ζ1 = α

⇒ α−1g+(α) ≤ 1− e−β + θ

e−β − θ
= eβ − 1 +O(θ), (B.89)

where O(θ) is a positive function. Similarly, choose ζ2 such that (e−β + θ)ζ2 = α. Then g+(α) ≥
ζ2(1− ξ+,ζ2N

L1
), thus:

ξ+,ζ2N
L1

∈ [e−β − θ, e−β + θ] and (e−β + θ)ζ2 = α

⇒ α−1g+(α) ≥ 1− e−β − θ

e−β + θ
= eβ − 1−O(θ). (B.90)

O(θ) is again a positive function. Taking θ small enough to contradict |α−1g+(α)− (eβ − 1)| ≥ δ
concludes the proof.
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Lemma B.17 (Control of the deviations of the volume at distance α > 0 below the pole). For
γ ∈ E with associated droplet Γ, let V α = V α(γ) be de�ned as:

V α(γ) = α−2
∣∣{x ∈ Γ : x · bπ/2 ≥ z1(γ)− α}

∣∣. (B.91)

Then for each β > log 2 and each δ, η > 0:

lim
α→0

lim sup
N→∞

1

N
logPN

β

(
γN· ∈ E([0, T ], E) ∩

{ 1

T

∫ T

0

1|V α−(eβ−1)|>δ dt > η
})

= −∞. (B.92)

Proof. The idea is to use Lemma B.16 at multiple depths to prove that a droplet beneath the pole
must be approximately triangular. Fix ℓ ∈ N≥1 and θ > 0 to be chosen later. By Lemma B.16, it
is su�cient to prove:

lim
α→0

lim sup
N→∞

1

N
logPN

β

(
γN· ∈ E([0, T ], E); (B.93)

1

T

∫ T

0

1|V α−(eβ−1)|>δ1∀j∈{1,...,ℓ},
∣∣ ℓ
jα

g±(jα/ℓ)−(eβ−1)

∣∣≤θ
dt > η/2

)
= −∞.

By de�nition of g±(α) = g±(α)(γ) for α > 0 and γ ∈ E (see Lemma B.16), the quantity V α(γ)
satis�es:

V α(γ) = α−2

∫ α

0

(g+(u) + g−(u)) du. (B.94)

As elements of Ω have 1-Lipschitz boundaries, if a curve γ ∈ Ω is such that (ℓ/jα)g±(jα/ℓ) ∈
[eβ + 1− θ, eβ − 1− θ] for each 1 ≤ j ≤ ℓ, then:

α2V α(γ) = |{x ∈ Γ : x ·bπ/2 ≥ z1−α}| ≥ 2
ℓ−1∑
j=1

j

ℓα
(eβ +1− θ)× α

ℓ
=
ℓ− 1

ℓ
(eβ − 1− θ)α2. (B.95)

Similarly,

α2V α(γ) ≤ 2
ℓ∑

j=1

j

ℓα
(eβ + 1− θ)× α

ℓ
=
ℓ+ 1

ℓ
(eβ − 1 + θ)α2. (B.96)

To conclude the proof, it remains to take ℓ, θ such that the indicator functions appearing in (B.93)
bear on incompatible events. This is achieved provided:

ℓ− 1

ℓ
(eβ − 1− θ) ≥ eβ − 1− δ and

ℓ+ 1

ℓ
(eβ − 1 + θ) ≤ eβ − 1 + δ. (B.97)

B.3.3 Tightness in L1([0, T ]) for the trajectory of the poles

In this section, we conclude the proof of (B.71) by providing the estimate on the motion of the
poles, more precisely on the components wk, zk of the Lk, 1 ≤ k ≤ 4. We prove the result for z1,
the other seven coordinates being similar (see Remark B.19 below).
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�e�-1��g+(�) ≈ 

L1(�t+h)

�e�-1��g-(�) ≈ 

Figure 24: Neighbourhood of the north pole of a microscopic curve at times t, t + h. Under the contour
dynamics, su�ciently close to the poles (corresponding to the parameter α ≪ 1 on the �gure), the poles
stand atop a triangular shape (red shaded area) with a slope �xed in terms of β. Equivalently, the width
g±(α) is approximately given by α(eβ − 1). A displacement of the poles leads to a shift of the triangle
and thus implies a change in volume, i.e. for the distance dL1 .

Lemma B.18 (Tightness in L1 distance for z1). Let β > log 2 and A, ε > 0. Then:

lim
η→0

lim sup
N→∞

1

N
logPN

β

(
γN· ∈ E([0, T ], E) ∩

{
sup
t≤T

|γNt | ≤ A
}

(B.98)

∩
{
sup
h≤η

1

T

∫ T−h

0

|z1(γNt+h)− z1(γ
N
t )| dt > ε

})
= −∞.

Proof. Let γ· ∈ E([0, T ], E). The idea is the following. Results of Section B.3.2 imply that the pole
dynamics creates triangular shapes in the curves, with a slope �xed in terms of β (see Figure 24).
Moving a pole thus means moving one of these triangles, which has a volume. In that way motion
of the poles is linked with a displacement of the volume, which we know cannot happen instanta-
neously by Lemma B.15.

For each h ≤ η and each t ∈ [0, T − h], write ∆h(t) for the di�erence |z1(γt+h) − z1(γt)| for
brevity. By De�nition 2.8 of the initial condition and owing to the bound on the length, z1(γ·) is
bounded by A + C0 for some C0 = C0(γ

ref) > 0 on the event in (B.98). Equation (B.98) is thus
proven as soon as:

lim
η→0

lim sup
N→∞

(B.99)

1

N
logPN

β

(
γN· ∈ E([0, T ], E) ∩

{
sup
h≤η

1

T

∫ T−h

0

1∆h(t)≥ε/2 dt >
ε

2(A+ C0)

})
= −∞.

Fix δ > 0 that will be chosen small enough in the following. Recall that, for α > 0, V α is the
volume below the pole times α−2, see Lemma B.17. For α > 0 and t ∈ [0, T ], de�ne then ∆V α(t)
as follows :

∆V α(t) = |V α(γt)− (eβ − 1)|. (B.100)
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Lemma B.17 gives:

lim
α→0

lim sup
N→∞

1

N
logPN

β

(
γN· ∈ E([0, T ], E) ∩

{ 1

T

∫ T

0

1∆V α(t)>δ dt >
ε

6(A+ C0)

})
= −∞. (B.101)

Notice in addition that:{
sup
h≤η

1

T

∫ T−h

0

1∆V α(t+h)>δ dt >
ε

6(A+ C0)

}
⊂
{ 1

T

∫ T

0

1∆V α(t)>δ dt >
ε

6(A+ C0)

}
. (B.102)

As a result, if λ denotes T−1 times the Lebesgue measure on [0, T ], (B.98) holds as soon as:

lim
α→0

lim sup
η→0

lim sup
N→∞

1

N
logPN

β

(
γN· ∈ E([0, T ], E); (B.103)

sup
h≤η

λ
[
∆h(t) ≥ ε/2, |∆V α(t)| ≤ δ, |∆V α(t+ h)| ≤ δ

]
>

ε

6(A+ C0)

)
= −∞.

By Lemma B.15 on exponential tightness in dSL1 topology, (B.103) is proven as soon as the following
holds:

lim
α→0

lim sup
η→0

lim sup
N→∞

1

N
logPN

β

(
γN· ∈ E([0, T ], E); sup

t≤T
|γNt | ≤ A;

sup
(s,t)∈[0,T ]2

|s−t|≤η

dL1(γNs , γ
N
t ) <

α2(eβ − 1)

2
; (B.104)

sup
h≤η

λ
[
∆h(t) ≥ ε/2, |∆V α(t)| ≤ δ, |∆V α(t+ h)| ≤ δ

]
>

ε

6(A+ C0)

)
= −∞.

Take δ < (eβ − 1)/2 and an arbitrary α ∈ (0, ε/2]. Let us prove that the event in the probability
in (B.104) is empty. For any trajectory (γNt )t∈[0,T ] in this event, there must be t ∈ [0, T ] and h < η
such that, simultaneously:

� The north poles of ΓN
t ,Γ

N
t+h are at vertical distance at least ε/2, so that either {x ∈ ΓN

t :
x · bπ/2 ≥ z1(γ

N
t )− α} ∩ ΓN

t+h = ∅ or {x ∈ ΓN
t+h : x · bπ/2 ≥ z1(γ

N
t+h)− α} ∩ ΓN

t = ∅.

� Recall that V α(t) = α−2|{x ∈ ΓN
t : x · bπ/2 ≥ z1(γ

N
t ) − α}|. V α(t) and V α(t + h) are both

bounded below by eβ −1− δ > (eβ −1)/2 so that, by the �rst point, the di�erence in volume
between ΓN

t and Γt+h is at least α2(eβ − 1)/2.

� Yet, dL1(γNt , γ
N
t+h) < α2(eβ − 1)/2, which is incompatible with point 2. This concludes the

proof.

Remark B.19. The proof for zk (2 ≤ k ≤ 4) is identical to the above. For the wk, i.e. L1 ·b0, L2 ·
bπ/2, L3 ·b0 and L4 ·bπ/2, slight modi�cations are required: in addition to the indicator functions on
the volumes ∆V α(t) < δ, ∆V α(t+h) < δ, one has to introduce the events {|α−1g±α (t)− (eβ−1)| <
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δ}, {|α−1g±α (t + h) − (eβ − 1)| < δ}, where g±α , the width of the level at distance α beneath the
pole, is de�ned in Lemma B.16.

The idea is then that, e.g. for w1, if α is taken small enough as a function of ε and β ((eβ −
1)−1ε/6 works), then |w1(γ

N
t ) − w1(γ

N
t+h)| ≥ ε/2 implies that this di�erence must be larger than

min{g+α (t+ h) + g−α (t), g
+
α (t) + g−α (t+ h)} (see Figure 24).

But then this means that the set of points above z1(γ
N
t )−α in ΓN

t and the set of points above
z1(γ

N
t+h) − α in ΓN

t+h are disjoint. Thanks to the indicator functions on the volumes ∆V α, this
implies a di�erence in volume, which is again impossible for η small enough. ■
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