
HAL Id: hal-02615668
https://hal.science/hal-02615668v1

Preprint submitted on 23 May 2020 (v1), last revised 18 Feb 2022 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Motion by curvature and large deviations for an
interface dynamics on Z 2

B Dagallier

To cite this version:
B Dagallier. Motion by curvature and large deviations for an interface dynamics on Z 2. 2020.
�hal-02615668v1�

https://hal.science/hal-02615668v1
https://hal.archives-ouvertes.fr


Motion by curvature and large deviations for an interface
dynamics on Z2

B. Dagallier

CMAP, Ecole Polytechnique, I.P. Paris, 91128 Palaiseau, France

Abstract: We study large deviations for a Markov process on curves in Z2 mimicking the motion
of an interface. Our dynamics can be tuned with a parameter β, which plays the role of an inverse
temperature, and coincides at β = ∞ with the zero-temperature Ising model with Glauber dynamics,
where curves correspond to the boundaries of droplets of one phase immersed in a sea of the other one.
We prove that contours typically follow a motion by curvature with an influence of the parameter β,
and establish large deviations bounds at all large enough β <∞. The diffusion coefficient and mobility
of the model are identified and correspond to those predicted in the literature.

1 Introduction
A basic paradigm in non-equilibrium statistical mechanics is the following. Consider a system with two
coexisting pure phases separated by an interface, and undergoing a first-order phase transition with
non-conserved order parameter. Then, macroscopically, the interface should evolve in time to reduce its
surface tension, according to a motion by curvature. For microscopic models on a lattice, some trace of
the lattice symmetries should remain at the macroscopic scale, and the resulting motion by curvature
should be anisotropic. The following general behaviour, known as the Lifshitz law, is expected: if a
droplet of linear size N � 1 of one phase is immersed in a sea of the other phase, then it should
disappear in a time of order N2. (Anisotropic) motion by curvature should correspond to the limiting
dynamics, when N is large, under diffusive rescaling of space and time. Phenomenological arguments in
favour of this picture go back to Lifshitz [Lif62], and can be summarised as follows. Consider a model
with surface tension τ = τ(ν), which depends on the local inwards normal ν to an interface. We work
in two dimensions to keep things simple. The surface energy associated with a curve γ separating two
phases reads

F (γ) =

∫
γ

τ(ν(s))ds,

where s is the line abscissa on γ. The postulate, on phenomenological grounds, is that the local inwards
normal speed v to the interface reads

v = µ
δF

δγ
. (1.1)

The quantity µ = µ(ν) is the mobility of the model, computed by Spohn in [Spo93] using linear response
arguments. Let us relate (1.1) and motion by curvature. The change in energy induced by the motion
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of a length ds in the normal direction ν is equal to (τ(ν)/R(ν))ds, with R(ν) the radius of curvature at
ν. As such,

v = µτk =: ak, with a(ν) = µ(ν)τ(ν) the anisotropy and k = 1/R the curvature. (1.2)

A closed curve satisfying (1.2) is said to evolve according to anisotropic motion by curvature. A set
with boundary following this equation is known to shrink to a point in finite time for a wide range of
anisotropies a, see e.g. [LST14a] and references therein.

Ideally, one would like to start from a microscopic model with short-range interactions, with at least
two different phases initially segregated on a macroscopic scale, and derive motion by curvature (1.2) of
the boundaries between the phases in the diffusive scaling. To this day however, results on microscopic
models are scarce. Let us provide a (non-exhaustive) account of works on the subject.
The paper [Spo93], already cited, is a landmark in the rigorous study of interface motion starting from
microscopic models. A major difficulty is to understand how to decouple, from the comparatively slower
motion of the interface, the fast relaxation inside the bulk of each phase. Indeed, in a diffusive time
scale and at least for models with local interactions, one expects the bulk to behave as if at equilibrium.
In one dimension, motion by curvature has been proved for a number of interacting particle systems. It
usually boils down to the heat equation in this case, and the Lifshitz law is related to freezing/melting
problems, see [CS+96][CK08][CKG12], as well as [Lac14] and the monograph [CDMGP16].
In two dimensions, a landmark is the proof of anisotropic motion by curvature for the zero temperature
Ising model with Glauber dynamics (or zero-temperature stochastic Ising model). The drift at time 0
was computed in [CL07] before the full motion by curvature (1.2) was proven in [LST14b]-[LST14a].
Their proof crucially relies on monotonicity of the Glauber dynamics.
More is known on another type of microscopic models for which some sort of a mean-field mesoscopic de-
scription can be achieved. This comprises the so-called Glauber+Kawasaki process [DMFL86] (see also
[BBP18] for an account of works on the model), which has local evolution rules, and models with long
range interactions such as the Ising model with Kac potentials [Com87][DMOPT93][DMOPT94][KS94].
For these models, studied in any dimension, the derivation takes place in two steps: first deriving a
mean-field description of the dynamics, then rescaling space-time to derive motion by curvature. As
a result, lattice symmetries are blurred and the resulting motion by curvature is isotropic. Note how-
ever the recent works [FT19][KFH+20], where a Glauber+Kawasaki dynamics is considered (respectively
Glauber+Zero-range), in dimension two and above. In these works, the existence of an interface between
regions at high-and low-density is established, and motion by curvature for this interface is obtained
directly from the microscopic model, in a suitable scaling of the Glauber part of the dynamics.
A last category of models comprises the so-called effective interface models. By definition the bulk of
each phase is disregarded. One associates an "interfacial" cost to the graph of a given function, seen
as an interface between phases. These comprise the so Ginzburg-Landau model in any dimension, see
[FS97], and more recently Lozenge-tiling dynamics in dimension three [LT18].

Another related line of investigation concerns large deviations of the interface dynamics around
motion by curvature. Assuming Gaussian-like fluctuations around the mean behaviour (1.2), the rate
function describing the cost of observing an abnormal trajectory γ· = (γt)t≤T should read

I(γ·) =

∫ T

0

dt

∫
γt

(v − ak)2

2µ
dst, (1.3)

with st the line abscissa on γt. In the assumption of Gaussian fluctuations leading to (1.3), one of the
difficulties is that it is not even clear how the noise should be incorporated into the deterministic equa-
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tions describing the interface motion. Extensive work on this question has been carried out for some of
the models listed above in recent years, notably in [BBP17b]-[BBP18] (see also the references there). In
[BBP17b], the stochastic Allen-Cahn equation is considered. It is known that, in the diffusive (or sharp
interface) limit, solutions to the Allen-Cahn equation satisfy motion by mean curvature in some sense,
see [Ilm93] [ESS92] [BSS93]. In [BBP17a], regularity of solutions to the stochastic Allen-Cahn equation
depending on how the noise is added are studied, and a large deviation upper-bound in the joint dif-
fusive, small noise and vanishing regularisation limits is established in [BBP17b]. The associated rate
function coincides with (1.3) in simple cases, e.g. for a droplet trajectory with smooth boundary. The
authors however use tools from geometric measure theory, which enable them to consider very general
trajectories that may feature nucleation events.
In [BBP18], upper bound large deviations for both Glauber+Kawasaki process and Ising model with
Kac potentials are investigated. They prove that (1.3) is the correct rate function for smooth trajectories
and discuss how to extend it to more general paths.

To the best of our knowledge however, no large deviations result for microscopic dynamics with
local interactions have yet been published. In particular the question of large deviations for the zero
temperature stochastic Ising model is still open.
In this work, we make a contribution in that direction. To do so, we study a microscopic modification
of the zero-temperature Ising dynamics in terms of a parameter β > 0. At each β > 0, we consider
contours evolving according to zero-temperature Ising rules, except for the parameter β, which plays the
role of an inverse temperature acting on local portions of the contours. The model at each β > 0 has
reversible dynamics and, contrary to the zero-temperature Ising case, the dynamics is not monotonous.
The β =∞ case corresponds to the zero-temperature Ising dynamics.
We implement in our framework the large deviation method initiated by Kipnis, Olla and Varadhan in
[KOV89] (see also [KL99]). There are substantial difficulties as we are dealing with curves, i.e. one-
dimensional objects, evolving in two-dimensional space. One of the advantages of the method is that
we no longer rely on monotonicity of the dynamics as in [LST14a]. Monotonicity appears difficult to
use for large deviations in any case, as atypical events, such as closeness to some atypical trajectory,
are in general not monotonous. At each large enough β > 0, we prove that the dynamics approaches
anisotropic motion by curvature in the large size limit, with a dependence on the parameter β. At the
formal level, the β = ∞ case indeed corresponds to anisotropic motion by curvature in the sense of
[LST14b]. We also obtain large deviations for the model. The large deviations results give upper- and
lower-bounds, which coincide for smooth trajectories.

As opposed to the zero-temperature stochastic Ising model, an interesting feature of our model at
finite β is that its dynamics is reversible. This enables us to connect our results with metastability for
the Ising model initially at equilibrium in one phase, forced out of equilibrium with a small magnetic
field of opposite sign [SS98]. We briefly discuss in Section 2.4 the existence of a threshold value of the
volume of a droplet, depending on the strength of the magnetic field, below which droplets typically
do not grow and above which they typically do. The speed at which the droplet grows is also easily
estimated thanks to the large deviation results. The interested reader will find an up to date account of
results on metastability in the Ising model in [GMV20], and may refer to the books [OV05]-[BDH16].

The rest of this article is structured as follows. In Section 2, we introduce the microscopic model
and fix notations. The dynamics is introduced in details, while useful topological facts are collected in
Appendix B. The main results of the paper are listed in Section 2.
In Section 3, we investigate some martingales used to obtain large deviations, and show how motion by
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curvature emerges from the microscopic dynamics. Though computationally intensive, we have tried to
use this section to showcase the main differences between dealing with a one-dimensional interface in two
dimensions, and a purely one-dimensional system. A number of technical results and sub-exponential
estimates are postponed to Section 6 and Appendices A-B. Section 6 is a collection of estimates that
are genuinely particular to our model, concerning the dynamical behaviour of the poles, i.e. the sections
of the contours on which the parameter β acts. Albeit very technical, the estimates on the poles are
essential. We also explain there the connection between our dynamics and suitable one-dimensional
exclusion and zero range processes as in [LST14b]. This connection is again used in Appendix A to
prove an adaptation of the so-called replacement lemma to our model. An important estimate allowing
the restriction of the contour dynamics to a nicer state space is also proven there, as well as some
equilibrium estimates around the pole. Appendix B gathers useful topological properties and the proof
of exponential tightness.
In Section 4, we obtain upper-bound large deviations for large enough β > 0. Finally, Section 5 deals
with lower-bound large deviations, i.e. with hydrodynamic limits for tilted processes.

2 Model and results

2.1 The contour model

Consider the zero temperature, two-dimensional stochastic Ising model on (Z∗)2, that we now define,
with Z∗ the dual graph of Z. On configurations, i.e. elements σ of {−1, 1}(Z∗)2 , one defines a dynamics
as follows: at rate 1, each vertex x ∈ (Z∗)2 is updated independently, and σ(x) takes the same value as
the majority of its neighbours. If it has exactly two neighbours of each sign, then with probability 1/2
it remains unchanged, and with probability 1/2 it is flipped. This dynamics is well defined for all time
on any subset of (Z∗)2, and the so-called graphical construction of the dynamics (see [Mar99]) enables
one to couple the dynamics starting from any initial configurations and with any boundary conditions.
It is also monotonous: if σ ≤ η, i.e. σ(x) ≤ η(x) for each x ∈ (Z∗)2, then σt ≤ ηt for all t ≥ 0, with
probability 1. It is however not reversible.

The hydrodynamical behaviour of this dynamics is proven in [LST14b]-[LST14a]. Informally, they
prove the following. Start from a configuration with + everywhere except in an area of linear size N (a
"droplet" of − spins), corresponding to the discretisation on (Z∗)2 of ND0, where D0 ⊂ [−1, 1]2 is a nice
enough domain, say with smooth, simple boundary with a finite number of inflection points. Rescale
space by 1/N and time by N2. Then, in the large N limit, with probability going to one, the rescaled
droplet converges uniformly in time and in Hausdorff distance to the unique solution of an anisotropic
motion by curvature starting from D0. This flow of sets (Dt)t≥0 is defined as follows. It starts from D0

and, until a time Tc after which Dt = ∅, t ≥ Tc, the boundaries (γt)t≥0 of the Dt satisfy (1.2):

∀u ∈ T,∀t < Tc, ∂tγ(t, u) = a(θt(u))∂2
sγ(t, u) = a(θt(u))k(t, u)ν(t, u), (2.1)

where u ∈ T 7→ γt(u) is a parametrisation on the torus T = [0, 1) of each of the γt, t < Tc; k is the
curvature, θ(u) = θt(u) is the angle between the tangent vector at point γt(u) and e1 = (1, 0), ν = νt(u)
is the inwards normal vector at point γt(u). The π/2-periodic anisotropy a is a factor reflecting the
symmetries of the square lattice:

∀θ ∈ [0, 2π], a(θ) =
1

2(| sin(θ)|+ | cos(θ)|)2
. (2.2)
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Existence and uniqueness of such a flow is part of the results in [LST14b]-[LST14a]. The proof of the
hydrodynamic limit relies strongly on monotonicity properties of the dynamics, which allow local com-
parison of the dynamics with nicer ones.

The contour dynamics
Take a spin configuration σ such that σx = + for x outside a finite subset Λ∗ of (Z∗)2. The boundaries
between − and + spins form closed contours on edges of Z2. In this picture, a spin x ∈ Λ∗ is identified
with the square x+[−1/2, 1/2]2, which we call a "block", and spin-flips correspond to adding or deleting
blocks. At strictly positive temperature β−1 > 0, a contour of length L should occur with probability
roughly proportional to exp[−βL]. Let νβ denote the associated probability measure:

νβ(γ) ∝ e−β|γ|.

At zero temperature however, in a fixed volume with e.g. all + boundary conditions, the only possible
configuration contains only + spins.
We consider a model on closed paths on edges of ΛN = [−N,N ]2 ∩ Z2 for N ∈ N∗. For simplicity, we
only allow configurations with a single contour. We want to build a dynamics that is as close as possible
to the zero-temperature Ising dynamics, but has νβ as an invariant measure. One way to do this is to
take the dynamical moves allowed in the stochastic Ising model, and add regrowth, β-dependent moves
to obtain a reversible dynamics with respect to νβ. Proximity to the zero-temperature Ising dynamics
is ensured by allowing droplet regrowth only at small zones on the droplet (see Figure 2). We call this
dynamics the contour dynamics. Importantly, and contrary to the stochastic Ising model, the contour
dynamics is not monotonous. This is illustrated on Figure 3 below.
Additional constraints, e.g. boundary effects, will be placed on the dynamics and on the state space.
We also restrict the study to specific droplet shapes for simplicity. We need however more notations to
state these conditions. Let us now precisely define the contour model and dynamics; further heuristics
can be found in Section 2.2. Take N ∈ N∗, recall that ΛN = Z2 ∩ [−N,N ]2 and let EN = {(x, y) : x, y ∈
ΛN , ‖x − y‖1 = 1} be the corresponding set of edges. Define first the state space XN

r of the dynamics
(see Figure 1), which depends on an additional parameter r > 0, independent of N .

• Elements of XN
r , denoted by γ, are closed paths on edges in EN .

• (Four poles). Each γ in XN
r is contained in a unique rectangle of least area, call it R, which

contains the extremal faces of γ, i.e. edges (x, y) where x, y are vertices of γ with one coordinate
that is extremal. We impose that each extremal face of γ be connected. For k ∈ {N,E, S,W} =
{1, 2, 3, 4}, we call Pk the pole number k, corresponding to the vertices of γ on face k of R. We
also impose that the number pk = |Pk| − 1 of edges with both extremities inside Pk be always
greater than 2. Equivalently, pk is the number of blocks with two corners in Pk.

• (Monotonicity condition). Denote by L1, R1, ..., L4, R4 ∈ ΛN the leftmost and rightmost extremi-
ties of the poles P1, ..., P4 when γ is travelled on clockwise. We impose that the part of γ between
L1 and R2 is a south-east path, the part between L2 and R3 is a south-west path, the part between
L3 and R4 is a north-west path and, finally, the part between L4 and R4 is a north-east path.

• (Macroscopic droplet condition). Further impose that if γ ∈ XN
r , then ymax − ymin ≥ dNre,

xmax − xmin ≥ dNre, where ymax is the maximum ordinate of a point in γ, etc.

The last condition ensures that contours delimit macroscopic droplets. It is useful for technical reasons,
see e.g. the proof of the Replacement lemma in Appendix A. We will always consider droplets larger
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Figure 1: Example of a curve in XN
r . The thick pale dashed line delimits the rectangle R. The quadrants

are quarterplanes which depend on the curve. Here (part of) the first three quadrants are represented:
C1 is the dark shaded area, C2 the checkered area and C3 the light-shaded one. In this example, C1 and
C3 have the same origin; this is not true in general. Note that C1 and C2 intersect. The vectors e±x are
represented for a vertex x.

than what this condition allows for, so that the parameter r will play no role at the macroscopic level.

For γ ∈ XN
r , call quadrants C1, ..., C4 the quarter-planes delimited by portions of γ between con-

secutive (clockwise) poles. More precisely, define C1 as the quarter plane delimited by the vertical line
going through L1 and the horizontal one going through R2. We similarly define C2, C3, C4, which may
intersect (see Figure 1).
Let also V (γ) ⊂ ΛN be the set of all points encountered when travelling on γ. For x ∈ V (γ), define an
edge label ξx ∈ {0, 1} to be 1 if the edge exiting from x when travelling clockwise on γ is vertical, and
0 if it is horizontal. Let e+

x , e
−
x be the unitary vectors with origin x such that e+

x gives the direction of
the edge exiting from x, and e−x points towards the vertex before x (see Figure 1).

We can now precisely define the contour dynamics. For each curve γ, the following moves are allowed,
summed up in Figure 2.

• (Single spin flips). Suppose x ∈ V (γ) is not in a pole of size 2, and the curve at x has a corner,
i.e. e+x and e−x are orthogonal. Then, independently of the other vertices, add/remove a block of
extremity x at rate 1/2 whenever possible (i.e. when the curve after the flip remains simple, or
equivalently the event described in Figure 4 does not occur).

• (Shrinking the droplet). Assume the pole Pk is made of only two blocks. Suppose e.g. that k = 1,
the others are the same. If y(P1) − y(P3) ≥ dNre + 1, then, with rate 1 and independently from
the rest, delete both blocks with vertices in P1.
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Figure 2: Some moves and associated jump rates for a typical contour configuration. Positions of Lk, Rk,
k ∈ {1, ..., 4}, the points that delimit the poles, i.e. the zones where regrowth can occur, are represented
at time t− in dark dots. Possible pole positions after a jump at time t are represented by light dots.
L1, R1 are omitted for legibility. Dynamical moves amount to adding or deleting squares of side-length 1
("blocks"). Just before the jump, at t−, the pole P3(t−) had length p3 = 2 and both blocks are removed
at the same time.

Figure 3: Two configurations equal everywhere except at the pole: the configuration represented by the
black line has a pole of size 2. Initially, the droplet delimited by the black line contains the droplet in
light colour. A possible update after which the inclusion does not hold is represented in dashed lines:
the contour dynamics is not monotonous.

• (Added regrowth term). Suppose that x ∈ V (γ) is in one of the poles, and such that x+ 2e+
x is in

the same pole (this is simply a way of enumerating elements of a given pole). If x /∈ ∂ΛN , then
with rate e−2β, independently from the rest, add two blocks on top of the segment [x, x+ 2e+

x ].

The set XN
r is stable under the dynamics. Moreover, the dynamics was built to be reversible with

respect to the measure νNr,β on XN
r , with:

∀γ ∈ XN
r , ν(γ) = νNr,β(γ) := e−β|γ|/ZN

r,β, (2.3)

where |γ| is the length of γ in 1-norm. When ambiguities may arise, |γ|1 will denote the length in 1
norm and |γ|2 the length in 2-norm. Note that the two coincide for γ ∈ XN

r . The dynamics described
above is not monotonous because of the regrowth part. The parameter β > 0 plays the role of an inverse
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Figure 4: A configuration γ in XN
r with a forbidden single-flip: the dot denotes a point that, if flipped,

makes γ non-simple. The jump rate for such flips is a non-local function of the curve. Rescaled by N ,
γ converges in Hausdorff distance to a curve with self-intersections at points inside quadrants 1 and 3.

temperature, but only at the pole. The quantity Z = ZN
r,β is the partition function on XN

r :

Z = ZN
r,β =

∑
γ∈XN

r

e−β|γ|. (2.4)

In the following, we always assume that β is large enough to ensure that Z is bounded with N . In
practice, β > 3 is enough except in Lemma 5.2, where we use β > 64 log 3 for convenience (it is a
technical condition that could be relaxed by considering curves in a larger square than [−1, 1]2).

Let us write out the jump rates c(γ, γ′) associated with the contour dynamics, γ, γ′ ∈ XN
r . Re-

versibility with respect to νNr,β means:

c(γ, γ′)e−β|γ| = c(γ′, γ)e−β|γ
′|.

Single spin flips. Let x ∈ V (γ). It is convenient to express the jump rate in terms of edges, and thus
draw a parallel with the Symmetric Simple Exclusion Process (SSEP). Assume x is a corner of γ, i.e. a
point where e−x and e+

x are orthogonal. Define a curve γx in which the block of diagonal [x, x+ e−x + e+
x ]

is added/removed compared to γ. In terms of edges, this corresponds to exchanging (x + e−x , x) and
(x, x+ e+

x ), which leads to a change in γ whenever:

ξx+e−x
(1− ξx) + ξx(1− ξx+e−x

) = 1. (2.5)

Note that if x is not a corner, γx = γ. If the case of Figure 4 occurs or x is in a pole of size 2, the flip
is impossible and γx /∈ XN

r , otherwise γx ∈ XN
r . Note also that the left-hand side in (2.5) is exactly the

jump rate on an edge connecting two neighbouring sites in a SSEP. Define:

c(γ, γx) := 1γx∈XN
r
cx(γ), cx(γ) :=

1

2

[
ξx+e−x

(1− ξx) + ξx(1− ξx+e−x
)
]
. (2.6)

Double flips at the poles: if x is a point of pole Pkx , kx ∈ {1, ..., 4} such that x + 2e+
x ∈ Pkx , and

x /∈ ∂ΛN , let γ+,x be the curve γ on which two blocks with basis [x, x + 2e+
x ] are added (see Figure 2).
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Then |γ+,x| = |γ|+ 2, and we set:

c(γ, γ+,x) = 1x,x+2e+x ∈Pkx
x/∈∂ΛN

e−2β. (2.7)

Finally, if the pole Pk of γ has size 2 and x ∈ Pk, we let γ−,x or γ−,k be the curve γ with this pole
deleted and define the corresponding jump rate:

c(γ, γ−,x) = 1pk=2,γ−,x∈XN
r
. (2.8)

Let Vr, Hr be the sets enforcing that poles can be shrunk, i.e. that opposite poles are at least at vertical
or horizontal distance dNre+ 1 (1 more than the minimum value for curves in XN

r ):

Vr =
{
γ ∈ Xr : y(P1)− y(P3) ≥ dNre+ 1

}
(2.9)

Hr =
{
γ ∈ Xr : x(P2)− x(P4) ≥ dNre+ 1

}
. (2.10)

Let also DP k
r denote Hr or Vr depending on k ∈ {1, ...4}.

The generator Lr,β corresponding to the contour dynamics acts on bounded function f : XN
r 7→ R as:

Lr,βf(γ) =
∑

x∈V (γ)

c(γ, γx)
[
f(γx)− f(γ)

]
(2.11)

+
4∑

k=1

∑
x∈Pk(γ):x+2e+x ∈Pk(γ)

[
1DPkr ,pk=2

[
f(γx,−)− f(γ)

]
+ e−2β1x/∈∂ΛN

[
f(γx,+)− f(γ)

]]
.

Recall that writing x, x+ 2e+
x ∈ Pk is just a way of enumerating vertices in Pk such that γ+,x can exist,

and that pk = |Pk|−1 is the number of blocks in the pole Pk. It will be convenient later on to transform
the first line a bit, and allow for fictitious single flips of a block of a pole of size 2. The first line is then
recast as (recall (2.6)):

∑
x∈V (γ)

cx(γ)
[
f(γx)− f(γ)

]
− 1

2

4∑
k=1

1pk=2

∑
x∈{Rk,Lk}

[
f(γx)− f(γ)

]
. (2.12)

Define the set C of test functions:

C =
{
G ∈ Cc

(
R+ × [−1, 1]2

)
: ∂tG, ∂iG, ∂i∂jG ∈ C(R+ × [−1, 1]2), (i, j) ∈ {1, 2}2

}
, (2.13)

where the c subscript means compactly supported. Then (C, ‖ · ‖∞) is separable.
We shall later need to consider a larger class of dynamics. ForH ∈ C, define another (time-inhomogeneous)
Markov chain with generator Lr,β,H by modifying the jump rates as follows (recall that Γ is the set with
boundary γ):

∀t ≥ 0, cHt(γ, γ′) := c(γ, γ′) exp

[ ∫
Γ′/N

Ht/N2 −
∫

Γ/N

Ht/N2

]
. (2.14)

The probability measure associated with the speeded-up generator N2Lr,β,H will be denoted by PNr,β,H ,
or simply PNr,β when H ≡ 0. The corresponding expectations are denoted by ENr,β,H ,ENr,β respectively,
and the law of the process induced by PNr,β,H ,PNr,β is denoted by QN

r,β,H , Q
N
r,β.

Macroscopic and effective macroscopic state spaces. We define here the space of macroscopic
curves. All microscopic curves, rescaled by N−1, are elements of the set X of non-empty, connected
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compact subsets of [−1, 1]2 with perimeter bounded by 8. This set is compact for the topology associated
with the Hausdorff distance dH . It is of course much too large, and we work instead with an effective
state space Er, which contains only curves with four poles satisfying a monotonicity condition similar
to the one for XN

r . In addition, we shall define Er to ensure that the constraints Vr, Hr defined in (2.9)-
(2.10) are satisfied, and that any pathological curve, like the one of Figure 4, is discarded. Informally,
one should think of Er as follows:

Er = X ∩
{

Γ ⊂ [−1, 1]2 : Γ has four non-intersecting poles, satisfies a monotonicity condition
and ∂Γ is a simple curve

}
. (2.15)

In practice, the definition of Er is more subtle, as we want it to be closed for the Hausdorff distance
and we need to allow droplets with non-simple boundaries, corresponding to curves with poles standing
atop vertical or horizontal lines. It is detailed in Appendix B.

Definition 2.1 (Initial condition and notations). In the rest of this article, unless explicitly stated
otherwise, parameters r > 0, β > log 3, H ∈ C are fixed once and for all (or β > 64 log 3 in Lemma 5.2,
see (2.4)). A parameter r0 > r is also fixed and we consider, for N ∈ N∗, the dynamics given by PNr,β,H
that starts from some ΓN0 ∈ NEr0 satisfying:

• (N−1ΓN0 )N converges in Hausdorff distance to a set Γ0 ∈ Er0, and each N−1ΓN0 and Γ0 are at a
distance at least d0 = 1/2 in 1-norm from the boundary of [−1, 1]2. We call Er0(1/2) ⊂ Er0 the
subset of such curves, and in general Er(d) ⊂ Er is the set of droplets at 1-distance at least d > 0
from the domain boundaries.

• The boundary γ0 of Γ0 is a Jordan curve, nowhere flat or vertical.

Unless otherwise said, d is a fixed number in (0, 1/4). Travelling on a curve in XN
r is always done

clockwise. Moreover, we set P5 := P1, P6 := P2. In this article, OG(δ) always means: bounded by a
constant depending on an object G times δ for δ > 0 sufficiently small. The letter C is used to denote a
constant that may change from line to line, and C(G, δ) means that the constant depends only on G, δ
and a numerical factor.
Importantly, if γN ∈ XN

r , we unambiguously write γN ∈ NEr instead of ΓN ∈ NEr, when γN = ∂ΓN .
We also sometimes treat PNr,β as a measure on trajectories taking values in N−1XN

r instead of XN
r . The

letter Γ will always denote a "droplet", i.e. a compact subset of R2, and the letter γ its boundary.

2.2 Heuristics

Before stating the results, let us give an idea of what the contour dynamics does, and describe how
it relates to the Symmetric Simple Exclusion Process (SSEP). One should always have in mind this
connection, which serves as a guideline for many intuitions and computations presented in this article.

Microscopic curves, i.e. elements of XN
r , can by definition be split in four quadrants C1, ..., C4. Inside

quadrant k, consider the reference frame Rk obtained by rotating the canonical frame by π/4 plus a
multiple of π/2:

Rk = (O, eπ/4−kπ/2, eπ/4−(k−1)π/2) for k ∈ {1, ..., 4}. (2.16)

In quadrant k ∈ {1, ..., 4}, the curve is given by the graph {(xk, fk(xk))Rk : xk ∈ Ik} of a function
fk : Ik ⊂ R → R, see Figure 5. Assimilate each vertical edge to a particle, each horizontal edge to an
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Figure 5: A possible initial condition Γ0. The reference frame R1 = (O, e−π/4, eπ/4) is represented, and
the graph of f 1 appears in light colour. The position of the origin O is not relevant.

empty site. Away from the poles, adding or removing a block is then possible whenever a corresponding
particle can jump according to the exclusion rule (i.e. at most one particle per site), and the "occupation
number" at a point y = (xk, fk(xk)) ∈ V (γ) reads

ξy =
1 + (−1)k(fk(xk + 2−1/2)− f(xk))

2
. (2.17)

This correspondence is detailed in the proof of Lemma 6.5, see Figure 9.

Consider now the macroscopic counterparts of elements of XN
r : denote again by (fk(t, ·))t≥0 the

family of functions representing quadrant k ∈ {1, ..., 4} of a macroscopic trajectory (γt)t≥0 of curves
taking values in Er (defined in Appendix B). Consider a parametrisation of each γt, t ≥ 0 on the unit
torus T. Recall from (2.1) that the family (γt)t≥0 is said to satisfy anisotropic motion by curvature until
a time T > 0 if it solves:

∀t < T, ∀u ∈ T, ∂tγ(t, u) = a(θt(u))k(t, u)ν(t, u). (2.18)

In this equation, the time derivative is taken at fixed values of the parameter u, and k(t, u) is the
curvature of γt at γt(u). The vector ν(t, u) is the inwards normal vector at γt(u), θt(u) is the angle
between the tangent vector T and e1 and, finally, a is the anisotropy:

∀θ ∈ [0, 2π], a(θ) =
1

2
(
| sin(θ)|+ | cos(θ)|

)2 =
1

2‖T (θ)‖2
1

. (2.19)

One can check that, for each x ∈ R and k ∈ Z, a(arctan(x) + π/4 + kπ/2) = (1 + x2)/2. Elementary
computations on a formal level then yield that, away from each pole, equation (2.18) translates into the
heat equation on each quadrant:

∂tf
k =

1

4
∂2
xkf

k,

where the time derivative is taken at fixed value of the parameter xk. This observation was already
made by Spohn in [Spo93], and is used in the proof of the hydrodynamic limit in [LST14b]-[LST14a].
Assume that the poles of (γt) are fixed in time. Its four quadrants are then also fixed in time, hence
each interval of definition Ik of fk as well for k ∈ {1, ..., 4}. Define ρk = 1/2 + (−1)k∂xkf

k/2. The
function ρk : I1 → [0, 1] is the density of the equivalent SSEP on the first quadrant (compare with
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(2.17)). Forgetting about boundary conditions for now, recall e.g. from [KL99] large deviations results
for the density of a SSEP: trajectories occurring with probability of order e−N are solutions, in a suitable
sense, of

∂tρ
k =

1

4
∂2
xkρ

k − (1/2)∂xk
(
σ(ρk)∂xkHk

)
, (2.20)

for some (possibly irregular) function Hk : Ik → R, and with σ(ρk) = ρk(1 − ρk). By analogy with
(2.20), interfaces occurring with probability of order e−N should be solutions, inside each quadrant, to:

∂tf
k =

1

4
∂2
xkf

k + σ(fk)∂xkHk, (2.21)

with σ(fk) = ρk(1− ρk) = (1− (∂xkf
k)2)/4. Recall that (2.21) is written under the assumption that Ik

does not change with time. However, in the contour dynamics, poles move, as they are coupled together
by the dynamics on each quadrant. Thus each interval Ik, k ∈ {1, ..., 4} depends on time, and it is not
possible to define a single function H depending only on xk, simultaneously in the four quadrants and for
each time. This leads one to replace each of the ∂xkHk, k ∈ {1, ..., 4} by a single function H : R2 → R. As
a consequence, H now also depends on fk(xk) inside each quadrant, and not just on xk. The behaviour
of (2.21) is still expected to be valid away from the poles, i.e. in the interior of Ik(t) for each time, thus
we expect that interfaces occurring with probability of order e−N should satisfy:

∀t > 0, ∀x ∈ I̊k(t), ∂tf
k =

1

4
∂2
xkf

k +
√

2σ(fk)H
(
(·, fk(·))Rk

)
. (2.22)

The additional
√

2 factor compared to (2.21) comes from the derivative ∂xkH that was removed. Let us
obtain from (2.22) a parametrisation independent equation on the family (γt). To do so, write for the
tangent vector:

T (θ) = cos(θ)e1 + sin(θ)e2 =
[
1 + (∂xkf

k)2
]−1/2(

1, ∂xkf
k
)
Rk
, θ = θ(xk) ∈ [0, 2π]. (2.23)

If v = (‖T‖1)−1 and a is the anisotropy (2.19), then

a(θk) = a(π/4− kπ/2 + arctan(∂xkf
k)) =

1 + (∂xkf
k)2

4
,

v(θk)2

2
= a(θk). (2.24)

After some elementary computations, one finds that trajectories (γt)t≥0 at scale e−N , away from their
poles, should look like solutions of an anisotropic motion by curvature with drift:

ν · ∂tγ = ak − µH. (2.25)

Recall that ν is the inwards normal vector, a is the anisotropy defined in (2.19), and µ is the mobility
of the model, defined as:

∀θ ∈ [0, 2π], µ(θ) =
| sin(2θ)|

2(| sin(θ)|+ | cos(θ)|)
=
|T (θ) · e1||T (θ) · e2|

‖T (θ)‖1

. (2.26)

Indeed, e.g. in the first quadrant at time t0 ≥ 0, one has for each x1 ∈ I1(t0):

µ(θ(x1)) =
√

2
[
1 + (∂x1f 1)2

]1/2
σ(f 1(x1)).

From (2.25), we see that the function H, that we introduced from considerations on the SSEP on each
quadrant, plays the role of a magnetic field applied to ± Ising spins (see [Spo93]), separated by an
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interface corresponding to our contours γ.
It remains to somehow add in the contribution of the poles to that picture. It turns out (see Proposition
2.2) that due to the regrowth, β-dependent part of the microscopic dynamics, poles act as moving
reservoirs which, at each time t ≥ 0, fix the value of ∂xkfk(t, ·) in terms of β at the extremities of
its interval of definition Ik(t). We shall loosely refer to ∂xkfk as the slope. Equation (2.25) can then
be interpreted as the coupling of four equations of the type (2.22) via Stefan-like boundary conditions
at the poles, each of these equations being written in a domain Ik(t), k ∈ {1, ..., 4} that depends on
time. Understanding how this coupling works and how to deal with the motion of the poles without any
monotonicity in the dynamics is the main challenge of this work.

2.3 Results

We now state our results, starting with the behaviour of the slope at the poles, in Proposition 2.2. This
result is the most important specificity of our model. Define the microscopic averaged slope on either
side of a pole as follows. For γ ∈ NEr, k ∈ N∗ and x ∈ V (γ), denote by ξ+,k

x the quantity:

ξ+,k
x =

1

k + 1

∑
y∈V (γ),y≥x
‖x−y‖1≤k

ξy.

By y ≥ x we mean that y is encountered after x when travelling on γ clockwise (N � k). We define
the other slope ξ−,kx similarly by averaging over points that are before x on γ.

Proposition 2.2. For d > 0, recall that Er(d) is the subset of Er of curves at 1-distance at least d from
the domain boundary ∂([−1, 1]2). Let T0 > 0. Then, for any test function G ∈ C and δ > 0, if k ∈ {1, 3}:

lim sup
ε→0

lim sup
N→∞

1

N
logPNr,β

(
for a.e. t ∈ [0, T0], γ(t) ∈ NEr(d);

∣∣∣∣ ∫ T0

0

G(t, N−1Lk(t))
(
ξ±,εNLk(t) − e

−β)dt∣∣∣∣ ≥ δ

)
= −∞.

If on the other hand k ∈ {2, 4}:

lim sup
ε→0

lim sup
N→∞

1

N
logPNr,β

(
for a.e. t ∈ [0, T0], γ(t) ∈ NEr(d);

∣∣∣∣ ∫ T0

0

G(t, N−1Lk(t))
(
1− ξ±,εNLk(t) − e

−β)dt∣∣∣∣ ≥ δ

)
= −∞.

This proposition shows that the slopes at the poles are fixed and form a cusp with angle of order e−β.
This is reminiscent of the SSEP in contact with reservoirs which fix the density at the points of contact
[ELS90]. In our case, the exclusion dynamics on each quadrant are coupled by the fixed value of the slope.

Our second result justifies the definition of the "effective" state space Er: first, configurations starting
inside the restricted configuration space NEr0 take a time of order N2 to exit this set. The arguments
for this point are inspired by [CMST11]. Second, any trajectory that starts from Γ0, which is at distance
1/2 from the domain boundary ∂([−1, 1]2), takes at least a diffusive time to first reach ∂([−1, 1])2. As
in the proof of the large N behaviour for the zero-temperature stochastic Ising model in [LST14b], this
proposition is crucial to be able to say anything about the typical behaviour of the contour process,
meaning also about lower-bound large deviations.
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Proposition 2.3. Recall that r, β,H, r0, d0 = 1/2 are fixed as in Definition 2.1.

1. Let r1 ∈ (r, r0) and define τ = τNr1,β,H as the time for which the dynamics induced by PNr,β,H first
leaves NEr1. There are constants c0, α that depend only on Γ0, H, r0, r1 (but not on r, β) such that:

PNr,β,H
(
τ < c0

)
≤ exp[−αN ]. (2.27)

2. Assume β > 64 log 3. For each d < 1/4, there is a time T0 = T0(Γ0, d, d0, β,H) ∈ (0, c0], with c0

as in (2.27), such that:

PNr,β,H
(
∀t ∈ [0, T0], γt ∈ Er;

∫ T0

0

1dist(γt,∂([−1,1]2))<ddt > 0
)

= oN(1). (2.28)

Hydrodynamic limit
Next, we investigate the hydrodynamic limit of the contour process. This requires choosing a suitable
topology on trajectories. In the proof of the hydrodynamic limit for the zero temperature stochastic
Ising model in [LST14b]-[LST14a], the authors prove uniform convergence in time for the Hausdorff
topology. The Hausdorff distance between sets appears as a natural distance to put on the state space:
inside each quadrant, it is equivalent to weak convergence of the slopes, a topology in which hydrody-
namics are known for the SSEP.

In the case of the contour model, the Skorokhod topology associated with the Hausdorff distance
seems like a suitable choice. However, the regrowth part of the dynamics at the poles makes it very
complicated to estimates of the position of the poles at each time. We thus equip the set DH([0, T0], Er)
of càdlàg functions in Hausdorff distance with a weaker topology, without any point-like control at the
pole, induced by the distance (2.29).
Let T0 > 0 be a time given by Proposition 2.3. Recall that X ⊃ N−1XN

r is the macroscopic state space
and consider the distance:

∀Γ,Γ′ ∈ X [0,T0], dE(Γ,Γ′) = dL
1

S (Γ,Γ′) +

∫ T0

0

dH(Γt,Γ
′
t)dt. (2.29)

Above, dL1

S is the Skorokhod distance associated with L1([−1, 1]2) topology, and dH is the Hausdorff
distance on X. More is said on these objects in Appendix B.
For d ∈ (0, d0/2) = (0, 1/4), recall that Er(d) is defined in Definition 2.1 as the subset of the effective
state space Er with curves at 1-distance at least d from the domain boundary. A suitable set of trajecto-
ries for the contour dynamics will be E([0, T0], Er(d)), defined as the completion of DH([0, T0], Er(d)) for
the distance dE. An explicit characterisation of elements in E([0, T0], Er(d)) and topological properties
are given in Appendix B.2.

The hydrodynamic limit result is the following: {QN
r,β,H : N ∈ N∗} has weak limit points supported

on E([0, T0], Er(d)), and any weak limit point concentrates onto weak solutions, in the sense defined
below in (2.30), of

∂tγ · ν = a∂2
sγ · ν − µH = ak − µH,

with ν the inwards normal vector, a the anisotropy (2.19), k the curvature and µ the mobility (2.26),
and s the line abscissa.
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Proposition 2.4. The set {QN
r,β,H : N ∈ N∗} is relatively compact in M1(E([0, T0], X)) equipped with

the weak topology associated with dE. Moreover, if Q∗r,β,H is one of its weak limit points, then it is
concentrated on trajectories in E([0, T0], Er(d)) satisfying: for any test function G ∈ C (see (2.13)),∫

ΓT0

GT0 −
∫

Γ0

G0 −
∫ T0

0

∫
Γτ

∂τGτdτ =

∫ T0

0

∫
γτ\P (γτ )

α(θ(sτ ))∂sτG(τ, γτ (sτ ))dsτdτ (2.30)

+

∫ T0

0

∫
γτ

µ(θ(sτ ))(HG)(τ, γτ (sτ ))dsτdτ −
4∑

k=1

∫ T0

0

(1

4
− e−β

2

)[
G(τ, Lk(τ)) +G(τ, Rk(τ))

]
dτ.

Above, µ is the mobility of the model, defined in (2.26), and sτ is the line abscissa on γτ , τ ∈ [0, T0].
For each θ ∈ [0, 2π] \ (π/2)Z, α is related to the anisotropy a by α′(θ) = −a(θ). One has:

α(θ) =
a(θ)

2

sin(2θ) cos(2θ)

| sin(2θ)|
=
T (θ) · e1T (θ) · e2

4‖T (θ)‖1

[ 1

|T (θ) · e2|
− 1

|T (θ) · e1|

]
, (2.31)

where T (θ) = cos(θ)e1 + sin(θ)e2.

The proof relies on well-known martingale methods [KL99]. However, the fact that configurations are
one-dimensional objects moving in a two-dimensional space introduces major difficulties. At the micro-
scopic level, the main issue is that the vertices or edges of a curve cannot be labelled in a fixed reference
frame.

Large deviations
We obtain upper-bound large deviations for the contour dynamics at finite β > log 3. Assuming solutions
of (2.30) to be unique, lower-bound large deviations also follow. Upper and lower bounds match for
smooth trajectories. Specific to our model is, again, the control of the poles of the curves.
Let T0 > 0 and consider r, β,H, d as in Definition 2.1. Given a trajectory Γ ∈ E([0, T0], Er(d)) with
boundaries γt = ∂Γt, t ≤ T0, define, recalling that Lk, Rk are the extremities of the pole Pk:

`βH(Γ) =
〈
ΓT0 , HT0

〉
−
〈
Γ0, H0

〉
−
∫ T0

0

〈
Γτ , ∂τHτ

〉
dτ −

∫ T0

0

dτ

∫
γτ\P (γτ )

α(θ(sτ ))∂sτH(τ, γτ (sτ ))dsτ

+
(1

4
− e−β

2

)∫ T0

0

4∑
k=1

[
H(τ, Lk(τ)) +H(τ, Rk(τ))

]
dτ. (2.32)

Define also:

JβH(Γ) = `βH(Γ)− 1

2

∫ T0

0

∫
γτ

µ(θ(sτ ))H
2(τ, γτ (sτ ))dsτdτ, Γ ∈ E([0, T0], Er(d)) (2.33)

where the mobility µ is defined in (2.26).
To build the rate function, we will have to restrict the state space to control the behaviour of the
poles. Introduce thus the subset Epp([0, T0], Er(d)) ⊂ E([0, T0], Er(d)) of trajectories with almost always
point-like poles:

Epp([0, T0], Er(d)) =

{
Γ ∈ E([0, T0], Er(d)) :

4∑
k=1

∫ T0

0

|Lk(t)−Rk(t)|dt = 0

}
. (2.34)

Recall that Rk (Lk) is the right (left) extrmity of pole k ∈ {1, ..., 4}. Let us now define the rate function
Iβ(·|Γ0):

Iβ(Γ|Γ0) =

{
supH∈C J

β
H(Γ) if Γ ∈ Epp([0, T0], Er(d)),

+∞ otherwise,
(2.35)
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Remark 2.5. • Note that it is possible by Proposition 2.2 to enforce that only trajectories with
slope e−β at the poles have finite rate function. One would expect this condition to already be
present in (2.35), but the very weak topology at the poles makes it more complicated to see than
e.g. for a SSEP with reservoirs, see [BLM09].

• If β =∞ and Γ is a smooth trajectory in C([0, T0], Er(d)) starting from Γ0 (i.e. it has well defined,
continuous normal speed and curvature at each time t ∈ (0, T0]), then setting β =∞ in (2.35) one
obtains:

I∞(Γ|Γ0) =
1

2

∫ T0

0

∫
γt

(v − ak)2

µ
dstdt.

As conjectured in (1.3), the rate function I∞(·|Γ0) thus measures the quadratic cost of deviations
from anisotropic mean-curvature motion. At β < ∞, the same picture holds except that tra-
jectories with finite rate function are not smooth: they have kinks at the poles in the sense of
Proposition 2.2. �

In the proof of large deviations, trajectories associated with a smooth bias H ∈ C play a special role.
Define the set of trajectories ACT0,r,β

⊂ E([0, T0], Er) as follows:

ACT0,r,β
=
{

Γ ∈ E([0, T0], Er(d)) : there is a bias H ∈ C such that (2.30) has a
unique solution in E([0, T0], Er(d)), which is continuous in time in Hausdorff
topology, and this solution is Γ}. (2.36)

Theorem 2.6. Let r < r0. For any d ∈ (0, 1−r), any closed set F ⊂ E([0, T0], Er(d)) and any β > log 3:

lim sup
N→∞

QN
r,β(F ) ≤ − inf

F
Iβ(·|Γ0). (2.37)

For any open set O ⊂ E([0, T0], Er(d)) with d ∈ [1/2, 1− r) and any β > 64 log 3,

lim inf
N→∞

QN
r,β(O) ≥ − inf

O∩ACT0,r,β

Iβ(·|Γ0). (2.38)

Remark 2.7. • The restriction to d > 1/2 and β > 64 log 3 for the lower bound is purely technical.
It is a consequence of item 2 in Proposition 2.3, and smaller d’s or smaller β’s could be considered
without changing any proof, by enlarging the state space to droplets in [−A,A]2, A > 1.

• We consider large deviation events on trajectories avoiding the domain boundary ∂([−1, 1]2) to
avoid additional boundary conditions in (2.30).

• The choice of initial condition is for convenience only. We could also consider large deviations on
the initial condition, with minor changes. �

2.4 Comments on metastability

Before starting our study, we make some comments about metastability properties of the contour model.
The reversibility introduced in the microscopic dynamics and the large deviation results of Theorem 2.6
give us a lot of information, as illustrated below.

Nucleation with a small magnetic field:
At equilibrium under νNr,β (defined in (2.3)) with r small, contours are typically small as well. If a small
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magnetic field h/N , h > 0 is added to the dynamics as in (2.14) with H ≡ βh, it remains reversible
with respect to the measure νh defined by:

∀γ ∈ XN
r , νh(γ) = νNr,β,h(γ) = (Zr,β,h)

−1 exp
[
− β|γ|+ 2βhVol(γ)/N

]
,

where Zr,β,h =
∑

γ∈XN
r

exp[−β|γ| + βhVol(γ)/N ] is the associated partition function, and Vol(γ) is the
volume of the droplet that γ delimits. We can use the large deviations result (Theorem 2.6 above) to
inquire about the typical volume above which a nucleated droplet can grow, as well as the shape that a
droplet has while it grows or shrinks, depending on its size.

The surface tension τβ = τβ(θ), θ ∈ [0, 2π] of the contour model plays a key role in the nucleation.
Away from the pole, it is equal, for each normal angle θ /∈ (π/2)Z and inverse temperature β, to the
surface tension for the Ising model at first order in the large β limit, as given in [Spo93]:

τβ(θ) = | cos(θ)|+ | sin(θ)|+ β−1

[
| sin(θ)| log

[
| sin(θ)|

| cos(θ)|+ | sin(θ)|

]
+ | cos(θ)| log

[
| cos(θ)|

| cos(θ)|+ | sin(θ)|

]]
.

The results of Section 6, Proposition A.3 yield the value of the surface tension at the poles, i.e. for a
normal angle θ ∈ (π/2)Z. It reads:

∀k ∈ Z, τβ(kπ/2) = 1 +
1

β
log
(
1− e−β

)
< 1. (2.39)

The parameter β introduces a discontinuity at the poles: for k ∈ Z, limθ→kπ/2 τβ(θ) = 1 6= τβ(kπ/2).

Speed of growth:
Another question of interest is the magnitude of the typical speed at which a big enough droplet grows
to cover the whole space. The conjecture is that the microscopic speed Vmicro reads

Vmicro ∼ CH, (2.40)

see [SS98] for details, with H the amplitude of the magnetic field. This conjecture is easily verified in
our case, where H = h/N with a fixed h > 0. Indeed, we establish in Section 5, see particularly Lemma
5.5, that away from the poles droplets grow in volume with (inwards, macroscopic) normal speed:

v = ak − µh, (2.41)

and the curvature should reasonably stay bounded as the droplet grows. The quantity a is the anisotropy
defined in (2.19) and µ the mobility, see (2.26). As space is rescaled by 1/N and time by N2, one can
relate microscopic and macroscopic speed by

v ∼ (1/N)×N2Vmicro ⇒ Vmicro ∼ N−1 ∼ H,

and (2.40) holds for the contour dynamics. The typical growth trajectory will satisfy (2.30).

3 Some relevant martingales

3.1 Motivations

To investigate rare events, we are going to consider a tilted probability measure, as in Chapter 10 of
[KL99]. Fix a time T0 > 0 throughout the rest of Section 3, and introduce a weak magnetic field H ∈ C
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(defined in (2.13)), so that for any Borel set B ⊂ DH([0, T0], N−1XN
r ) (the set of Hausdorff-càdlàg

trajectories with values in N−1XN
r ):

QN
r,β(B) = ENr,β[1γ∈B] = ENr,β,H

[
(DN

r,β,H)−11γ∈B
]
,

where DN
r,β,H = dPNr,β,H/dPNr,β is the Radon-Nikodym derivative until time T0, defined by:

N−1 logDN
r,β,H =

〈
ΓT0 , HT0

〉
−
〈
Γ0, H0

〉
−
∫ T0

0

e−N
〈

Γτ ,Hτ

〉(
∂τ +N2Lr,β

)
eN
〈

Γτ ,Hτ

〉
dτ. (3.1)

Recall that, for a domain Γ ∈ N−1XN
r and for G : [−1, 1]2 → R,

〈
Γ, G

〉
=
∫

Γ
G.

Obtaining lower-bound large deviations from that method requires computing hydrodynamic limits
for all sequences of laws (QN

r,β,H)N with bias H ∈ C. To do so, we investigate the behaviour of the
projected processes

〈
Γ·, G·

〉
, Γ· ∈ DH([0, T0], N−1XN

r ), for a large class of test functions G (here, G ∈ C),
for which Ito’s formula reads:

∀t ≤ T0,
〈
Γt, Ht

〉
=
〈
Γ0, H0

〉
+

∫ t

0

(
∂τ +N2Lr,β,H

)〈
Γτ , Hτ

〉
dτ +MG

t , (3.2)

where (MG
t )t∈[0,T0] is a martingale. It turns out that the computations of the action of the generator in

(3.1) and in (3.2) are similar. Moreover, for the specific choice G = H, (3.2) is nearly identical to (3.1)
to highest order in N . For this reason, as (3.2) is slightly more general, we detail the computation of
MG
· rather than that of DN

r,β,H . The only non-trivial part is the computation of N2Lr,β,H
〈
Γ·, G·

〉
, which

we now perform. For the rest of Section 3, we fix a test function G ∈ C.

3.2 Computation of N 2Lr,β,H
〈
Γ·, G·

〉
We rewrite N2Lr,β,H

〈
Γ·, G·

〉
as a term depending on the pole dynamics, plus another term that corre-

sponds to the exclusion process on each quadrant of Γ. With particles corresponding to vertical edges,
the exclusion term is rewritten in terms of local averages ξεNx of the ξ’s, where for γ ∈ XN

r and x ∈ V (γ),
ε > 0 and N ∈ N∗, the local density of vertical edges ξεNx is defined as:

ξεNx =
1

2εN + 1

∑
y∈B(x,εN)∩V (γ)

ξy. (3.3)

The ball is taken with respect to ‖ ·‖1, and we omit integer parts for ease of notation. In our case, it will
be convenient to write ξεNx as a function of the tangent vector at x. Recall that we always enumerate
elements of V (γ) clockwise, and define tx = e+

x as the vector tangent to γ between x and x+ e+
x . In this

case, the average tangent vector tεNx reads:

tεNx =
1

2εN + 1

∑
y∈B(x,εN)∩V (γ)

e+
y = ±(1− ξεNx )e1 +±ξεNx e2. (3.4)

In the following, we shall consider rescaled microscopic curves γ ∈ N−1XN
r , and we write ξx, tεNx for

x ∈ γ to denote ξy, tεNy with y ∈ Nγ ∈ XN
r , y = Nx.

The signs in (3.4) depend on the quadrant x belongs to. For instance, if B(x, εN) is included in the
first quadrant,

tx = (1− ξx)e1 − ξxe2 ⇒ tεNx = (1− ξεNx )e1 − ξεNx e2.
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We stress the fact that due to the lattice structure, ‖tεNx ‖1 = 1 6= ‖tεNx ‖2. This is where the anisotropy
(2.2) in the macroscopic motion by curvature (2.18) comes from. Define consequently the norm and
normalised tangent vector:

∀x ∈ V (γ), vεNx := ‖tεNx ‖2, T εNx = tεNx /vεNx . (3.5)

As ‖tεN‖1 = 1, we get:
vεNx = ‖tεNx ‖2 =

(
‖T εNx ‖1

)−1
. (3.6)

For d ∈ (0, 1/4), recall from Definition 2.1 the definition of N−1XN
r ∩ Er(d), the set of (rescaled)

microscopic curves in the effective state space Er which, in addition, are at distance at least d from
∂([−1, 1]2). Take a contour γ in that set and let J ∈ C2([−1, 1]2). We are going to prove:

N2Lr,β,H
〈
Γ, J

〉
=
[
line integral on γ of a function of tεN and J,H

]
+ o(1), (3.7)

where o(1) is shorthand for error terms in N, ε, and other parameters that will appear along the proof,
whose time integral is small. The precise statement of (3.7) is given later on in Proposition 3.9; for now
we give a microscopic expression of N2Lr,β,H

〈
Γ, G

〉
.

Proposition 3.1. Fix a time T0 > 0. For any δ > 0, any ε ∈ (0, 1) smaller than some ε(δ) and any
d ∈ (0, 1/4), there is a set Z = Z(δ, ε, d) ⊂ E([0, T0], X) such that Zc ∩ E([0, T0], Er(d)) has probability
super-exponentially small when N → ∞, ε → 0. The set E([0, T0], Er(d)) is defined in Appendix B.2.
Moreover, for configurations in Z:∫ T0

0

N2Lr,β,H
〈
Γτ , Gτ

〉
dτ = −

(
1

4
− e−β

2

)∫ T0

0

4∑
k=1

[
G(τ, Lk(τ)) +G(τ, Rk(τ))

]
dτ +OG,H(δ)

+OG,H

(∫ T0

0

dτ
4∑

k=1

pk(τ)

N

)
+

1

4N

∫ T0

0

dτ
∑

x∈V ε(γτ )

(vεNx )2
[
T εNx ·m(x)

]
T εNx · ∇G(τ, x)dτ

+
1

N

∫ T0

0

dτ
∑

x∈V (γτ )

(vεNx )2|T εNx · e1||T εNx · e2|(GH)(τ, x). (3.8)

Recall that pk is the number of edges in Pole k ∈ {1, ..., 4}. The vector T εN· is defined in (3.5), and the
quantity m = (±1,±1) is a sign vector with value determined only by the quadrant, see Definition 3.6.
For γ ∈ XN

r , V ε(γ) ⊂ V (γ) is the subset of vertices at 1-distance at least εN from the poles.

The rest of Section 3 is devoted to the proof of Proposition 3.1 (and its statement in the continuous
limit, Proposition 3.9). We write the different terms in (3.8) for fixed time whenever possible, in which
case the time dependence on G and H is omitted.

Notation: in the rest of Section 3, we consider only rescaled microscopic curves in N−1XN
r , and fix

γ ∈ N−1XN
r ∩ Er. Γ ⊂ [−1, 1]2 is the corresponding droplet: γ = ∂Γ. We still denote by V (γ) the

points of N−1Z2 that γ passes through, and by Pk(γ), k ∈ {1, ...4} the poles of γ. We write abusively
x, x+ 2e+

x ∈ Pk(γ) for x ∈ V (γ), instead of x, x+ 2e+
x /N ∈ Pk(γ).

Proof of Proposition 3.1.
Recall from (2.14) the definition of the jump rates under the dynamics with bias H. We claim that, to
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highest order in N , the bias does not change the jump rate at the pole. Indeed, if x is in a pole of γ
and t ∈ [0, T0],

cHt(γ, γ±,x) = c(γ, γ±,x)(1 +OH(N−1)), (3.9)

so that the bias changes the jump rate at pole Pk(t), k ∈ {1, ...4} by at most OH(pk(t)/N), with
pk(t) = |Pk(t)|. As proven later (in Section 6), the time integral of this quantity is of order 1/N . To
highest order in N , N2Lr,β,H

〈
Γ, G

〉
thus reads, omitting the time dependence:

N2Lr,β,H
〈
Γ, G

〉
= Bulk term + Pole terms,

with (recall (2.14) for the definition of the jump rates):

Bulk term = N2
∑

x∈V (γ)

cHtx (γ)
[〈

Γx, G
〉
−
〈
Γ, G

〉]
, (3.10)

and, by (2.11)-(2.12):

Pole terms = N2

4∑
k=1

∑
x∈Pk(γ)

x+2e+x ∈Pk(γ)

[
1DPkr ,pk=2

[〈
Γx,−, G

〉
−
〈
Γ, G

〉]
+e−2β1x/∈∂([−1,1]2)

[〈
Γx,+, G

〉
−
〈
Γ, G

〉]]

− N2

2

4∑
k=1

1pk=2

∑
x∈{Rk,Lk}

[〈
Γx, G

〉
−
〈
Γ, G

〉]
+OH

( 4∑
k=1

pk
N

)
. (3.11)

DP k
r is the set Vr or Hr, defined in (2.9)-(2.10), depending on the value of k ∈ {1, ..., 4}. The second

line in (3.11) corresponds to the rate 1/2 jumps that delete only one of two blocks of a pole of size 2,
that are forbidden by the dynamics. However, it is convenient to incorporate them in the Bulk term
(3.10), hence the need to subtract them.
The notation

∑
x,x+2e+x ∈Pk is a way of enumerating all pk − 1 vertices in the pole Pk, k ∈ {1, ..., 4} such

that two blocks can be placed atop [x, x + 2e+
x ] or removed below [x, x + 2e+

x ]. Finally, the error term
OH

(∑4
k=1 pk/N

)
is a consequence of (3.9); its time integral is of order OH(1/N) as proven in Section 6.

To prove Proposition 3.9, we treat the Bulk and Pole terms separately.

• Section 3.2.1 deals with the Pole terms (3.11), which are a specificity of the contour dynamics. We
state all useful results; proofs are postponed to Section 6.

• Section 3.2.2 contains all results on the Bulk term (3.10). We explain how to express them in
terms of local averages of the tangent vector tεNx , by tweaking the usual methods used e.g. for the
exclusion process. This concludes the proof of Proposition 3.1. The Bulk term (3.10), which will
correspond to the last two terms in (3.8), is then recast in terms of N -independent line-integrals.
This is the content of Proposition 3.9, stated at the end of the section.

3.2.1 Pole terms

Fix d ∈ (0, 1/4) and recall notations and the definition of Er(d) from Definition 2.1; of E([0, T0], Er(d))
from Appendix B.2. In this section, we compute the Pole terms (3.11), and obtain the following result:

Lemma 3.2. For each δ > 0, there is a set ZP = ZP (d, δ) ⊂ E([0, T0], X), such that (ZP )c ∩
E([0, T0], Er(d)) has probability super-exponentially small under PNr,β,H , and on ZP :∫ T0

0

dτ
[
Pole terms for γτ

]
= C(G)(oN(1) + δ) +

e−β

2

∫ T0

0

dτ
[
G(τ, Rk(τ)) +G(τ, Lk(τ))

]
. (3.12)
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Proof. Notice first that deleting a single block with extremity x means subtracting to
〈
Γ, G

〉
the contri-

bution of G on a block of side-length 1/N , i.e. N−2G(x/N)+OG(N−3). Similarly, adding one block con-
tributes N−2G(x/N)+OG(N−3). As a result, N2

∑
x∈{Rk,Lk}

〈
Γx, G

〉
contributes −G(Lk/N)−G(Rk/N)

to highest order in N for each k ∈ {1, ..., 4}, so that (3.11) reads:

Pole terms =
1

2

4∑
k=1

1pk=2

[
G(Lk/N) +G(Rk/N)

]
(3.13)

+ 2
4∑

k=1

∑
x∈Pk(γ)

x+2e+x ∈Pk(γ)

[
e−2β1x/∈∂([−1,1]2) − 1DPkr ,pk=2

]
G(x/N) +OG,H

(
N−1

4∑
k=1

pk

)
(3.14)

The claim of Lemma 3.2 is then a simple consequence of the following three lemmas, the proofs of which,
postponed to Section 6, are one of the major technical difficulties of this article. In each of the lemmas,
the condition {∀τ ∈ [0, T0], γτ ∈ Er} (or Er(d)) is enforced to control the change of probability between
PNr,β,H and PNr,β, as will be seen in the computations of Section 3.2.2. Parameters r, β are chosen as in
Definition 2.1.

Lemma 3.3. For each pole k ∈ {1, ..., 4} and each A > 1,

lim sup
N→∞

1

N
logPNr,β,H

(
∀τ ∈ [0, T0], γτ ∈ Er;

1

T0

∫ T0

0

1Pk(γτ )∩∂([−1,1]2)=∅ e
−2β(pk(τ)− 1)dτ > A

)
= −∞.

For trajectories taking values in Er(d) ⊂ Er, this lemma implies that the time integral of the∑4
k=1 pk/N error term in (3.14) is of order 1/N , hence vanishes to leading order in N as previously

claimed.

Lemma 3.4. Let G ∈ C0,1(R+ × [−1, 1]2) be compactly supported in time, recall the definition of DP k
r

from (2.9)-(2.10) and let WG
t be defined, for t ≥ 0, as:

WG
t =

4∑
k=1

∑
x∈Pk(t)

x+2e+x ∈Pk(t)

[
1pk(t)=2,DPkr

− 1Pk(t)∩∂([−1,1]2)=∅ e
−2β
]
G(t, x). (3.15)

We write G(t, x) instead of G(t, x/N) as we work on rescaled microscopic curves. Then:

∀δ > 0, lim sup
N→∞

1

N
logPNr,β,H

(
∀τ ∈ [0, T0], γτ ∈ Er;

∣∣∣∣ ∫ T0

0

WG
τ dτ

∣∣∣∣ > δ

)
= −∞. (3.16)

Thanks to Lemma 3.4, the time integral of the first term in (3.14) vanishes to leading order in N . It
remains to compute (3.13), i.e. the 1pk=2

∑
x∈{Rk,Lk} term. Its value is in fact fixed by the dynamics in

terms of β, and can be computed.

Lemma 3.5. For each pole k ∈ {1, ..., 4}, each δ > 0 and each G ∈ C,

lim sup
N→∞

1

N
logPNr,β,H

(
for a.e. τ ∈ [0, T0], γτ ∈ Er(d);

∣∣∣∣ ∫ T0

0

G(t, Lk(t))
(
1pk(τ)=2 − e−β

)
dτ

∣∣∣∣ > δ

)
= −∞.
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We now define the set ZP mentioned in Lemma 3.2. For A > 1, define the set of trajectories with
poles of size less than Ae2β:

BN
p = BN

p (A, β) :=
4⋂

k=1

{
(γNτ )τ∈[0,T0] ∈ E([0, T0], N−1XN

r ) :

1

T0

∫ T0

0

(
pk(τ)− 1

)
e−2β1Pk(γNτ )∩∂([−1,1]2)=∅dτ ≤ A

}
. (3.17)

On this set, the error term
∫ T0

0
dτ
∑

k pk(τ)/N is of order N−1 as claimed below (3.11). By Lemma 3.3,
(BN

p )c∩E([0, T0], Er) has probability super-exponentially small under PNr,β,H . Define then ZP = ZP (A =
2, β, δ) as:

ZP = BN
p (2, β) ∩

{∣∣∣ ∫ T0

0

WG
τ dτ

∣∣∣ ≤ δ
}
∩
{ 4∑
k=1

∣∣∣ ∫ T0

0

G(t, Lk(t))
(
1pk(τ)=2 − e−β

)
dτ
∣∣∣ ≤ δ

}
. (3.18)

On the subset of trajectories taking values in N−1XN
r ∩ Er(d) for almost every time, (ZP )c has indeed

probability super-exponentially small under PNr,β,H . This completes the proof of Lemma 3.2.

3.2.2 Bulk terms

In this section, we focus on the Bulk term. The proof of Proposition 3.1 is completed, and discrete sums
recast in terms of line integrals in Proposition 3.9. As the time dependence of H,G plays no role in
the detail of the computations, we considerH,G as functions in C2([−1, 1]2). We proceed in several steps.

Step 1: discrete Bulk terms.
Recall from (3.4) that the microscopic tangent vector tεNx has coordinates ±ξεNx , ±(1− ξεNx ) with signs
that vary depending on the quadrant. It is useful to define a function m that contains information on
how these signs vary.

Definition 3.6. Recall that γ is a curve in N−1XN
r ∩ Er, and define a function m(γ) : γ \ P (γ) → R2

as follows:
∀x ∈ γ \ P (γ), m(x) := m(γ, x) = −

√
2eπ/4−(k(x)−1)π/2, (3.19)

where P (γ) = ∪kPk(γ) is the union of the poles of γ. In (3.19), k(x) ∈ {1, ..., 4} is the index of the
quadrant of γ the point x belongs to. This means that m(x) = (−1,−1) for x in the first quadrant,
m(x) = (−1, 1) in the second quadrant, etc.

Lemma 3.7. For fixed δ > 0, and each ε small enough with respect to δ, there is a set ZB = ZB(δ, ε) ⊂
E([0, T0], X), such that (ZB)c ∩ E([0, T0], Er) has probability super-exponentially small when N → ∞,
ε→ 0, and on ZB:∫ T0

0

dτ
[
Bulk term for γτ

]
= −1

4

∫ T0

0

dτ
4∑

k=1

[
G(τ, Lk(γτ )) +G(τ, Rk(γτ ))

]
+ CG,H

(
oδ(1) + oN(1)

)
(3.20)

+
1

N

∫ T0

0

dτ
∑

x∈V (γτ )

|t1t2|H(τ, x)G(τ, x) +
1

4N

∫ T0

0

dτ
∑

x∈V ε(γτ )

[
t ·m(x)

]
t · ∇G(τ, x).

In this formula, t, ti are short for tεNx , tεNx · ei, i ∈ {1, 2}, with tεNx defined in (3.4). For γ ∈ N−1XN
r , the

set V ε(γ) ⊂ V (γ) contains all points at 1-distance at least ε from the poles of γ.

22



Figure 6: Definition of the V k, k ∈ {1, ...4}, represented for a curve in XN
r (i.e. non rescaled by N−1)

for legibility. The black dots are the first vertices and the light dots the last vertices of each V k. Three
points are marked by empty circles, with the corresponding value of ε(γ). The block that is deleted if
y is flipped is represented, the two arrows correspond to e+

y and e−y .

Proof of Lemma 3.7. As for the Pole terms in Section 3.2.1, we work at fixed time and omit the time
dependence. The letter γ still denotes a curve in N−1XN

r ∩ Er. Let x ∈ V (γ) not be in a pole of size
2. Recall that e+

x , e
−
x are the unit vectors with origin x, pointing respectively towards the next and the

previous point of V (γ) when travelling clockwise. If x is flipped, then:∫
Γx
G−

∫
Γ

G = εx(γ)

∫
[x,x+e−x /N ]×[x,x+e+x /N ]

G =
εx(γ)

N2

∫
[0,1]2

G
(
x+

u

N
e−x +

v

N
e+
x

)
dudv

=
εx(γ)

N2

(
G(x) +

1

2N

(
∂e−x + ∂e+x

)
G(x)

)
+O(N−4),

which is the contribution of the integral of G over the block that is added or removed when flipping x.
Above, εx(γ) is 1 if flipping x means adding one block, and −1 if it means deleting one (see Figure 6).
Recall from (2.6)-(2.14) that for x ∈ V (γ) and t ∈ [0, T0],

cHtx (γ) = cx(γ)
(
1 +N

〈
Γx, Ht

〉
−N

〈
Γ, Ht

〉
+OH(N−2)

)
. (3.21)

Since γ ∈ Er, the jump rate cHt(γ, γx) is equal to cHtx (γ), i.e. it is local, see (2.6). The Bulk term (3.10)
thus reads:

Bulk term =
1

N

∑
x∈V (γ)

cx(γ)(HG)(x) +
∑

x∈V (γ)

cx(γ)εx(γ)G(x)

+
1

2N

∑
x∈V (γ)

cx(γ)εx(γ)
(
∂e−x + ∂e+x

)
G(x) +OG(N−1). (3.22)

At first sight, the second sum is of order N since |V (γ)| ≈ N , whereas we want something of order
1. We split it along each quadrant and show that we can perform another integration by parts. To
decompose the curves on each quadrant Ck(γ), k ∈ {1, ..., 4}, consider the subset Vk of V (γ) ∩ Ck(γ)
composed of all vertices starting from the first vertex of Pk after Lk, and ending at Lk+1 (L5 := L1), see
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Figure 6. In that way, on each of the Vk, the computation of (3.22) is the same as for a SSEP. Indeed,
with this definition of the Vk, for each k and x ∈ Vk, εx(γ) and cx(γ) can be expressed in terms of the
local "occupation numbers" ξy, ‖y − x‖1 ≤ N−1 only. For instance for x ∈ V1:

2cx(γ)εx(γ) = ξx+e−x
− ξx. (3.23)

With that splitting along the Vk, (3.22) becomes:

Bulk term :=
1

N

∑
x∈V (γ)

cx(γ)(HG)(x) +
4∑

k=1

Bk +
4∑

k=1

B′k +OG(N−1), (3.24)

where:
Bk =

∑
x∈Vk

cx(γ)εx(γ)G(x), B′k =
1

2N

∑
x∈Vk

cx(γ)εx(γ)
(
∂e−x + ∂e+x

)
G(x). (3.25)

1) Bk terms: using equation (3.23), B1 reads:

B1 =
∑
x∈V1

cx(γ)εx(γ)G(x) =
1

2

∑
x∈V1

G(x)(ξx+e−x
− ξx)

=
1

4

∑
x∈V1

G(x)
[
ξx+e−x

− ξx + (1− ξx)− (1− ξx+e−x
)
]
. (3.26)

The passage from first to second line aims at making the expression symmetrical with respect to the
transformation ξ ← 1− ξ. The reason is that the contour model is symmetrical with respect to a global
π/2 rotation, whereas the notation ξx is not: in terms of SSEP, ξx is one if there is a particle in quadrants
1 and 3, but is 1 if there is a hole instead in quadrants 2 and 4.
By definition, the first edge in V1, write it (R1 + 1, R1 + 2), is always horizontal: 1 − ξR1+1 = 1. On
the other hand, V1 ends at L2 and ξL2 = 1 by definition of L2. Integrating (3.26) by parts, some of the
boundary term thus vanish, whence:

B1 = −1

4

(
G(L1) +G(L2)

)
+

1

4N

∑
x∈V1

[
ξx∂e+xG(x)− (1− ξx)∂e+xG(x)

]
+OG(N−1). (3.27)

On V1, ξxe+
x is either 0 if ξx = 0, or −e2 if ξx = 1. Similarly, (1− ξx)e+

x is either 0 or e1. In any case, the
sign of e+

x · ei is fixed in a given quadrant whenever e+
x · ei 6= 0. Thus, to obtain an expression for the

Bk that does not explicitly depend on the quadrant, we keep in mind Figure 6 and define signs σ1, σ2

constant on a given quadrant:

σ1 :=

{
1 if x ∈ V4 ∪ V1

−1 if x ∈ V2 ∪ V3

, σ2 :=

{
1 if x ∈ V3 ∪ V4

−1 if x ∈ V1 ∪ V2

. (3.28)

The idea behind (3.28) is that (σ1, σ2) is "the direction of the tangent vector to a curve" in each quadrant.
For instance, in the first quadrants, curves are south-east paths and (σ1, σ2) = (1,−1), in quadrant 2
curves are south-west paths and (σ1, σ2) = (−1,−1), etc. Compare with m in Definition 3.6, which gives
"the direction of the inwards normal":

m = −(−σ2, σ1) = (σ2,−σ1). (3.29)
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Repeating the computations leading to (3.27) on the other quadrants V k, one finds for the Bk:

4∑
k=1

Bk = −1

4

4∑
k=1

[
G(Lk) +G(Rk)

]
+OG

(
N−1

4∑
k=1

pk

)
(3.30)

+
1

4N

∑
x∈V (γ)\P (γ)

(
− ξxσ1∂2 + (1− ξx)σ2∂1

)
G(x).

Equation (3.30) is now clearly composed of terms of order at most 1 in N . The error term is comprised
of two contributions. On the one hand, summing the Bk yields a term −(1/2)

∑
kG(Lk). It is more

convenient to symmetrise this term and write it as −(1/4)
∑

k[G(Rk) + G(Lk)], which creates an error
bounded by ‖∇G‖∞

∑
k pk/N . On the other hand, the sum in (3.27) bore on the entirety of V (γ), while

in (3.30) all points in P (γ) are removed. There are
∑

k pk such points, which are responsible for an error
term bounded by N−1

∑
k pk‖G‖∞.

2) B′k terms (defined in (3.25)): Notice that if cx(γ) 6= 0, then εx(γ)(∂e+x + ∂e−x ) is the same whether
a block is added or deleted at x. Moreover, it depends only on the k ∈ {1, ..., 4} such that x ∈ Vk, and:

4∑
k=1

B′k =
1

2N

∑
x∈V (γ)

cx(γ)
(
− σ2∂1 + σ1∂2

)
G(x). (3.31)

To conclude the proof of Lemma 3.7 from (3.24)-(3.30)-(3.31), it remains to replace ξx, ξx(1−ξx+e−x
) and

cx(γ) by local averages on small macroscopic boxes. This is the content of the so-called Replacement
lemma, stated below and proven in Appendix A.

Lemma 3.8 (Replacement lemma). Consider a function φ on N−1XN
r defined as follows:

∀γ′ ∈ N−1XN
r ,∀x ∈ V (γ′), φ(τxγ

′) = cx(γ
′)

For ε > 0, recall from (3.3) the definition of ξεNx and define a locally averaged version of φ:

φ̃(τxγ
′) = ξεNx (1− ξεNx ).

For and F : R+ × [−1, 1]2 bounded, define W φi,F
εN on (τ, γ′) ∈ [0, T0]×N−1XN

r by:

W φ,F
εN (τ, γ′) =

1

N

∑
x∈V (γ′)

F (τ, x)

[
φ(τxγ

′)− φ̃(τxγ
′)

]
. (3.32)

Then, for each δ > 0,

lim sup
ε→0

lim sup
N→∞

1

N
logPNr,β,H

(
∀τ ∈ [0, T0], γτ ∈ Er;

∣∣∣∣ ∫ T0

0

W φ,F
εN (τ, γτ )dτ

∣∣∣∣ > δ
)

= −∞.

Using Lemma 3.8, we conclude the proof of Lemma 3.7. Define:

Bi
F (δ, ε) =

{
(γτ )τ∈[0,T0] ∈ E([0, T0], Er) :

∣∣∣∣ ∫ T0

0

W φi,F
εN (τ, γτ )dτ

∣∣∣∣ ≤ δ

}
. (3.33)

By Lemma 3.8, for each δ > 0,
(
Bi
F (δ, ε)

)c ∩ E([0, T0], Er) has probability super-exponentially small
under PNr,β,H when N is large and ε small. Define then

Z̃B := (Z̃B)NH,G(δ, ε) = B1
∇G(δ, ε) ∩B2

∇G(δ, ε) ∩B2
HG(δ, ε). (3.34)
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The computations leading to (3.24)-(3.30)-(3.31) are valid at each time for a trajectory γ· taking values in
N−1XN

r ∩Er. Recall from Lemma 3.7 that we are interested in time integrals of (3.24)-(3.30)-(3.31). By
Lemma 3.8, for trajectories in Z̃B, replacement of local quantities by averages in these equations yields
an error term with time integral bounded by δ. To not burden the notations with a time dependence
however, we continue to work with a curve γ ∈ N−1XN

r ∩ Er and formally replace local functions
ξx, e

+
x , cx(γ) by their averages on an εN -neighbourhood, knowing that the procedure is legitimate when

integrating in time, up to an error δ.
We start by applying Lemma 3.8 to the first term in (3.24). Recalling that |tεNx ·e2| = ξεNx = 1−|tεNx ·e1|,
we find:

1

N

∑
x∈V (γ)

cx(γ)(HG)(x) =
1

N

∑
x∈V (γ)

|tεNx · e1||tεNx · e2|(HG)(x) + error. (3.35)

Let us now turn to the Bk terms (3.30) and the B′k terms (3.31). Lemma 3.8 applied to the sum in the
second line of the Bk terms (3.30) yields:

1

4N

∑
x∈V ε(γ)\P (γ)

[
− |tεNx · e2|σ1∂2 + |tεNx · e1|σ2∂1

]
G(x) + error. (3.36)

Note that the sum in (3.36) was made to bear on V ε(γ) and not on V (γ) as in (3.30). This simplifies
the argument below, and is responsible for a OG,H(ε) error term.
Similarly, the sum in the B′k terms (3.31) is transformed into:

1

2N

∑
x∈V ε(γ)

|tεNx · e2||tεNx · e1|
(
− σ2∂1 + σ1∂2

)
G(x) + error. (3.37)

To conclude the proof of Lemma 3.7, it remains to prove that the contribution of (3.36) and (3.37) is,
up to small errors in ε,N :

(3.36) + (3.37) =
1

4N

∑
x∈V ε(γ)

[
t ·m(x)

]
t · ∇G(x), (3.38)

where the vector m is defined in Definition 3.6, and t is short for tεNx ; write also t1, t2 for tεNx · e1, t
εN
x · e2,

x ∈ V ε(γ). To prove (3.38), write, not explicitly mentioning the error terms:

(3.36) + (3.37) =
1

4N

∑
x∈V ε(γ)

[(
− |t2|σ1 + 2|t1||t2|σ1

)
∂2 +

(
|t1|σ2 − 2|t1||t2|σ2

)
∂1

]
G(x)

=
1

4N

∑
x∈V ε(γ)

[
σ1|t2|

(
|t1| − |t2|

)
∂2 + σ2|t1|

(
|t1| − |t2|

)
∂1

]
G(x). (3.39)

To obtain the second line, we used that |t1|+ |t2| = 1 by definition of t, see (3.4).
Recall from (3.28) the definition of (σ1, σ2), and by the ensuing discussion and (3.29) the fact that
m = (σ2,−σ1), with m as in Definition 3.6. Recall moreover that V ε(γ) ⊂ V (γ) is the set of points at
1-distance more than ε to the poles to obtain:

∀x ∈ V ε(γ), |t1| = |tεNx · e1| = σ1t1, |t2| = σ2t2.
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This is because all points in B1(x, ε) are in the same quadrant for x ∈ V ε(γ), thus σ1, σ2 are constant
on B1(x, ε). As a result, (3.39) becomes:

(3.36) + (3.37) =
1

4N

∑
x∈V ε(γ)

[
σ1σ2t2

(
σ1t1 − σ2t2

)
∂2 + σ2σ1t1

(
σ1t1 − σ2t2

)
∂1

]
G(x)

=
1

4N

∑
x∈V ε(γ)

[
σ2t1 − σ1t2

][
t1∂1 + t2∂2

]
G(x)

=
1

4N

∑
x∈V ε(γ)

[
t ·m(x)

]
t · ∇G(x). (3.40)

Now properly integrating (3.24) in time and including all error terms in (3.30)-(3.31)-(3.35), one obtains
the following expression of the Bulk term on Z̃B (defined in (3.34)):∫ T0

0

[Bulk term evaluated at γτ ]dτ = OG,H(δ) +OG,H

(∫ T0

0

dτ

4∑
k=1

pk(τ)

N

)
+

1

4N

∫ T0

0

dτ
∑

x∈V ε(γτ )

[
tεNx ·m(x)

]
tεNx · ∇G(τ, x)dτ

− 1

4

∫ T0

0

4∑
k=1

[
G(τ, Lk(τ)) +G(τ, Rk(τ))

]
dτ +

1

N

∫ T0

0

dτ
∑

x∈V (γτ )

|tεNx · e1||tεNx · e2|(GH)(τ, x).

This is equation (3.20) in Lemma 3.7, up to the error term
∫ T0

0

∑
k pk/N . We defined in (3.17) the set

BN
p (2, β) in which it is of order N−1, so that if the set ZB in Lemma 3.7 is defined as:

ZB := (Z̃B)NH,G(δ, ε) ∩BN
p (2, β), (3.41)

then, on this set,
∫ T0

0
pk(t)/N = O(N−1), and ZB satisfies

lim sup
ε→0

lim sup
N→∞

1

N
logPNr,β,H

(
∀τ ∈ [0, T0], γτ ∈ Er; γ· /∈ ZB

)
= −∞.

This concludes the proof of Lemma 3.7.

Let us summarise our results and conclude the proof of Proposition 3.1. We have shown the existence
of two sets ZP , ZB of trajectories in (3.18)-(3.41), with (ZP )c ∪ (ZB)c ∩ E([0, T ], Er(d)) having PNr,β,H-
probability super-exponentially small. This yields the set Z in Proposition 3.1, setting:

Z = ZN
H,G(A = 2, β, δ, ε) = ZP (2, β, δ) ∩ (ZB)NH,G(2, β, δ, ε). (3.42)

In Section 3.2.1, all Pole terms (3.13)-(3.14) were computed, and shown to yield the e−β term contribution
of the last line of (3.51). In Section 3.2.2, the other terms in (3.51) have been identified. Proposition
3.1 is thus proven. once one recalls the definitions (3.5) of vεN , T εN and replaces tεN by vεNT εN .

�
of Proposition 3.1.
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Step 2: Replacement of the discrete sums by line integrals
In Proposition 3.1, discrete sums on all vertices of a contour in N−1XN

r appear. In the large N limit
for element of Er, the corresponding N -independent object should be some sort of line integral, thus
depends on the contour. In comparison, in the exclusion process the domain on which configurations
live is fixed. Correspondingly, only integrals on a fixed interval arise in the large N limit.
If γ ∈ N−1XN

r ∩ Er and s is the line abscissa on γ, for any continuous mapping f : γ → R:

1

N

∑
x∈V (γ)

f(x) =
∑

x∈V (γ)

f(x)[s(x+ e+
x /N)− s(x)] =

∫
γ

fds. (3.43)

In writing (3.43), information about the lattice structure was omitted, and the resulting functional
on the right-hand side of (3.43) is not continuous on Er, not even if f ≡ 1. Indeed, take a sequence
γN ∈ N−1XN

r ∩Er converging to some γ∞ ∈ Er. The left-hand side of (3.43) converges, for f ≡ 1, to the
length of γ∞ in 1-norm, whereas the right-hand side evaluated at γ∞ is equal to the length in 2-norm,
which is in general not the same.
The correct way to write the left-hand side of (3.43), that retains sufficient information on the lattice
structure to yield a continuous functional on (a nice subset of) Er, is the following:

1

N

∑
x∈V (γ)

f(x) =
1

N

∑
x∈V (γ)

f(x)‖Tx‖1 =

∫
γ

fv−1ds, (3.44)

where T is the tangent vector normed by ‖T‖ = 2 and v−1 = ‖T‖1 is almost everywhere equal to 1
on γ ∈ N−1XN

r ∩ Er, hence the equalities in (3.44). The proof of the continuity of the right-hand side
of(3.44) in Hausdorff distance is not related to microscopic computations, so we postpone it to Propo-
sition 4.1.

Let us however motivate the factor v−1 in (3.44), when e.g. v−2 would a priori also work. Take
γN ∈ N−1XN

r and x ∈ V ε(γN), i.e. x is at 1-distance at least ε from the poles. For definiteness take x
in the first quadrant. By definition of XN

r , see Figure 1, in the reference frame R1 = (O, e−π/4, eπ/4),
the curve γN ∩B1(x, ε) is the graph of a 1-Lipschitz function f 1:

γN ∩B1(x, ε) =
{

(y, f 1(y))R1 : y ∈ u+ [−ε/
√

2, ε/
√

2]
}
, u := x · e−π/4.

As a result, tεNx reads:

tεNx =
1√
2ε

∫ u+ε/
√

2

u−ε/
√

2

t(y)dy, t(y) =

√
2

2

(
1, ∂yf

1(y)
)
R1

(3.45)

where t is the tangent vector normed by ‖t‖1 = 1, defined almost everywhere for a Lipschitz curve.
Since γN ∈ N−1XN

r , ‖t‖2 = 1 almost everywhere. Recall that, by definition:

t = vT, ‖t‖1 = 1, ‖T‖2 = 1, v = ‖t‖2 = (‖T‖1)−1. (3.46)

Expression (3.45) does not explicitly depend on N any more, thus can also be written for a curve γ ∈ Er.
Define the set γ(ε) ⊂ γ of points at 1-distance ε or more to the poles, and similarly write:

∀k ∈ {1, ..., 4},∀x ∈ γ(ε) ∩ Ck(γ), tε(x) =
1√
2ε

∫ x·eπ/4−kπ/2+ε/
√

2

x·eπ/4−kπ/2−ε/
√

2

t(y)dy. (3.47)
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Recall that Ck(γ) is quadrant k of γ, defined in Figure 1 or in Appendix B. The vector tε(x) indeed
satisfies ‖tε(x)‖1 = 1, and coincides with tεNx if γ ∈ N−1XN

r and x ∈ V (γ). Let us now change variables
to obtain a line integral in (3.47). To do so, define d±ε (·) ≥ 0 as the functions of the line abscissa on γ
that satisfy:

∀s ≤ |γ|2, ‖γ(s± d±ε (s))− γ(s)‖1 = ε. (3.48)

The quantity |γ|2 is the usual Euclidean length of γ. Recall the notations (xk, fk)Rk of Section 2.2
to write the portion in quadrant k of γ as the graph of the function fk in the reference frame Rk,
k ∈ {1, ..., 4}. With xk = x · eπ/4−kπ/2 if x ∈ Ck(γ) and dxk =

[
1 + (∂xkf

k)2
]−1/2

dσ, (3.47) becomes, if
s(x) denotes the value of the line abscissa associated with x and dσ is an integration with respect to
line abscissa, and d±ε is short for d±ε (s(x)):

∀k ∈ {1, ..., 4},∀x ∈ γ(ε) ∩ Ck(γ), tε(x) =
1√
2ε

∫ s(x)+d+
ε

s(x)−d−ε

t(σ)dσ√
1 + (∂xkfk)2

=
1

2ε

∫ s(x)+d+
ε

s(x)−d−ε
T (σ)dσ,

(3.49)
where we used t = vT which implies ‖t‖2 = v. In other words, the factor v−1 in (3.44) is exactly what
is needed to pass from the parametrisation by 1-Lipschitz curves on each quadrants, inherited from the
lattice structure, to a line integral formulation. Define now T ε and vε from tε:

∀s ≤ |γ|2, T ε(s) := tε(s)/‖tε(s)‖2, vε(s) := ‖tε(s)‖2 =
1

‖T ε(s)‖1

. (3.50)

Using (3.49)-(3.50), it is straightforward to transform Proposition 3.1 into the following.

Proposition 3.9. With the notations and the set Z defined in Proposition 3.1, trajectories in Z satisfy:∫ T0

0

N2Lr,β,H
〈
Γτ , Gτ

〉
dτ =

1

4

∫ T0

0

dτ

∫
γτ (ε)

(vε)2

v

[
T ε ·m(γτ (sτ ))

]
T ε · ∇G(τ, γ(sτ ))dsτ

+
1

2

∫ T0

0

dτ

∫
γτ (ε)

(vε)2

v
|T ε1 ||T ε2 |(HG)(τ, γτ (sτ ))dsτ + C(G,H)(δ + oN(1))

− 1

2

∫ T0

0

4∑
k=1

(1/2− e−β)
[
G(τ, Lk(Γτ )) +G(τ, Rk(Γτ ))

]
dτ, (3.51)

where sτ is the line abscissa on γτ , γτ (ε) is the set of points in γτ at 1-distance at least ε from the poles
and m = (±1,±1) is the sign vector in Definition 3.6. The T εi , i ∈ {1, 2} stand for the components of
T ε defined in (3.50). Note that both v and vε appear in (3.51). There is a vεT ε for each tε in Lemma
3.7, while the v comes from the change of variable (3.44) to get a line integral from discrete sums.

Remark 3.10. • Note that the line integral on the second line of (3.51) bears on γτ (ε), whereas
the corresponding sum in Proposition 3.1 bore on the whole of V (γτ ). This change is purely for
convenience and induces an error OG,H(ε) = C(G,H)oδ(1) independent of the curve.

• To connect (3.51) to the weak formulation (2.30) of anisotropic motion by curvature with drift,
notice from (3.47) that limε→0 t

ε(x) converges to t(x) for almost every point of a curve that is at
1-distance ε or more to the poles. As a result, T ε, vε, defined in (3.50), converge a.e. to T, v on
such portions of a curve, and:

lim
ε→0

[
(vε)2

v
|T ε1T ε2 |

]
(θ) =

(
v|T1T2|

)
(θ) =

sin(2θ)

2(| sin(θ)|+ | cos(θ)|)
for θ ∈ [0, 2π].
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This quantity is precisely µ(θ), see (2.26). In the same way, if θ ∈ [0, 2π] \ π
2
Z:

lim
ε→0

[
(vε)2

v
[T ε ·m]

]
(θ) T ε(θ) · ∇ =

[
v[T ·m]

]
(θ) T (θ) · ∇ = α(θ)∂s,

where α is defined in (2.31) and ∂s = ∂T is the derivative with respect to line abscissa, almost
everywhere well defined.

• In (3.51), the tangent vector at each point is averaged on a portion of 1-length ε of the curve.
Away from the poles, this is a natural choice, well adapted to the underlying SSEP structure, see
Section 2.2.
At the poles however, this requires the knowledge of the position of the pole, that is the posi-
tion of a point whereas the droplets are volumic objects. Even more, the line integrals bear on
γτ (ε), τ ∈ [0, T0], the set of points at 1-distance ε from the poles of γτ , and the last line of (3.51)
explicitly requires the knowledge of the Lk, Rk, k ∈ {1, ..., 4}. If the droplet boundaries were less
regular, such a requirement would not be reasonable.

Instead, as in the BV setting (see e.g. [EG15]), it would make sense to define a weaker notion of
neighbourhood of the pole in terms of volume, replacing e.g. Lk, Rk by an average over all points
of the droplet in an area of volume ε around pole k ∈ {1, ..., 4}. This definition would then be
relevant even with less regular droplets, and we use it in Section 4 to control the poles.
However, the formulation of Proposition 3.9 for N2Lr,β,H

〈
Γ, G

〉
is useful for the following reason.

When integrating by parts the α term in (2.30) assuming the corresponding curves to be smooth,
the position of the pole actually arises as a boundary term. This fact is retained in our microscopic
computations, where the Lk, Rk terms naturally come out. �

4 Large deviation upper-bound and properties of the rate func-
tions

In this section, we prove upper bound large deviations, i.e. the upper bound in Theorem 2.6. Many
results presented below are well-known, so we only detail model-specific results. A time T0 > 0 is
fixed throughout the section. Parameters r, β are fixed according to Definition 2.1. The parameter r is
omitted in the notations.
For H ∈ C, the Radon-Nikodym derivative DN

β,H = dPNβ,H/dPNβ until time T0 reads:

N−1 logDN
β,H((Γτ )τ≤T0) =

〈
ΓT0 , HT0

〉
−
〈
Γ0, H0

〉
−
∫ T0

0

e−N
〈

Γτ ,Hτ

〉(
∂τ +N2Lβ

)
eN
〈

Γτ ,Hτ

〉
dτ. (4.1)

Recall from (3.42) the definition of ZN
H,H(A = 2, β, δ, ε) =: Z, the set of trajectories in which the

computations of Section 3 can be performed, and from Definition 3.6 that of m. Refer to Appendix
B.2 for properties of E([0, T0], Er(d)), d ∈ (0, 1). For a trajectory (Γτ )τ∈[0,T0] in Z ∩E([0, T0], Er(d)), the
results of Proposition 3.9 apply with next to no change to (4.1), so that on Z, DN

β,H satisfies:

N−1 logDN
β,H(Γ) = JβH,ε(Γ) + C(H)(oδ(1) + oN(1)), (4.2)

where JβH,ε is the functional defined on E([0, T0], Er) by (γτ = ∂Γτ , τ ∈ [0, T0]):

∀Γ ∈ E([0, T0], Er), JβH,ε(Γ) = `βH,ε(Γ)− 1

2

∫ T0

0

∫
γτ (ε)

|T ε1T ε2 |
(vε)2

v
H2(τ, γτ (sτ ))dsτdτ. (4.3)
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The functional `βH,ε is defined as:

∀Γ ∈ E([0, T0], Er), `βH,ε(Γ) =
〈
ΓT0 , HT0

〉
−
〈
Γ0, H0

〉
−
∫ T0

0

〈
Γτ , ∂τHτ

〉
dτ

− 1

4

∫ T0

0

dτ

∫
γτ (ε)

(vε)2

v

[
T ε ·m(γτ (sτ ))

]
T ε · ∇H(τ, γ(sτ ))dsτ (4.4)

+
(1

4
− e−β

2

)∫ T0

0

4∑
k=1

[
H(τ, Lk(τ)) +H(τ, Rk(τ))

]
dτ.

Recall that, for τ ∈ [0, T0], γτ (ε) is the set of points in γτ at 1-distance at least ε from the poles.

Formally taking the limit ε ↓ 0, we claim that JβH,ε, `
β
H,ε converge point-wise to JβH , `

β
H respectively,

defined in (2.33)-(2.32). Furthermore, the functionals JβH,ε, `
β
H,ε are continuous on Epp([0, T0], Er), the

subset of E([0, T0], Er) with trajectories with almost always point-like poles. These claims, assumed for
the moment, are established in Section 4.2.

4.1 Upper bound for open and compact sets

Fix d, T0 > 0. In this section, we establish the upper-bounds in Theorem 2.6 for open and compact sets
in
(
E([0, T0], Er(d)), dE

)
(see Appendix B.2), with dE the distance defined in (B.4). To do so, we admit

the continuity of the functionals (JβH,ε)ε and their point-wise convergence to JβH on Epp([0, T0], Er(d))
(defined in (2.34)). This convergence is established in Section 4.2.

Let us start by listing the several sets with sub-exponential probability on which the dynamics will
be restricted to obtain the upper bound of Theorem 2.6. Let O ⊂ E([0, T0], Er(d)) be an open set of
trajectories. Recall that Er(d) is the set of droplets at distance at least d > 0 from ∂([−1, 1])2. Recall
also from (3.42) the definition of the set Z, on which the pole size is microscopic and the Replacement
lemma 3.8 holds, and define:

UN = UN(H,A = 2, β, δ, ε) :=
1

N
logENβ,H

[(
DN
β,H

)−1
1O1Zc

]
=

1

N
logENβ

[
1O1Zc

]
. (4.5)

We argue in the proof of the Replacement lemma in Appendix A that, for any δ, d > 0,

inf
ε>0

lim sup
N→∞

UN = −∞. (4.6)

Let us now turn to the behaviour of the poles. It is proven in Section 6.2.4 that the time integrated
slope around the pole is e−β up to a small error, with probability super-exponentially close to 1 (see
Corollary 6.11). This is better stated in terms of volume below the pole (see the last item of Remark
3.10): for η > 0, define Vη as the volume of points with ordinate at most η below the north pole:

∀Γ ∈ Er, Vη(Γ) =
∣∣{x ∈ Γ : ymax(Γ)− x · e2 ≥ η

}∣∣. (4.7)

Compared to the slope, the volume Vη is more robust to changes in the position of the pole: Vη is
continuous on Er equipped with the Hausdorff distance dH , since ymax, the ordinate of the highest point
of an element of Er, also is (and similarly for the volumes beneath the other three poles).
By Lemma B.14, for each q, n ∈ N∗, there is η(q, n) > 0 such that, for any η ≤ η(q, n):

lim sup
N→∞

1

N
logPNr,β,H

(
∀t ∈ [0, T0],Γt ∈ Er(d);

1

T0

∣∣∣∣ ∫ T0

0

[
Vη(Γt)− η2(eβ − 1)

]
dt

∣∣∣∣ > 1

n

)
≤ −q. (4.8)
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Define thus the setDq,n where the portion below the pole is roughly triangular at all distances kη(q,m)/m
of the pole for each 1 ≤ m ≤ n, 1 ≤ k ≤ m and has volume controlled in terms of β:

Dq,n :=

{
∀m ∈ {1, ..., n},∀k ∈ {1, ...,m}, 1

T0

∣∣∣∣ ∫ T0

0

[
V(k/m)η(q,m)(Γt)−

(kη(q,m)

m

)2

(eβ − 1)
]
dt

∣∣∣∣ ≤ 1

m

}
∩ {similar event for the other three poles} ∩ E([0, T0], Er(d)). (4.9)

Since Vη is continuous on Er, the set Dq,n is closed in E([0, T0], Er(d)). Moreover, by construction
Dq,n ⊂ Dq,n′ if n ≤ n′, and for each q ≥ 1, the set Dq contains only trajectories in Epp([0, T0], Er(d)),
where:

Dq :=
⋂
n≥1

Dq,n. (4.10)

Indeed, poles of trajectories in Dp are almost always point-like because the time averaged volume
T−1

0

∫ T0

0
Vη(t)dt beneath a pole must be of order η2 for η > 0 by (4.9). Moreover, by (4.8):

lim sup
N→∞

PN
q,n := lim sup

N→∞

1

N
logPNβ,H

(
Dc
q,n ∩ E([0, T0], Er(d))

)
≤ −q.

We are now equipped to obtain the upper bound large deviations. Recalling (4.2), one has:

N−1 logQN
β (O) ≤ max

{
N−1 logENβ,H

[(
DN
β,H

)−1
1O1Z1Dq,n

]
, UN , PN

q,n

}
≤ max

{
C(H)(oδ(1) + oN(1)) + sup

Γ∈O∩Dq,n
(−JβH,ε(Γ)), UN , PN

q,n

}
.

Take first the limit in N :

lim sup
N→∞

N−1 logQN
β (O) ≤ max

{
C(H)oδ(1) + lim sup

N→∞
sup

Γ∈O∩Dq,n
(−JβH,ε(Γ)), lim sup

N→∞
UN ,−q

}
.

Minimising in n, since (Dq,n)n is decreasing, it is not difficult to see that any trajectory not in Dq,
defined in (4.10), is excluded from the supremum. This yields the following upper bound for open sets:

lim sup
N→∞

N−1 logQN
β (O) ≤ max

{
CHoδ(1) + sup

Γ∈O∩Dq
(−JβH,ε(Γ)), lim sup

N→∞
UN ,−q

}
.

Minimise over δ, ε, then over H ∈ C and q ≥ 1 to find, using (4.6):

lim sup
N→∞

N−1 logQN
β (O) ≤ inf

q≥1
inf
H∈C

inf
δ,ε

{
sup

Γ∈O∩Dq
(−JβH,ε(Γ)) + C(H)oδ(1)

}
. (4.11)

Upper bound for compact sets:
The point of restricting the supremum to trajectories in Dq ⊂ Ep([0, T0], Er(d)) is that JβH,ε is continuous
on this set for each H ∈ C, ε > 0, as proven in Proposition 4.1. We use this to first obtain a nicer bound
on compact sets.
Let K be a compact set in E([0, T0], Er(d)). The error term C(H)oδ(1) is independent of the trajectory,
thus also continuous on Dq. Lemmas A.2.3.2 and A.2.3.3 in [KL99] thus apply to the continuous family
(−JβH,ε + C(H)oδ(1))H,ε,δ on the compact set K ∩Dq (Dq is closed) and we obtain:

lim sup
N→∞

N−1 logQN
β (K) ≤ inf

q≥1
sup

Γ∈K∩Dq
inf
H∈C

inf
ε

(
− JβH,ε(Γ)

)
. (4.12)
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For each fixed H ∈ C and each Γ ∈ Dp, by Proposition 4.1,

−JβH,ε(Γ) = −JβH(Γ) + C(Γ, H)oε(1) where C(Γ, H)oε(1) can be taken positive.

Equation (4.12) thus becomes:

lim sup
N→∞

N−1 logQN
β (K) ≤ inf

q≥1
sup

Γ∈K∩Dq
inf
H∈C

(
− JβH(Γ)

)
≤ − inf

K
Iβ(·|Γ0), (4.13)

The last bound comes from the fact that Dq ⊂ Epp([0, T0], Er(d)) for each q. By definition of Iβ(·|Γ0)
(see (2.35)), this is the desired upper bound for compact sets.

Upper bound for closed sets:
Upper bound large deviations follow from the exponential tightness of

(
QN
r,β(·, E([0, T0], Er(d))

)
N

in
M1(E([0, T0], Er(d))). Establishing tightness is quite technical, so we postpone it to Appendix B.3 and
conclude here the proof of the upper bound in Theorem (2.6).

4.2 Properties of the rate function

In this section, continuity of the functional JβH,ε is established on the set Epp([0, T0], Er(d)) of trajectories
with almost always point-like poles (see (2.34)). A parameter d > 0 is fixed throughout the section.
The functional JβH,ε is defined in (4.3)-(4.4).

Proposition 4.1. Let H ∈ C and ε > 0. The functional JβH,ε, defined in (4.3), is continuous on the set
Epp([0, T0], Er(d)) of trajectories with almost always point-like poles, equipped with the distance dE (see
(2.29)). Moreover,

lim
ε→0

JβH,ε(Γ) = JβH(Γ) pointwise on Epp([0, T0], Er(d)). (4.14)

The same holds for JH,ε.

Before proving Proposition 4.1, let us state an intermediate result which explains the advantage of
dealing with trajectories in Epp([0, T0], Er(d)) rather than in E([0, T0], Er(d)).

Lemma 4.2 (Convergence of the poles). For n ∈ N, let (Γn ∈ E([0, T0], Er(d)) and assume that (Γn)

converges to Γ ∈ Epp([0, T0], Er(d)) for the distance
∫ T0

0
dH(·, ·)dt ≤ dE. Then Lk(Γt) = Rk(Γt) for each

k ∈ {1, ..., 4} and almost every time since Γ has almost always point-like poles, and:

∀k ∈ {1, ..., 4}, lim
n→∞

∫ T0

0

dt‖Lk(Γnt )− Lk(Γt)‖1 ∨ ‖Rk(Γ
n
t )−Rk(Γt)‖1dt = 0. (4.15)

Proof. We deal with the north pole, the others are the same. For Γ̃ ∈ Er, let ymax(Γ̃) be the ordinate of
its north pole. Notice that ymax is 1-Lipschitz in Hausdorff distance. Since L1 · e2 = R1 · e2 = ymax, we
find: ∫ T0

0

dt|L1(Γnt ) · e2 − ymax(Γt)| ∨ |R1(Γnt ) · e2 − ymax(Γt)|dt

=

∫ T0

0

dt
∣∣ymax(Γnt )− ymax(Γt)

∣∣dt ≤ ∫ T0

0

dH(Γnt ,Γt)dt −→
n→∞

0.
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As for the second component of L1(Γn), R1(Γn), the two functionals R1 · e1 and L1 · e1 are respectively
upper and lower semi-continuous on Er. In particular, if for some t ∈ [0, T0] the droplet Γt has point-like
poles and dH(Γnt ,Γt) vanishes, then:

L1(Γt) · e1 ≤ lim inf
n→∞

L1(Γnt ) · e1 ≤ lim sup
n→∞

R1(Γnt ) · e1 ≤ R1(Γt) · e1 = L1(Γt) · e1,

whence:

lim
n→∞

∫ T0

0

∣∣L1(Γnτ ) · e1 − L1(Γτ ) · e1

∣∣ ∨ ∣∣R1(Γnτ ) · e1 −R1(Γτ ) · e1

∣∣dτ = 0.

Proof of Proposition 4.1. In view of the expression (4.3)-(4.4) of JβH,ε, we need to study the continuity
on Epp([0, T0], Er(d)) of the two terms(

1

4
− e−β

2

) 4∑
k=1

∫ T0

0

[
H(τ, Rk(τ)) +H(τ, Lk(τ))

]
dτ, (4.16)

−
∫ T0

0

∫
γτ (ε)

(vε)2

4v

[
T ε ·m

]
T ε · ∇Hdsτdτ −

1

2

∫ T0

0

∫
γτ (ε)

(vε)2

v
|T ε1T ε2 |H2dsτdτ. (4.17)

The functional in (4.16) has already been treated in Lemma 4.2: any trajectory in Epp([0, T0], Er(d)) is
one of its points of continuity for

∫ T0

0
dHdt ≤ dE, hence for dE.

Consider now (4.17). Clearly, to prove that Γ is a point of continuity of this functional, it is enough
to prove that the integrand at each fixed time in (4.17), seen as a functional on (Er, dH), is continuous
on the set Eppr ⊂ Er of droplets with point-like poles.
We prove it for the first term in (4.17), the second one is similar. For H ∈ C2([−1, 1]2), consider the
functional:

∀Γ ∈ Er, FH,ε(Γ) =

∫
γ(ε)

(vε)2

4v

[
T ε ·m

]
T ε · ∇Hds. (4.18)

The definition of T ε, vε is given in (3.50), v = ‖T‖−1
1 with T the tangent vector normed by ‖T‖2 = 1,

and m is the sign vector in Definition 3.6.
Let Γn ∈ Er, n ∈ N converge in Hausdorff distance to Γ ∈ Eppr . The idea is to split the integral in (4.18)
between each quadrant of Γ. On each quadrant, the integrand, expressed in terms of the equivalent
SSEP, is easily shown to be continuous.

Let us first prove that we can consider the integrand on each quadrant of Γ separately. Recall from
Section 2.2 the definition of the functions fk : Ik → R, whose graph at each time in the reference
frame Rk, defined in (2.16), is the portion of γ in its quadrant k. Define similarly fkn for the γn = ∂Γn,
n ∈ N. For brevity, we write T n,ε = T ε(Γn) and similarly vn,ε,mn for vε(Γn),m(Γn). Let Ikn = [akn, b

k
n],

Ik = [ak, bk] be the intervals of definition of the functions fkn(·), fk(·) respectively, for k ∈ {1, ..., 4}. As
Γ ∈ Eppr , (Lk(Γ

n)), (Rk(Γ
n)) converge to Lk(Γ) as n is large by (the proof of) Lemma 4.2. As a result,

limn γn(ε) = γ(ε) in Hausdorff distance, and:

∀k ∈ {1, ..., 4}, lim
n→∞

akn = ak, lim
n→∞

bkn = bk. (4.19)
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Equation (4.19) enables us to consider the integrand in (4.18) on each quadrant of Γ separately. Indeed,
fix η ∈ (0, ε/

√
2). For all n large enough and each k, (4.19) tells us that fnk is well defined on [ak+η, bk−η],

and in particular in the portion of γ(ε) in quadrant k of Γ, i.e. for xk ∈ [ak + ε/
√

2, bk − ε/
√

2]. As a
result, FH,ε can be recast as follows: for each Γ̃ ∈ Er,

FH,ε(Γ̃) =
4∑

k=1

∫ b̃k+ε/
√

2

ãk+ε/
√

2

(vε(xk))2

2
√

2

[
T ε(xk) ·m(xk)

]
T ε(xk) · ∇H(τ, (xk, f̃k(xk))Rk)dx

k. (4.20)

To write (4.21), we used the relation:

ds(xk) =
(
1 + (∂xk f̃

k)2
)1/2

dxk =
√

2vdxk,

where the last equality comes from Section 2.2, see (2.24). As a consequence of (4.20), continuity of
FH,ε is proven as soon as, for each k ∈ {1, ..., 4}:

lim
n→∞

∫ bk−ε/
√

2

ak+ε/
√

2

(vn,ε(xk))2

2
√

2

[
T n,ε(xk) ·mn(xk)

]
T n,ε(xk) · ∇H(τ, (xk, fkn(xk))Rk)dx

k (4.21)

=

∫ bk−ε/
√

2

ak+ε/
√

2

(vε(xk))2

2
√

2

[
T ε(xk) ·m(xk)

]
T ε(xk) · ∇H(τ, (xk, fk(xk))Rk)dx

k.

Note the replacement of akn, bkn by ak, bk in the first line of (4.21), thanks to (4.19) and the fact that the
integrand in (4.21) is bounded.
Fix k ∈ {1, ..., 4}. On quadrant k, the integral in (4.21) has a much simpler expression in terms of the
tangent vector tn,ε with 1-norm equal to 1, defined in (3.47). Indeed, recall from (3.50) that, for each
xk ∈ Ik,

vn,ε(xk)T n,ε(xk) = tn,ε(xk) =

(√
2

2
,
fkn(xk + ε/

√
2)− fkn(xk − ε/

√
2)

2ε/
√

2

)
Rk

=:

√
2

2

(
1,∆εf

k
n(xk)

)
Rk
. (4.22)

Moreover, the function m, defined in Definition 3.6 is equal to a sign vector, determined only by the
index of the quadrant. As a result, for n large enough, mn = m for each xk ∈ [ak + ε/

√
2, bk − ε/

√
2],

k ∈ {1, ..., 4}, and vn,ε
[
T n,ε ·mn

]
(θk) reads:

vn,ε
[
T n,ε ·mn

]
(θk) = tn,ε(xk) ·m(xk) = −f

k
n(xk + ε/

√
2)− fkn(xk − ε/

√
2)

2ε
= −∆εf

k
n(xk).

The integral in (4.21) then becomes, for n large enough and with ∂yk = ∂eπ/4−(k−1)π/2
the partial derivative

with respect to the second basis vector in Rk:

− 1

4

∫ bk−ε/
√

2

ak+ε/
√

2

∆εf
k
n(xk)

[
∂xk + ∆εf

k
n(xk)∂yk

]
H((xk, fkn(xk))Rk)dx

k. (4.23)

Observe that xk 7→ ∂ykH((xk, fkn(xk)) is continuous, and that ∆εf
k
n(xk) converges point-wise to ∆εf

k(xk),
defined as in (4.22). As the integrand in (4.23) is bounded, the dominated convergence theorem yields
(4.21), hence the Hausdorff continuity of FH,ε and the dE-continuity of the first term in (4.17). The
second term in (4.18) is treated similarly.

We now turn to the point-wise convergence of JβH,ε to J
β
H as ε ↓ 0, i.e. the proof of (4.14). The fact

that T ε → T for almost every point of a curve and the dominated convergence theorem immediately
give the result. This concludes the proof of Proposition 4.1.

35



5 Lower bound large deviations and hydrodynamic limits
In this section, we prove lower bound large deviations for the measures {QN

r,β : N ∈ N∗}, i.e. the lower
bound in Theorem 2.6. The method is expounded in [KL99]. It consists in first proving hydrodynamic
limits for all the {QN

r,β,H : N ∈ N∗}, H ∈ C, which are shown to concentrate on solutions to anisotropic
motion by curvature with drift in the sense of (2.30). This yields a lower-bound, that matches the
upper-bound of Section 4 for smooth trajectories. In this article, we will not consider more general
trajectories, as the analysis of solutions to (2.30) proves to be very difficult due to the motion of the
poles.

5.1 Large deviation lower-bound

In this section, we explain how to obtain lower bound large deviations assuming the following points:

1. trajectories typically remain in the effective state space Er(d) for some d ∈ (0, 1/4], which is
Proposition 2.3;

2. the hydrodynamic limit of the measures {QN
r,β,H : N ∈ N∗} can be characterised for each H ∈ C

(this is Proposition 2.4), and we consider only those H ∈ C for which the weak formulation (2.30)
of the anisotropic motion by curvature with drift has a unique solution, which is additionally
continuous in time in Hausdorff topology.

With these two assumptions, one concludes on a lower-bound in the same way as in [KL99], Chapter
10, Section 5.
More precisely, let H ∈ C, and let ΓH ∈ E([0, TH),

⋃
r,d>0 Er(d)) be a solution of (2.30). Assume that H

is chosen such that ΓH is the only solution, and is continuous in time in Hausdorff topology. ΓH exists
until a maximal time TH , which is the first time ΓH reaches ∂([−1, 1]2), or has either opposite quadrants
touching each other, or two consecutive poles collapsing into a segment. For any r ∈ (0, r0), there is a
time Tr < TH such that:

• ΓH takes values in Er(1/2) on [0, Tr]. This is a technical point related to the proof of item 2 of
Proposition 2.3 in Section 5.2.

• For any T0 ≤ Tr, the measures QN
r,β,H , N ∈ N∗ concentrate in the large N limit on δ(ΓH)t≤T0

.

For each T0 ≤ Tr, recall from (2.36) the definition of the set ACT0,r,β
. Let O ⊂ E([0, T0], Er(1/2)) be an

open set. Assume there is H ∈ C such that ΓH|[0,T0] ∈ O ∩ACT0,r,β
. Then:

lim inf
N→∞

N−1 logQN
r,β(O) ≥ −Iβ

(
(ΓH)t≤T0|Γ0

)
⇒ lim inf

N→∞
N−1 logQN

r,β(O) ≥ − inf
O∩ACT0,r,β

Iβ(·|Γ0). (5.1)

We now prove (5.1) under the assumptions listed at the beginning of this section. As in [KL99], the proof
consists in a change of probability from PNr,β to a tilted measure PNr,β,H , and in using Jensen inequality
to bound from below logQN

r,β,H(O) by the entropy ENr,β,H [log dPNr,β/dPNr,β,H ].
The only difference in our case comes from the fact that the quantity N−1

(
log dPNr,β/dPNr,β,H

)
is not

bounded on E([0, T0], N−1XN
r ). Indeed, from the proof of Proposition 3.1 (see in particular (3.14))

which, although stated for Lr,β,H
〈
Γ, G

〉
for G ∈ C, is easily adapted to dPNr,β/dPNr,β,H(Γ), it must satisfy:

N−1
(

log dPNr,β/dPNr,β,H
)
(Γ) =

4∑
k=1

∫ T0

0

[
(pk(γt)− 1)e−2β1Pk∩∂([−1,1])2 −1pk=2,DPkr

]
dt+C(H)ON(1), (5.2)
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and pk can be of order N for each k ∈ {1, ..., 4}. Above, DP k
r is either Vr or Hr, defined in (2.9)-(2.10),

depending on the value of k ∈ {1, ..., 4}. This unbounded term is however easily controlled as we shall
see. Proceeding as in [KL99], one obtains, for each H such that (ΓH)t≤T0 ∈ O and each δ > 0, each ε
small enough as a function of δ:

N−1 logQN
r,β(O) ≥ ENr,β,H

[
− JβH,ε1Z∩O

]
+OH(δ) + oN(1) (5.3)

+ ENr,β,H
[
1O1Zc2

4∑
k=1

∫ T0

0

[
(pk(γτ )− 1)e−2β1Pk∩∂([−1,1])2 − 1pk(γτ )=2,DPkr

]
dt

]
.

Recall that JβH,ε is defined in (4.3), and Z is the set of (3.42), on which the Replacement lemma applies
with error δ and the pole terms are controlled. The set Zc∩O has probability super-exponentially small
in the large N , small ε limit. In particular, it has probability bounded by e−c(ε)N for some c(ε) > 0
under PNr,β,H , for ε small enough uniformly on N large enough. This accounts for the oN(1) term in the
first line, and shows that the expectation on the second line is oN(1) as well.

We now study the expectation in the first line of (5.3), and show that it is equal to −JβH,ε(ΓH). As an
element (in fact, the only one by hypothesis) in the support of the hydrodynamic limit of (QN

r,β,H)N , ΓH

must have almost always point-like poles on [0, T0]. It is thus a point of continuity of JβH,ε by Proposition
4.1. As such, for a fixed η > 0, one has:

sup
Γ∈BdE (ΓH ,η)

∣∣JβH,ε(Γ)− JβH,ε(Γ
H)
∣∣ = ωΓH ,H,ε(η).

Above, BdE(ΓH , η) is the open ball with radius η centred on ΓH , and ωΓH ,H,ε(·) is the modulus of
continuity of JβH,ε at ΓH , in which we stress the dependence on both ΓH and H, and which vanishes at
0. The first expectation in (5.3) is then recast as follows:

ENr,β,H
[
− JβH,ε1Z∩O

]
= −JβH,ε(Γ

H)ENr,β,H
[
1Z∩O∩BdE (ΓH ,η)

]
+Oη(ωΓH ,H,ε(η))

+ ENr,β,H
[
1Z∩O∩BdE (ΓH ,η)c

(
− JβH,ε

)]
.

The expectation in the first term converges to 1 for N large, while the last one vanishes as JβH,ε is
bounded and QN

r,β,H

(
BdE(ΓH , η)c

)
vanishes. It remains to let η, then ε go down to 0 to obtain the

left-hand side of (5.1). Taking the supremum of the resulting expression on all H such that ΓH belongs
to O then yields the right-hand side of (5.1).

To conclude the proof of lower-bound large deviations, it remains to prove the two assumptions
presented at the beginning of this section. This is the content of the next two sections. In Section 5.2,
we prove that trajectories typically do not leave the good state space Er(d) on [0, η] for some η > 0
and d ≤ 1/4. In Section 5.3, we prove that (QN

r,β,H)N concentrates on [0, η] on δΓH . The trajectory
ΓH , defined at the beginning of this section, is the solution of (2.30), and assumed to be unique. In
particular, ΓH is continuous in time in Hausdorff topology. Since ΓH is almost always in Er(1/2) before
time Tr ≥ T0, it is in Er(1/2) on [0, Tr] by continuity. If T0 ≤ η, then the lower bound is proven.
Otherwise, the result until time T0 follows by recursion, re-starting the dynamics at ΓHη ∈ Er(1/2).

5.2 The droplet moves on a diffusive scale

In this section, we prove Proposition 2.3. First, we show that a configuration in Er0 cannot have left
Er1 , for some r1 ∈ (r, r0), before a time of order N2. The set Er0 is defined in (2.15). The techniques
employed have the following two nice properties.
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1. First, we obtain estimates depending only on the initial point and parameters of the model.

2. Second, we get quantitative estimates for all N large enough, in e−cN for some parameter c. This
is the best possible decay rate, as large deviations around the hydrodynamic limit occur at the
e−N scale.

Recall from Definition 2.1 the properties of the initial condition of the dynamics. Recall also that, for
r1 ∈ (r, r0) and β > 0, τ = τNr1,β,H is the first time at which the dynamics with generator N2LNr,β,H
starting from ΓN0 leaves NEr1 . We prove the following.

Lemma 5.1 (Item 1 of Proposition 2.3). For each r1 ∈ (r, r0), there are constants c0, α > 0 which
depend only on H,Γ0, r0, r1 (and in particular not on r, β), and a numerical constant C such that:

PNr,β,H(τ ≤ c0) ≤ Ce−αN . (5.4)

Proof. We adapt the method used in [CMST11]. The idea is to show that exiting NEr1 , r1 < r0 from
NEr0 requires moving a deterministic volume of blocks of order N2, which must take a time of order N2

when N is large.

Consider the first point, i.e. that for r1 ∈ (r, r0), leaving NEr1 when starting from NEr0 requires
moving at least ψN2 blocks, for ψ = ψ(Γ0, r0, r1) > 0. Recall that if γ ∈ XN

r , Γ is the droplet it delimits.
There are three ways of leaving the set NEr1 , defined in Appendix B:

a) breaking Vr1 or Hr1 (defined in (2.9)-(2.10));

b) having the difference in abscissa or in ordinate between two consecutive poles less than Nr1.

c) having two points in opposite quadrants become closer than r1 in 1-distance;

Notice that condition a) is necessarily realised after condition b), so we focus on conditions b) and c).
The set Er1 is defined to contain pathological limits of elements of N−1XN

r when N is large. However, the
dynamics starts from a nice initial condition, i.e. with simple boundary, see Definition 2.1. The hitting
time τ of conditions b) and c) is thus larger than the hitting time of the following simpler conditions
(see Figure 7):

1. At τ 1, the droplet first fails to contain the set D := N−1{x ∈ ΓN0 : d(x, γN0 ) ≥ Nε}; where
ε = ε(Γ0, r0, r1) is small enough to ensure that the heights (north and south poles) and abscissas
(west and east poles) of the poles of D differ from those of N−1ΓN0 by at most (r0 − r1)/10.

2. At τ 2, one of the poles has first moved sideways by at least N(r0 − r1)/2 compared to ΓN0 .

Write Pk for the probability associated with the dynamics that stops upon reaching τ k, k ∈ {1, , 2}.
This (inhomogeneous) Markov chain has generator N2Lk equal to N2Lr,β,H (defined in (2.11)-(2.14)) for
times below τ k, and 0 strictly after. With the lower bound for τ provided by τ 1 ∧ τ 2 in conditions 1, 2
and Figure 7, we claim that there must be ψ = ψ(Γ0, r0, r1) > 0 and functions G1, G2, corresponding to
indicator functions of suitable sets, such that, for k ∈ {1, 2} and for the dynamics induced by Pk:

{τ k ≤ t} ⊂
{∫

N−1ΓN0

Gk −
∫

ΓNt

Gk ≥ ψ

}
. (5.5)

The probability of the event on the right in (5.5) is estimated by the computations of Section 3 as long
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Figure 7: Initial condition/portion of the initial condition of the dynamics. Left figure: the shaded area
is the set of points of Γ0 at distance more than a suitable ε > 0 from the boundary (see item 1 for the
choice of ε). τ 1 is the first time at which the boundary of the droplet touches the shaded area.
Right figure: The shaded areas, of smaller side of length (r0−r1)/2, have to be filled for either the north
or east pole to have moved sideways by (r0 − r1)/2. The dashed lines delimit areas which always stay
below the poles before time τ 1.

as G1, G2 are replaced by smooth approximations, as we now explain.

Estimating τ 1:
Define G1 as the indicator function of the ring between the two droplets on the left Figure of 7. For
ζ > 0 sufficiently small, let Gζ

1 ∈ [0, 1] be a C2 approximation of G1 equal to 0 when G1 = 0, to 1 at
1-distance ζ or more to {G1 = 0}, and going down smoothly to 0 as a function of the distance otherwise.
Take then ψ1 = ψ1(Γ0, r0, r1) as the smallest volume to delete in order to reach D from N−1ΓN0 . Then
for t ≥ 0, up to dividing ψ1 by 2, for all ζ small enough:

PNr,β,H(τ 1 ≤ t) = P1(τ 1 ≤ t) ≤ P1

(∫
N−1ΓN0

Gζ
1 −

∫
N−1ΓNt

Gζ
1 ≥ ψ1

)
. (5.6)

Note that this "volume" difference is always negative. By Chebychev exponential inequality, it is
sufficient to estimate, for t > 0, the quantity M1,ζ

t eAt , where (M1,ζ
t )t≥0 is the P1-martingale defined

for an XN
r -valued trajectory Γ = (ΓNt )t≥0 by:

∀t ≥ 0, M
Gζ1
t = exp

[
−N

∫
N−1ΓNt

Gζ
1 +N

∫
N−1ΓN0

Gζ
1 − At

]
, (5.7)

and (At)t≥0 is the process:

∀t ≥ 0, At = N2

∫ t

0

e
N

∫
N−1ΓNu

Gζ1L1e
−N

∫
N−1ΓNu

Gζ1du. (5.8)

SinceAt = At∧τ1 for t ≥ 0, the droplets entering in the definition of (At) are all inNEr. The computations
of Section 3 thus apply: recall the notation εx = 1 if a block is added corresponding to a vertex x, εx = −1

39



if it is removed. Then for each t ≥ 0, with γN = ∂ΓN :

At ≤
∫ t∧τ1

0

[
NC(H) +N

∑
x∈V (γNu )

εxcx(Γ
N
u )Gζ

1(x/N)

− 2N
4∑

k=1

∑
x∈Pk(u)

x+2e+x ∈Pk(u)

[
e−2β1Pk(u)∩∂ΛN=∅ − 1pk(u)=2,DPkr

]
Gζ

1(x/N)

]
du

≤ N(C(Gζ
1) + C(H))t. (5.9)

To obtain the first inequality in (5.9), pk was bounded by N for k ∈ {1, ..., 4}. To obtain the second
line, the crucial point is that the contribution of the sum on Pk, which may be of order N2, is negative
(Gζ

1 ≥ 0), since it makes the droplet grow. Moreover, 1pk=2,DPkr
was bounded by 1. For ζ = (r0−r1)/100,

C(Gζ
1) depends only on Γ0 and r1. The event DP k

r corresponds to Vr or Hr, defined in (2.9)-(2.10),
depending on the value of k ∈ {1, ..., 4}. Equation (5.9) concludes the bound on τ 1:

PNr,β,H(τ 1 ≤ t) ≤ e−ψ1Ne(C(H)+C(Γ0,r1))NtE1[M1,ζ
t ] = e−ψ1Ne(C(H)+C(Γ0,r1))Nt, (5.10)

which decays exponentially fast to 0 as long as t < ψ1/(C(H) + C(Γ0, r1)).

Estimating τ 1 ∧ τ 2:
Equation (5.9) cannot be used to estimate τ 2 directly. Indeed, τ 2 occurs only after the initial droplet
has grown somewhere, which means that the poles may contribute. Define however G2 as the indicator
function of the zones delimited by the dashed lines in Figure 7 (in all quadrants, not just the first one
as represented). Take then ψ2 as the smallest volume of one of these dashed area. Then as stated in
(5.5), for t ≥ 0, under P2, the dynamics stopped at τ2:

{τ 1 ∧ τ 2 ≤ t} ⊂
{
τ 1 ≥ t,

∫
N−1ΓN0

G2 −
∫
N−1ΓNt

G2 ≥ ψ2

}
∪ {τ 1 ≤ t}.

The argument is then the same as for the estimate of τ 1, and we again obtain an exponential decay for
sufficiently short time. Since τ ≥ τ 1 ∧ τ 2, this concludes the proof.

Let us now prove the second item in Proposition 2.3.

Lemma 5.2 (Item 2 in Proposition 2.3). Let c0 > 0 be given by Lemma 5.1. For this lemma only,
take β > 64 log 3. Then, for each d ∈ (0, 1/4) and each H ∈ C, there is a time T0 = T0(Γ0, d0, d, β,H),
T0 ≤ c0 such that:

PNr,β,H
(∫ T0

0

1dH(Γt,∂([−1,1]2))<d dt = 0

)
−→
N→∞

1. (5.11)

Proof. The idea is to use the structure of the invariant measure ν to estimate the cost of having one
pole come close to the boundary. Let η ≤ c0, with c0 given by Lemma 5.1. For short, let (z1, ..., z4) =
(ymax, xmax, ymin, xmin) be the extremal abscissas/ordinates of a droplet, and denote by z0

k, k ∈ {1, ..., 4}
the corresponding values for the initial condition N−1ΓN0 of Definition 2.1. Let also `N0 be the length in
1-norm of the boundary of N−1ΓN0 , which we recall is at distance at least 1/2 from ∂([−1, 1]2) for each
N . If x ∈ R, define x+ = max(x, 0).
Notice first that the lemma holds if we can prove that, for η small enough:

PNr,β,H
(

sup
t≤η

[
(z1 − z0

1)+ + (z2 − z0
2)+ + (z0

3 − z3)+ + (z0
4 − z4)+

]
> 1/2− d

)
= oN(1). (5.12)
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Each of the term appearing in (5.12) is 0 unless the pole of the corresponding number has come closer
to the boundary. The event in (5.12) is thus equal to (recall that lengths are in 1-norm):{

sup
t≤η

[
|γ(t)| − `N0

]
> 1/2− d

}
.

Let us estimate the probability of this event. As η ≤ c0, we need only do so under PNr,β. Indeed, by
Lemma 5.1:

PNr,β,H
(

sup
t≤η

[
|γ(t)| − `N0

]
> 1/2− d

)
= PNr,β,H

(
∀t ∈ [0, η], γt ∈ Er; sup

t≤η

[
|γ(t)| − `N0

]
> 1/2− d

)
+ oN(1)

≤ eC(H)ηN PNr,β
(

sup
t≤η

[
|γ(t)| − `N0

]
> 1/2− d

)1/2

+ oN(1). (5.13)

The second line comes from Cauchy-Schwarz inequality and the fact that, by (4.2)-(4.3)-(4.4):

ENr,β
[
1{∀t∈[0,η],γt∈Er}(dPNr,β,H/dPNr,β)2

[0,η]]
1/2 ≤ eC(H)ηN .

Change initial condition to obtain a probability starting from the invariant measure ν:

PNr,β
(

sup
t≤η

[
|γ(t)| − `N0

]
> d0 − d

)
≤ ν(ΓN0 )−1Pν

(
sup
t≤η

[
|γ(t)| − `N0

]
> d0 − d

)
.

Let Nt be the number of updates in the dynamics up to time t. (Nt) is a Poisson process of rate bounded
by 20N3, which is a rough bound for the update rate of a curve under the contour dynamics. To use
the fact that ν is invariant under the dynamics, split [0, η] in, say, N4 intervals of length ηN−4. NηN−4

is thus a Poisson random variable of rate 20ηN−1, and for N large enough:

PNr,β,H
(
NηN−4 ≥ 100N

logN

)
≤ exp

[
−100N

]
⇒ lim sup

N→∞

1

N
log

[
ν(ΓN0 )−1PNr,β,H

(
NηN−4 ≥ 100N

logN

)]
< 0.

As a result, there is c > 0 such that:

PNr,β
(

sup
t≤η

[
|γ(t)| − `N0

]
> 1/2− d

)
≤ ν(ΓN0 )−1N4Pν

(
sup

t≤N−4η

[
|γ(t)| − `N0

]
> 1/2− d

)
= ν(ΓN0 )−1N4ν

(
|γ| − `N0 > 1/4− d/2

)
+O(e−cN).

Recalling (5.13), one obtains by definition of ν, for η < c/C(H):

PNr,β,H
(

sup
t≤η

[
|γ(t)| − `N0

]
> 1/2− d

)
≤ eC(H)ηNN4e−βN(1/4−d/2)38N + oN(1),

where 38N is a rough upper bound for the number of curves with length larger than |`N0 |+ 1/4−d/2. As
d < 1/4 and β > 64 log 3 > 8 log 3/(1/4 − d/2), there is η = T0 ≤ c0 small enough satisfying the claim
of the lemma.

Corollary 5.3 (Relative compactness of the sequence {QN
r,β,H : N ∈ N∗}). Let T0 be chosen according

to the previous lemma. Then {QN
r,β,H : N ∈ N∗} is relatively compact inM1(E([0, T0], X)), and its weak

limit points are supported in E([0, T0], Er(d)).

Proof. By Lemmas 5.1- 5.2, the first hypothesis of Corollary B.10 is satisfied. The second one proceeds
from Appendix B.3.

41



5.3 Characterisation of limit points

Fix H ∈ C and let T0 > 0 be a time given by Lemma 5.2. In this section, we prove Proposition 2.4, i.e.
we prove that any weak limit point Q∗r,β,H of (QN

r,β,H)N in M1(E([0, T0], X)) is concentrated on weak
solutions (2.30) of anisotropic motion by curvature with drift in Epp([0, T0], Er(d)) (defined in (2.34)).
We start by extending upper-bound large deviations to the sequence (QN

r,β,H)N .

Lemma 5.4. For the sequence (QN
r,β,H), for any closed set C ⊂ E([0, T0], Er(d)):

lim sup
N→∞

1

N
logQN

r,β,H(C) ≤ − sup
q≥1

inf
C∩Dq

sup
G,ε

[
JG,ε − JH,ε

]
≤ − inf

C
Iβ,H . (5.14)

The set Dq =
⋂
n≥1Dq,n controls the neighbourhood of the poles, as defined in (4.9). The functional Iβ,H

is +∞ outside of Epp([0, T0], Er(d)), and is defined for Γ ∈ Epp([0, T0], Er(d)) as:

Iβ,H(Γ) = sup
G∈C

{
JβG(Γ)− JβH(Γ)

}
= sup

F∈C

{
JβF (Γ)−

∫ T0

0

dτ

∫
γτ

µFHdsτ

}
. (5.15)

Recall that µ is the mobility defined in (2.26), and that Epp([0, T0], Er(d)) is defined in (2.34).

Proof. Simply write:

QN
r,β,H(C) = ENr,β

[
dPNr,β,H
dPNr,β

1C

]
,

and repeat the computations of Section 4 to obtain the large deviation upper bound (5.15) as well as the
first expression of Iβ,H . The second expression (5.15) is obtained by the change of functions F = G−H
and elementary computations.

It is a well-known fact that the only trajectories for which the rate function Iβ,H vanishes are
solutions of (2.30), which corresponds to its first variation. Let us provide a quick proof. Consider
Γ ∈ E([0, T0], Er(d)) such that Iβ,H(Γ) = 0, and take ε > 0 and G ∈ C. Then Γ ∈ Epp([0, T0], Er(d)),
and:

0 ≥ Jβ±εG −±ε
∫ T0

0

dτ

∫
γτ

µHGdsτ = ±ε
(
`βG −

∫ T0

0

dτ

∫
γτ

µHGdsτ

)
− ε2

2

∫ T0

0

dτ

∫
γτ

µG2dsτ .

Taking ε small with G fixed, the term of order ε must vanish, and it is precisely (2.30) with test function
G. As this is true for all G ∈ C, Γ is a solution of (2.30). The converse is clearly true, since if Γ satisfies
(2.30), then:

Iβ,H(Γ) = sup
G∈C

{
− 1

2

∫ T0

0

dτ

∫
γτ

µG2dsτ

}
= 0.

We now conclude on the proof of Proposition 2.4 through the following Lemma.

Lemma 5.5. Recall from Section 5.1 the definition of ΓH|[0,T0] ∈ E([0, T0], Er(d)), still denoted by ΓH ,
assumed to be the unique solution to (2.30) on [0, T0]. Then Q∗r,β,H is supported on {Iβ,H = 0}, thus:

Q∗r,β,H = δΓH .
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Proof. For ease of notation, we still denote by (QN
r,β,H)N a subsequence converging weakly to some limit

point Q∗r,β,H . The idea is to use the large deviation upper-bound of Lemma 5.4 to obtain the hydrody-
namics limit. Although classical, this is made difficult in our case by the lack of lower semi-continuity of
the functional Iβ,H defined in (5.15) and, in a related manner, by the fact that the set Epp([0, T0], Er(d))
on which it can be finite is not closed.

This justifies the introduction of the functional χ⋂
n≥1Dq,n

supG,ε[JG,ε − JH,ε] in the middle term in
(5.14), where χA(x) = 1 if x ∈ A, χA(x) = +∞ if x /∈ A. This functional is infinite outside the closed
set Dp =

⋂
n≥1Dq,n ⊂ Epp([0, T0], Er(d)) (defined in (4.9)), and lower semi-continuous by continuity of

JG,ε(·) on Epp([0, T0], Er(d)) for G ∈ C.

Let (Kη)η>0 be a family of compact sets in E([0, T0], Er(d)), which exists by Corollary 5.3, such that:

∀N ≥ 1, QN
r,β,H(Kη) ≥ 1− η ⇒ Q∗r,β,H(Kη) ≥ 1− η.

Let ε > 0 and consider the open set B(ε) :=
{

Γ : dE(Γ, {Iβ,H = 0}) < ε}. Let Bc(ε) be its closure. The
complementary of Bc(ε) is open, thus:

Q∗r,β,H
(
Bc(ε)

c
)
≤ lim inf

N→∞
QN
r,β,H

(
Bc(ε)

c
)
.

As Bc(ε)
c ⊂ B(ε)c,

QN
r,β,H

(
Bc(ε)

c
)
≤ QN

r,β,H

(
B(ε)c

)
≤ η +QN

r,β,H

(
B(ε)c ∩Kη

)
.

The set Kη ∩B(ε)c is compact, thus by Lemma 5.4:

lim sup
N→∞

1

N
logQN

r,β,H

(
B(ε)c ∩Kη

)
≤ − sup

q≥1
inf

Kη∩B(ε)c∩Dq
sup
G,ε

[
JG,ε − JH,ε

]
< 0. (5.16)

Let us explain the strict inequality in (5.16). Suppose by contradiction that the right-hand side in (5.16)
vanishes. The supremum on q can then be removed, so take q = 1 and let Γn ∈ D1 ∩Kη ∩B(ε)c, n ∈ N
be a sequence such that:

lim
n→∞

sup
G,ε

[
JG,ε − JH,ε

]
(Γn) = 0.

AsD1∩Kη∩B(ε)c is compact, (Γn) has a subsequence that converges to some Γ. By lower semi-continuity
of supG,ε

[
JG,ε − JH,ε

]
on D1,

∀ε > 0,∀G ∈ C, JG,ε(Γ)− JH,ε(Γ) ≤ 0. (5.17)

In particular, Γ is a solution of (2.30), thus it is in {Iβ,H = 0} ⊂ B(ε) by the discussion preceding the
lemma, which is absurd. It follows that, for N large enough:

QN
r,β,H

(
Bc(ε)

c
)
≤ η +QN

r,β,H

(
B(ε)c ∩Kη

)
≤ 2η ⇒ Q∗r,β,H

(
Bc(ε)

c
)
≤ 3η.

As this holds for all η > 0, Q∗r,β,H is concentrated on {Iβ,H = 0}, which by hypothesis is simply {ΓH}.
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6 Behaviour of the poles and 1pk=2 terms
In this section, we focus on the specificity of the contour dynamics: the behaviour of the poles. The
main result is the proof of Proposition 2.2, which states that the regrowth, e−2β term in the generator
(2.11) acts as a reservoir, injecting particles into the SSEP on each quadrant. This fixes the particle
density around the poles, i.e. the tangent vector. It is shown to be discontinuous across the pole, and
depends only on the value of β. The proof of these statements is carried out in Subsection 6.2. It makes
crucial use of the irreducibility of the dynamics around the poles, which is the single added feature in
the contour dynamics compared to the zero temperature stochastic Ising model.
Subsection 6.1 presents a useful bijection argument which yields an estimate of the pole size as well as
local equilibrium at the poles. These two statements were used in Sections 3-4. Parameters r < r0,
β > 0, H ∈ C are fixed throughout the section according to Definition 2.1, as well as a time T0 > 0. All
proofs are done for the north pole P := P1 with size p := p1 = |P1| − 1, the other poles are similar. We
work with elements of XN

r , rather than rescaled microscopic curves in N−1XN
r as in Section 3.

Throughout the section, T0 > 0 is a fixed time.

6.1 Size of the poles and local equilibrium

In this section, we estimate (3.14), i.e. we estimate the pole size and the term

WG
t (γ) :=

∑
x∈P

x+2e+x ∈P

(
1p=2,Vr − e−2β1x/∈∂ΛN

)
G(t, x/N), γ ∈ XN

r , t ≥ 0 (6.1)

for any test function G ∈ C. The condition Vr, defined in (2.9), states that the north pole of a curve is
allowed to go down by the contour dynamics. Summing on x ∈ P such that x + 2e+

x ∈ P is just a way
of enumerating the different positions at which one can add two blocks atop the pole. We prove:

Lemma 6.1. Write P for the north pole of a curve in XN
r . For each A > 1,

lim sup
N→∞

1

N
logPNr,β

(
1

T0

∫ T0

0

1P (γt)∩∂ΛN=∅ e
−2β(pt − 1)dt ≥ A

)
= −∞. (6.2)

Moreover, for each δ > 0 and G ∈ C,

lim sup
N→∞

1

N
logPNr,β

(∣∣∣∣ 1

T0

∫ T0

0

WG
t dt

∣∣∣∣ > δ

)
= −∞. (6.3)

Equations (6.2)-(6.3) hold also under PNr,β,H , with the additional condition {∀t ∈ [0, T0], γt ∈ NEr}.
The proof of Lemma 6.1 relies on a bijection argument to estimate the expectation of the terms

between parentheses in (6.1) one in terms of the other and the Dirichlet form. It is stated in the
following lemma.

Lemma 6.2. Let f be a density with respect to the contour measure ν = νNr,β, defined in (2.3), and
denote by Eνf the expectation under fdν. Then, for any A ≥ 2,(

νf (p = 2, Vr, p
′ ≥ A)1/2 − Eνf

[
(p− 1)e−2β1x/∈∂ΛN1p≥A

]1/2)2

≤ 2DN(f), (6.4)

where DN(f) = −Eν
[
f 1/2Lr,βf 1/2

]
is the Dirichlet form of the contour dynamics, and p′ = p′(γ) for

γ ∈ XN
r is the number of blocks one level below the pole in the droplet Γ such that γ = ∂Γ. Equation

(6.4) also holds with p′ ≤ A, p ≤ A instead of p′ ≥ A, p ≥ A respectively in the probability and in the
expectation.
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Proof. We prove the result with A = 2 (i.e. without constraint), the general case is similar. Fix a
density f and define the two sets Ir, Vr(2) as:

Ir = {γ ∈ XN
r : P (γ) ∩ ∂ΛN = ∅}, Vr(2) = Vr ∩ {p = 2}, (6.5)

with Vr defined in (2.9). Define U on XN
r as follows:

∀γ ∈ XN
r , U(γ) = 1Ir(γ)e−2β(p(γ)− 1). (6.6)

Let us prove that νf (Vr(2)) and Eνf [U ] are comparable, up to an error that can be expressed in terms
of the Dirichlet form DN(f).

Figure 8: Neighbourhood of the north pole of a curve γ ∈ Ir (thick line) and the γ(k), k ≤ p − 1 = 4.
γ(3) is the curve γ to which the two blocks delimited by dashed lines are added. Conversely, any of the
γ(k), k ≤ 4 is in Vr(2), and deleting the two blocks constituting their poles yields γ.

To each γ ∈ Ir (defined in (6.5)), it is dynamically allowed to add two blocks above the north pole.
Denote by γ(1), ..., γ(p−1) the p(γ)− 1 corresponding curves, where γ(k) is identical to γ except that two
blocks sitting on the edges k, k + 1 are added, counting the edges from the left extremity of the pole
(see Figure 8). Note that the γ(k) correspond to the γ+,x with x, x+ 2e+

x ∈ P defined above (2.7).
Conversely, the size 2 pole of each curve γ′ ∈ Vr(2) can be deleted, to obtain a curve γ = (γ′)−,1 ∈ Ir
with the notations of Section 2. The curve γ has length |γ| = |γ′| − 2. The same curve γ ∈ Ir occurs
p− 1 := p(γ)− 1 times when enumerating elements of Vr(2) and deleting their pole, thus:

νf (Vr(2)) =
∑

γ′∈Vr(2)

ν(γ′)f(γ′) =
∑

γ′∈Vr(2)

∑
γ∈Ir

1{∃k≤p−1:γ′=γ(k)}ν(γ)e−2βf(γ(k))

=
∑
γ∈Ir

ν(γ)e−2β

p−1∑
k=1

f(γ(k)).

Add and subtract the quantities needed to bound the second line by the Dirichlet form DN(f):

νf (Vr(2)) =
∑
γ∈Ir

ν(γ)e−2β

p−1∑
k=1

[
f(γ(k)) + f(γ)− 2f 1/2(γ)f 1/2(γ(k))

]
−
∑
γ∈Ir

ν(γ)e−2β
[
(p− 1)f(γ)− 2

p−1∑
k=1

f 1/2(γ)f 1/2(γ(k))
]
. (6.7)

To estimate the second line of (6.7), apply Cauchy-Schwarz inequality to the sum
∑p−1

k=1 to obtain:

νf (Vr(2)) ≤ 2DN(f)− Eνf
[
e−2β(p− 1)1Ir

]
+ 2

∑
γ∈Ir

ν(γ)e−2β(p− 1)1/2f 1/2(γ)
[ p−1∑
k=1

f(γ(k))
]1/2

.
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Recall the definition of U from (6.6) and again use Cauchy-Schwarz on the sum on the curves in Ir to
find:

νf (Vr(2)) ≤ 2DN(f)− Eνf [U ] + 2
[∑
γ∈Ir

ν(γ)e−2β(p− 1)f(γ)
]1/2[∑

γ∈Ir

ν(γ)e−2β

p−1∑
k=1

f(γ(k))
]1/2

= 2DN(f)− Eνf [U ] + 2Eνf [U ]1/2νf (Vr(2))1/2.

Putting things together yields the claim of the lemma:[
νf (Vr(2))1/2 − Eνf [U ]1/2

]2

≤ 2DN(f). (6.8)

Proof of Lemma 6.1. We now explain how to obtain Lemma 6.1 from (6.4). We need to do three things:

1. bound from above the probabilities appearing in the claim by an expression involving (6.4);

2. prove that (6.3) holds for WG, with G ∈ C. The first point only gives the result for 1p=2,Vr − U ,
which corresponds to W 1;

3. and prove the result under PNr,β,H up to adding the condition {∀t ≤ T0, γt ∈ NEr}.

The first and third points are classical and easily adapted to the present case. Since they are used
repeatedly in the article, we present them here once and for all. The second point requires some care
because the function G ∈ C may change sign, which breaks the upper-bounds in the proof of Lemma 6.2.

Let us explain the general idea for the first point using (6.2) as an example. We wish to estimate:

PNr,β
(

1

T0

∫ T0

0

e−2β1Ir(γt)(p(γt)− 1)dt ≥ A

)
,

where Ir is defined in (6.5). We do so using Feynamn-Kac formula. Let a > 0, and apply the exponential
Chebychev inequality to obtain

1

N
logPNr,β

(
1

T0

∫ T0

0

e−2β1Ir(γt)(p(γt)− 1)dt ≥ A

)
(6.9)

≤ −aAT0 +
1

N
logENr,β

[
exp

[
aN

∫ T0

0

1γt∈Ir e
−2β(pt − 1)dt

]]
.

Consider the generator N2Lr,β + aNU , with U defined in (6.6). This generator is self-adjoint for the
contour measure ν = νNr,β (2.3), and Feynman-Kac inequality plus a representation theorem for the
largest eigenvalue of a symmetric operator yield that, at equilibrium:

Eν
[

exp

[
aN

∫ T0

0

U(γt)dt

]]
≤ exp

∫ T0

0

dt sup
f≥0:Eν [f ]=1

{
aNEνf [U ]−N2DN(f)

}
. (6.10)

One can bound PNr,β from above by the probability Pν starting under the equilibrium measure ν:

PNr,β(·) ≤ Zr,βe
β|γ0|Pν(·) ≤ eCβNPν(·), (6.11)
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for some constant C ≤ 8. Using (6.10)-(6.11), (6.9) becomes:

1

N
logPNr,β

(
1

T0

∫ T0

0

U(γt)dt ≥ A

)
≤ −aAT0 + Cβ + T0 sup

f≥0,∫
fdν=1

{
aEνf [U ]−NDN(f)

}
. (6.12)

At this point, we can use Lemma 6.2 to estimate the supremum in the right-hand side of (6.12). U may
be unbounded as a function of N , but the bound Eνf [U ] ≤ 1 + (2DN(f))1/2 provided by Lemma 6.2 and
elementary computations show that the supremum is positive only for densities f withDN(f) ≤ C(a)/N .
For such densities, (6.4) yields:

Eνf [U ] ≤ νf (Vr(2)) + C(a)O(N−1/2) ≤ 1 + C(a)O(N−1/2).

Inject this result in (6.12), take the lim sup in N , then have a increase to infinity to conclude the proof of
(6.2). Equation (6.3) in the G ≡ 1 case follows similarly, using the identity x−y = (

√
x−√y)(

√
x+
√
y)

valid for x, y ≥ 0. Indeed, for W 1, the quantity in the supremum in (6.12) is now aEνf [W 1]−NDN(f),
where by definition:

W 1 =
∑
x∈P

x+2e+x ∈P

[
1p=2,Vr − e−2β1Ir

]
= 1p=2,Vr − (p− 1)e−2β1Ir = 1Vr(2) − U.

As a result, Eνf [W 1] can be bounded from above as follows:∣∣Eνf [W 1
]∣∣ =

∣∣∣νf (Vr(2))1/2 − Eνf [U ]1/2
∣∣∣[νf (Vr(2))1/2 + Eνf [U ]1/2

]
≤ (2DN(f))1/2

[
2 + (2DN(f))1/2

]
. (6.13)

Elementary computations again yield that the supremum in (6.12) withW 1 instead of U is positive only
for DN(f) ≤ C(a)/N2. This concludes the proof of the first point.

Let us now deal with the second point, i.e. proving (6.3) for any G and not just G ≡ 1. As G may
not have constant sign, one cannot directly use the bounds in the proof of Lemma 6.2. However, if G is
positive, it is not complicated to repeat the bijection argument of Lemma 6.2 to obtain, for each t ≤ T0:

[
Eνf
[
e−2β1Ir

∑
x∈P

x+2e+x ∈P

G(t, x/N)
]1/2

− Eνf
[
1Vr(2)

∑
x∈P

x+2e+x ∈P

G(t, x/N)
]1/2
]2

≤ C(G)DN(f) +OG(N−1). (6.14)

Recall that the summation on x ∈ P such that x + 2e+
x ∈ P is just a way of enumerating all places

where two blocks can appear atop the pole. For general G ∈ C, the result follows by splitting G into its
positive and negative parts G = G+ −G−, and estimating the contribution of G+, G− by (6.14).

We now prove the third point, i.e. establish (6.2) and (6.3) under PNr,β,H assuming trajectories take
values in NEr. The point of this additional condition is the following. According to Section 3 (see (3.14)
for the first term and (3.22)-(3.30) for the second one), for each NEr-valued trajectory γ = (γt)t≤T0 ,

1

N
logDN

r,β,H(γ) =
4∑

k=1

∫ T0

0

[
(pk(γt)− 1)e−2β1Pk∩∂ΛN=∅ − 1pk=2,DPkr

]
dt+ C(H)T0ON(1), (6.15)
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where DN
r,β,H = dPNr,β,H/dPNr,β until time T0, and DP k

r is defined in (2.9)-(2.10). Let χ denote any of the
two events appearing in (6.2)-(6.3). In the proof of the first point, we saw for the north pole:

ENr,β
[

exp
[
NC(H)

∫ T0

0

(p(γt)− 1)e−2β1Ir(γt)dt
]]
≤ T0 + T0OH(N−1/2).

This immediately generalises to the other three poles. As a result, using (6.15):
1

N
log PNr,β,H

(
∀t ∈ [0, T0], γt ∈ NEr;χ

)
=

1

N
logENr,β

[
1∀t∈[0,T0],γt∈NEr1χD

N
r,β,H

]
≤ 1

2N
logPNr,β(χ) + C(H)T0 +

1

2N
logENr,β

[
exp

[
2NC(H)

∫ T0

0

(p(γt)− 1)e−2β1Ir(γt)dt
]]
.

The last term is bounded: taking N to infinity proves item 3.

6.2 Convergence of the 1p=2 term at fixed β and slope around the poles

This section is devoted to the proof of Proposition 2.2: poles act as reservoirs that fix to e−β the averaged
slopes ξ±,εNL1

, 1− ξ±,εNL1
at the poles. We prove this statement in several steps. First, we explain how to

use the effective state space Er (or Er(d)) to obtain a local dynamics from the contour dynamics, which
is non-local due to boundary conditions in the definition of XN

r , see Section 6.2.1. This is a key technical
argument to be able to compare the contour dynamics to simpler 1-dimensional ones.
We then prove that the 1p=2 term fixes the slope around the poles, in the sense that the time integrals
of 1p=2 and ξ±,εNL1

are close, see Section 6.2.2. This should not come as a surprise if one remembers that,
in a Symmetric Simple Exclusion Process (SSEP) with reservoirs, the density close to the reservoirs
is fixed. The time average of 1p=2 is then proven to be equal to e−β in Section 6.2.4. Preliminary
microscopic estimates, crucial to Section 6.2 and thereby of central importance to the paper, are carried
out in Section 6.2.3.

6.2.1 Turning the contour dynamics into a local dynamics

To compare the non-local (due to boundary effects in the definition of XN
r ) 2-dimensional contour

dynamics to a local, 1-dimensional dynamics (in the present case the SSEP and a kind of zero range
process introduced in Section 6.2.4), we need to explain how to remove the non-local constraints. For
moves away from the poles (addition/deletion of a single block), the only non-local constraint is that
opposite quadrants of an element of XN

r cannot cross. For deletion or regrowth at the poles, one has to
make sure neither to touch ∂ΛN nor to shrink droplets too much, see the definition of XN

r in Section
2.1.
In the "good" state space NEr(d), all dynamical moves are local; this is why we introduced it in the
first place. The idea is then to prove that, under the condition {∀t ∈ [0, T0], γt ∈ NEr(d)}, for d > 0
henceforth fixed, one can turn the contour dynamics into a local dynamics inside NEr(d). This is the
content of the following lemma. Since the proof is quite general, we postpone it to Appendix A.2.

Lemma 6.3 (Projection onto a local dynamics in the effective state space NEr(d)). Let ψ : [0, T0] ×
XN
r → R be bounded. Then, for some C > 0:

1

N
logENr,β

[
1{∀t∈[0,T0],γt∈NEr(d)} exp

[
N

∫ T0

0

ψ(t, γt)dt

]]
≤ Cβ +

∫ T0

0

sup
f≥0:νf (NEr(d))=1

{
Eνf
[
ψ(t, ·)

]
−NDN(f)

}
dt. (6.16)
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The result is also valid with the weaker condition {∀t ∈ [0, T0], γt ∈ NEr} provided DN is replaced by
DS
N , the Dirichlet form of all SSEP jumps, i.e. DN without the regrowth/deletion jumps at the poles

corresponding to line 2 of (2.11).

Remark 6.4. Equation (6.16) looks like a standard Feynman-Kac estimate. Note however that the
supremum in (6.16) is on densities with full support in NEr(d). In general, if f is a ν-density, there is
no way to control DN(f) by DN

(
f1NEr(d)

)
. Indeed, if f̃ = f1NEr(d), DN(f̃) contains terms of the form:∑

γ∈NEr(d)
γ′ /∈NEr(d)

[
ν(γ)c(γ, γ′)f(γ) + ν(γ′)c(γ′, γ)f(γ)

]
,

which have a priori no reason to be comparable to differences [f(γ)1/2 − f(γ′)1/2]2.
Note also that Lemma 6.3 is not a statement about the contour dynamics conditioned to stay inside
NEr(d), but about the full dynamics. This is an important point: the jump rates of a conditioned
dynamics would be non-local, whereas we really need locality to later project the dynamics onto 1-
dimensional particle dynamics. �

6.2.2 The 1p=2 term coincides with the slope around the pole

The argument presented here is the same as for a SSEP with a reservoir. Indeed, informally, one can
think of the contour dynamics as four SSEP connected by four point-like reservoirs, as explained in the
proof of Lemma 6.5 below. As poles move, the lengths of these SSEP change; however this does not
change the average density around the pole much. The key observation is the fact that 1p=2 coincides
with the occupation number of the closest site to the reservoir in these SSEP.

Lemma 6.5. Recall the notations of Proposition 2.2. For each δ > 0 and each G ∈ C, the slope on each
side of the pole satisfies a one block estimate:

lim sup
k→∞

lim sup
N→∞

1

N
logPNr,β

(
∀t ∈ [0, T0], γt ∈ NEr;

∣∣∣∣ 1

T0

∫ T0

0

G(t, L1(t)/N)
(
1p=2 − ξ±,kL1+2e1

)
dt

∣∣∣∣ ≥ δ

)
= −∞, (6.17)

and a two block estimate:

lim sup
ε→0

lim sup
N→∞

1

N
logPNr,β

(
∀t ∈ [0, T0], γt ∈ NEr;

∣∣∣∣ 1

T0

∫ T0

0

G(t, L1(t)/N)
(
1p=2 − ξ±,εNL1+2e1

)
dt

∣∣∣∣ ≥ δ

)
= −∞. (6.18)

Both estimates are valid under PNr,β,H , with the same proof as for Lemma 6.1.

The proof of Lemma 6.5 is used to showcase the connection between the contour dynamics and the
SSEP at the microscopic level, that is used numerous times in this article.

Proof. The proof relies on the key observation that the quantity 1p=2 can be controlled by the edges of
the poles:

1p=2 = ξL1+2e1 = ξR1−3, (6.19)

where we abuse notations and denote by R1 − 3 the vertex at distance three from R1 anticlockwise.
In other words, 1p=2 can be thought of as the occupation number of the closest site to a reservoir in a
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SSEP, in which case (6.17)-(6.18) are well-known (see [ELS90]). We first prove (6.17). Building on the
observation (6.19), define φ as the function:

∀γ ∈ XN
r , φ(γ) = ξL1+2e1 − ξ

+,k
L1+2e1

. (6.20)

Let us slightly rewrite the probability in (6.17): it is enough to estimate, for each a > 0, the quantity:

PNr,β
(
∀t ∈ [0, T0], γt ∈ NEr; exp

[
aN

∫ T0

0

G(t, L1(t)/N)φ(γt)dt

]
≥ exp[aNT0δ]

)
≤ e−aNT0δENr,β

[
1{∀t∈[0,T0],γt∈NEr} exp

[
aN

∫ T0

0

1NErG(t, L1(t)/N)φ(γt)dt

]]
. (6.21)

Let DS
N ≤ DN be the Dirichlet form of the contour dynamics without the regrowth/deletion terms, i.e.

without the jumps of line 2 of (2.11). Apply Lemma 6.3 to ψ = aGφ to obtain that (6.21) is bounded
from above by:

− aδT0 + Cβ +

∣∣∣∣ ∫ T0

0

dt sup
f≥0:νf (NEr)=1

{
aEνf [G(t, L1/N)φ]−NDS

N(f)
}∣∣∣∣. (6.22)

Let us now compare the contour dynamics around the north pole to a SSEP. Fix t ∈ [0, T0] and a
ν-density f with support in NEr. Denote by (Ef ) the expectation in the supremum in (6.22). We
first take care of the dependence on L1 in G, by splitting (Ef ) depending on where L1 lies in ΛN . Let
M(x) ⊂ XN

r be all curves with L1 + 2e1 = x ∈ ΛN . Then, up to an error OG(N−1) uniform in f :

Eνf [G(t, L1/N)φ] =
∑
x∈ΛN

G(t, x/N)

[ ∑
γ∈M(x)

ν(γ)f(γ)φ(γ)

]
. (6.23)

In the following, for γ ∈M(x), we refer to the edge (x, x+ e+
x ) as edge 1, to the one following it as edge

2, etc, up to edge k, and write ξ1(γ), ..., ξk(γ) for the corresponding values of the edge labels (as usual,
curves are travelled on clockwise). Notice that all these edges are in the same quadrant (in fact quadrant
1), as we work with curves in NEr. Indeed, all four quadrants of curves in NEr are macroscopic, thus
contain much more than k edges, see the definition of Er in Appendix B. Configurations in {0, 1}k =: Ωk,
are denoted by the letter ξ. φ depends only on the k first edges, so that the expectation in (6.23) reads:

Eνf [G(t, L1/N)φ] =
∑
x∈ΛN

νf (M(x))G(t, x)
1

|Ωk|
∑
ξ∈Ωk

fk,x(ξ)φ(ξ), (6.24)

where |Ωk| = 2k and if ξ(γ) denotes the collection ξ1(γ), ..., ξk(γ) for a given γ ∈ XN
r ,

∀ξ ∈ Ωk, fk,x(ξ) =
1

νf (M(x))

∑
γ∈M(x):ξ(γ)=ξ

|Ωk|ν(γ)f(γ). (6.25)

Note that we need only consider points x and densities f with νf (M(x)) > 0. This ensures that fk,x is
unambiguously defined. Moreover, fk,x is a density for the uniform measure on Ωk.
Let us do the same operations on the Dirichlet form DS

N , in order to bound it from below by that of the
SSEP on configurations with k sites. Recall the definition of the bulk jump rates of the contour dynamics
in (2.6). The mapping to go from part of a curve γ ∈ NEr to an associated SSEP configuration ξ(γ) ∈ Ωk

is represented on Figure 9 for the first quadrant. The idea is to take the portion of γ in quadrant k,
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Figure 9: On the left, a portion of the interface delimited by the two black dots. On the right, the
corresponding path and simple exclusion particle configuration. The mapping is possible if the left-
extremity of the interface as well as its length are fixed.

turn it clockwise by kπ/4, and put a particle at site j whenever the resulting path goes down between
j
√

2 and (j + 1)
√

2, or no particle if it goes up.
Define thus DS

k , the Dirichlet form associated with the SSEP on Ωk: for any density g for the uniform
measure Uk on Ωk = {0, 1}k,

DS
k (g) =

1

2|Ωk|
∑
ξ∈Ωk

∑
1≤u≤v≤k
|u−v|=1

1

2
[ξu(1− ξv) + ξv(1− ξu)][g1/2(ξu,v)− g1/2(ξ)]2.

Recalling the definition of DS
N(g) from Lemma 6.3, a simple upper-bound and convexity yield:

DS
N(f) ≥ 1

2

∑
x∈ΛN

∑
γ∈M(x)

ν(γ)
∑

y∈V (γ):(y,y+e+y )∈{1,...,k}

c(γ, γy+e+y )
[
f 1/2(γy+e+y )− f 1/2(γ)

]1/2
≥
∑
x∈ΛN

νf (M(x))DS
k (fk,x). (6.26)

The reason, as emphasised in Lemma 6.3, is that the jump rate c(γ, γ′) for all non-vanishing terms in
DS
N(f) is local, in particular all γx, x ∈ V (γ) are well-defined (i.e. elements of XN

r ) for these jumps. As
a result of (6.24)-(6.26), at time t ∈ [0, T0] the supremum in (6.22) can be bounded from above by:

sup
f≥0:νf (NEr)=1

{ ∑
x∈ΛN

νf (M(x))
[
aG(t, x/N)EUk

[
fk,xφ

]
−NDS

k (fk,x)
]}

≤ sup
f≥0:νf (NEr)=1

{ ∑
x∈ΛN

νf (M(x)) sup
g≥0:EUk [g]=1

{
aG(t, x/N)EUk [gφ]−NDS

k (g)
}}

≤ sup
f≥0:νf (NEr)=1

{ ∑
x∈ΛN

νf (M(x))a|G(t, x/N)|
}

sup
g≥0:EUk [g]=1

DSk (g)≤C(a)/N

∣∣EUk [gφ]
∣∣. (6.27)

The conclusion of the proof then follows, since the problem is reduced to a one-block estimate for a
SSEP of size k (see [KL99], Chapter 5): the expectation in (6.27) satisfies

lim sup
N→∞

sup
g≥0:EUk [g]=1

DSk (g)≤C(a)/N

∣∣EUk [gφ]
∣∣ = O(k−1).

As the first term in the right-hand side of (6.27) is bounded by a‖G‖∞, the proof of the one block
estimate (6.17) is concluded. The two block estimate (6.18) is proven similarly.
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Now that we know that the time integral of 1p=2 and of the slope at the poles are close, it remains
to compute their common value. This is the goal of the next two sections.

6.2.3 A compactness result

This section presents microscopic estimates used to control the pole terms. Although technical, it
presents the most important result of the article, a control of the value of the 1p=2 term, in the sense
that the whole large deviation analysis relies on this control.

To compute the time integral of 1p=2, we need to zoom in on the dynamics around the pole. As used
in the proof of the hydrodynamic limit in [LST14a], in a suitable frame around the pole (the definition
of which is one of the difficulties), the height-function describing the interface in time can be interpreted
as a kind of two-species zero-range process, in our case with a moving reservoir in the middle. Leaving
for later a detailed description of the mapping to the zero-range process and the frame around the pole
(see Figure 12), we will have to estimate expectations of the form:

Eνf [1p=2] = Eµ[f̃1ηL1+2e1
6=0],

where f is a density for ν, f̃ its marginal against µ. The measure µ is the marginal of ν on a well-chosen
portion of the curve around the pole, in which the interface is described in terms of a particle number
η· taking values in Z, corresponding to the height difference between two consecutive columns. f̃ is the
marginal of f in this proper frame. To show that the expectation of the right-hand side reduces to an
estimate at equilibrium under µ up to a small error term, a compactness argument is typically used to
prove that particles do not condensate macroscopically at a single site, as in [KL99], Chapter 5. In our
cases, this compactness argument is provided by the following lemmas.

The first estimate concerns the 1p=2 term, which as shown in Section 6.2.2 coincides with the slope
around each pole. We prove that poles are typically not flat.

Lemma 6.6 (Upper bound on the slope). For γ ∈ XN
r , γ = ∂Γ, let p′(γ) be the number of blocks in Γ

composing the level below the north pole. If C > 0 and A ≥ 2 is an integer:

lim sup
N→∞

sup
f :DN (f)≤C/N

νf
(
Vr(2), p′ ≥ A

)
≤ 1

logA
, (6.28)

with Vr(2) = {p = 2, Vr}, and Vr defined in (2.9). In particular:

lim sup
N→∞

sup
f :DN (f)≤C/N

νf
(
Vr(2)

)
≤ 2

β
. (6.29)

Proof. Fix a density f with DN(f) ≤ C/N . Notice that p′ ≥ p, the number of blocks in the pole, by
definition of XN

r . The idea is to estimate νf (p = 2, Vr, p
′ ≥ A) for A ≥ 2 in terms of νf (p = A, Vr), using

the fact that: ∑
B≥2

νf (p = B, Vr) ≤ 1. (6.30)

To do so, we use a bijection argument similar to the one in Lemma 6.2. Fix A ≥ 2, take γ in {p =
2, Vr, p

′ ≥ A}, and turn it into an element F (γ) of {p = A, Vr} as follows. Add as many blocks as
possible to the left of the north pole of γ at the height of the pole. If A− 2 such blocks can be added,
an element of {p = A, Vr} has been created. If B < A− 2 blocks only can fit to the left of the pole, add
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the remaining A− 2−B blocks to the right of the pole.
This procedure is nearly bijective in the following sense. Label the columns corresponding to blocks of
the level below the pole from 1 to p′, starting from the left.

• If the pole of γ ∈ {p = 2, Vr, p
′ ≥ A} is above the blocks with labels k, k + 1 with 1 ≤ k ≤ A− 1,

which we write P = {k, k + 1}, then the procedure described above yields the same F (γ) ∈ {p =
A, Vr} for each k, and this F (γ) is the curve with a pole composed of the blocks 1, ..., A. Let
{P = {1, ..., A}} refer to the set of such F (γ).

• If instead the pole of γ starts at column k ≥ A, which we write P ≥ A, then the resulting curve
F (γ) has a pole starting at k − (A− 2) > 1, and it is bijectively mapped into γ by inverting the
above procedure.

In terms of the mapping F , the previous two cases can be rewritten as:

∀k ≤ A− 1, F
({
p = 2, Vr, p

′ ≥ A,P = {k, k + 1}
})

=
{
Vr, p = A,P = {1, ..., A}

}
and:

F
({
p = 2, Vr, p

′ ≥ A,P ≥ A
})

=
{
P ≥ 2, Vr, p = A

}
.

Notice moreover that the mapping F leaves the equilibrium measure ν invariant, since the length of
γ ∈ XN

r and F (γ) are the same. Overall, writing also {P ≤ k} for the event that the pole starts at or
before column k, we obtain for the equilibrium measure ν:

ν(Vr(2), p′ ≥ A) = ν(P ≤ A− 1, p = 2, Vr, p
′ ≥ A) + ν(P ≥ A, p = 2, Vr, p

′ ≥ A)

= (A− 1)ν(P = {1, ..., A}, Vr) + ν(P ≥ 2, p = A, Vr) ≤ (A− 1)ν(p = A, Vr). (6.31)

Let us prove that, up to an error that vanishes for N large, (6.31) holds also under νf for any ν-density
f with DN(f) ≤ C/N . The idea is that the mapping F described above for γ ∈ {Vr(2), p′ ≥ A} requires
a number of moves that is independent of N , so f(γ) and f(F (γ)) are close.
We prove it for the {P = {1, ..., A}, Vr} term in (6.31), the P ≥ 2 term is similar. We proceed as in
Lemma 6.2.

(A− 1)νf (P = {1, ..., A}, Vr) = (A− 1)
∑

γ′∈F ({P≤A−1,p=2,Vr,p′≥A})

ν(γ′)f(γ′)

=
∑

γ′∈F ({P≤A−1,p=2,Vr,p′≥A})

ν(γ′)f(γ′)
∑

γ∈Vr(2),P≤A−1,p′≥A

1F (γ)=γ′

=
∑

γ∈Vr(2),P≤A−1,p′≥A

ν(γ)f(F (γ)). (6.32)

The second line comes from the fact that F maps exactly A−1 elements of {P ≤ A−1, p = 2, Vr, p
′ ≥ A}

onto the same curve in {P = {1, ..., A}, Vr}. The third line uses the fact that F does not change the
measure ν. The notation Vr(2) stands for Vr ∩ {p = 2}. One has:

(6.32) =
∑

γ∈Vr(2),P≤A−1,p′≥A

ν(γ)
[
f 1/2(F (γ))− f 1/2(γ)

]2 − ∑
γ∈Vr(2),P≤A−1,p′≥A

νf (γ)

+ 2
∑

γ∈Vr(2),P≤A−1,p′≥A

ν(γ)f 1/2(γ)f 1/2(F (γ)).
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Applying Cauchy-Schwarz inequality yields:[
(A− 1)1/2νf (P = {1, ..., A}, Vr)1/2 − νf (P ≤ A− 1, Vr(2), p′ ≥ A)1/2

]2
≤

∑
γ∈Vr(2),P≤A−1,p′≥A

ν(γ)
[
f 1/2(F (γ))− f 1/2(γ)

]2
. (6.33)

It remains to bound the right-hand side of (6.33) from above in terms of the Dirichlet form. Decompose
the passage from γ to F (γ) in single-block flips: γ = γ0 → γ1 → ... → γA−2 = F (γ), and apply
Cauchy-Schwarz inequality to find:

∑
γ∈Vr(2),P≤A−1,p′≥A

ν(γ)
[
f 1/2(F (γ))− f 1/2(γ)

]2 ≤ (A− 2)
∑

γ∈Vr(2),P≤A−1,p′≥A

ν(γ)
A−2∑
k=1

[
f 1/2(γk+1)− f 1/2(γk)

]2
.

Each move above is authorised in the contour dynamics, at rate 1/2. A given curve corresponding to
one of the γk can occur at most A − 1 times in all paths γ → F (γ) for γ ∈ {Vr(2), P ≤ A − 1}. As a
result, and since ν(γk) = ν(γ) for all k ≤ A− 2:[

(A− 1)1/2νf (P = {1, ..., A}, Vr)1/2 − νf (P ≤ A− 1, Vr(2), p′ ≥ A)1/2
]2 ≤ 4(A− 1)2DN(f). (6.34)

Similar computations give the same kind of bound for the second term in (6.31) under νf :[
νf (1 /∈ P, p = A, Vr)

1/2 − νf (P ≥ A, Vr(2))1/2
]2 ≤ 4(A− 1)DN(f). (6.35)

Let us use (6.34)-(6.35), to prove that (6.31) still holds under νf with a small error in N (recall that
DN(f) ≤ C/N). Equation (6.34) yields:

νf (Vr(2), P ≤ A− 1, p′ ≥ A) ≤ (A− 1)νf (P = {1, ..., A}, Vr) + C(A)
[
DN(f)1/2 +DN(f)

]
≤ (A− 1)νf (P = {1, ..., A}, Vr) + C(A)N−1/2,

where the constant C(A) > 0 changes between inequalities. Similarly, (6.35) yields:

νf (P ≥ A, Vr(2)) ≤ νf (P ≥ 2, p = A, Vr) + C(A)N−1/2 ≤ (A− 1)νf (P ≥ 2, p = A, Vr) + C(A)N−1/2,

whence the following counterpart of (6.31) for νf :

νf (Vr(2), p′ ≥ A) = νf (Vr(2), P ≤ A−1)+νf (P ≥ A, Vr(2)) ≤ (A−1)νf (p = A, Vr)+C(A)N−1/2. (6.36)

Equation (6.36) is sufficient to conclude the proof of the upper bound in (6.29). Indeed, fix B ≥ 2 and
apply (6.36) to each A ∈ {2, ..., B} to obtain (recall that Vr(2) = Vr ∩ {p = 2}):

1 ≥
B∑
A=2

νf (p = A, Vr) ≥
B∑
A=2

1

A− 1
νf (Vr(2), p′ ≥ A) +O(N−1/2). (6.37)

For ` ≥ 2, let H` =
∑`

k=2(k− 1)−1, H1 := 0 and integrate the right-hand side of (6.37) by parts to find:

1 ≥ νf (p = 2, Vr, p
′ ≥ B)HB +

B−1∑
A=2

HAνf (Vr(2), p′ = A) +O(N−1/2).
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Equation (6.28) follows:

lim sup
N→∞

νf (p = 2, Vr, p
′ ≥ B) ≤ H−1

B ≤
1

logB
. (6.38)

From (6.38) we conclude the proof of Lemma 6.6 using again the correspondence of Lemma 6.2:

νf (Vr(2)) = νf (p = 2, Vr) = νf (p = 2, Vr, p
′ ≥ eβ) + νf (p = 2, Vr, p

′ ≤ eβ − 1)

≤ 1

β
+ Eνf [e

−2β(p− 1)1Ir,p≤eβ−1

]
+O(N−1/2)

≤ 1

β
+ e−β(1− e−β +O(N−1/2)) ≤ 2

β
+O(N−1/2),

with Ir defined in (6.5).

Next, we use Lemma 6.6 to bound the width of the droplet at a given depth below the pole, and its
depth at a given width to either side of the pole.
For γ ∈ XN

r ∩NEr and k ≥ 1, the line y = ymax(γ)− k contains a certain number of horizontal edges in
γ, where ymax is the ordinate of the highest points in γ. Let `(k) be the number of these edges to the
right of L1, and `(−k) the number to the left of L1. Define also `(0) = p(γ) − 2. For N large enough,
because γ ∈ NEr each of the `(i), |i| ≤ k are well defined and the corresponding edges are in quadrant
4 (i ≤ 0) or quadrant 1 (i ≥ 0) (see Figure 10).

Lemma 6.7 (Width of a curve at depth k below the north pole). For k ∈ N∗, C > 0, A ≥ 2,

∀|i| ≤ k, lim sup
N→∞

sup
f :DN (f)≤C/N

νf
(
NEr(d), `(i) ≥ A

)
≤ e2β

(A+ 1) log(A+ 2)
. (6.39)

As a result, the numbers w+
k = 2 +

∑k
i=0 `(i) and w−k =

∑k
i=1 `(−i) of blocks with centres at height

ymax(γ)− k − 1/2 in a droplet Γ ∈ NEr, respectively to the right/to the left of L1, satisfy:

lim sup
N→∞

sup
f :DN (f)≤C/N

νf
(
NEr(d), w±k ≥ k2

)
≤ 3e2β

log k
. (6.40)

Proof. Equation (6.40) follows from (6.39) by a union bound. Let us prove (6.40) by recursion on |i| ≤ k.
For `(0), recall from Lemma 6.2 that, uniformly on ν-densities f with DN(f) ≤ C/N :

νf (p = 2, Vr, p
′ ≥ A+ 2) = Eνf

[
(p− 1)1Ire

−2β1p≥A+2

]
+ oN(1)

= Eνf [(`(0) + 1)1Ire
−2β1`(0)≥A

]
+ oN(1), (6.41)

Vr is defined in (2.9) and Ir in (6.5). In view of the following:

(A+ 1)νf (NEr(d), `(0) ≥ A) ≤ e2βEνf [(`(0) + 1)1Ire
−2β1`(0)≥A

]
,

Equation (6.39) follows for i = 0 via (6.41):

(A+ 1)νf (NEr(d), `(0) ≥ A)
(6.39)
≤ e2βνf (p = 2, Vr, p

′ ≥ A+ 2) + oN(1)
(6.38)
≤ e2β

log(A+ 2)
+ oN(1).
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Figure 10: Definition of the δ(±i), `(±i),∆±k , w
±
k . The small black dots mark the centre of each column,

the shaded areas are blocks in columns/lines constituting one of the pictured `(±i), δ(±i). Here, `(−2) =
δ(−3) = 0.

Now assume the result holds for |i| < k. To show it for e.g. i+ 1, we are going to prove:

νf (NEr(d), `(i+ 1) ≥ A) = νf (NEr(d), `(i+ 1) ≥ 0, `(i) ≥ A) +O
(
DN(f)1/2 +DN(f)

)
. (6.42)

The argument is very similar to the one used in the proof of Lemma 6.6. Consider the event {`(i+1) ≥ A}
and a curve γ in this event. This time, instead of adding blocks to the pole, we add A blocks to line i
below the pole of γ (see Figure 10 for a representation of `(i)) to obtain a curve F (γ). By this procedure,
{`(i+ 1) ≥ A} is sent onto {`(i) ≥ A}, and both γ and F (γ) have the same ν-measure.
The procedure γ → F (γ) requires A SSEP moves, corresponding to flipping blocks of line i one after
the other. None of these break any constraints involved in the definition of NEr(d), so that in fact:

F ({NEr(d), `(i+ 1) ≥ A}) = {NEr(d), `(i) ≥ A}.

Moreover, each curve in the chain γ1 = γ → ...→ γf = F (γ) appears at most A+1 times when effecting
the procedure for all curves in {NEr(d), `(i + 1) ≥ A}. The difference of the square roots of the two
probabilities appearing in (6.42) is thus bounded by C(A)DN(f), which completes the proof of (6.42),
thus of Lemma 6.7.

Lemma 6.7 gives a bound on the width of a curve below its pole. Let us now show that, at distance
k ≥ 1 to the right or to the left of the north pole, the height cannot be too big as a function of k. To
do so, for k ∈ N∗ and |i| ≤ k, define δ(i) as the absolute value of the height difference between columns
i and i+ 1, fixing δ0 = 0 to be the height difference of the columns with left extremities L1 and L1 + e1

respectively (see Figure 10). Note the different choice in labels of the δ’s compared to the `’s to mark
the symmetry between quadrants 1 and 4.

Lemma 6.8 (Height of a column at fixed distance to the pole). For k ∈ N∗ and each C > 0, A ≥ 1,

∀1 ≤ i, j ≤ k, lim sup
N→∞

sup
f :DN (f)≤C/N

νf
(
NEr(d), δ(i) ≥ A, δ(−j) ≥ A

)
≤ e−2β(A−1). (6.43)

Let ∆±k =
∑k

i=1 δ(±i) be the heights that a curve has gone down after k horizontal steps on either side
of L1. Then (β > 1):

lim sup
N→∞

sup
f :DN (f)≤C/N

νf
(
NEr(d),∆+

k ≥ k(1 + log k),∆−k ≥ k(1 + log k)
)
≤ 1

k2β−2
= ok(1). (6.44)
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Proof. Equation (6.44) follows from (6.43) by a union bound. To prove (6.43), we first treat the case
i = j = 1. {δ(1) ≥ A, δ(−1) ≥ A} is the event that the north pole is atop a column of width 2 and
height at least A. With γ ∈ {δ(1) ≥ A, δ(−1) ≥ A} associate a curve G(γ) ∈ {δ(1) ≥ 1, δ(−1) ≥ 1}
in which the north pole has been shrunk A− 1 times. G(γ) has length |γ| − 2(A− 1), thus has higher
equilibrium probability. In fact, up to boundary effects in the definition of XN

r , G is a bijection between
the above sets, and:

ν
(
δ(1) ≥ A, δ(−1) ≥ A

)
' e−2β(A−1)ν

(
δ(1) ≥ 1, δ(−1) ≥ 1

)
. (6.45)

Equation 6.45 is not an equality because of boundary conditions. Indeed, elements of XN
r must satisfy

ymax − ymin ≥ dNre, with ymin the ordinate of the south pole of a curve, and be subsets of ΛN . As a
result, G is a mapping from XN

r onto itself provided we write:{
δ(±1) ≥ A, ymax − ymin ≥ dNre+ A− 1

} G−→
{
δ(±1) ≥ 1, ymax ≤ N − (A− 1)

}
. (6.46)

The condition on the first set ensures that deleting A− 1 levels of the north pole of one of its element γ
still yields a curve G(γ) ∈ XN

r . Conversely, the height of the north pole of G(γ) cannot be higher than
N − (A− 1), otherwise the original curve γ would have a north pole outside of ΛN .
The mapping G written as in (6.46) is bijective, and one has:

ν
(
δ(±1) ≥ A, ymax − ymin ≥ dNre+ A− 1

)
= e−2β(A−1)ν

(
δ(±1) ≥ 1, ymax ≤ N − (A− 1)

)
. (6.47)

In the same way as in Lemma 6.6, (6.47) holds under νf for any ν-density f up to a term bounded by
C(A)

(
DN(f)1/2 +DN(f)

)
, quantifying the cost of deleting A− 1 lines of the pole of a curve one by one.

As a result, if f is a ν-density with DN(f) ≤ C/N :

νf
(
δ(±1) ≥ Aymax − ymin ≥ dNre+ A− 1

)
≤ e−2β(A−1) +O

(
N−1/2

)
. (6.48)

The dependence in A in the error term is not kept, as we choose it independent of N . Each curve involved
in these strings of dynamical moves appears at most A times in all the strings of all the curves, hence
an error bounded by C(A)DN(f)1/2. As curves in NEr(d) satisfy ymin − ymax ≥ 2Nr ≥ dNre + A − 1
(opposite poles must be at distance at least 2Nr), (6.43) holds for i = j = 1.

To prove (6.43) for each (i, j) ∈ {1, ..., k}, let us first prove it for j = 1, i > 1. One has:

νf
(
NEr(d), δ(i) ≥ A, δ(−1) ≥ A

)
= νf

(
NEr(d), δ(i− 1) ≥ A, δ(−1) ≥ A

)
+ oN(1). (6.49)

Indeed, as in Lemma 6.7, a curve with δ(i) ≥ A is transformed into one with δ(i − 1) ≥ A by deleting
A blocks in column i− 1. These SSEP moves do not change the length of the curve, nor do they affect
whether a curve is in NEr(d) for N large enough, since all blocks involved in the moves are at distance
of order Nr to the other quadrants or any pole other than the north pole. Iterating (6.49) from i to
1 and using (6.48) yields (6.43) for the couple (i,−1). Now if j 6= 1, the same argument applies to go
from −j to −1. This concludes the proof of (6.43).

6.2.4 Value of the slope at the pole

We now have all prerequisites to prove that the motion of the north pole imposes a particle density of
e−β on each side, as stated in Lemma 6.9. Its proof crucially makes use of the fact that the contour
dynamics around the pole is irreducible. This is due to the e−2β regrowth jumps allowed in the contour
dynamics which means, in particular, that it is not true for the zero temperature stochastic Ising model.
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Lemma 6.9. For each δ > 0 and test function G ∈ C,

lim sup
N→∞

1

N
logPNr,β

(
for a.e. t ∈ [0, T0], γt ∈ NEr(d);

∣∣∣∣ 1

T0

∫ T0

0

G(t, L1(t)/N)
(
1p=2 − e−β

)
dt

∣∣∣∣ ≥ δ

)
= −∞.

(6.50)
The claim is also valid under PNr,β,H .

Proof. The proof only deals with G ≡ 1 and H ≡ 0. Generalisations to PNr,β,H follow as in the proof
of Lemma 6.5, and we explain how to include a test function G in Remark 6.10. Integer parts are
systematically omitted.
The proof is structured as follows. We first use Lemma 6.3 to project the dynamics inside NEr(d).
The compactness results provided by Section 6.2.3 are then incorporated to the probability in (6.50).
This enables us to define a proper frame around the pole. After conditioning to this frame, the quantity
to estimate in (6.50) can be retrieved from an equilibrium computation, which is the last step of the proof.

Let φ = 1p=2 − e−β. By Markov inequality and Lemma 6.3, the left-hand side of (6.50) without the
limits is bounded from above, for each a > 0 by:

−aδT0 + Cβ + T0

∣∣∣ sup
f≥0:νf (NEr(d))=1

{
aEνf [φ]−NDN(f)

}∣∣∣. (6.51)

Step 1: definition of a suitable frame around the pole
The first step consists in writing the expectation in (6.51) as a quantity that depends only on the dy-
namics around the pole. The idea is to compare the contour dynamics to a zero-range process with
two species of particles. The number of particles is given by the height difference between consecutive
columns around the pole. The type of particle is determined by the sign of the height difference. This
process is irreducible and its invariant measure can be made explicit. More is said on this dynamics
below, see also Figure 12. To make such a comparison, we define a frame around the pole without fixing
its position, contrary to what was done e.g. in Lemma 6.5. This is done as follows.

Fix an integer k, which will be the typical size of the frame around the pole, and consider the
following partition of XN

r ∩ NEr(d). For any curve γ, let hk(γ) be the smallest integer such that the
number of blocks in Γ (the droplet delimited by γ) with centre at height y = ymax − hk(γ) − 1/2 is
strictly larger than k (see Figure 11):

hk(γ) = min
{
y ∈ N : Ny(γ) > k}, (6.52)

where:
Ny(γ) = #

{
blocks in Γ with centre at height ymax(γ)− y − 1/2

}
.

Let xk(γ), yk(γ) denote the extremal vertices of the last level of Γ with width smaller than k, and let
`k(γ) := ‖yk(γ) − xk(γ)‖1 be this width, see Figure 11. For fixed k ∈ N∗ and 2 ≤ ` ≤ k, consider the
set:

M` =
{
γ ∈ XN

r : `k(γ) = `
}
. (6.53)

Then (M`)2≤`≤k is a disjoint family, which partitions XN
r ∩NEr(d). This second point comes from the

fact that curves in NEr(d) have width at least Nr ≥ k at some level on each side of L1 for N large
enough. The expectation in (6.51) thus reads, for each ν-density f supported on NEr(d):

Eνf [φ] =
∑

2≤`≤k

Eνf [1M`
φ]. (6.54)
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Figure 11: Definition of hk, `k and xk, yk for a given curve. The first level of blocks with width strictly
larger than k corresponds to the filled area, unchanged by the ZRP dynamics. In this case there are
k + 1 such blocks, with centres indicated by black dots. The width `k of the last level of width smaller
than k is equal here to k − 1. The portion of the curve affected by the ZRP dynamics is delimited by
dashed lines and the segment [xk, yk].

At this point, the splitting of curves in the different M` in (6.54) suffers from two flaws. On the one
hand, the width `, which will correspond to the number of sites in a ZRP, may not be large. This makes
a local equilibrium argument impossible to apply. On the other hand, the pole may be macroscopically
higher than the points xk(γ), yk(γ). In other words, we must control both the height hk(γ) below the
pole and the width `k(γ) in terms of k. Lemmas 6.7-6.8 enable such a control, as we now explain.

Consider first the height hk(γ), defined in (6.52). Then either hk(γ) = 0, which corresponds to
having a pole size p(γ) ≥ k, or hk(γ) > 1 and the level at height hk(γ) − 1 below the pole has width
strictly smaller than k, thus has width smaller than k on both sides of L1. Recalling from Lemma 6.8
that ∆±k (γ) is the depth at horizontal distance k on either side of the pole, we find:

hk(γ) ≤ min
{

∆+
k (γ),∆−k (γ)

}
.

Lemma 6.8 then yields, for each C > 0:

lim sup
N→∞

sup
f :DN (f)≤C/N

νf
(
NEr(d), hk ≥ k(1 + log k)

)
= ok(1). (6.55)

We now turn to the width `k = `k(γ) of the level at height hk below the pole. Recalling the definition
of the widths w± from Lemma 6.7, notice first the identity:

∀γ ∈ XN
r ∩NEr(d), `k(γ) = w+

hk(γ) + w−hk(γ). (6.56)

Let ak > 0 to be chosen later, fix C > 0 and a ν-density f with DN(f) ≤ C/N . According to (6.56),
one has for instance:

νf
(
NEr(d), `k ≤ ak

)
≤ νf

(
NEr(d), w−hk ≤ ak

)
. (6.57)

If at level hk below the pole one has gone left less than ak times, then one must be below hk once
reaching a distance ak to the left of the pole, i.e.:

w−hk ≤ ak ⇒ ∆−ak ≥ hk. (6.58)

Let us provide a lower bound on hk, then choose ak such that the probability of the right-hand side of
(6.57) is small. For bk > 0, analogously to (6.58), one has:

hk ≤ bk ⇒ w−bk+1 + w+
bk+1 > k.
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By Lemma 6.7, for bk =
√
k/2− 1:

lim sup
N→∞

sup
f≥0:DN (f)≤C/N

νf
(
NEr(d), hk ≤ bk

)
≤ lim sup

N→∞
sup

f≥0:DN (f)≤C/N
νf
(
NEr(d), w±bk+1 ≥ k

)
= ok(1). (6.59)

As a result, (6.58) implies:

lim sup
N→∞

sup
f≥0:DN (f)≤C/N

νf
(
NEr(d), w−hk ≤ ak

)
≤ lim sup

N→∞
sup

f≥0:DN (f)≤C/N
νf
(
NEr(d),∆−ak ≥ hk ≥ bk + 1

)
+ ok(1), (6.60)

where the error term is bounded from above by (6.59). It remains to choose ak as a function of
bk + 1 =

√
k/2 such that the right-hand side of (6.60) vanishes for large k. By Lemma 6.8, it suffices to

take ak such that ak(1 + log(ak)) = bk + 1 = k1/2, e.g.:

ak = (1/4)k1/2/ log k =: `min(k).

With this choice of ak = `min(k), (6.60) and (6.57) finally yield the desired control on `k:

lim sup
N→∞

sup
f≥0:DN (f)≤C/N

νf
(
NEr(d), `k ≤ `min(k)

)
= ok(1). (6.61)

We now use equations (6.55)-(6.61) to restrict admissible configurations around the pole, thus concluding
the definition of the frame around the pole. Define hmax(k) := k(1 + log k) and recall that `min(k) :=
(1/4)k1/2/ log k. By the discussion of the previous paragraph, and as φ = 1p=2 − e−β is bounded, (6.51)
is bounded from above by:

−aδT0 + Cβ + T0

∣∣∣ sup
f≥0:νf (NEr(d))=1

{
a

∑
`min(k)≤`≤k

Eνf
[
1M`

1hk≤hmax(k)φ
]
− N

2
DN(f)

}∣∣∣+ ωN,k, (6.62)

where ωN,k satisfies by (6.55)-(6.61):

lim sup
N→∞

ωN,k ≤ a‖φ‖∞ lim sup
N→∞

sup
f :DN (f)≤2‖φ‖∞a/N

νf
(
NEr(d), hk > hmax(k) or `k < `min(k)

)
= ok(1).

It is thus sufficient to estimate the supremum in (6.62).

Step 2: conditioning and mapping to a two-species zero-range process
We now study the expectation in (6.62) in detail on a given M`, defined in (6.53), and obtain a
local description of the contour dynamics around the pole. We claim that to configurations in M`

corresponds a unique particle configuration in Ω` = Z`+1. The mapping goes as follows. If γ ∈ M`,
define, for 0 ≤ j ≤ `, a particle number ηj corresponding to the height increment at column j, with
column 0 the one centred on xk(γ), as:

ηj = εj
∑

z∈ΛN :z·e1=x(γ)·e1+j
z·e2≥ymax(γ)−hk(γ)

ξz, εj =

{
1 if j ≤ L1 · e1,

−1 if j > L1 · e1.
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Figure 12: Portion of the interface of a curve around the north pole, and associated path and particle
configurations. Particles are in dark dots, antiparticles in light dots, and empty sites are white with a
dark contour. The grey arrows on the particle configuration correspond to jumps allowed by the contour
dynamics that conserve the particle number. A move reducing the length of the curve, materialised on
the curve by the vertical arrows, corresponds to a particle-antiparticle pair annihilation, represented by
the black crosses. No particle creation is represented here.

If ηj < 0 for some j, we say that there are |ηj| antiparticles at site j. The constraint z ·e2 ≥ ymax(γ)−h(γ)
guarantees that only the vertical edges above the level of xk(γ), yk(γ) are counted as particles. We let
η(γ) denote the unique particle configuration in Ω` associated with γ ∈M` (see Figure 12).
In the particle language, hk corresponds to the number of particles or antiparticles. The event {hk ≤
hmax(k)} can thus be recast, for each `, as the event:

W ` = {ρ` ≤ C`}, where ρ` =
1

`+ 1

∑̀
j=0

|ηj|, C` = C`,k =
2

`+ 1
hmax(k) =

2k(1 + log k)

`+ 1
. (6.63)

Let ` ∈ {`min(k), ..., k}, f be a ν-density supported on NEr(d) with νf (M`) > 0, and define:

∀η ∈ Ω`, f̄`(η) =
1

νf (M`)

∑
γ∈M`:η=η(γ)

Z−1
r,βf(γ)e−β|γ|+β|η|+β`. (6.64)

Define also the probability measure µ̄`:

∀η ∈ Ω`, µ̄`(η) = Z̄−1
` exp

[
− β`− β

∑̀
j=0

|ηj|
]
, (6.65)

where Z̄` is a normalisation factor, and
∑`

j=0 |ηj| + ` is the length of the path which corresponds to
the particle configuration η. Though we could factor it out as it is common to all η, the e−β` factor in
the definition of µ̄` will be convenient later on. The expectation in (6.62) is recast in terms of particle
configurations as follows:

Eνf
[
1M`

1hk≤hmax(k)φ
]

= νf (M`)Eµ̄`
[
f̄`1W`

φ
]
, , (6.66)
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so that we know how to estimate the supremum in (6.51) as soon as we can estimate:

sup
f≥0:νf (NEr(d))=1

{ `=`min(k)∑
k

aνf (M`)Eµ̄`
[
f̄`1W`

φ
]
− N

2
DN(f)

}
, φ = 1p=2 − e−β. (6.67)

Step 3: Local equilibrium
We now prove that estimating the supremum in (6.67) reduces to an equilibrium computation. At this
stage, the technique is the same as in [KL99]. Denote by D̄` the reduced Dirichlet form on Ω`, defined
as follows. For η ∈ Ω`, let P (η) denote the pole of η, that is the subset {L, ..., R} of {0, ..., `} such that
ηL is the last ηj that is strictly positive or L = 0 if there are none, ηR the first to be strictly negative or
R = ` if none exist. Let also p = |P (η)| − 1. For any µ̄`-density g, define:

D̄`(g) =
1

2

∑
η,η′∈Ω`

µ̄`(η)c(η, η′)
[
g1/2(η′)− g1/2(η)

]2
. (6.68)

Importantly, the positions of the extremal sites 0, ` (corresponding for curves γ compatible with a given
configuration to the points xk(γ), yk(γ)) are unchanged by the dynamics. This is because the ZRP
dynamics only acts on the portion of γ above xk(γ), yk(γ). In particular, the first level of γ with width
strictly larger than k, which defines the position of xk(γ), yk(γ), is never modified.
In (6.68), we abuse notations and still write c(·, ·) for the jump rates of the ZRP moves corresponding
to moves on the contour dynamics. This is legitimate, since if f is a ν-density supported on NEr(d),
any jump featured in D̄`(f̄`) is an allowed jump for DN with the same rate by definition of NEr(d).
Convexity then yields:

DN(f) ≥
k∑

`=`min(k)

νf (M`)D̄`(f̄`). (6.69)

Reinjecting (6.69) into the supremum in (6.67), we see that it is enough to estimate:

sup
f≥0:νf (NEr(d))=1

{ k∑
`=`min(k)

νf (M`)
[
aEµ̄`

[
f̄`1W`

φ
]
− N

2
D̄`(f̄`)

]}
. (6.70)

We are nearly done with conditioning to a frame where we can compute the expectation in (6.70). The
remaining step is to reduce the state space Ω` = Z`+1 to something that is compact. By definition of
f̄`, µ̄`, D̄` in (6.64)-(6.65)-(6.68) respectively, the process is painless: it is enough to delete all jumps that
increase the number of particles above what is authorised by W` (defined in (6.71)). Indeed, define µ`
as a measure on W` as follows:

∀η ∈ W` =
{
ρ` ≤ C` =:

2hmax(k)

`+ 1

}
, µ`(η) := Z−1

` exp
[
− β`− β

∑̀
j=0

|ηj|
]

=
Z̄`
Z`
µ̄`(η), (6.71)

where Z` is a normalisation factor on W`. The marginal f̄` is correspondingly modified into a µ`-density
f`:

∀η ∈ W`, f`(η) :=
Z`
Z̄`

1

Eµ̄`
[
f̄`1W`

] f̄`(η).

Finally, the Dirichlet form D` for the reduced dynamics (written here in compact form) reads, for any
µ`-density g:

D`(g) =
∑

η,η′∈W`

c(η, η′)[g1/2(η′)− g1/2(η)]2. (6.72)
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Since we simply restricted allowed jumps, one has D̄`(f̄`) ≥ D`(f`)Eµ̄` [f̄`1W`
]. Under µ`, the quantity

(6.70) to estimate is then bounded from above by:

sup
f≥0:νf (NEr(d))=1

{ k∑
`=`min(k)

νf (M`)Eµ̄`
[
f̄`1W`

][
aEµ`

[
f`φ
]
− N

2
D`(f`)

]}

≤ a sup
f≥0:νf (NEr(d))=1

{ k∑
`=`min(k)

νf (M`)Eµ̄`
[
f̄`1W`

][
sup

g≥0:Eµ` [g]=1

D`(g)≤2a‖φ‖∞/N

Eµ`
[
gφ
]]}

, (6.73)

The proof of Lemma 6.9 will therefore be concluded if we can prove that, for fixed k and N large, the
supremum on g in the right-hand side of (6.73) is bounded by ok(1) uniformly in ` ≤ `max(k).
Fix ` ∈ {k, ..., `max(k)}. As W` is compact, the supremum on g in (6.73) is achieved by a density gN` for
each N . Up to taking a subsequence, by lower semi-continuity of D` and continuity of the expectation
in (6.73) w.r.t weak convergence, we can take the large N limit and restrict ourselves to studying:

sup
g∞:D`(g∞)=0

Eµ` [g
∞φ].

By definition of D`, the corresponding dynamics is irreducible on W`. This is the major difference
between the contour dynamics and the 0-temperature stochastic Ising model, which motivated the
introduction of the temperature-like parameter β to allow for regrowth. Irreducibility means that any
g∞ satisfying D`(g

∞) = 0 is constant equal to 1, and we are left with the estimate of:

Eµ` [φ] with φ = 1p=2 − e−β. (6.74)

Step 4: equilibrium large deviations and surface tension
The expectation (6.74) is taken under the equilibrium measure of the zero-range dynamics. Properties
of the measure µ` are analysed in Appendix A.3. In particular, it is proven there that:

lim
k→∞

sup
`min(k)≤`≤k

Eµ` [φ] = 0. (6.75)

Equation (6.75) concludes the proof of Lemma 6.9 with G ≡ 1.

Remark 6.10. Lemma 6.9 holds for any test function G ∈ C and not just G ≡ 1: for each δ > 0,

lim sup
ε→0

lim sup
N→∞

1

N
logPNr,β

(
∀t ∈ [0, T0], γt ∈ NEr(d);

∣∣∣∣ 1

T0

∫ T0

0

G(t, L1(t))
(
1p=2 − e−β

)
dt

∣∣∣∣ ≥ δ

)
= −∞.

This is proven in the same way as Lemma 6.9, except that curves are further conditioned by fixing the
point xk(γ), which is the left extremity of the interval {0, ..., ` = ‖yk(γ) − xk(γ)‖1} for a curve γ. The
expectation in (6.62) becomes, for each t ≤ T0 and ν-density f supported in NEr(d):∑

`min(k)≤`≤k

Eνf
[
1M`

1hk≤hmax(k)φG(t, L1/N)
]

=
∑

`min(k)≤`≤k

∑
x∈ΛN

Eνf
[
1M`

1hk≤hmax(k)1x(γ)=xφG(t, x/N)
]

+ oN(1),

with an error term uniform in f . Indeed, the difference between G(t, L1/N) and G(x/N) is bounded by
N−1(hmax(k) + k)‖∇G‖∞ = oN(1) thanks to the conditions `k ≤ k, hk ≤ hmax(k).
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The position of xk(γ) is unchanged by the ZRP dynamics, see the discussion following (6.68). As such,
the rest of the arguments in the proof of Lemma 6.9 go through unchanged, except that one has to
rewrite everything with x fixed, e.g. to consider M`,x = M` ∩ {xk(γ) = x} instead of M` everywhere,
and to correspondingly change f` into f`,x. The Dirichlet form D` in (6.68), however, does not depend
on x, as in the proof of Lemma 6.5: the ZRP dynamics acts on the local gradients of curves, not on
their absolute position. �

The method of proof of Lemma 6.9 can be used to obtain tighter estimates on the slope at the poles.
An example is given in the following corollary, used in Appendix B.3 to obtain exponential tightness.

Corollary 6.11 (One and two block estimates for deviations from the average). For each δ, η > 0:

lim sup
n→∞

lim sup
N→∞

1

N
logPNr,β

(
for a.e. t ∈ [0, T0],Γt ∈ Er(d);

1

T0

∫ T0

0

1|ξ±,nL1
−e−β |≥δdt > η

)
= −∞. (6.76)

and:

lim sup
n→∞

lim sup
ε→0

lim sup
N→∞

1

N
logPNr,β

(
for a.e. t ∈ [0, T0],Γt ∈ Er(d);

1

T0

∫ T0

0

1|ξ±,nL1
−ξ±,εNL1

|≥δdt > η

)
≤ −∞.

(6.77)

Remark 6.12. Note that 1|ξ±,nL1
−e−β |≥δ is simply a cylindrical function, which has average on(1) under

the invariant measure ν. Corollary 6.11 thus says no more than the usual replacement lemmas. �

Proof. Equation (6.77) is a two block estimate which uses only the SSEP part of the dynamics. The
method of proof has already been explained in Lemma 6.5.
Consider instead (6.76). The apparent difference with Lemma 6.9 is that, e.g. for ξ+,n, we need to focus
on a frame around the pole which, in addition, has at least n edges to the the right of the pole. However,
this has already been proven to be possible: by (6.59), the event hk ≥

√
k/2− 1 is typical under νf for

any f with DN(f) ≤ C/N , C > 0.
To ensure that there are at least n edges on either side of the pole with probability going to 1 in the
large n limit, it remains to choose k such that (k/2)1/2 − 1 ≥ n, i.e. any k ≥ 2(n + 1)2 works. It is
convenient to take k independent from n and have k go to infinity before n. The proof of (6.76) is then
reduced, as in Lemma 6.9, to an elementary (though more intricate) equilibrium computation under the
measure µ`, defined in (6.71).

A Replacement lemma and projection of the dynamics

A.1 Replacement lemma

In this section, we prove the Replacement Lemma 3.8. Let us first introduce some notations. For each
ε > 0 and x ∈ [−1, 1]2, denote by B(x, εN) the subset of ΛN of points at distance less than εN to x in
1-norm. For γ ∈ XN

r and x ∈ V (γ), define

φ(τxγ) = cx(γ) = ξx+e−x
(1− ξx)/2 + ξx(1− ξx+e−x

)/2.

Recall from (3.3) that ξεNx is the quantity

ξεNx =
1

2εN + 1

∑
y∈V (γ)∩B(x,εN)

ξy,
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and define, as in Lemma 3.8, the local average of φ:

φ̃(τxγ) = ξεNx (1− ξεNx ).

Let G ∈ C(R+ × [−1, 1]2) be a bounded function. By Chebychev exponential inequality and Lemma
6.3, Lemma 3.8 holds if, uniformly on t > 0 and for each a > 0:

lim sup
ε→0

lim sup
N→∞

(A.1)

sup
f≥0:νf (NEr)=1

{
Eνf

[
a

{
1

|γ|
∑

x∈V (γ)

G(t, x/N)

[
φ(τxγ)− φ̃(ξεNx )

]}2
]
−NDS

N(f)

}
= 0.

Recall that DS
N is the Dirichlet form of the contour dynamics without the pole terms.

Following [ELS90] and as γ ∈ XN
r implies |γ| ≥ Nr, it is sufficient to prove the following two estimates.

Lemma A.1. (One and two block estimates)
Fix d > 0. Let ε > 0, k ∈ N∗, and let (Vj)1≤j≤J denote a partition of {−εN, ..., εN} in J intervals
of length k, except maybe the last one that is of size at most 2k, such that maxVj = minVj+1 − 1 for
j ≤ J − 1. For γ ∈ XN

r , x ∈ V (γ) and 1 ≤ j ≤ J , let Vj(x) be the set of vertices in B(x, εN) ∩ V (γ),
whose positions relative to x correspond to elements of Vj. Define also:

A(φ, Vj(x)) =
1

|Vj(x)|
∑

y∈Vj(x)

φ(τyγ), ξVj(x) =
1

|Vj(x)|
∑

y∈Vj(x)

ξy.

Then (one block estimate):

lim sup
k→∞

lim sup
ε→0

lim sup
N→∞

sup
1≤j≤J

(A.2)

sup
f≥0:νf (NEr)=1

{
a

∫
dν(γ)f(γ)

1

|γ|
∑

x∈V (γ)

∣∣∣A(φ, Vj(x))− φ̃(ξVj(x))
∣∣∣2 −NDS

N(f)

}
= 0,

and (two block estimate):

lim sup
k→∞

lim sup
ε→0

lim sup
N→∞

sup
1≤b,c≤J

(A.3)

sup
f≥0:νf (NEr)=1

{
a

∫
dν(γ)f(γ)

1

|γ|
∑

x∈V (γ)

∣∣∣A(φ, Vb(x))− A(φ, Vc(x))
∣∣∣2 −NDS

N(f)
]}

= 0.

Proof. All distances are in 1-norm. In this proof as in the proof of Lemma 6.5, it would be sufficient to
look at densities supported in NEr and not NEr(d). We work with NEr(d) to provide a unified picture.
Fix φ ∈ {φ1, φ2} and let R ∈ {0, 1} be its range, i.e. φ(τxγ) depends only on B(x,R) ∩ V (γ) for
γ ∈ XN

r , x ∈ V (γ). The proof of (A.2)-(A.3) consists in showing that the one and two block estimates
for the contour dynamics amount to the same estimates for the SSEP, which are well known [ELS90].
We do it for (A.2), (A.3) is similar. The first step is to discard all points in the sum in (A.2) that are
close to the poles, so that the pole dynamics can be neglected.
Define thus, for u > 0, the set W u(γ), which contains all points of V (γ) at distance at least u from each
Li, i ∈ {1, ..., 4} (compare with V u(γ), defined in Section 3, which contains points at 1-distance at least
u from the poles, and not just their left extremities). For γ ∈ XN

r , as |γ| ≥ Nr,

1

|γ|
∑

x∈V (γ)

∣∣∣A(φ, Vj(x))− φ̃(ξVj(x))
∣∣∣2≤ 1

Nr

∑
x∈W εN+R+3(γ)

∣∣∣A(φ, Vj(x))− φ̃(ξVj(x)
x )

∣∣∣2 + Cr−1‖φ‖∞ε. (A.4)
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The second term in the right-hand side of (A.4) vanishes for ε small, and we now estimate the sum.
Let us split the summand in (A.2) between each quadrant. Inside each quadrant, the arguments of
Lemma 6.5 will apply to compare the dynamics to a SSEP.
Denote by Mi the set of all maximal self avoiding paths in the i direction (corresponding to quadrant i),
for i ∈ {SE, SW,NW,NE} = {1, 2, 3, 4} (S means south, E east, etc.), defined as follows. For γ ∈ XN

r ,
let γi denote the part of γ that comprises all vertices between Li+2e+

Li
and the vertex before Li+1, these

two vertices included (with L4+1 := L1). Mi is then defined as the set of all γi for γ ∈ XN
r .

With this construction, if in addition γ ∈ NEr ⊂ NEr(d), if γ \ γi is fixed, then so are the poles and the
single-flip (i.e. SSEP) part of the contour dynamics on γi is just the corner-flip dynamics as described
in the proof of Lemma 6.5: jump rates are local due to being in NEr, and no single-flip inside γi could
shrink a pole of size 2 due to the way the extremities of γi are defined.
Define µi as the marginal of ν (defined in (2.3)) on Mi:

∀ρ ∈Mi, µi(ρ) =
e−β|ρ|

Zi
, Zi =

∑
ρ∈Mi

e−β|ρ|.

Let f be a ν-density supported on NEr(d). Define the corresponding µi-marginal fi:

∀ρ ∈Mi, fi(ρ) =
1

µi(ρ)

∑
γ∈XN

r

1γi=ρf(γ)ν(γ).

In terms of the Mi, the Dirichlet form DS
N(f) is bounded from below by convexity according to:

DS
N(f) ≥ 1

2

4∑
i=1

∑
ρ∈Mi

µi(ρ)
∑
x∈V (ρ)

cx(ρ)
[
f

1/2
i (ρx,x+e−x )− f 1/2

i (ρ)
]2

=:
4∑
i=1

DS
i (fi), (A.5)

where for i ∈ {1, ..., 4} and a µi-density h, the Dirichlet form DS
i (h) corresponding to the SSEP dynamics

in quadrant i is given by:

DS
i (h) =

∑
ρ∈Mi

µi(ρ)
∑
x∈V (ρ)

cx(ρ)
[
h1/2(ρx,x+e−x )− h1/2(ρ)

]2
.

Indeed, the jump rates in (A.5) are functions of ρ ∈ Mi only, i ∈ {1, ..., 4}, since f is supported on
NEr(d). Let us now see how to use this decomposition of the curves into quadrants to estimate the sum
appearing in the right-hand side of (A.4). For short, define Φj for 1 ≤ j ≤ J by:

Φj(τxγ) =
∣∣∣A(φ, Vj(x))− φ̃(ξVj(x))

∣∣∣2.
Note that Φj only depends on the edge configuration in a neighbourhood of a curve around x, not on
the absolute position of x as a point of ΛN . We thus only need to keep track of the label of x in a well
chosen parametrisation of γ. We have:

(E) : =
1

Nr

∑
γ∈XN

r ∩NEr(d)

ν(γ)f(γ)
∑

x∈W εN+R+3(γ)

Φj(τxγ) ≤ 1

Nr

4∑
i=1

∑
ρ∈Mi

µi(ρ)fi(ρ)
∑

x∈W εN+R(ρ)

Φj(τxρ).

So far, we proved that the one block-estimate (A.2) holds as soon as, for each j ∈ {1, ..., J}:

sup
f≥0:νf (NEr)=1

{ 4∑
i=1

[
a
∑
ρ∈Mi

µi(ρ)fi(ρ)
∑

x∈W εN+R(ρ)

Φj(τxρ)−NDS
i (fi)

]}
≤ 0. (A.6)
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The estimate for each quadrant i is similar, so we only do it for i = 1. Further split paths in M1

according to their number of vertices. Let M1(n) be the subset of M1 of paths with n+ 1 vertices. All
such paths have the same µi-measure, thus the marginal of µi on M1(n) is the uniform measure Un on
paths with n+ 1 vertices or, equivalently, by the correspondence expounded in Section 6.2.2 (see Figure
9), of SSEP configurations with n sites. Define f1,n as the corresponding Un-marginal of f1 on M1(n):

∀ρ ∈M1(n), f1,n(ρ) = Eµ1

[
f11M1(n)

]−1
f1(ρ)µ1(ρ)|M1(n)| provided Eµ1

[
f1M1(n)

]
> 0. (A.7)

It is a density for Un, so that by convexity of the Dirichlet form we have:

4N∑
n=2εN+2R

Eµ1

[
f11M1(n)

]
D1,n(f1,n) ≤ D1(f1),

where D1,n is the Dirichlet form associated with the corner-flip dynamics on M1(n). The lower bound
on n comes from the fact that, for any ρ ∈M1(n) with n < 2εN + 2R, W εN+R(ρ) is empty. The upper
bound comes from the finite length of a quadrant for a curve in ΛN = [−N,N ]2∩Z2. Again by convexity,

DS
N(f) ≥

4N∑
n=2εN+2R

Eµ1

[
f11M1(n)

]
D1,n(f1,n). (A.8)

With this decomposition, the term between brackets in (A.6) is bounded from above, for each i ∈
{1, ..., 4}, by:

1

Nr

4N∑
n=2εN+2R

Eµi
[
fi1Mi(n)

] 1

|Mi(n)|
∑

ρ∈Mi(n)

fi,n(ρ)
n−εN−R∑
x=εN+R+1

Φj(τxρ)

=
1

Nr

4N∑
n=2εN+2R

Eµi
[
fi1Mi(n)

] 1

|Mi(n)|
∑
σ∈Ωn

gi,n(σ)
n−εN−R∑
x=εN+R+1

Φj(τxσ). (A.9)

In the last line, Ωn is the set of SSEP configurations on n sites, and gi,n is defined for σ ∈ Ωn by
gi,n(σ) = gi,n(ρ(σ)), with ρ(σ) the unique path in Mi(n) corresponding to the configuration σ, as
pictured in Figure 9. In view of (A.6)-(A.8)-(A.9), to prove the one block estimate (A.2), it is sufficient
to prove that, uniformly on j ∈ {1, ..., J}:

lim sup
N→∞

sup
n∈{2εN+2R,...,4N}

sup
g≥0:EUn [g]=1

{
1

N
EUn

[
g

n−εN−R∑
x=εN+R+1

Φj(τx·)
]
−NDS

n(g)

}
≤ 0. (A.10)

The notation DS
n , already used in Section 6, stands for the Dirichlet form associated with a SSEP on n

sites. We are left with a usual one block estimate for a SSEP of size n, proven e.g. in [ELS90]. There,
the size n of the SSEP becomes irrelevant due to conditioning on a neighbourhood of size k of x, hence
the proof of (A.2). The two block estimate (A.3) is proven similarly.

A.2 Projection of the contour dynamics in the good state space

In this section, we prove Lemma 6.3, which states that the contour dynamics can be projected to the
effective state space NEr(d). We state and prove a more general result.
Let (Xt)t≥0 be a continuous time Markov chain on a finite state space E, reversible with respect to a
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measure ν. If x0 ∈ E, let PXx0
,EXx0

be the associated probability and expectation. The jump rates of the
chain are denoted c(x, y), (x, y) ∈ E2, with associated Dirichlet form D:

∀f : E→ R, D(f) =
1

2

∑
(x,y)∈E2

ν(x)c(x, y)
[
f(y)− f(x)

]2
. (A.11)

Lemma A.2. Let A ⊂ E and x0 ∈ A. Let also T0 > 0 and ψ : [0, T0]× E → R be bounded. Then:

EXx0

[
1{∀t∈[0,T0],Xt∈A} exp

[ ∫ T0

0

ψ(t,Xt)dt

]]
≤ 1

ν(x0)
exp

[ ∫ T

0

dt sup
f≥0:ν(f1A)=1

{
νf (ψ(t, ·))−D(f)

}]
.

(A.12)

Proof. Let (Yt)t≥0 be the Markov chain X restricted to live inside A for all time. Write PYx ,EYx , x ∈ A
the associated probability and expectation. On {∀t ∈ [0, T0], Xt ∈ A}, the two measures PXx0

and PYx0

are equivalent, and the Radon-Nikodym derivative between PYx0
and PXx0

up to time T0 on a trajectory
(Xt)t≤T0 taking values in A reads:

dPXx0

dPYx0

((Xt)t≤T0) = exp

[ ∫ T0

0

[∑
y∈A

c(Xt, y)−
∑
y∈E

c(Xt, y)
]
dt−

∑
t≤T0

log

(
c(Xt−, Xt)

c(Xt−, Xt)

)]

= exp

[
−
∫ T0

0

∑
y/∈A

c(Xt, y)dt

]
.

Letting QA(x) =
∑

y/∈A c(x, y) denote the flux coming out of A from x, we find:

EXx0

[
1{∀t∈[0,T0],Xt∈A} exp

[ ∫ T0

0

ψ(t,Xt)dt

]]
= EYx0

[
exp

[ ∫ T0

0

{
ψ(t, Yt)−QA(Yt)

}
dt

]]
. (A.13)

By reversibility of X with respect to ν, the chain Y is still reversible with respect to ν(· ∩ A):

∀x, y ∈ A, c(x, y)ν(x) = c(y, x)ν(y).

Let us thus apply Feynman-Kac formula after changing the initial condition to ν(· ∩ A):

EYx0

[
exp

[ ∫ T0

0

{
ψ(t, Yt)−QA(Yt)

}
dt

]]
≤ 1

ν(x0)
EYν(·∩A)

[
exp

[ ∫ T0

0

{
ψ(t, Yt)−QA(Yt)

}
dt

]]
.

Consequently:

logEYx0

[
exp

[ ∫ T0

0

{
φ(t, Yt)−QA(Yt)

}
dt

]]
≤ − log ν(x0) + log

∫ T0

0

sup
f≥0:ν(f1A)=1

{
ν
(
f
[
ψ(t, ·)−QA

])
−DA(f 1/2)

}
. (A.14)

Above, DA is the Dirichlet form of the dynamics restricted to A (compare with (A.11)):

∀g : E → R, DA(g) =
1

2

∑
(x,y)∈A2

ν(x)c(x, y)
[
g(x)− g(y)

]2
.
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This is nearly the statement of Lemma 6.3, except that there the upper-bound involves the original
dynamics (in the present case, X) rather than the dynamics restricted to A. To obtain the desired
bound, let us write out D(f 1/2), defined in (A.11), for a ν-density f with ν(f1A) = 1:

D(f 1/2) =
1

2

∑
(x,y)∈A2

ν(x)c(x, y)
[
f 1/2(y)− f 1/2(x)

]2 (A.15)

+
1

2

∑
x∈A,y/∈A

ν(x)c(x, y)f(x) +
1

2

∑
x/∈A,y∈A

ν(x)c(x, y)f(y).

The first line is precisely DA(f 1/2). By reversibility, each term on the second line of (A.15) is identical
and equal to ν

(
fQA/2

)
:

ν
(
fQA

)
=

∑
x∈A,y/∈A

ν(x)c(x, y)f(x) =
∑

x∈A,y/∈A

ν(y)c(y, x)f(x) =
∑

x/∈A,y∈A

ν(x)c(x, y)f(y).

As a result, (A.15) becomes:
D(f 1/2) = DA(f 1/2) + ν

(
fQA

)
.

Inject this equality in the bound (A.14) to find:

logEYx0

[
exp

[ ∫ T0

0

{
φ(t, Yt)−QA(Yt)

}
dt

]]
≤ − log ν(x0) + log

∫ T0

0

sup
f≥0:ν(f1A)=1

{
ν
(
fψ(t, ·)

)
−D(f 1/2)

}
,

which is Lemma A.2 for ψ ← Nψ, A = NEr(d) and with a dynamics accelerated by N2.

A.3 Equilibrium estimates at the pole

In this section, we investigate the equilibrium measure µ` (see (6.71)) of the zero-range process at the
poles. We prove:

Proposition A.3. The surface tension of the contour model around the pole is given by

τ(P ) = − lim
`→∞

1

β`
logZ` = 1 +

1

β
log
(
1− e−β

)
. (A.16)

Moreover, the sequence (µ`)` satisfies a large deviation principle for the top height of a path (equivalently:
the number of particles or of antiparticles) with good, convex rate function given by:

∀u ≥ 0, C(u) = 2βu− 2u log
(
1 + 1/(2u)

)
− log(1 + 2u)− log

(
1− e−β

)
. (A.17)

In particular,
lim
k→∞

sup
`min(k)≤`≤k

Eµ` [φ] = 0, φ = 1p=2 − e−β. (A.18)

Proof. We speak alternately of paths or of particle/antiparticle configurations in the proof depending
on what is easier to use, the height of a path corresponding to

∑
x≤L1

ηx = −
∑

x>L1
ηx.

Let us first study the probability to observe a given height under µ`. There are exactly
(

2q+`−2
2q

)
con-

figurations with height q ∈ N. To see it, notice that this is the number of north-east path of length
2q + ` − 2 with 2q vertical edges. To each such path ρ, one can associate a unique up-down path of
length 2q + ` as follows (see also Figure 13)
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• Travelling on the path ρ from its origin, stop at the first point X at height q and cut the path
there, in two parts ρ≤X and ρ>X .

• Add two horizontal edges to ρ≤X immediately after X, call ρX+2 the resulting path.

• Change ρ>X into its symmetrical ρ̃>X with respect to the horizontal, i.e. change every upwards
edge into a downwards one, leaving the horizontal edges unchanged. Stitch the last edge of ρX+2

to the first of ρ̃>X to obtain an up-down path of height q and length 2q + `.

One easily checks that this mapping is a bijection, whence:

∀q ≤ hmax(k) = k(1 + log k), µ`

(∑
j≤L1

ηj = q
)

=

(
2q + `− 2

2q

)
e−2βq−β`/Z`. (A.19)

Let us investigate the dependence of this quantity in q < hmax(k):

µ`

(∑
j≤L1

ηj = q + 1
)
/µ`

(∑
j≤L1

ηj = q
)

= e−2β (2q + `)(2q + `− 1)

(2q + 2)(2q + 1)
. (A.20)

This quantity increases until some value qc of q, given by

qc =
1

2
(eβ − 1)−1`+ o(`) =: uc`+ o(`). (A.21)

In particular, due to the logarithm in (A.16), only the maximum value of
(

2q+`−2
2q

)
e−2βq−β` will matter

to compute τ(P ). One thus needs only consider heights of order ` in the large ` limit. For fixed u > 0,
elementary computations give:

1

`
log

[(
2b`uc+ `− 2

2b`uc

)
e−2βb`uc−β`

]
= −β − 2βu+ 2u log

(
1 + 1/(2u)

)
+ log(1 + 2u) + o`(1). (A.22)

Define the function D(·) on R∗+ by;

∀u ≥ 0, D(u) = β + 2βu− 2u log
(
1 + 1/(2u)

)
− log(1 + 2u) ≥ 0. (A.23)

From (A.22) and with uc = 1
2
(eβ − 1)−1, we obtain for τ(P ):

τ(P ) = lim
`→∞

1

β`
logZ` =

D(uc)

β
= 1 +

1

β
log
(
1− e−β

)
. (A.24)

We now turn to the large deviation principle for the height of a path. From (A.22) and (A.24), we
obtain

1

`
log µ`

(∑
j≤L1

ηj = b`uc
)

= −(D(u)−D(uc)) + o`(1), (A.25)

Define the rate function C(·) on R∗+ by

∀u ≥ 0, C(u) = D(u)−D(uc) ≥ 0. (A.26)

The function C is C∞ on R∗+, and satisfies:

C(uc) = 0 = C ′(uc), C ′′(u) =
2

u+ 2u2
> 0 for each u > 0,
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Figure 13: Bijection argument to count the number of paths with length ` and height q (top figure),
and with additionnally p = 2 (bottom figure). Dashed lines delimit portions of the paths, the red dot is
the place at which the initial north-east path is split, and the red, thick lines on the right-hand side are
the edges added to the initial path to obtain an up-down configuration with height q and length `+ 2q.

so that C is strictly convex, and a good rate function. The large deviation principle follows from (A.25).

It remains to prove (A.18). This follows from the large deviations principle (A.25) and the following
observation. Constructing a path with p = 2 and height q ∈ N∗ is done by building a north-east path
of length 2q − 1 + ` − 2 with 2q − 1 vertical edges, then cutting it as described previously and taking
the symmetric part of the path after the first point X at height q. The only difference is that one now
sticks not just two horizontal edges after X, but two horizontal edges followed by a vertical one hanging
from below, before stitching back the two parts of the path (see Figure 13). There are thus

(
2q+`−3

2q−1

)
configurations with p = 2 and height q ∈ N∗, and:

µ`

(
p = 2,

∑
j≤L1

ηj = q
)

= Z−1
` e−β`−2βq

(
2q + `− 3

2q − 1

)
=

2q

2q + `− 2
µ`

(∑
j≤L1

ηj = q
)
. (A.27)

From (A.27), using (`+1)ρ` = 2
∑

j≤L1
ηj, the expectation in (A.18) reads, for each ` ∈ {k, ..., `max(k) =

(k(1 + log k))2}:

Eµ` [φ] = −e−β +
∑
q≥1

µ`

(
p = 2,

∑
j≤L1

ηj = q
)

(A.27)
= Eµ`

[
2
∑

j≤L1
ηj

2
∑

j≤L1
ηj + `− 2

− e−β
]
. (A.28)

Let ζ > 0. The integrand in (A.28) is bounded and, for all ` large enough,

1

`
log µ`

(1

`

∑
j≤L1

ηj /∈ [uc − ζ, uc + ζ]
)
≤ −C(uc + ζ)/2 < 0. (A.29)
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Figure 14: Example of a droplet in Er. Though microscopic curves are Jordan curves, their limits in
Hausdorff distance may have self-intersections. Taking curves in Er ensures that these self-intersections
only occur at the pole, this is condition 5 in Definition B.1 below.

As a result, since 2uc/(2uc + 1) = e−β, the expectation in (A.28) is recast as follows:

Eµ` [φ] = Eµ`

[(
2`−1

∑
j≤L1

ηj

2`−1
∑

j≤L1
ηj + 1

− e−β
)
1uc−ζ≤`−1

∑
j≤L1

ηj≤uc+ζ

]
+O(`−1)

= O(ζ) +O(`−1).

The O(ζ) is independent of `, which proves (A.18).

B Topology results
At the microscopic level, curves are defined in terms of their poles and four monotonous paths, one on
each quadrant. The position of the poles in particular plays a big role in the dynamics and appears
in the large deviations functional, see Section 4. At the macroscopic level however, the decomposition
in poles and quadrants is not very convenient to work with, see Figure 14, as we need to deal with
droplets with complicated boundaries. In this section, we define a suitable effective state space and a
good topology on trajectories, at the cost of model-specific considerations. Exponential tightness of the
laws of the contour dynamics is also shown in Appendix B.3.

B.1 Definition of Er and topological properties

In this section, we define the effective state space Er, prove that it is closed in Hausdorff topology and
establish some topological facts used in the body of the article. Recall that X is the set of non-empty
compact and connected subsets of [−1, 1]2. This set is compact for the topology associated with the
Hausdorff distance dH .

Definition B.1. For r > 0, define the space Er ⊂ X as follows. The first three points mirror the
conditions placed on elements of XN

r .

1. (Four poles). If R is the rectangle with least area containing Γ, then R∩∂Γ is composed of at most
four segments [Lk, Rk], k ∈ {1, ..., 4}, one on each side of R. These segments are not necessarily
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disjoint and possibly reduced to a point. Fix [L1, R1] to be the segment with highest ordinate and call
it the north pole. The others are respectively the east, south and west poles, where by convention
∂Γ is travelled on clockwise. Define then the first quadrant as the quarter-space delimited by the
vertical axis passing through L1(Γ), and the horizontal axis through R2(Γ). The other quadrants
are defined similarly; note that they can intersect (see Figure 1).

2. (Monotonicity condition). The boundary of Γ between Lk and Rk+1 can be described as the graph of
a 1-Lipschitz function in the reference frame Rk = (O, eπ/4−kπ/2, eπ/4−(k−1)π/2) (if k = 4, Rk+1 :=
R1).

3. (The droplet is not reduced to a point). One has ymax − ymin ≥ r, xmax − xmin ≥ r, where these
quantities respectively denote the highest/lowest ordinate/abscissa of points in Γ.

The last two conditions respectively ensure room in each quadrant by removing droplets that have two
different poles that coalesce, and exclude droplets with self-intersections in their bulk (recall Figure 4).

4. (Distinguishable poles). For each k ∈ {1, ..., 4}:

|(Lk −Rk+1) · e1| ≥ r, |(Lk −Rk+1) · e2| ≥ r. (B.1)

5. (Simple boundary away from the poles). Any two points of the boundary that are not in a pole
and belong to opposite quadrants (i.e. quadrants 1 and 3 or 2 and 4) are at 1-distance at least r.

Remark B.2. • Note that condition 4 is redundant with condition 3. We keep both, however, as
they have very different interpretations from the point of view of the dynamics.

• One can convince oneself by geometrical considerations that condition 5 ensures droplets have
volume at least (r

√
2)2/4 = r2/2. In fact, if Γ ∈ Er and x ∈ ∂Γ is e.g. in the first quadrant and

satisfies x · e1 ≥ L1(Γ) · e1 + r and x · e2 ≥ R2(Γ1) · e2 + r (a neighbourhood around x intersects
neither quadrant 2 nor 4), then (see Figure 15):

|B1(x, r) ∩ Γ| ≥ r2

2
, B1(x, r) = {y ∈ R2 : ‖y − x‖1 < r}. (B.2)

�

Lemma B.3. Conditions 1 and 2 on the one hand, and conditions 1 and 2 with any condition from 3
to 5 in Definition B.1 on the other hand define a closed subset of X. As a result, the set Er is closed for
the Hausdorff topology, hence compact.

Proof. Let Γn ∈ Er, n ∈ N converge in Hausdorff distance to Γ ∈ X. The first three items boil down to
the fact that ymax, xmax, ymin and xmin are continuous in Hausdorff distance; as well as the observation
that a uniform limit of 1-Lipschitz functions is 1-Lipschitz.

4. (Distinguishable poles). Let us prove the result for the first quadrant, the others are similar.
By continuity of ymax, all limit points of (L1(Γn)) are inside P1(Γ), i.e. to the right of L1(Γ).
By continuity of xmax, (R2(Γn) · e1) = (xmax(Γn)) converges to R2(Γ) · e1. The function Γ′ 7→[
R2(Γ′) − L1(Γ′)

]
· e1 is thus upper semi-continuous, i.e. "quadrants grow in the limit", which is

the desired result. The same is true of Γ′ 7→ [L1(Γ′)−R2(Γ′)] · e2.
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Figure 15: For a point x of the boundary of a droplet Γ ∈ Er that is at vertical and horizontal distance
at least r from the pole, at least one fourth of the ball B1(x, r) is contained in Γ (shaded area).

5. (Simple boundary away from the poles). For definiteness, take a point x of ∂Γ in the first quadrant
and assume x /∈ P1∪P2, i.e. x·e2 < ymax(Γ) and x·e1 < xmax(Γ). Take also y in C3(Γ)∩∂Γ\(P3∪P4).
For n large enough, x, y cannot be in a pole of Γn by continuity of ymax, ..., xmin.
By upper semi-continuity of the size of quadrants for the inclusion (see item 4), d(x,C1(Γn) \ P n)
and d(y, C3(P n) \ P n) vanish for large n, thus:

d(x, y) ≥ d(C1(Γn) \ P n, C3(Γn) \ P n)− d(x,C1(Γn) \ P n)− d(y, C3(Γn) \ P n) ≥ r + on(1).

Recall from Definition 2.1 that for d > 0, Er(d) ⊂ Er is composed of droplets at 1-distance at least
d from the domain boundaries ∂([−1, 1]2). By continuity of ymax, ..., xmin, this set is also compact in
Hausdorff topology.

Elements of Er have very constrained boundaries. A difference in Hausdorff distance between two
sets translates into a difference in volume or in the position of the poles. The following two lemmas give
explicit control of the Hausdorff distance that are useful in Section B.2.

Definition B.4. For k ∈ {1, ..., 4}, define zk, wk : Er → R as the coordinates of the left-most point Lk
of pole k of a droplet:

z1 = ymax, z2 = xmax, z3 = ymin, z4 = xmin

and the wk are the other four coordinates. A droplet Γ ∈ Er can be described in terms of the position
(zk, wk)k∈{1,...,4} of its four poles, and the largest droplet Γ′ ⊂ Γ with simple boundary such that Γ = Γ′

up to a set of volume 0. In other words, Γ′ is the closure of the interior of Γ. Define:

Fr = {Γ′ : Γ ∈ Er}.

One can check that Fr satisfies items 1, 2, 3 and 5 in Definition B.1.

Lemma B.5. Let Γ1,Γ2 ∈ Er. Let k ∈ {1, ..., 4}. Then:

dH(Γ1,Γ2) ≥ |zk(Γ1)− zk(Γ2)|.
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Moreover, if α > 0 and q > 1/α,{
|wk(Γ1)− wk(Γ2)| ≥ α

∀i ∈ {1, 2}, |zk(Γi)− zk(Γ′i)| ≥ 1/q
⇒ dH(Γ1,Γ2) ≥ 1/q. (B.3)

Proof. Fix k = 1 for definiteness. Only (B.3) requires a proof. Assume its left-hand side holds and,
without loss of generality, take k = 1 and assume that ymax(Γ1) ≥ ymax(Γ2). Then both droplets have
a line of length at least 1/q below their north pole. These lines have abscissas differing at least by
α > 1/q, which means a fortiori that they are at 1-distance at least 1/q. Consequently, if ε ∈ (0, 1/q),
dist1(P1(Γ1), (Γ2)(1/q−ε)) > 0, where Γ

(ε)
i is the ε-fattening of Γi for i ∈ {1, 2}:

Γ
(ε)
i =

⋃
x∈Γi

B1(x, ε), B1(x, ε) = {y ∈ R2 : ‖y − x‖1 < ε} for x ∈ R2.

This implies dH(Γ1,Γ2) ≥ 1/q − ε and the result.

The next lemma gives some sort of a converse statement.

Lemma B.6. Let Γ1,Γ2 ∈ Er and ε ∈ (0, r). Then:

dH(Γ1,Γ2) ≥ ε ⇒ dL
1

(Γ1,Γ2) ≥ ε2/8 or max
1≤k,`≤4

{
‖Lk(Γ1)− Lk(Γ2)‖1, ‖R`(Γ1)−R`(Γ2)‖1

}
≥ ε/2.

Proof. Without loss of generality, assume that a := dH(Γ1,Γ2) = supx∈Γ1
dist1(x,Γ2), and let x ∈ ∂Γ1

realise that supremum: x is at least as far away from Γ2 in 1-distance as any other point of Γ1, and no
point of Γ2 is at 1-distance strictly less than a from x.
There are two cases to consider: either x is close to a pole and the ball B1(x, a)∩Γ1 has a small volume,
or x is sufficiently far from the poles to ensure that B1(x, a) ∩ Γ1 is of order a2. The latter will lead to
a difference in volume between Γ1 and Γ2, while the former implies that poles cannot be too close. It is
convenient to slightly reformulate this dichotomy.

• Suppose Γ1 has a non-simple boundary, i.e. Γ1 6= Γ′1 with Γ′1 as in Definition B.4. Suppose further
that x /∈ Γ′1. Then, by definition of Er, Γ1 has at least one pole, say pole k ∈ {1, ..., 4}, that is
point-like. By definition of x, x = Lk(Γ1) (= Rk(Γ1)). In particular, Lk(Γ2) is a distance at least
a from x:

‖Lk(Γ1)− Lk(Γ2)‖1 ≥ a.

• Assume now that Γ1 = Γ′1, or that Γ1 6= Γ′1 and x ∈ Γ′1. Without loss of generality, take x in the
first quadrant of Γ1. By definition of x and the monotonicity condition on elements of Er, any
point of Γ2 at 1-distance a from x must be in quadrant 1 of Γ2 (including poles 1 and 2).
Suppose first that [x − L1(Γ1)] · e1 > a/2 ∧ r and [x − L2(Γ1)] · e2 > a/2 ∧ r, i.e. the ball
B1(x, a/2 ∧ r) ∩ ∂Γ1 only contains points to the right of L1(Γ1) and above L2(Γ1). Then, by
Remark (B.2),

|B1(x, a/2 ∧ r) ∩ Γ1| ≥
1

2
(a/2 ∧ r)2 ⇒ |B1(x, a) ∩ Γ1| ≥

1

2
(a/2 ∧ r)2.

Suppose instead that [x−L1(Γ1)] ·e1 ≤ a/2∧r: x is close to the left extremity of the first quadrant.
Let us prove that, necessarily, L1(Γ1) and L1(Γ2) are then at 1-distance at least a/2 ∧ r.
Define Q1 as the highest point of ∂Γ′1 (defined in Definition B.4) with abscissa L1(Γ1) · e1 and
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Figure 16: An example where [x−L1(Γ1)]·e1 ≤ a/2∧r with a/2 ≤ r. The shaded area delimited by light
dashed lines is the left half of B1(x, a). The darker dashed lines mark the left half of B1(x, a/2). ∂Γ1 is in
solid black lines, ∂Γ2 in solid light lines. Left figure: L2(Γ1) is left ofB1(x, a), hence [L1(Γ1)−L1(Γ2)]·e1 ≥
a/2. Right figure: L2(Γ1) is below B1(x, a), hence ‖L1(Γ1)− L1(Γ2)‖1 ≥ ‖Q1 − L1(Γ2)‖1 ≥ a/2.

intersecting the boundary of B1(x, a/2), see Figure 16. As Γ2 ∩ B̊1(x, a) = ∅ by definition of x,
L1(Γ2) must be either to the left of B1(x, a), or below it. If it is to the left, then the abscissas of
L1(Γ1) and of L2(Γ1) must differ by at least a/2∧r, i.e.: [L1(Γ1)−L2(Γ1)]·e1 ≥ a/2∧r. If it is below
B1(x, a), then ‖Q1 − L1(Γ2)‖1 ≥ a/2 ∧ r, which by definition of Q1 implies ‖L1(Γ1)− L1(Γ2)‖1 ≥
a/2 ∧ r. Both cases are illustrated on Figure 16; they both yield:

‖L1(Γ1)− L1(Γ2)‖1 ≥ a/2 ∧ r.

Condition [x− L2(Γ1)] · e2 ≤ a/2 ∧ r is treated similarly, this time with R2(Γ1), R2(Γ2), thus:

max
{
‖L1(Γ1)− L1(Γ2)‖1, ‖R2(Γ1)−R2(Γ2)‖1

}
≥ a/2 ∧ r.

B.2 The set E([0, T0], Er(d))

For T0 > 0, the set E([0, T0], Er(d)) was defined in Section 2.3 as the completion of DH([0, T0], Er(d))
for the distance dE (see (B.4)), where DH([0, T0], Er(d)) is the set of Er(d)-valued trajectories that are
càdlàg in Hausdorff distance dH . The distance dE was defined as:

dE = dL1
S +

∫ T0

0

dHdt, (B.4)

with dL1

S the Skorokhod distance associated with convergence in the L1([−1, 1]2) topology. This topology
is metricised by the distance dL1 , defined on the set X of non-empty compact subsets of [−1, 1]2 by:

∀Γ,Γ′ ∈ X, dL
1

(Γ,Γ′) =

∫
[−1,1]2

|1Γ − 1Γ′|dx. (B.5)

For properties of the Skorokhod topology, we refer the reader to [EK09].
In this section, we study

(
E([0, T0], Er(d)), dE

)
for d ≥ 0. The case d = 0 corresponds to E([0, T0], Er).
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We prove separability, completeness and characterise its relatively compact subsets. The starting point
is the following explicit characterisation of E([0, T0], Er(d)). Recall from Definition B.4 that Fr ⊂ X is
the set of droplets with simple boundary, that can be obtained by removing all portions of volume 0
from a droplet in Er. Then:

E([0, T0], Er(d)) =
{

Γ ∈ DL1([0, T0],Fr) : for a.e. t ∈ [0, T0],Γt ∈ Er(d)
}
, (B.6)

where Er(d) ⊂ Er is the set of droplets at 1-distance at least d from the domain boundaries ∂([−1, 1]2).

B.2.1 Completeness and separability of E([0, T0], Er(d))

In this section, we prove that E([0, T0], Er(d)) as defined in (B.6) is separable, and that it is indeed the
completion, for the distance dE, of the setDH([0, T0], Er(d)) of Er(d)-valued Hausdorff-càdlàg trajectories.
Let us first prove that

(
E([0, T0], Er(d)), dE

)
is complete.

Lemma B.7. The space
(
E([0, T0], Er(d)), dE

)
is complete.

Proof. Consider a Cauchy sequence Γn ∈ E([0, T0], Er(d)), n ∈ N for dE. It is a Cauchy sequence for
dL

1

S in DL1([0, T0],Fr). The set Fr is closed, in L1 topology, in the set of non-empty droplets with
measure-theoretic perimeter bounded by 8. This set is compact, assimilating droplets to BV functions
with bounded measure-theoretic perimeter, see Theorem 5.5 in [EG15]. There is thus a trajectory Γ0

in DL1([0, T0],Fr) with dL1

S distance to Γn vanishing with n. More precisely, consider the sequence (Γ′n)
constructed from (Γn) as in Definition B.4. As Γn(t) and Γ′n(t) are equal almost everywhere in R2 for
each t ∈ [0, T0] and each n, (Γ′n) converges in DL1([0, T0],Fr) to a limit Γ′∞ = Γ0.

Γ′∞ corresponds to the limiting trajectory of the "bulk" of the Γn, i.e. without the poles. We still
need to figure out what the limiting poles should be, which we do using the

∫ T0

0
dHdt part of dE.

Recall the definitions of zk, wk from Definition B.4. For each k ∈ {1, ..., 4}, (zk(Γn)) is a Cauchy sequence
in L1([0, T0], [−1 + d, 1− d]). It thus converges to some limit z∞k ∈ L1([0, T0], [−1 + d, 1− d]). Moreover,
for each n, zk(Γn(t)) ≥ zk(Γ

′
n(t)) almost surely and, by convergence in dL1

S of Γ′n to Γ′∞,

lim inf
n→∞

z1,2(Γ′n) ≥ z1,2(Γ′∞), lim sup
n→∞

z3,4(Γ′n) ≤ z3,4(Γ′∞) almost surely.

As a result, z∞1,2(t) ≥ z1,2(Γ′∞(t)) and z∞3,4(t) ≤ z3,4(Γ′∞(t)) for almost every t ∈ [0, T0], as desired since
the zk are supposed to play the role of the extremal coordinates of the "real" limiting trajectory of the
sequence (Γn)n.

It remains to control the wk, defined in Definition B.4. Indeed, at present, if on some subset
U ⊂ [0, T0] of strictly positive measure Γ′∞ has a flat pole k for some k ∈ {1, ..., 4}, and if zk > zk(Γ

′
∞)

for almost every time in U , then we need to determine where on this flat zone we should add the line
[zk(Γ

′
∞), zk] to construct a limiting trajectory Γ∞ for dE.

For k ∈ {1, ...4}, define Ik ⊂ [0, T0] as the set of times t for which pole k of Γ′∞(t) is extended, i.e.
|Pk(Γ′∞(t))| > 0. If t /∈ Ik, then there is exactly one point at which the change of monotonicity at pole
k in the boundary of Γ′∞(t) occurs. This means that wk(Γn(t)) converges to wk(Γ′∞(t)) for almost every
t /∈ Ik.
To deal with what happens inside Ik, take k = 1 for simplicity, so that z1 = ymax. Split I1 into J0 ∪ J>,
where J0 is the largest subset of I1 such that z∞1 = ymax(Γ′∞) a.s.. J> is the largest subset of I1 on
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which z∞1 > ymax(Γ′∞) a.s.. For t ∈ J0, we need not ask where the north pole should be located, since it
coincides with the north pole of Γ′∞(t) almost surely. The set J> instead requires more work.
Fix ε > 0. For all n, p large enough in terms of ε, the Cauchy condition implies:∫ T0

0

1J> dH(Γn(t),Γp(t))dt ≤ ε. (B.7)

As 1z∞1 ≥ymax(Γ′∞)+1/q converges pointwise to 1z∞1 >ymax(Γ′∞) for large q, the integral in (B.7) can be made
to bear only on times where z∞1 is at least 1/q above z1(Γ′∞) almost surely. Call Jq> ⊂ J> the largest
subset for which this holds. By the monotone convergence theorem, for each δ > 0 and q larger than
some q(δ): ∫ T0

0

1Jq> dH(Γn(t),Γp(t))dt ≤ ε and |Jq>| − |J>| ≤ δ. (B.8)

Fix δ > 0 and such a q. By definition of z∞1 , for all n larger than some n(q), ymax(Γn(t)) ≥ ymax(Γ′∞(t))+
1/(2q) for almost every t ∈ Jq>. Impose also that ymax(Γn(t)) > ymax(Γ′n(t)) + 1/(2q) a.e. in Jq>.
Invoking Lemma B.5 yields that, for each α > 0, up to increasing q and n(q), for each n, p ≥ n(q),∫ T0

0

1Jq> 1|w1(Γn(t))−w1(Γp(t))|≥α ≤ q

∫ T0

0

dH(Γn(t),Γp(t))dt ≤ 2qε.

Summarising, for each δ > 0, choosing α such that 2αT0 ≤ δ/3, q > α−1 such that |J>| − |Jq>| ≤ δ/3
and ε to have 4εq ≤ δ/3; one has for all n, p large enough:∫ T0

0

1J> |w1(Γn(t))− w1(Γp(t))|dt ≤ δ.

Define w̃n to be w1(Γn) on J>, 0 elsewhere. Then (w̃n) is a Cauchy sequence in L1([0, T0], [−1+d, 1−d]),
hence converges to some w̃∞ and we can define:

for almost every t ∈ [0, T0], w∞1 (t) =

{
w̃∞(t) if t ∈ J>
L1(Γ′∞(t)) · e1 otherwise.

(B.9)

Functions w∞2 , w∞3 , w∞4 are defined similarly for the other poles. Finally, let Γ∞ be such that (Γ∞)′ = Γ∞
and, for almost every t ∈ [0, T0]:

Γ∞(t) = Γ′∞(t) ∪
⋃

i∈{1,3}

{
wi(t)e1 + ue2 : u ∈ [zi(Γ

′
∞(t)), zi(t)]

}
∪
⋃

i∈{2,4}

{
ue1 + wi(t)e2 : u ∈ [zi(Γ

′
∞(t)), zi(t)]

}
. (B.10)

By construction, Γ∞ belongs to E([0, T0], Er(d)), and limn→∞ dE(Γn,Γ∞) = 0 by Lemma B.6, which
concludes the proof.

Characterisation (B.6) of E([0, T0], Er(d)) also yields that DH([0, T0], Er(d)), the set of Hausdorff-
càdlàg Er(d)-valued droplet trajectories on [0, T0], is dense in E([0, T0], Er(d)) for dE. Indeed, convergence
of the volume is clear and for each Γ ∈ E([0, T0], Er(d)), one can find real càdlàg functions, corresponding
to the 8 coordinates of the poles, that converge in L1([0, T0], [−1 + d, 1 − d]) to the wk(Γ), zk(Γ), k ∈
{1, ..., 4}. E([0, T0], Er(d)) is thus indeed the completion of DH([0, T0], Er(d)) for dE. As this set is
separable for the Skorokhod topology associated with dH , we obtain:

Lemma B.8. The space
(
E([0, T0], Er(d)), dE

)
is separable.
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B.2.2 Compact sets in E([0, T0], Er(d)) and exponential tightness

In the following subsection, we prove exponential tightness, for each bias H ∈ C, of the laws (QN
r,β,H)N

restricted to trajectories in E([0, T0], Er(d)). To do so, we need a sufficient condition for a subset of
E([0, T0], Er(d)) to be compact. This is the object of this section.

Proposition B.9 (Compact sets for dE). The following equivalence holds:

(i) K ⊂ E([0, T0], Er(d)) is relatively compact for the topology induced by dE.

(ii) If ωL1

· (Γ) is the Skorokhod modulus of continuity associated with volume convergence for a trajectory
Γ ∈ E([0, T0], Er(d)) (see [EK09]), then:

lim sup
η→0

sup
h≤η

sup
Γ∈K

{
ωL

1

h (Γ) +

∫ T0−h

0

dH(Γt,Γt+h)dt
}

= 0. (B.11)

Proof. The proof uses notations and results from the proof of Lemma B.7. We only give details for
(ii)⇒ (i) as we do not need the converse implication, which follows from total boundedness of relatively
compact sets and the fact that (B.11) is true for singletons thanks to Lemma B.6.

(ii) ⇒ (i). According to the characterisation of relatively compact sets in the Skorokhod topology in
[EK09], K is relatively compact in dL1

S . Take {Γn, n ∈ N} ⊂ K and let Γ′∞ be a limit point in dL1

S of a
subsequence that we still write (Γn)n. As in the proof of Lemma B.7, we can take Γ′∞ ∈ DL1([0, T0],Fr)
such that ∂Γ′t is a simple curve at all times t ∈ [0, T0]. Recall that Fr ⊂ Er is the set of droplets for
which items 1, 2, 3 and 5 in Definition B.1 hold.

Let us now prove that some subsequence of the (Γn) has converging znk , wnk , writing znk = zk(Γ
n)

and similarly for wnk . zk, wk are defined in Definition B.4 and correspond to the coordinates of the
left extremity Lk of pole k ∈ {1, ..., 4}. The proof is very similar to that of the completeness of
E([0, T0], Er(d)) for dE in Lemma B.7. There, we had for each ε > 0 and some N(ε) ∈ N:

sup
n≥N(ε)

sup
p∈N

∫ T0

0

dH(Γn(t),Γn+p(t))dt ≤ ε.

Compare with:

sup
h≤η

sup
n∈N

∫ T0−h

0

dH(Γn(t),Γn(t+ h))dt ≤ ε. (B.12)

Here as well, Lemma B.5 yields that (B.12) holds with (znk ), (wnk ) replacing dH on [0, T0 − h]. By
the Kolmogorov-Riesz theorem (Theorem 4.26 in [Bre10]), this implies the relative compactness of the
sequences (znk ), (wnk ) in L1([0, T0], [−1 + d, 1− d]). A trajectory Γ∞ to which (Γn) converges in dE up to
a subsequence is then built as in Lemma B.7. This concludes the proof of (ii)⇒ (i).

We now conclude the proof of tightness, and exponential tightness on trajectories restricted to
E([0, T0], Er(d)). This step is classical, but requires some care in our case as some estimates hold only
for Er(d)-valued trajectories and not on the whole state space.

Corollary B.10 (Sufficient condition for the tightness of (QN
r,β,H)N). Let T0 > 0. Assume that, for each

H ∈ C,
lim sup
N→∞

PNr,β,H
(
E([0, T0], Er(d))c

)
= oN(1), (B.13)
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so that trajectories are typically almost always in Er(d) on [0, T0]. Assume further that, for each G ∈
C2([−1, 1]2) and each ε > 0,

lim sup
η→0

lim sup
N→∞

1

N
logPNr,β

(
E([0, T0], Er(d)),

{
sup
|s−t|≤η

|
〈
Γt, G

〉
−
〈
Γs, G

〉
| (B.14)

+ sup
h≤η

4∑
k=1

∫ T0−h

0

[
‖Lk(Γt)− Lk(Γt+h)‖1 + ‖Rk(Γt)−Rk(Γt+h)‖1

]
dt ≥ ε

})
= −∞.

Then for each H ∈ C and q ∈ N∗, there are compact sets Kq = Kq(H) such that:

sup
N
QN
r,β,H

(
(Kq)

c
)
≤ 2

q
, sup

N

1

N
logQN

r,β,H

(
E([0, T0], Er(d)) ∩ (Kq)

c
)
≤ −q.

In particular,
{
QN
r,β,H : N ∈ N∗

}
is relatively compact as a family of measures on trajectories up to time

T0, and its weak limit points are supported in E([0, T0], Er(d)).

Proof. As (B.14) also holds under PNr,β,H for any H ∈ C, we prove the corollary only for H ≡ 0.
Consider a sequence G` ∈ C2([−1, 1]2), ` ≥ 1, dense for the uniform norm. According to (B.14), for each
q, n ∈ N∗, there is η = η(q, `, n) and N0 = N0(η) such that:

sup
N≥N(η)

1

N
logPNr,β

(
E([0, T0], Er(d)),

{
sup
|s−t|≤η

∣∣〈Γt, G`

〉
−
〈
Γs, G`

〉∣∣ (B.15)

+ sup
h≤η

4∑
k=1

∫ T0−h

0

[
‖Lk(Γt)− Lk(Γt+h)‖1 + ‖Rk(Γt)−Rk(Γt+h)‖1

]
dt ≥ 1

n

})
≤ −qn`.

By (B.13), consider also N1 = N1(q, `, n) such that:

sup
N≥N1

PNr,β
(
E([0, T0], Er(d))c

)
≤ 1

q2`+n
.

Let N2 = max{N0, N1}. For N ≤ N2, Lk, Rk, k ∈ {1, ..., 4} are càdlàg functions in Hausdorff distance
on N−1XN

r . As a result, (B.15) holds for N ≤ N2 as well up to choosing η′ = η′(q, `, n) ≤ η, hence
for all N in N∗. For G ∈ C2([−1, 1]2), let thus ωL1

·
(〈

Γ, G
〉)

be the Skorokhod modulus of continuity
associated with the trajectory

(〈
Γt, G

〉)
t
(see [EK09]); it satisfies:

∀θ > 0, ωL
1

θ

(〈
Γ, G

〉)
≤ sup
|s−t|≤θ

∣∣〈Γt, G〉− 〈Γs, G〉∣∣.
Define then Kq = Ūq, with Uq as follows:

Uq :=
⋂

`,n∈N∗

{
ωL

1

η′

(〈
Γ, G`

〉)
+ sup

h≤η′

4∑
k=1

∫ T0−h

0

[
‖Lk(Γt)− Lk(Γt+h)‖1 + ‖Rk(Γt)−Rk(Γt+h)‖1

]
dt ≥ 1

n

}
.

By Proposition B.9 and Lemma B.6, Kq is compact, and it satisfies by construction:

sup
N∈N∗

1

N
logQN

r,β

(
E([0, T0], Er(d)) ∩ (Kq)

c
)
≤ −q.

This concludes the proof of exponential tightness inside E([0, T0], Er(d)). Moreover, also by construction
and since e−Nq`n ≤ 2−`−n/q for each N ≥ 1,

sup
N
QN
r,β

(
(Kq)

c
)
≤ 2/q.

By Prohorov’s theorem (Theorem 2.2. p104 in [EK09]), (QN
r,β)N is relatively compact, and its weak limit

points are concentrated on E([0, T0], Er(d)) by (B.13). This concludes the proof.
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B.3 Proof of the sufficient condition for exponential tightness

In this section, we provide the proof of the sub-exponential estimate in Corollary B.10, i.e. the proof of
(B.14). The first step is to control the volume variations of a droplet, in Section B.3.1.
Next, we prove that the (time integrated) volume beneath each pole has a fixed value in terms of β,
imposed by the reservoir-like behaviour of the poles. This estimate is used in Section B.3.3 to obtain a
control on the motion of the poles. Parameters r, β,H are fixed throughout as in Definition 2.1.

B.3.1 Estimate in L1([−1, 1]2) topology

In this section, we prove exponential tightness in volume, i.e. in L1([−1, 1]2) topology, with the metric
dL

1 defined in (B.5). Equivalently, dL1 is characterised as follows.

Lemma B.11. Let (G`)`≥1 be a family of functions of C2([−1, 1]2,R), dense for the uniform sup[−1,1]2 |·|.
Then dL1 is topologically equivalent to the distance d̃L1 defined as follows:

∀Γ,Γ′ ∈ X, d̃L
1

(Γ,Γ′) =
∑
`≥1

1

2`

∣∣〈Γ, G`

〉
−
〈
Γ′, G`

〉∣∣
1 +

∣∣〈Γ, G`

〉
−
〈
Γ′, G`

〉∣∣ .
In the sequel, d̃L1 and dL1 are identified.

Lemma B.12. Let T0 > 0 and G ∈ C2([−1, 1]2). Then:

∀ε > 0, lim sup
δ→0

lim sup
N→∞

1

N
logPNr,β

(
for a.e. t ≤ T0,Γt ∈ Er; sup

|t−s|≤δ

∣∣∣ ∫
Γt

G−
∫

Γs

G
∣∣∣ > ε

)
= −∞.

(B.16)

Proof. Compared to Chapter 10 in [KL99], the only subtleties to prove (B.16) are in the introduction
of the condition {for a.e. t ≤ T0,Γt ∈ Er} to be able to use the computations of Section 3, and in the
control of the poles. As this does not present any particular difficulty, the proof is omitted.

B.3.2 Precise control of the slope and volume around the poles

In this section, we prove that the volume below the pole is fixed by their reservoir-like behaviour induced
by the dynamics. This relies on a microscopic estimate of the slope at the pole, obtained in Section
6.2.4 in Corollary 6.11.

Lemma B.13 (Control of the deviations of the width at distance α > 0 below the pole). For α > 0
and Γ ∈ Er, let g+(α) = g+(α)(Γ) be the width of the horizontal segment of Γ at height ymax(Γ) − α to
the right of L1(Γ). Define similarly g−(α) to the left of L1(Γ). For each δ, η > 0:

lim sup
α→0

lim sup
N→∞

1

N
logPNr,β

(
for a.e. t ∈ [0, T0],Γt ∈ Er(d);

1

T0

∫ T0

0

1|α−1g±(α)−(eβ−1)|≥δdt > η

)
= −∞.

(B.17)

Proof. Take ζ1, ζ2 > 0 to be determined later, and θ > 0 which will be small. We prove the result for
g+, g− is similar. By Corollary 6.11, it is sufficient to prove:

lim sup
ζ1,ζ2→0

lim sup
α→0

lim sup
N→∞

1

N
logPNr,β

(
for a.e. t ∈ [0, T0],Γt ∈ Er(d);

1

T0

∫ T0

0

1|α−1g+(α)−(eβ−1)|≥δ1|ξ+,ζ1N−e−β |≤θ1|ξ+,ζ2N−e−β |≤θdt > η/3

)
= −∞.
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Consider the event bearing on ξ+,ζ1N : it enforces

ξ+,ζ1N ∈ [e−β − θ, e−β + θ].

Choose ζ1 such that (e−β − θ)ζ1 = α. Then ζ1ξ+,ζ1N ≥ α means that, by definition, g+(α) must be
smaller than ζ1(1− ξ+,ζ1N):

ξ+,ζ1N ∈ [e−β − θ, e−β + θ] and (e−β − θ)ζ1 = α ⇒ α−1g+(α) ≤ 1− e−β + θ

e−β − θ
= eβ − 1 +O(θ),

where O(θ) is a positive function. Similarly, choose ζ2 such that (e−β + θ)ζ2 = α. Then:

ξ+,ζ2N ∈ [e−β − θ, e−β + θ] and (e−β + θ)ζ2 = α ⇒ α−1g+(α) ≥ 1− e−β − θ
e−β + θ

= eβ − 1−O(θ).

O(θ) is again a positive function. Taking θ small enough to contradict |α−1g+(α) − (eβ − 1)| ≥ δ
concludes the proof.

Lemma B.14 (Control of the deviations of the volume at distance α > 0 below the pole). For Γ ∈ Er,
let V α = V α(Γ) be defined as:

V α(Γ) = α−2
∣∣{x ∈ Γ : x · e2 ≥ ymax(Γ)− α}

∣∣.
Then for each δ, η > 0:

lim sup
α→0

lim sup
N→∞

1

N
logPNr,β

(
for a.e. t ∈ [0, T0],Γt ∈ Er(d);

1

T0

∫ T0

0

1|V α−(eβ−1)|>δdt > η

)
= −∞. (B.18)

Proof. Fix k ∈ N∗ and θ > 0 to be chosen later. By Lemma B.13, it is sufficient to prove:

lim sup
α→0

lim sup
N→∞

1

N
logPNr,β

(
for a.e. t ∈ [0, T0],Γt ∈ Er(d); (B.19)

1

T0

∫ T0

0

1|V α−(eβ−1)|>δ1∀j∈{1,...,k},
∣∣ k
jα
g±(jα/k)−(eβ−1)

∣∣≤θdt > η/2

)
= −∞.

By definition of g±(α) for α > 0 (see Lemma B.13), for Γ ∈ Er the quantity V α(Γ) satisfies:

V α(Γ) = α−2

∫ α

0

(g+(u) + g−(u))du.

As microscopic curves have 1-Lipschitz boundaries, on the event that (k/jα)g±(jα/k) ∈ [eβ +1−θ, eβ−
1− θ] for each 1 ≤ j ≤ k, one obtains the following bound for V α:

α2V α(Γ) = |{x ∈ Γ : y(x) ≥ ymax − α}| ≥ 2
k−1∑
j=1

j

kα
(eβ + 1− θ)× α

k
=
k − 1

k
(eβ − 1− θ)α2.

Similarly,

α2V α(Γ) ≤ 2
k∑
j=1

j

kα
(eβ + 1− θ)× α

k
=
k + 1

k
(eβ − 1 + θ)α2.

To conclude the proof, it remains to take k, θ such that the indicator functions appearing in (B.19) bear
on incompatible events. This is achieved provided:

k − 1

k
(eβ − 1− θ) ≥ eβ − 1− δ and

k + 1

k
(eβ − 1 + θ) ≤ eβ − 1 + δ.

82



B.3.3 Tightness in L1([0, T0]) distance for the motion of the poles

In this section, we prove exponential tightness for the motion of the poles assuming trajectories live
in Er(d) for almost every time. As argued in Appendix B.2.2, it is sufficient to find a compact set
of L1([0, T0], [−1 + d, 1 − d]2) in which the trajectories of the poles concentrate at scale e−N . We
proceed coordinates by coordinates of the Lk, k ∈ {1, ..., 4}. This will also work for the Rk since they
are microscopically close to the Lk by Lemma 6.1. According to the Kolmogorov-Riesz compactness
theorem (Theorem 4.26 in [Bre10]), a set K ⊂ L1([0, T0], [−1 + d, 1 − d]) is relatively compact if and
only if:

sup
h≤η

sup
f∈K

∫ T0−h

0

|f(t+ h)− f(t)|dt = oη(1). (B.20)

To prove exponential tightness for the poles, we thus only have to prove that (B.20) holds for each of the
eight coordinates of the Lk, k ∈ {1, .., 4}. We prove it for the motion of y(L1) = ymax in the following
lemma. The proof for the other seven coordinates is similar.

Lemma B.15 (Tightness in L1 distance for ymax). Let ε > 0. Then:

lim sup
η→0

lim sup
N→∞

(B.21)

1

N
logPNr,β

(
for a.e. t ∈ [0, T0],Γt ∈ Er(d); sup

h≤η

1

T0

∫ T0−h

0

|ymax(t+ h)− ymax(t)|dt > ε

)
= −∞.

Proof. For each t ∈ [0, T0] and h ≤ η, write ∆h(t) = |ymax(t + h) − ymax(t)| for brevity. Since ymax is
bounded by 2, (B.21) is proven as soon as

lim sup
η→0

lim sup
N→∞

1

N
logPNr,β

(
for a.e. t ∈ [0, T0],Γt ∈ Er(d); sup

h≤η

1

T0

∫ T0−h

0

1∆h(t)≥ε/2dt > ε/4

)
= −∞.

Fix δ > 0 that will be chosen small enough in the following. Define, for α > 0 and t ∈ [0, T0], the
quantity ∆V α(t) as follows (recall Lemma B.14):

∆V α(t) = |V α(Γt)− (eβ − 1)|.

Lemma B.14 tells us:

lim sup
α→0

lim sup
N→∞

1

N
logPNr,β

(
for a.e. t ∈ [0, T0],Γt ∈ Er(d);

1

T0

∫ T0

0

1∆V α(t)>δdt > ε/12

)
= −∞.

Notice in addition that:{
sup
h≤η

1

T0

∫ T0−h

0

1∆V α(t+h)>δdt > ε/12
}
⊂
{ 1

T0

∫ T0

0

1∆V α(t)>δdt > ε/12
}
.

As a result, (B.21) holds as soon as:

lim sup
α→0

lim sup
η→0

lim sup
N→∞

1

N
logPNr,β

(
for a.e. t ∈ [0, T0],Γt ∈ Er(d); (B.22)

sup
h≤η

λ
[
∆h(t) ≥ ε/2, |∆V α(t)| ≤ δ, |∆V α(t+ h)| ≤ δ

]
> ε/12

)
= −∞,
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where λ is T−1
0 times the Lebesgue measure on [0, T0]. By Lemma B.12 on exponential tightness in dL1

S

topology, (B.22) is proven as soon as the following holds:

lim sup
α→0

lim sup
η→0

lim sup
N→∞

1

N
logPNr,β

(
for a.e. t ∈ [0, T0],Γt ∈ Er(d); sup

(s,t)∈[0,T0]2

|s−t|≤η

dL
1

(Γs,Γt) < α2(eβ − 1)/2;

sup
h≤η

λ
[
∆h(t) ≥ ε/2, |∆V α(t)| ≤ δ, |∆V α(t+ h)| ≤ δ

]
> ε/12

)
= −∞, (B.23)

Take δ < (eβ − 1)/2 and an arbitrary α ∈ (0, ε/2]. For any trajectory (Γt)t∈[0,T0] in the event inside the
probability in (B.23), there must be t ∈ [0, T0] and h < η such that, simultaneously:

• The north poles of Γt,Γt+h are at vertical distance at least ε/2, so that either {x ∈ Γt : x · e2 ≥
ymax(Γt)− α} ∩ Γt+h = ∅ or {x ∈ Γt+h : x · e2 ≥ ymax(Γt+h)− α} ∩ Γt = ∅.

• Recall that V α(t) = α−2|{x ∈ Γt : x · e2 ≥ ymax(Γt)− α}|. V α(Γt) and V α(Γt+h) are both at least
eβ − 1 − δ > (eβ − 1)/2 so that, by the first point, the difference in volume between Γt and Γt+h
is at least α2(eβ − 1)/2;

• yet, dL1
(Γt,Γt+h) < α2(eβ − 1)/2, which is incompatible with point 2. This concludes the proof.

Remark B.16. The proof for ymin, xmin and xmax is identical to the above. For the wk, i.e. L1 · e1, L2 ·
e2, L3 · e1 and L4 · e2, slight modifications are required: in addition to the indicator functions on the
volumes ∆V α(t) < δ, ∆V α(t + h) < δ, one has to introduce the events {g±α (t + h) < δ}, {g±α (t) < δ},
where g±α , the width of the level at distance α beneath the pole, is defined in Lemma B.13.

The idea is that if α is taken small enough as a function of ε and β (in practice, (eβ − 1)−1ε/2 times
a numerical constant), then the horizontal distance between L1(t) · e1 and L1(t + h) · e1 is going to be
at least min{g+

α (t+ h) + g−α (t), g+
α (t) + g−α (t+ h)}.

As a result, the set of points above ymax(Γt)− α in Γt and the set of points above ymax(Γt+h)− α in
Γt+h are disjoint. Thanks to the indicator functions on the volumes ∆V α, this implies a difference in
volume, which is again impossible for η small enough. �
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