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Abstract

A novel numerical method is developed for three-dimensional modeling of damage and

cracking in heterogeneous rock-like materials. Two key issues are addressed. For the first

issue, influences of materials heterogeneities such as pores and inclusions on damage evolu-

tion and cracking processes are investigated by a homogenization approach with Fast Fourier

Transform technique. For the second issue, the nucleation and propagation of cracks from

diffuse damage evolution are formulated in Fourier space and described by a phase-field

method. To do this, an efficient numerical procedure is developed for the stress-strain rela-

tionships and crack phase field propagation. A new elastic degradation function is proposed

in order to describe a large range of cracking processes. A range of heterogeneous materials

with different microstructure are generated and performed numerically to study effects of

pores and inclusions on the damage evolution and cracking process in heterogeneous mate-

rials.

Keywords: Localized damage, Cracking, Phase field method, FFT-based homogenization,

Heterogeneous materials, Rock-like materials

1. Introduction

From diffuse damage to localized cracks is the key issue of failures in most rock-like

materials. For modeling the diffuse damage evolution, scalar or tensorial internal variables

are usually adopted in macroscopic models to present the damage level. But they are not

explicitly linked to the real distribution of micro-cracks in materials. The onset of localiza-

tion occurs when the damage variables reach some critical values. After the localization, the

related boundary values problem becomes ill-posed and suffers the suspicious mesh depen-

dency. Therefore, in the context of macroscopic damage modeling, suitable regularization
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methods should be used, for example the integral approaches (Pijaudier-Cabot and Bazant,

1987; Bazant and Pijaudier-Cabot, 1988; Duddu and Waisman, 2013; Reis et al., 2018) and

also the gradient-damage approaches (Peerlings et al., 1996, 2001; Londono et al., 2017),

etc. The damage variation of the point is controlled by a non-local driving force which is

determined by an integration over a neighboring zone. Then an internal length is involved

to describe micro-structural interactions. However, an inadequate treatment of damage in-

teraction would result in non-physical damage initiation away from the crack tip in mode-I

problems and incorrect failure pattern in shear band problem, especially near the free bound-

aries and discontinuities (Simone et al., 2004). In addition, the calculation of integration

can be time consuming. In the recent decades, micromechanics-based damage models have

also been established (Monchiet et al., 2012; Murari and Upadhyay, 2013; Dormieux and

Kondo, 2016; Zhu and Shao, 2017). Macroscopic strains are directly related to displacement

discontinuities across microscopic cracks. The effective elastic properties are determined by

a rigorous homogenization technique (Zhu et al., 2009). In particular, the crack growth

and frictional sliding has been physically coupled at the microscopic scale (Zhu and Shao,

2015; Zhao et al., 2018), which provides an excellent framework to describe diffuse damage

with initial crack formation. However, the micromechanical-based methodologies mainly

include cracking influence at the constitutive level through internal degradation of material

parameters. The implementation of such models for localized cracking of practical structures

analysis is not an easy task.

Numerical computational methods provide great advantages for various crack problems.

For instance, the extended finite element method(XFEM) has become a popular tool to

consider the discontinuities (Moës et al., 1999). It enables the accurate approximation of

solutions with jumps within elements though additional enrichment functions of discontinu-

ous and asymptotic fields. The combination of XFEM and other technique like the cohesive

zone model (Wells and Sluys, 2001; Wang and Waisman, 2016; Li and Chen, 2017; Leclerc

et al., 2018), discrete fracture model (Zeng et al., 2019, 2020) and damage mechanic model

(Broumand and Khoei, 2013; Roth et al., 2015) have shown new solutions from diffuse dam-

age to localized cracking behavior. However, a complex crack-tracking strategy is necessary

to deal with the crack nucleation and propagation (Saloustros et al., 2019).

Recently, variationally based phase field methods (Francfort and Marigo, 1998; Bourdin

et al., 2000) have overcome the limitations of the classical Griffith fracture theory. It employs

a diffuse damage field to represent the discrete fracture surface. The quasi-static brittle

cracking process is governed by the minimization of the total energy, which is a function

of strain energy and fracture dissipation (Miehe et al., 2010b). The attractive feature of

this method is its strong ability to simulate the complicated fracture process of nucleation,
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propagation and branching both in 2D and 3D simulations without any additional criteria.

Therefore, great efforts and extensions have also been done for brittle fracture (Borden

et al., 2014; Msekh et al., 2015; Gerasimov and Lorenzis, 2016, 2019), quasi-brittle fracture

(Nguyen et al., 2016; Wick, 2017; Ulloa et al., 2019), ductile fracture (Ambati et al., 2015;

Borden et al., 2016; Miehe et al., 2016; Kienle et al., 2019), dynamic fracture (Borden et al.,

2012; Nguyen and Wu, 2018; Ren et al., 2019) and multi-physicals fracturing problem (Miehe

and Mauthe, 2016; Wilson and Landis, 2016; Zhuang et al., 2020; Nguyen et al., 2019) for

various materials.

The cracking behavior of rock-like materials is a serious problem in rock engineering. The

failure modes, however, are difficult to quantify or predict due to its complex physical and

mechanical properties. Most importantly, the rock-like materials contains different kinds of

heterogeneities at different scales. For instance, in clayey rocks, complex networks of pores

and hard mineral inclusions such as carbonates and quartz are frequently observed (Shen

et al., 2012). The deformation behavior of each heterogeneity is quite different. Macroscopic

mechanical properties, including damage and cracking processes, are inherently influenced

by the distribution and geometrical shape of pores and inclusions (Shen et al., 2018, 2019).

So far, no analytical homogenization methods are able to explicitly deal with interactions

between induced micro-cracks evolution and material heterogeneities (pores and inclusions).

This is the challenge of the present study.

Two main issues have to be solved. The first one is to determine the influences of pores

and mineral inclusions on the macroscopic responses of materials, depending on their spa-

tial distribution, size and geometrical form. For most cases, it is not possible to establish

analytical homogenization solutions. Numerical homogenization methods have successfully

focused on estimating the effective mechanical behavior of heterogeneous materials (Feyel,

2003; Fish et al., 1999; Oskay and Fish, 2007; Geers et al., 2010; Meng et al., 2019a,b). All

of these methods are following the classical framework of FEM from the view of numerical

implementation. This has to require a careful mesh discretization for complex microstruc-

ture and high computational cost. In this study, a numerical homogenization approach with

FFT technique will be developed for heterogeneous materials exhibiting elastic behavior

with damage evolution. Recently, the development of Fast Fourier Transforms (FFT) ho-

mogenization is very quick. This kind of methods have initially been proposed for composite

materials (Moulinec and Suquet, 1994, 1998), which was recently extended to rock-like ma-

terials (Li et al., 2018; Cao et al., 2018a). Without meshing, the FFT-based methods are

particularly efficient to deal with materials with complex micro-structures and to investi-

gate effects of size, shape and spatial distribution of heterogeneities. The second issue is the

description of the change from diffuse to localized damage by considering interactions with
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pores and inclusions. In the present study, we shall adopt the concept of phase-field method

to describe naturally the evolution of diffuse damage, nucleation of cracks by damage local-

ization and then propagation of cracks. This method will be extended and combined with

the FFT-based homogenization procedure to deal with the cracking process in heterogeneous

materials.

There are five principal parts in this work: the local mechanical behavior, damage evo-

lution problem and general homogenization procedure of heterogeneous materials are first

presented in Section 2. Then, the framework of Fourier-based phase field method (PFFT) is

established in Section 3. Further in Section 4, a new algorithm for the decoupling strategy of

coupling equations is described. The efficiency of this proposed PFFT model is assessed by

a series of numerical studies for both homogeneous and heterogeneous materials in Section

5. Final, an experimental validation is provided in section 6 to show the prediction capacity

of this PFFT method for heterogeneous materials.

2. Local formulations of heterogeneous materials

2.1. Formulation of phase field problem

For a clarity purpose, the essential principles of phase field method are recalled (Miehe

et al., 2010b). An elastic solid Ω exhibiting an induced damage because of micro-cracks

evolution is considered. With the increase of loading, the density of micro-cracks arrives at

the critical state and therefor the onset of fractures begins due to the coalescence of micro-

cracks into a narrow band. Discontinuous fields should be considered across those cracks,

which is approximated in the phase field approach through a regularized one by introducing

an auxiliary damage field: d(xp, t) ∈ [0, 1], seen as an internal variable of damage state. The

material is intact with d = 0 and is totally broken when d = 1. It is shown that the crack

state can be calculated by solving the Euler variational problem (Miehe et al., 2010a):

d(xp, t) = Arg
{
infd⊂ΩΠτ̄

d(d)
}

(1)

It is assumed that the evolution of crack field is time-dependent. The total energy functional

Πτ̄
d(d) is then composed of three parts: the energy needed for crack creation, the energy

related to time-dependent damage and that to the instantaneous damage:

Πτ̄
d(d) =

∫
Ω

[gcγd(d,∇d) +
η

2τ̄
(d − dn)2 + ∂dψ(ε, d)]dV (2)

In this relation, gc is the crack surface energy. η is the viscosity parameter that controls the

time-dependent evolution of d. The time derivative is approximated by the difference over
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the time interval such ḋ := (d − dn)/τ̄ with τ̄ := (t − tn). ψ(ε, d) is the elastic strain energy.

Further, the function γd denotes the crack surface density per unit volume which can be

expressed as:

γd(d,∇d) =
1

2lc
d2 +

l
2
|∇d|2 (3)

in which lc denotes the length scale parameter which defines the thickness of localization

bands. The variational principle leads to the following partial differential equations:

gcl∇2d −
gc

lc
d = ηḋ + g′(d)ψ0(ε) (4)

where the elastic strain energy of damaged material will be decomposed into two terms:

the function g(d) defines the degradation of elastic properties by damage while ψ0(ε) is

the intact energy. On the other, to consider the irreversible variation of crack field during

complex loading history including unloading and reloading, the following energy history

function H is introduced to represent the maximum reference value of the elastic strain

energy of undamaged material ψ(ε) (Miehe et al., 2010a) as:

H(xp, t) = max
xp∈[0,t]

ψ+
0 (ε, xp) (5)

Therefore, the crack phase field is finally determined by solving the following equation:

gcl∇2d −
gc

lc
d = ηḋ + g′(d)H (6)

2.2. Stress-strain relation of damaged material

According to the displacement field u(xp, t) at the location xp ∈ Ω at time t, the cor-

responding strain tensor can be calculated in the framework of small strains ε(xp, t) =

1/2(∇u(xp, t) + ∇u(xp, t)T ) For convenience, the strain tensor is divided into an tensile part

(noted by positive sign) and a compressive part (noted by negative sign) such as:

ε = ε+ + ε− (7)

The two parts of strain tensor are calculated by using a spectral decomposition:

ε± =

N∑
i=1

〈εi〉
±ni ⊗ ni (8)

where εi are the eigenvalues of strain tensor and ni are the corresponding eigenvectors.

The bracket symbol denotes 〈a〉± = (a ± |a|)/2. Then, the elastic strain energy function of

undamaged materials ψ0 is also decomposed into two parts: negative one ψ−0 and positive
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one ψ+
0 . Further, it is assumed that the induced damage affects only the positive part ψ+

0 .

Therefore, the elastic strain energy function of damaged materials is given by:

ψ(ε, d) = ψ−0 (ε) + [g(d) + k]ψ+
0 (ε) (9)

In this work, only isotropic materials are studied. Thus, the elastic strain energy functions

are given by:

ψ±0 (ε) = µ(ε± : ε±) +
λ

2
〈tr[ε]〉2± (10)

in which λ and µ denote respectively the Lame’s elastic constants of undamaged materials.

The stress-strain relations of damaged materials are derived from the elastic strain energy

function (9):

σ = ∂εψ(ε, d)

= [λ〈tr(ε)〉−I + 2µε−] + (g(d) + k)[λ〈tr(ε)〉+I + 2µε+]
(11)

in which I is the second-order unit tensor.

The elastic modulus of damaged materials are deteriorated with the evolution of dam-

age. This deterioration is characterized here by the function g(d), which has the following

quadratic form in the classical phase field method (Miehe et al., 2010b; Borden et al., 2012;

Vignollet et al., 2014):

g1(d) = (1 − d)2 (12)

This function generally leads to a sharp reduction of elastic stiffness prior to the crack

propagation and then produces a typical brittle failure process. To avoid this drawback, al-

ternative degradation functions have also appeared in the literatures, such as the cubic form

(Borden, 2012), energetic degradation function (Wu, 2017), and so on. As illustrated by

Kuhn et al. (2015), the material response remains linear almost until the onset of fracture

for the cubic and the quadratic degradation functions. Their differences rest with strain

or stress state at which crack propagation occurs, and also with the amount of stiffness

reduction observed prior to the onset of fracture. Actually, the selection of degradation

function depends on the mechanical properties of materials. For example, the cubic degra-

dation function has an advantage that less damage occurs prior to crack initiation (Borden,

2012). So it is more suitable for brittle fracture as it yields a more abrupt failure. For

heterogeneous rock-like materials, the nonlinear deformation before the onset of fracture is

significant. With the increase of confining stress, the material failure changes from brittle to

ductile. Therefore, the failure process is progressive. This phenomenon can be clarified by

experimental observations in large numbers of literatures (Okubo and Fukui, 1996; Martin

and Chandler, 1994; Tang et al., 2019).
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For this reason, inspired by the work of Wu (2017), a new degradation function is defined

here to describe a large range of failure processes:

g2(d) = (1 − α(d))2 = (1 −
(A − 1)d2 + Bd

Ad2 + (B − 2)d + 1
)2 (13)

In this function, parameter A and B control the degradation kinetics and meet the con-

ditions A ≥ 1 and B > 0. Further, as for the classical function g1(d), the new function also

has the basic properties such that g2(1) = 0, g2(0) = 1, and g′2(1) = 0. It is noted that a

similar parametric degradation function is also adopted by Sargado et al. (2018) and Lu and

Chen (2020) to increase the accuracy of phase-field models. For heterogeneous materials

studied in this work, the parameters A and B are related to the material properties of the

solid matrix. They can be identified by a series of triaxial compression and extension tests of

rock samples. Based on the experimentally obtained macroscopic failure strength envelope

line and using the parameter inversion analysis, the optimal parameters of A and B can be

obtained by fitting the simulated strength envelope line with the experimental result. It is

worth to note that this function is still empirical but provides more possibility of phase field

evolution for heterogeneous materials.

Figure 1(a) and 1(b) show the influences of these two parameters on the degradation

function. For a small value of A (with a constant B) or B (with a constant A), one gets

a slow evolution of degradation function with the damage parameter d. This should lead

to a progressive or ductile failure process. More detailed discussions will be given later on

influences of these parameters on macroscopic responses through parametric studies.
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Figure 1: The evolution of degradation function for different values of A and B
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2.3. Homogenization procedure of heterogeneous material

One considers here heterogeneous materials with a periodic micro-structure and hetero-

geneities of inclusions and pores. A cubic unit cell is selected as the representative volume

element (RVE). The local stress and strain fields inside this unit cell are not uniform. By

introducing a fluctuation field of displacement u∗(xp) (Moulinec and Suquet, 1994, 1998),

the local strain field ε(u(xp)) is composed of an average strain field E and a fluctuation field

ε(u∗(xp)):
ε(u(xp)) = E + ε(u∗(xp)), (14)

According to the prescribed deformation loading E , the goal in this study is to calculate

the macroscopic stress Σ by considering the local constitutive relations. This comes to solve

the following governing equations:

σ(xp) = (g(d) + k)[λ〈tr(ε(xp))〉+I + 2µε+(xp)] + [λ〈tr(ε(xp))〉−I + 2µε−(xp)] ∀xp ∈ Ωs

divσ(xp) = 0 ∀xp ∈ Ω, u∗#,σ · n − #

ε(xp) = ε(u∗(xp)) + E ∀xp ∈ Ω

gcl∇2d −
gc

lc
d = ηḋ + g′(d)H(ε)

(15)

This problem is solved here by using the numerical homogenization approach with the

FFT technique as suggested in Moulinec and Suquet (1998). To this end, an auxiliary

problem considering a reference homogeneous linear elastic material with the elastic stiffness

C0 and subjected to a polarization field τ(t, xp) is introduced to determine the fluctuation

strain field. As the time-dependent behavior is considered in this work, the polarization

stress is then defined as τ(t, xp) = σ(t, xp) −C0 : ε(t, xp) (Cao et al., 2018a). Finally the first

three relations can be reduced to the periodic Lippmann-Schwinger equation:

ε(t, xp) = E − Γ0(xp) ∗ τ(t, xp) (16)

in which Γ0 denotes the Green’s operator, which allows to determine the fluctuation strain

field induced by the polarization stress at each point xp. Once the local mechanical fields

and crack phase field are determined, the macroscopic stress Σ is simply determined by the

following relationship:

Σ =
1
Ω

∫
Ω

σ(xp, t)dV (17)

In addition, to qualities the macroscopic damage evolution during the whole cracking

process, an overall damage variable D is also calculated as follows:

D =
1
Ω

∫
Ω

d(xp, t)dV (18)
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3. Formulation of Fourier Transform-based phase field method (PFFT)

3.1. Mechanical solution in Fourier space

The local problems are defined in the previous section for determining respectively the

mechanical fields by (16) and the damage one by (6). In most previous studies, the crack

phase field method is generally coupled within a finite element code to derive sequently

solutions of damage phase field d and of displacement field u. However, for heterogeneous

materials considered here, irregular and fine meshes are needed to represent heterogeneities.

This generally constitutes a delicate task and leads to an expensive calculation cost, espe-

cially for three dimensional problems.

The basic scheme of FFT-based numerical homogenization has been proposed for com-

posites materials by Moulinec and Suquet (1994, 1998); Michel et al. (2001). Its efficiency

has been ameliorated by Eyre and Milton (1999); Zeman et al. (2010); Brisard and Dormieux

(2010); Moulinec and Silva (2014); Kabel et al. (2014) with different algorithms for highly

contrasted materials. The basic scheme is adopted here for the simplicity of numerical im-

plementation. Due to the non-linearity of material behavior, the total loading time TN is

divided into N time increments such as ∆t = tn+1 − tn with n ∈ [0,N − 1]. The values of local

stresses and strains at the state tn+1 is calculated based on the ones at tn. To this end, the

governing equation (16) is reformulated in Fourier space based on the convolution theorem,

that is:

ε̂(tn+1, ξ) = −Γ̂
0
(ξ) : τ̂(tn+1, ξ) with ξ , 0; ε̂(0) = E (19)

in the above equation the symbol ˆ denotes the variables in Fourier space. ξ are the coor-

dinates, and ε̂(tn+1, ξ) the local strain at tn+1 in Fourier space. The operator Γ0 is explicitly

given by:

Γ̂0
khi j(ξ) =

1
4µ0|ξ|2

(δkiξhξ j + δhiξkξ j + δk jξhξi + δh jξkξi) −
λ0 + µ0

µ0(λ0 + 2µ0)
ξiξ jξkξh

|ξ|4
(20)

In this expression, µ0 and λ0 are the two elastic constants of a reference material. Further,

the polarization stress tensor τ̂(tn+1, ξ) in (19) is replaced by σ̂(tn+1, ξ)−C0 : ε̂(tn+1, ξ), so that

an iterated form of equation (19) can be derived:

ε̂i+1(tn+1, ξ) = ε̂i(tn+1, ξ) − Γ̂
0
(ξ) : σ̂(tn+1, ξ) ∀ξ , 0, ε̂(0) = E. (21)

As introduced in Moulinec and Suquet (1994, 1998), a fixed point algorithm can be adopted

to operate this iterated formulation. This algorithm has also been applied to rock-like

materials with inelastic behavior Li et al. (2018); Cao et al. (2018a,b). Its efficiency and

accuracy have been verified by the finite element results.
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3.2. Phase field solution in Fourier space

The crack damage field d at step tn+1 is also solved in Fourier space after the solution

of mechanical fields. In order to consider the different forms of degradation function, the

governing equation of crack phase field is written in the following general form:

A(tn+1, xp)d(tn+1, xp) − ∇2d(tn+1, xp) = B(tn+1, xp) (22)

with

A(tn+1, xp) =
1

l2(xp)
+

η

gc(xp)lc(xp)∆t
+

2α(d)α′(d)H(tn+1, xp)
gc(xp)lc(xp)d(tn+1, xp)

(23)

B(tn+1, xp) =
ηd(tn, xp)

gc(xp)lc(xp)∆t
+

2α′(d)H(tn+1, xp)
gc(xp)lc(xp)

(24)

When α(d) = d, one gets the case of the classical degradation function g1(d). Following the

idea of Chen et al. (2019), a homogeneous variable A0 is introduced at the two sides of

Equation (22):

A0d(tn+1, xp) − ∇2d(tn+1, xp) = B(tn+1, xp) − (A(tn+1, xp) −A0)d(tn+1, xp) (25)

As studied by Chen et al. (2019), the following form of A0 is selected to provide a fast

convergence rate:

A0 =
maxA(tn+1, xp) + minA(tn+1, xp)

2
(26)

Further, the equation (25) contains differential operators that are nonlocal. The Fast

Fourier transform technique provides a simple and efficient way to transform the nonlocal

differential operations in real space into local in Fourier space (Sharma et al., 2018, 2019).

Hence, in Fourier space, the equation (25) becomes:

(A0 + ||ξ||2)d̂(tn+1, ξ) = FFT (T (tn+1, xp, d)) (27)

with

T (tn+1, xp, d) = B(tn+1, xp) − (A(tn+1, xp) −A0)d(tn+1, xp) (28)

Then one gets the crack phase field in Fourier space:

d̂(tn+1, ξ) = φ̂(tn+1, ξ, d) =
FFT (T (tn+1, xp, d))

(A0 + ||ξ||2)
(29)

With the inverse of FFT, an implicit expression of the phase field in real space:

d(tn+1, xp) = φ(tn+1, xp, d) = FFT −1
{
FFT (T (tn+1, xp, d))

(A0 + ||ξ||2)

}
(30)
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In this way, the solution of crack phase field is transformed to find the root of a simple

one-dimensional nonlinear equation. The so-called Steffensen’s method is used in this work.

This method is a combination of fixed-point iteration and the Aitken’s method, which can

achieve quadratic convergence (Conte and De Boor, 2018). With this method in hand, d is

calculated by the following iterate form:

di+1(tn+1, xp) = di(tn+1, xp) −
(φ(tn+1, xp, di) − di(tn+1, xp))2

di(tn+1, xp) − 2φ(tn+1, xp, di) + φ(tn+1, xp, φ(tn+1, xp, di))
(31)

Further, the following convergence criterion is adopted:

||di+1(tn+1, xp) − di(tn+1, xp)||2 ≤ εtol (32)

in which || · ||2 denotes the L-2 norm; εtol is the convergence error. In this paper, εtol = 1×10−4

is adopted for all calculations.

4. Numerical implementation

The numerical implementation of the proposed algorithms is now presented. The phase

field evolution depends on the history function H = H(tn+1, xp). This function establishes

a direct link between the damage field and mechanical fields. To establish an algorithmic

decoupling strategy, an approximation has been introduced for the calculation of the history

function by Chen et al. (2019). In their work, an explicit one-pass staggered algorithm

was introduced for solving the coupling problem, which closely relaying on a history field

H(t, xp). Its values at tn+1 was calculated with the known displacement field at tn so that

H(tn+1, xp) = max
xp∈[0,tn]

ψ+
0 (ε, xp). This idea mainly follows the study of Miehe et al. (2010a).

Thus the mechanical and phase field subproblems are respectively solved by one step. Despite

the one-pass staggered approach enjoys great popularity due to its unconditional robustness,

it requires extremely small time increment, nearly 10−7 (Wu and Huang, 2020).

In this work, this approximation is not used and the history function is calculated accord-

ing to the maximum tensile strain energy achieved during the whole loading process until

the current time step, namely H(tn+1, xp) = max
xp∈[0,tn+1]

ψ+
0 (ε, xp). This choice better describes

the crack phase field evolution and its coupling those of mechanical fields at all time steps.

However, it is not easy to establish a direct coupling approach associated with the un-

known fields ε and d. Instead, an iterative staggered method is proposed to decouple two

linear subproblems given in equations (21) and (31). The requires to alternately fix the

values of ε and d during the iteration process. Similar strategies have also been presented

in recent some works, for instance (Miehe et al., 2010a; Shanthraj et al., 2016; Molnár and
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Gravouil, 2017). Accordingly, the iterative staggered decoupling process is proposed in Al-

gorithm 1. The present algorithm is quite different with the one proposed by Chen et al.

(2019) who implemented an explicit fixed phase field value into the FFT homogenization

framework for each iteration of strain field. For the new proposed algorithm, the phase field

is solved implicitly and related to the iterate stain field during the stress balance process.
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Algorithm 1: Algorithm for Fourier-based phase field method

Input: ε(tn, xp), ∆E(tn+1), d(tn, xp), ∆tn+1
Output: E(tn+1), Σ(tn+1), d(tn+1, xp)
Initialization:tn+1 = tn + ∆tn+1; ε

0(tn+1, xp) = ε(tn, xp) + ∆E(tn+1),∀xp ∈ Ω;
d0,0(tn+1, xp) = d(tn, xp), and compute H(ε0);
while (||d0,i+1 − d0,i|| ≥ εtol) do

Calculate T 0(tn+1, xp, d0,i),A0
0;

φ(tn+1, ξ, d0,i) = FFT −1(
FFT (T 0(tn+1, xp, d0,i))

A0
0 + ‖ξ‖2

);

d0,i+1(tn+1, xp) = d0,i −
(φ(tn+1, xp, d0,i) − d0,i)2

d0,i − 2φ(tn+1, xp, d0,i) + φ(tn+1, xp, φ(tn+1, xp, d0,i))
;

i = i + 1;
end
d0(tn+1, xp) = d0,i+1(tn+1, xp);
σ0(tn+1, xp) = [g(d0(tn+1, xp)) + k][λ〈tr(ε0)〉+I + 2µε0

+] + [λ〈tr(ε0)〉−I + 2µε0
−];

for j = 0 : Niter do
The initial iterate step σ0(tn+1), ε0(tn+1) and d0(tn+1) at each point xp are known ;
σ̂ j(tn+1, ξp) = FFT (σ j(tn+1, xp));
Convergence test εerror =

(〈‖ξ·σ̂ j(ξ)‖2〉)1/2

‖σ̂ j(0)‖ ;

if εerror < 10−4 then
Return;

else
ε̂ j+1(tn+1, ξ) = ε̂ j(tn+1, ξ) − Γ̂0(ξ) : σ̂ j(tn+1, ξ) ∀ξp , 0, ε̂ j+1(0) = E(tn+1);
ε j+1(tn+1, xp) = FFT −1(ε̂ j+1(tn+1, ξ)) and compute H(ε j+1);
while (||d j+1,i+1 − d j+1,i|| ≥ εtol) do

Calculate T j+1(tn+1, xp, d j+1,i),A j
0;

φ = FFT −1(
FFT (T j+1(tn+1, xp, d j+1,i))

A
j
0 + ‖ξ‖2

);

d j+1,i+1 = d j+1,i −
(φ(tn+1, xp, d j+1,i) − d j+1,i)2

d j+1,i − 2φ(tn+1, ξ, d j+1,i) + φ(tn+1, xp, φ(tn+1, xp, d j+1,i))
;

i = i + 1;
end
d j+1(tn+1, xp) = d j+1,i+1(tn+1, xp);
σ j+1(tn+1, xp) = [g(d j+1(tn+1, xp))+k][λ〈tr(ε j+1)〉+I+2µε j+1

+ ]+[λ〈tr(ε j+1)〉−I+2µε j+1
− ];

j = j + 1;
end

end

Calculate the macroscopic stress Σ̄iter(tn+1) = 1
|Ω|

∫
Ω
σ(tn+1, xp)dV

In addition, the basic-FFT scheme presented in Algorithm 1 just considers the prescribed

macroscopic strain tensor as input data. For a large number of problems, both macroscopic

stresses and strains can be prescribed on different parts of boundary. As an example, for a
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conventional triaxial compression test, the macroscopic boundary conditions are given by:

Σ11
0 = Σ0, E12

0 = 0, E13
0 = 0

Σ21
0 = 0, Σ22

0 = Σ0, E23
0 = 0

Σ31
0 = 0, E32

0 = 0, E33
0 = E33

(33)

For triaxial test, the macroscopic stress is firstly constrained to a given value Σ0 in the e1,

e2 and e3 directions. This value corresponds to the confining stress. Then a macroscopic

strain is applied in the direction e3. We note that the strain boundary condition in the

e1 and e2 directions is free to deform with fixed macroscopic stress while the given strain

loading is prescribed in the direction e3. This kind of mixed boundary conditions implies

an additional macroscopic stress balance condition to be introduced to verify the prescribed

confining stress in the e1 and e2 directions. To this end, the so-called penalty technique is

adopted here by adding a large number (eg. 1030) to the main diagonal term of the reference

stiffness matrix C0 corresponding to the prescribed strain direction. As a consequence, the

Newton-Raphson’s method is adopted here to consider the mixed boundary condition. The

Algorithm 2 shows the modified procedure.

Algorithm 2: Newton iteration algorithm

Input: ε(tn, xp), ∆EBC(tn+1), ΣBC, ∆tn+1
Output: E(tn+1), Σ(tn+1), d(tn+1, xp), D(tn+1, xp)
Initialization: tn+1 = tn + ∆tn+1; Σ̄

iter
0 (tn+1) = Σ̄(tn);

for k = 0 : Niter do
δEk = C−1

0 (ΣBC − Σ̄iter
k );

∆Ek = δEk + ∆EBC;
E(tn+1) = E(tn) + ∆Ek;
Call algorithm 1 to compute Σ̄k+1

iter (tn+1), σk+1(tn+1, xp), dk+1(tn+1, xp);
if ||δEk||/||∆Ek|| < 10−4 then

Calculate the macroscopic stress and phase field variable
Σ(tn+1) = 1

|Ω|

∫
Ω
σ(tn+1, xp)dV;

D(tn+1) = 1
|Ω|

∫
Ω

d(tn+1, xp)dV;
Exit;

else
k = k + 1

end
end

5. Numerical performances for heterogeneous materials

With the proposed PFFT method in hand, a number of numerical examples are con-

sidered here to validate its ability and accuracy for the description of cracking behavior in
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heterogeneous geomaterials. For each example, we will select a specific micro-structure or

representative volume element(RVE). Further, all examples are studied in 3D configuration.

5.1. Example 1: Tension test of a homogeneous unit cell

We firstly begin with a 3D homogeneous material imposing a macroscopic tensile strain

E = 0.1e3 ⊗ e3. The size of the unit cell is 1 × 1 × 1 mm as presented in Fig.2(a). For

the case of homogeneous materials, here we first adopted the classical damage degradation

function g1(d) to compare with the analytical results given by Molnár and Gravouil (2017)

and Hirshikesh et al. (2019) with Es=210GPa, νs = 0.3, gc = 5×10−3kN/mm, lc=0.1mm. In

addition, the viscous effect is not considered here. The loading history is divided into 1000

steps with a constant strain increment ∆E = 1.0 × 10−4e3 ⊗ e3.

Macroscopic strain: 

E=0.1e3⨂e3

(a) 3D homogeneous unit cell
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(b) Stress-strain curves and evolution of macroscopic dam-

age variable D

Figure 2: Studied homogeneous unit cell and comparisons of stress-strain curves and macro-

scopic damage evolution between analytical solution and numerical results by proposed

method

Figure 2(b) shows the comparisons of macroscopic stress-strain relation and damage evo-

lution between the analytical solution and the proposed PFFT method. Obviously, these

two solutions well recover each other as illustrated in this figure. This shows that the pro-

posed FFT-based phase field method can well describe the damage process in homogeneous

materials. In addition, in Figure 3 and 4, one presents the results predicted by the using

new degradation function with different values of A and B. However, the analytical solution

with the new degradation function is not available. It is clear that the post-peak responses
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strongly depend on the values of A and B. With a bigger A or a smaller B, a lower peak

failure strength is obtained. On the other hand, the material becomes more ductile with the

increase of B.
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(a) Evolution of effective stress-strain relations
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(b) Evolution of macroscopic damage variable D

Figure 3: Evolution of macroscopic responses with different values of A when B = 0.5
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(b) Evolution of macroscopic damage variable D

Figure 4: Evolution of macroscopic responses with different values of B when A = 1

5.2. Example 2: Uniaxial tension test of a single notched cubic cell

In order to verify the accuracy of this PFFT method to describe the crack propagation,

a single notched cubic microstructure is considered with 64 × 64 × 64 voxels. The size of

the unit cell is 1 × 1 × 1 mm. The initial crack geometry is depicted in Figure 5 and has
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a thickness of one voxel size. The input parameters are taken as the ones in Miehe et al.

(2010a): Es =210GPa, νs = 0.3, η = 0Pa·s, lc=0.0075mm, and gc = 2.7×10−3kN/mm. The

cracked notch is regarded as void with zero stiffness. Differently with the classical 2D case

considered in the previous studies (Miehe et al., 2010b,a; Kiendl et al., 2016), the periodic

boundary conditions are prescribed here and consistent with the assumption of FFT-based

method. The uniaxial tension test with a macroscopic tensile strain is applied within 200

steps, and the strain increment for each step is taken as ∆E = 5.0 × 10−5e3 ⊗ e3.

Crack

Macroscopic strain: 

E=10×10-3e3⨂e3

1

1

0.5

1

0.5

Figure 5: Single notched unit cell subjected to uniaxial tensile strain

The problem is firstly solved by using the classical degradation function g1(d). Figure 7

presents the simulated macroscopic stress and strain relation by the proposed PFFT method,

and compared with that given in (Miehe et al., 2010a) by using direct FEM simulation

and that in Chen et al. (2019) by adopting an explicit Fourier-based phase field method

(denoted as Ex-PFFT method). It is found that a rapid convergence with very low residual

stress is observed with the PFFT method. Further, the results provided by the proposed

method are very close to the reference FEM solution, while the explicit Ex-PFFT method

shows large scatters. In Figure 6, the results on the crack growth pattern during the loading

history are visualized by red color. The three crack patterns correspond to the three selected

loading step a, b and c as shown in Figure 7. It is found that evolution of crack pattern

is quite different with that reported by Miehe et al. (2010a); Molnár and Gravouil (2017)

and Mart́ınez-Pañeda et al. (2018). Due to the periodic boundary conditions used here, two

new micro-cracks start to initiate and gradually propagate at the two ends of the notch,

finally join each to other. This indicates the crack phase field is accurately calculated by the

implicit iterate process.
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(a) Pattern a (b) Pattern b (c) Pattern c

Figure 6: Crack growth patterns visualized by red color of a single notched unit cell under

uniaxial tensile test
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Figure 7: Macroscopic stress strain curves of a single notched unit cell under uniaxial tension

and comparison with results with different methods
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Figure 8: Effective behaviors for different selection of A when B=1 for unit cell with 643

voxel resolutions
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Figure 9: Effective behaviors for different selection of B when A=1 for unit cell with 643

voxel resolutions

In addition, calculations with the new degradation function are also performed. In Figure

8 and 9, overall axial stress-strain relations are revealed for different choices of A and B. The

peak strength decreases when the value of A or B increases. The failure mode turns from

brittle to ductile when the value of B increases. In addition, both the pre-peak nonlinear
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deformation and the residual stage after post failure can be well captured. The selection of

A and B should be determined by the mechanical properties of material though experimental

studies.

To further clarify the convergence of the new degradation function, the solver with clas-

sical quadratic function is also compared. Since the mixed boundary conditions is applied

on the unit cell, both the Newton iteration and FFT iteration are considered. Then three

combinations with different values of A and B for the proposed degradation function are

selected here as comparisons. Figure 10 and Figure 11 respectively present a comparison of

Newton iterations and FFT iterations consumed at each loading step for different selection

of degradations. As shown in Figure 10 and Figure 11, the solver with quadratic function

needs more Newton and FFT iteration numbers to converge than the proposed one, espe-

cially after the onset of failure and during the residual stress stage. The maximum consumed

Newton and FFT iteration numbers appears at the loading step when the stress drop occurs

after onset of failure. The total consumed iteration numbers have listed in Table 1 for each

case. It is clear that the proposed solver with the new degradation function is much more

efficient than the one with classical degradation function.

Table 1: Newton iteration and FFT iteration numbers consumed by using different degra-

dation function

Degradation function
Maximum iteration numbers

after onset of failure
Total iteration numbers

Newton FFT Newton FFT

Quadratic function 192 3541 11911 39718

Proposed one with A=1, B=1 232 1226 9063 26227

Proposed one with A=5, B=1 231 1060 9533 26492

Proposed one with A=1, B=2 212 1541 6588 23883
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Figure 10: Comparisons of Newton iteration numbers consumed between the solver with

quadratic degradation function and the proposed one at each loading step
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Figure 11: Comparisons of FFT iteration numbers consumed between the solver with

quadratic degradation function and the proposed one at each loading step
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5.3. Example 3: Tension tests of a microstructure with one void or inclusion

Both porous materials and inclusion-reinforced material are investigated in this section

to show the efficiency of the proposed PFFT model for describing the damage and cracking

behavior in heterogeneous materials. All the cubic unit cells studied here have a size of

1 × 1 × 1 mm.

5.3.1. Case of porous materials

As illustrated in Figure 12, the microstructure with a spherical void located at the center

is chosen to represent the periodic porous materials. The porosity of the unit cell is 5%.

The resolution used for FFT method is 128 × 128 × 128 voxels. The material properties

of the solid matrix are: Es=100GPa, νs = 0.15, gc=2.0×10−3kN/mm, A = 2 and B = 5,

and the length scale is lc=0.015mm. The computation is performed under uniaxial tension

condition within a strain increment of ∆E = 2.5 × 10−5e3 ⊗ e3 within a time step ∆t = 25s.
For heterogeneous rock-like materials, it has been realized that due to heterogeneity, rock

failure is not instantaneous but progressive. The viscous regularization with the parameter

η can delay the aggressive crack growth in the post critical regime. The effect of viscous

parameter η on the effective behavior of heterogeneous material is shown in Figure 13. It is

found that the macroscopic behavior of unit cell is significantly influenced by the viscosity

parameter. The macroscopic stress-stain response shows a sharp decline for the case η = 0
whereas the viscous regularization model smoothes out the brutal crack propagation in the

post critical regime. This has also been clarified in Miehe et al. (2010a) and Chen et al.

(2019). The cracking patterns at four different time steps indicated in Figure 13 for the case

of η = 105Pa·s are shown in Figure 14. It is seen that cracks initiate on the void surface

and propagate towards the solid matrix. Therefore, the following numerical tests will use

the viscous regularization to present the progressive cracking process in detail. It is worth

to note that the value of η should be selected carefully, since a too high value of η can lead

to unrealistic prediction of the critical stress, as indicated by Chen et al. (2019).
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Figure 12: Unit cell containing one centered spherical void with porosity f = 5%
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Figure 13: Macroscopic axial stress-strain curves for unit cell containing one centered spher-

ical void with different values of η

(a) Step A (b) Step B (c) Step C (d) Step D

Figure 14: Phase field patterns of the unit cell under uniaxial tension test at different time

steps with η = 105 Pa·s
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It is known that the void shape has important effects on the local and overall responses

of porous materials. To illustrate this point, we particularly conducted several simulations

on the unit cell respectively containing an oblate or a prolate void, with a porosity of 5%.

The aspect ratio of the oblate void is 2 while that of the prolate one is 0.5. Figure 15

and 16 respectively depict the crack patterns for spheroidal voids, each with three different

orientations, namely ω = 0◦, 45◦, 90◦. The crack label is as same as the one in Figure 14.

Here we define ω as the orientation angle between the loading direction e3 and the minor

(symmetric) axis for the oblate void, or the major (symmetric) axis for the prolate one. As

shown in Figure 15 and 16, the main crack grows around the middle surface of void for the

orientations ω = 0◦ and ω = 90◦. However, for the case of ω = 45◦, the main crack firstly

initiates from the surface of void and then propagates with a small inclination angle with

the loading direction. In addition, a non-penetrating crack is also captured for this void

orientation. In Figure 17, the corresponding macroscopic stress strain curves are given. The

influences of the void shape and orientation on the overall responses are clearly illustrated.

(a) ω = 0◦ (b) ω = 45◦ (c) ω = 90◦

Figure 15: Crack patterns of the unit cell with oblate void of different orientations under

uniaxial tension test: η = 104Pa·s

(a) ω = 0◦ (b) ω = 45◦ (c) ω = 90◦

Figure 16: Crack patterns of the unit cell with prolate void of different orientations under

uniaxial tension test: η = 104Pa·s
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(a) Oblate void
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Figure 17: Macroscopic axial stress-strain curves for different void orientations under uni-

axial tension test: η = 104Pa·s

5.3.2. Case of inclusion-reinforced materials

For inclusion-reinforced materials, calculations are realised on the unit cell with a cen-

tered rigid spherical inclusion under uniaxial tension. The representative unit cell is dis-

played in Figure 18. The material parameters of the solid matrix are Es=20GPa, νs = 0.15,

lc=0.015mm, gc=2.0×10−3kN/mm, η = 104Pa·s, A = 2 and B = 5. For the elastic rigid

inclusion, the elastic parameters are Ei = 200 GPa and νi = 0.15. The macroscopic strain in

the direction e3 is prescribed in 600 steps with the increment of ∆E = 3.33 × 10−5e3 ⊗ e3 for

each step. The total loading process is set to T = 1× 104s. In Fig.19, one presents the crack

patterns at four selected time steps. Differently with the case of porous materials shown in

Figure 14, the initiation of two symmetric micro-cracks is captured which begin at the top

and bottom interfaces of the inclusion, and then propagate across the unit cell.

Figure 18: Studied inclusion-reinforced materials having one centered inclusion (ρ = 5%)
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(a) Pattern at step 1 (b) Pattern at step 2 (c) Pattern at step 3 (d) Pattern at step 4

Figure 19: Crack patterns of the unit cell under uniaxial tensile test: η = 104Pa.s

The effects of orientations for different inclusion shape are also investigated. In Figure

20 and 21, one presents the crack patterns in the unit cells containing an oblate or a prolate

inclusion of three different orientations. It is observed that in all cases, two main cracks

initiate from and propagate along the inclusion-matrix interface before penetrating into the

matrix. The crack propagation direction is related to the inclusion geometry and orientation.

The corresponding evolution of macroscopic stress-strain is given in Figure 22. The peak

strength is strongly determined by the inclusion geometry and orientation. For the case of

oblate inclusion, the maximum peak strength is obtained for ω = 0◦ while it is found for

ω = 90◦ for the prolate one. The provided results have clearly discrepancy with that found

in the unit cells with an oblate or prolate void.

(a) ω = 0◦ (b) ω = 45◦ (c) ω = 90◦

Figure 20: Crack propagation patterns of the unit cell containing an oblate inclusion of three

different orientations under uniaxial tension test
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(a) ω = 0◦ (b) ω = 45◦ (c) ω = 90◦

Figure 21: Crack propagation patterns of the unit cell containing a prolate inclusion of three

different orientations under uniaxial tension test
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(b) Prolate inclusion

Figure 22: Macroscopic axial stress-strain curves of the unit cells with different inclusion

orientations under uniaxial tension test

5.4. Example 4: Porous material with randomly arranged voids or inclusions under different

loading paths

In this subsection, particular attentions will be put on the macroscopic mechanical be-

havior of the unit cells containing randomly distributed voids or inclusions. This kind of

micro-structures are assumed to be representative of some rock-like materials.

5.4.1. Uniaxial tension test

The uniaxial tension test is first considered. Three different micro-structures are selected:

unit cell with randomly distributed pores (porosity f = 20%), unit cell with randomly

distributed inclusions (inclusion volume fraction ρ = 20%) and unit cell with both randomly
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embedded pores and inclusions at same scale (porosity f = 10%, inclusion volume fraction

ρ = 10%). As an example, the unit cell with random pores is shown in Fig.23. Each cubic

unit cell is discretized with 128 × 128 × 128 voxels. As in the section 5.3, the same input

material properties chosen.

Figure 23: Typical unit cell of porous material

Figure 24 compares the obtained macroscopic behaviors of these three unit cells. There

is a significant difference between three micro-structures. Logically, the peak strength is

maximum for the inclusion-reinforced material and minimum for the porous material. The

material with pores and inclusion at the same scale is between these two extreme cases. At

the same time, it seems that the porous unit cell exhibits a less brittle cracking mode than

the inclusion-reinforced one. Figure 25 show the cracking paths of these three unit cells at

the end of loading. All the three unit cells are dominated by the tensile cracking but the

spatial distribution of cracks appears clearly different.

28



0 . 0 0 0 0 . 0 0 3 0 . 0 0 6 0 . 0 0 9 0 . 0 1 2 0 . 0 1 5 0 . 0 1 80
2 0
4 0
6 0
8 0

1 0 0
1 2 0
1 4 0
1 6 0

Ma
cro

sco
pic

 str
ess

 (M
Pa)

M a c r o s c o p i c  s t r a i n  

 f  = 2 0 % ,  ρ=0
 f  = 1 0 % ,  ρ= 1 0 %
 f  = 0 ,  ρ= 2 0 %

Figure 24: Macroscopic stress strain relations for three different unit cells

(a) f = 20%, ρ = 0% (b) f = 0%, ρ = 20% (c) f = 10%, ρ = 10%

Figure 25: Cracking patterns of three different unit cells with randomly distributed pores or

inclusions in uniaxial tension test

5.4.2. Triaxial extension test on porous materials

In this case, the unit cell with randomly distributed pores is firstly subjected to a hy-

drostatic confining stress (Σ0
11 = Σ0

22 = Σ0
33). Then, a macroscopic tension strain is prescribed

along the axis e3 while the confining stress in the other two directions is kept constant. Three

different values of confining stress are used such as -5MPa, -10MPa and -15MPa. The pre-

scribed strain increment is ∆E33 = 3.33× 10−5. The predicted cracking patterns are reported

in Figure 26. It is found that the main crack for each case is almost perpendicular to the

strain loading direction. In addition, it seems that the confining stress has an insensitivity

to the cracking pattern. Similar results have been reported in Liu et al. (2019) for triaxial
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extension tests performed on sandstone. However, Figure 27(a) reveals an increase of peak

deviatoric strength with the increasing confining stress . For instance, the corresponding

peak strengths are 74.9MPa, 74.5MPa, 74.1MPa and 73.7MPa when the confining stress

increases from 0MPa to -15MPa. It implies that the compressive confining stress in the

directions e1 and e2 can affect the tensile cracking process in the direction e3.

(a) Σ11=-5MPa (b) Σ11=-10MPa (c) Σ11=-15MPa

Figure 26: Cracking patterns of the unit cell with randomly distributed pores in triaxial

extension test with different confining stress ( f = 20%)
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Figure 27: Macroscopic stress strain curves and evolution of damage variable D in triaxial

extension test ( f = 20%)

5.4.3. Triaxial compression test on porous materials

Finally, the commonly used conventional triaxial compression test for rock-like materials

is studied. The unit cell is the same as that in Figure 26. Differently with the triaxial exten-
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sion test presented above, after the loading of confining stress, a compressive macroscopic

strain is prescribed alone the e3 direction. The obtained macroscopic mechanical behavior

is shown in Figure 28(a), including those obtained in the uniaxial compression test. As for

the triaxial extension test, the peak deviatoric stress increases with the increasing confining

stress. Further, the high confining stress attenuates and delays the evolution of the macro-

scopic damage variable as illustrated in Figure 28(b). This reveals that the under triaxial

compression condition, shear cracking is generally the main process and the confining stress

has restricting effect on this process due to the compressive normal stress applied to crack

surfaces. In Figure 29, one finds the cracking patterns at the end of loading process. Com-

plex crack networks are observed in the unit cells under the triaxial compressive stress state.

This is clearly different from the triaxial extensile test. Even if the phase field evolution

is driven by the elastic free energy associated with the tensile strains only, owing to the

presence of pores, cracks can initiate and propagate in different orientations. However, due

to this simple damage evolution law, the cracking patterns under triaxial compression are

quite similar to those in uniaxial compression. The effect of confining stress on cracking

pattern is no correctly described by the current damage evolution law. This issue will be

considered in a future study by developing suitable damage evolution laws involving shear

strains.
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Figure 28: Macroscopic stress strain curves and evolution of macroscopic damage variable

D with different confining stresses ( f = 20%)
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(a) Σ11=-0MPa (b) Σ11=-5MPa (c) Σ11=-10MPa

Figure 29: Cracking patterns of the unit cell with randomly distributed pores in triaxial

compression tests with different confining stresses ( f = 20%)

6. Experimental validation

In this section, an experimental validation of the proposed PFFT method for heteroge-

neous material will be provided. Two direct tensile experiments of porous rock materials

from Hashiba and Fukui (2015) will be simulated to show the effectiveness of this method:

the uniaxial tension tests of the dry Komatsu andesite (KA) and Sanjome andesite(SA).

The porosities of these two samples are 16.1% and 13.3%, respectively. For simplicity, it

is assumed that the porous rock is composed of solid matrix and voids. The cubic RVE

random distributed spherical voids is selected here for the simulations. The porosity of the

RVE is configured as same as the real rock specimen in Hashiba and Fukui (2015). The

material parameters of the two specimens are listed in Table 2.

Table 2: Material parameters of studied porous rock samples

Materials Solid matrix void

KA Es = 19.4GPa, vs = 0.14 Ei = 0GPa, vi = 0, f = 16.1%

gc = 1.9N/m, lc = 0.007mm, η = 0 Pa·s

A = 2, B = 2.8

SA Es = 18.3GPa, vs = 0.14 Ei = 0GPa, vi = 0, f = 13.3%

gc = 2.1N/m, lc = 0.01mm, η = 0 Pa·s

A = 2.5, B = 3.1
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Figure 30(a) and 30(b) present a comparison of macroscopic stress-strain curves between

the simulated results by using the PFFT method (black solid line) and the experimental data

(red square point). It is clear that the modeling results are consistent with the experimental

data for both samples. Particularly, both the nonlinear pre-failure deformation and the

residual stress stage during the post-peak failure are well captured by the proposed model.

In addition, the corresponding failure modes of this two porous materials predicted by the

proposed PFFT model are compared in Figure 30(c) and 30(d) with the experimental ones

Hashiba and Fukui (2015). These two failure forms are quite similar. It can be observed

that the specimens failed on a plane that was approximately perpendicular to the loading

axis. These planes were located at weakest part of the specimens, where the tensile stress

was supposed to be uniformly distributed. This is the typical tensile failure mode for brittle

rock-like materials. Similar experimental results also can be found in Zhang et al. (2017)

and Shang et al. (2016).
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Figure 30: Comparisons between the experimental data from Hashiba and Fukui (2015) and

the PFFT modeling results under uniaxial tension test
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7. Concluding remarks

In this work, a new numerical method was established for cracking behavior in rock-like

heterogeneous materials by combining FFT-based homogenization procedure and phase-field

method. In addition, a new decoupling strategy has also been problem for efficiently solving

the stress-strain and crack phase field problems. This new algorithm provides an implicit

solver of phase field and its accuracy has been well demonstrated by both analytical solu-

tions and experimental validations. The developed method is efficient for three-dimensional

modeling of damage evolution, nucleation and propagation of localized cracks by considering

interactions with different kinds of heterogeneities. In addition, with the new introduced

degradation function, the proposed PFFT method can describe a large range of cracking

processes in rock-like materials. A series of numerical studies have been performed on het-

erogeneous materials under different loading paths. The obtained results have clearly shown

that the macroscopic responses and cracking patterns of heterogeneous materials are highly

affected by heterogeneity features such as volume fraction, shape, size, orientation, and

spatial distribution.
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