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Summary 33	
 34	

• The fern Dicranopteris linearis (Gleicheniaceae) from China is a hyperaccumulator of Rare 35	
Earth Elements (REEs), but little is known about its ecophysiology in relation to REEs. This 36	
study aimed to clarify tissue-tissue and organ-level distribution of REEs via synchrotron-37	
based X-ray fluorescence microscopy (XFM).  38	

 39	
• The results show that La + Ce are mainly co-localized with Mn in the pinnae and pinnules, 40	

with the highest concentrations in necrotic tissues.  41	
 42	

• In the cross-sections of the pinnules, midveins, petioles and stolons La + Ce and Mn are 43	
enriched in the epidermis, vascular bundles, and pericycle (midvein). In these tissues, Mn is 44	
localised mainly in the cortex and mesophyll compared to La + Ce in these cross-sections.  45	

 46	
• We hypothesize that REEs transpiration flow in the veins is initially restricted by the 47	

pericycle between vascular bundle and cortex, whilst excess REEs are transported by 48	
evaporation and co-compartmentalized with Mn in the necrotic tissues and epidermis in an 49	
immobile form, possibly an Si-coprecipitate. 50	

 51	
Key words: X-ray fluorescence microscopy; compartmentalization; necrosis; vein; manganese; 52	
silicon. 53	
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Introduction 55	
 56	
Rare earth elements (REEs), which include 14 lanthanides and yttrium (Y), have a range of 57	
applications in modern technologies, such as high-strength magnets, electric vehicles and medical 58	
devices, and increasing demand for these technologies has resulted in a growing need for REEs 59	
(Binnemans et al., 2013). Consequently, mining activities and a subsequent release of wastes into the 60	
environment, may pose a threat to agricultural crops and human health (Migaszewski & Galuszka, 61	
2015). 62	
 63	
Some REEs can be beneficial to plants at low concentrations (Redling, 2006), yet can be toxic to 64	
plants at higher concentrations (Thomas et al., 2014; Wang et al., 2014). However, 65	
hyperaccumulator plants are able to accumulate and tolerate high concentrations of potentially toxic 66	
elements in their living shoots (Baker & Brooks, 1989; Reeves, 2003; van der Ent et al., 2013). Thus 67	
far ~700 plant species have been reported globally to hyperaccumulate a large variety of metals and 68	
metalloids (Reeves et al., 2017 & 2018), but only 22 plant species are currently recognized as REEs 69	
(hyper)accumulators (Liu et al., 2018). The threshold concentration for REEs hyperaccumulation is 70	
set at 1000 mg kg-1 in the dry biomass of the aerial parts (Wei et al., 2006). This criterion is the same 71	
as used for other trace metals (such as Ni) and metalloids (As), which are typically two or three 72	
orders of magnitude higher than concentrations present in ‘normal’ plants (van der Ent et al., 2013). 73	
Moreover, the bioaccumulation factor (BF), which is the quotient of REE concentration in shoots to 74	
that in soil, is typically >1 in hyperaccumulator plants; which is indicative of a high ability of soil-to-75	
plant metal(loid) transfer (van der Ent et al., 2013).  76	
 77	
Hyperaccumulator plants potentially offer an environmentally-friendly and cost-effective option for 78	
phytoremediation of REE polluted soils and recovery of REEs from low-grade ores and mining 79	
wastes (van der Ent et al., 2015; Liu et al., 2018). Dicranopteris linearis collected from ion-80	
adsorption REE mine tailings in Ganzhou, Jiangxi Province, can yield 10–15 t of dry biomass per ha 81	
per year containing 0.2 wt% REEs, yielding 20 to 30 kg REEs ha-1 (unpublished data). Knowledge 82	
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on the ecophysiology of REE hyperaccumulator plants is important to better understand the 83	
mechanisms for uptake, translocation and sequestration of REEs into living shoots. To date, most 84	
studies have focused on the uptake of Ni, zinc (Zn), cadmium (Cd) and arsenic (As) in various 85	
hyperaccumulator plant models (Hokura et al., 2006; Tappero et al., 2007; Vogel-Mikuš et al.�86	
2008; Tian et al., 2009; Hu et al., 2015), while much less is known about the ecophysiology of REE 87	
hyperaccumulator plants (Li et al., 2018).   88	
 89	
Elucidating the spatial distribution of metal(loid)s and their associations with other elements is key to 90	
understanding the mechanisms of tolerance in hyperaccumulator plants (Zhao et al., 2014; van der 91	
Ent et al., 2018). Over the past decades, elemental distribution in tissues, cells and organelles of a 92	
selection of hyperaccumulator plants have been studied extensively (e.g. van der Ent et al., 2018). 93	
Excess metal(loid)s are typically concentrated in bio-inactive tissues of the leaves to minimize the 94	
damage to biological activities (e.g. Zhao et al., 2014). This includes Ni localised in foliar epidermal 95	
layers, vascular tissues and basal parts of trichomes of Alyssum murale (Tappero et al., 2007), As in 96	
the venules and the edges of the pinnae of Pteris vittata (Hokura et al., 2006), Zn in the vascular and 97	
epidermal tissues of Sedum alfredii and Sedum plumbizincicola (Tian et al., 2009; Hu et al., 2015), 98	
and selenium (Se) in the tips and leaf edge of Astragalus bisulcatus and Stanleya pinnata (Freeman 99	
et al., 2006). Meanwhile, vacuole compartmentalization is thought to be an indispensable component 100	
of metal(loid)s detoxification in leaves (Sharma et al., 2016). The vascular system clearly has a 101	
critical role in transporting metal(loid)s through xylem and phloem loading and unloading (Tappero 102	
et al., 2007; Kitajima et al., 2008; Tian et al., 2009). In the hyperaccumulator Iberis intermedia, 103	
thallium (Tl) is distributed in the vascular bundles of the leaves (Scheckel et al., 2007), whereas in 104	
Phyllanthus balgooyi the phloem sap is extremely enriched in Ni (van der Ent and Mulligan, 2015) 105	
and in Pycnandra acuminata the latex is the main storage for Ni (Jaffré et al., 1976). 106	
 107	
Except for cerium (Ce) (+3 and +4 valences) and europium (Eu) (+2 and +3 valences), the REEs are 108	
a group of trivalent (+3) elements which show biochemical behavior that differs from other metals 109	
e.g. higher affinity to O-containing ligands but lower affinity to S-/N-containing ligands than Zn, Ni, 110	
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Cd, etc. (Nieboer & Richardson, 1980). Thus, REEs in (hyper)accumulators may have distinct uptake 111	
and transport strategies yet to be fully understood. 112	
 113	
Dicranopteris linearis (Gleicheniaceae) is a native pioneer fern common throughout the Old World 114	
(sub)tropics and Oceania (USDA, 2018). This species can grow in acidic (pH 4–5) and poor soils, 115	
and exhibits high phosphorus use efficiency (Russell et al., 1998; Chen et al., 2016a). Moreover, D. 116	
linearis often forms patches under an open canopy and dominates the understory of many plant 117	
communities in Southern China (e.g. Pinus massoniana, Cunninghamia lanceolata, Eucalyptus 118	
robusta) (Fig. 1). This plant has a crucial role in the ecosystem, retaining nutrients and organic 119	
matter (Cohen et al., 1995); sustaining soil microclimates (Zhao et al., 2012); facilitating growth of 120	
Eucalyptus trees (Wan et al., 2014); and controlling REE migration and gully erosion (Chen et al., 121	
2016b). To date, only the D. linearis accessions from Southern China have been recognized as a 122	
REEs hyperaccumulator (Wei et al., 2001 & 2005; Shan et al., 2003). Field surveys confirm that D. 123	
linearis can accumulate up to 1240–1760 mg kg-1 REEs in the aboveground parts when growing on 124	
(ion-adsorption) REE mine tailings (Table S1). Dicranopteris linearis thus may be used for 125	
phytoremediation and phytomining at ion-adsorption REE mine tailings in Southern China, which 126	
can contain 409–1035 mg kg-1 REEs (Chao et al., 2016), and occupy an area of more than 100 km2 127	
(Liu et al., 2015). Most of the REEs are accumulated in the cell walls in the pinnae of D. linearis, as 128	
shown by differential extractions; although some of the REEs are also accumulated within the 129	
protoplast, such as the organelles and cytosol, vacuoles and cell membranes (Wei et al., 2005). Light 130	
REEs (LREEs, i.e. La, Ce, Pr and Nd) deposits have been reported from the cell wall, intercellular 131	
space, plasmalemma, vesicles, and vacuoles of the root endodermis and stele cells of the adventitious 132	
root by scanning electron microscopy with energy-dispersive spectroscopy (SEM-EDS) (Shan et al., 133	
2003). Other studies reported that chlorophyll La and chlorophyll Ce (i.e. La and Ce bound to 134	
chlorophyll) formed in the pinnae of D. linearis (Zhao et al., 1999; Wei et al., 2005), and the 135	
chlorophyll REE can partly replace chlorophyll Mg (Wei et al., 2004). Moreover, binding to proteins 136	
is likely one of the mechanisms against physiological toxicity of REEs in D. linearis pinnae (Wang 137	
et al., 2003). Overall, the different techniques and samples preparations used to unravel those 138	
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different observations may be responsible for some artefacts. The high concentration of histidine 139	
reported in the pinnae of this plant (Shan et al., 2003) may result from various physiological 140	
activities and its presence is not sufficient to prove or demonstrate the chemical status of REEs, i.e. 141	
histidine complexes of REEs. The investigation of REE distribution and speciation at a 142	
submicrometric scale might provide key information about the mechanisms driving the uptake and 143	
storage of those elements by identifying the analogies and co-distributions with other elements, 144	
including nutrients. 145	
 146	
Synchrotron-based X-ray fluorescence microscopy (XFM) is a non-destructive method that has been 147	
successfully used to study the in-situ distribution of trace elements in hyperaccumulator plants (for 148	
recent reviews see Lombi & Susini, 2009; van der Ent et al., 2018; Kopittke et al., 2018). The aim of 149	
this study was to better understand the ecophysiological mechanisms that enable tolerance to REEs 150	
in this fern. To that end, XFM elemental images of the sum of two light REEs (referred to as La + Ce 151	
and being the sum of La and Ce), of K, Ca and Mn in the tissues and cells of D. linearis frond were 152	
acquired.   153	
 154	
Materials and methods 155	
 156	
Collection of plant tissues 157	

Live samples of D. linearis grown on the ion-adsorption REE mine tailings of Ganzhou, Jiangxi 158	
Province, China (24�57�N, 115�05�E), and the corresponding soil material were collected. The 159	
plants were transplanted in pots containing soil material and placed in a greenhouse, Sun Yat-sen 160	
University, Guangzhou, China. Three mature plants with rhizosphere soil were brought alive to the 161	
P06 beamline (PETRA III Synchrotron, DESY, Hamburg, Germany) for the experiments described 162	
below. In parallel, four mature live pinna and three standing litter pinna (the dead pinna was still 163	
connected to the stolon) samples from a D. linearis population on an ion-adsorption REE mine 164	
tailing were sampled for bulk chemical analysis (Fig. S1).  165	
 166	



	

8	
	

167	



	

9	
	

Chemical analysis of bulk tissue samples 168	

Plant samples were washed with pure water (18Ω, 25°C), then dried in an oven at 105°C for 2 h and 169	
60°C for 72 h. The analysis methods of total concentrations of Al, REEs, Si, and other trace elements 170	
(Mn, K, Ca, P) were adapted from Liu et al. (2019). 171	
 172	
X-ray fluorescence microscopy (XFM) 173	

The X-ray fluorescence microscopy (XFM) experiment was undertaken at Beamline P06 at the 174	
PETRA III (Deutsches Elektronen-Synchrotron; DESY, Hamburg, Germany), a 6 GeV synchrotron 175	
(Boesenberg et al., 2016). The undulator beam was monochromatized with a cryogenically cooled 176	
Si(111) channel-cut monochromator to an energy of 12 keV with a flux of 1010 photon/s. A 177	
Kirkpatrick-Baez mirror pair was used to focus the incident beam to 700 × 530 nm (hor × ver).  The 178	
samples were scanned in fly-scan mode, with the resultant sample X-ray signal detected using the 179	
Maia 384C detector system, operated in backscatter geometry (Kirkham et al., 2010; Ryan et al., 180	
2010 & 2014; Siddons et al., 2014).  Typically, a quick ‘survey scan’ was first conducted to allow 181	
for the selection of the appropriate portion of the sample. For the survey scan, the resolution was 50–182	
100 µm with a dwell of 1–2 ms and generally took ca. 5 min to complete. After that a ‘detailed scan’ 183	
was conducted, with a resolution of 2–10 µm and a dwell time of 8–20 ms.  For the whole 184	
experiment, the incident energy of 12 keV was used in order that the fluorescence lines of the 185	
elements of interest are well below the inelastic and elastic scatter peaks. 186	
 187	
Live/fresh pinnule samples were analysed whole, or as cross-sections which hand cut with a 188	
stainless-steel razor blade (‘dry knife’ method); whole or sectioned samples were then mounted 189	
between two sheets of 4 µm Ultralene thin film in a tight sandwich to limit evaporation, and analysed 190	
within 10 minutes after excision. The fresh samples mounted between two sheets of Ultralene thin 191	
film (4 µm) were stretched over a 3D-printed frame magnetically attached to the x-y-z sample stage 192	
at atmospheric temperature (~23°C). X-ray micro-fluorescence was performed using fast scanning to 193	
keep the scan time, and hence sample degradation, to a minimum.  194	
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Data processing and statistics 195	

The XRF event stream was analysed using the Dynamic Analysis method (Ryan & Jamieson, 1993; 196	
Ryan, 2000) as implemented in GeoPIXE (Ryan et al., 1990 & 2005). It was necessary to use a 197	
precise matrix file for the spectra fitting to account for X-ray fluorescence absorption of the 198	
relatively low energy of the REEs L-lines, and the matrix was based on the stoichiometry of the 199	
mean concentrations of major elements (>0.1 wt%) in dried D. linearis pinna samples (Table S2). 200	
The matrix composition assumed hydration of the fresh samples, and was formulated as 201	
C7O31H59N0.7S0.2Al0.3Si1.5Ca0.2Mn0.1K0.3 (on the basis of average concentrations of these elements in 202	
bulk samples) with a density of 0.90 g cm-3, considering two layers of Ultralene foil (4 µm) and with 203	
varying sample thicknesses. Pinnule samples were considered to have uniform thickness. The 204	
rhodium coating of the KB mirror focusing optics available for this experiment results in a 205	
high-energy cutoff of 23 keV, well below that required to excite the K-lines of the REEs (33.44 keV 206	
for La), so therefore the experiment had to rely on exciting the L-lines (ranging from 4.65 keV for La 207	
to 7.41 keV for Yb). The L-lines of Al and Si were around 1.5–3 keV, thus could not be detected. 208	
Although the K-line of Y could be reached at 14.96 keV, its concentration was too low (mean of 106 209	
µg g-1 Y in pinna) to be reliably detected. The reported resolution of the Maia 384C detector is 220 210	
eV and it is hence unable to distinguish between the numerous L-lines of various the REEs. 211	
Moreover, the L-lines of Gd, Eu and Sm are in the range of the K-lines of Mn and thus these 212	
elements, at these relative concentrations, are not possible to distinguish reliably using the Maia 213	
detector. Consequently, only La and Ce were used to represent the REEs. 214	
 215	
Results 216	
 217	
Bulk elemental concentrations in Dicranopteris linearis 218	

The bulk pinna concentrations of REEs, Al, Si, Mn, K, Ca, and P are given in Table 1. The 219	
concentrations of Al, Si and REEs in live pinnae are around half that of the standing litter pinnae – 220	
Al 2850 vs 4850 mg kg-1, Si 14700 vs 33900 mg kg-1 and REEs 1900 vs 3500 mg kg-1 respectively. 221	
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Alternatively, the concentrations of Mn, P and K in live pinnae are always higher than the standing 222	
litter pinnae – Mn 1480 vs 310 mg kg-1, P 211 vs 129 mg kg-1 and K 3000 vs 268 mg kg-1 223	
respectively. The concentration of Ca has no significant difference between the two types of pinnae 224	
(Table 1). Among the 15 REEs, the sum of La and Ce accounts for ~50% of the total REEs in the 225	
pinnae, without significant differences between live and standing litter pinnae (Table S2). 226	
 227	
Localization of REEs in pinna and pinnule 228	

The X-ray fluorescence element maps evidenced a distinct mapping for K, Ca, Mn and the summed 229	
REEs La + Ce in the tissues of the pinna (Fig. 2; Fig. 3) and the pinnule (Fig. 4; Fig. 5; Fig. S2) of D. 230	
linearis. The most significant enrichment of La + Ce and Mn is in the necrotic tissues, which are by 231	
definition the bio-inactive regions of the pinna. The preferential accumulation of REEs in these 232	
necrotic spots appear to in all of the tissue areas (pinna tips, margins and blades) of the necrosis. 233	
Significant La + Ce and Mn enrichments are also in the midvein, secondary veins, tertiary veins and 234	
in the margins of the pinna and its pinnule. The La + Ce and Mn were not strictly restricted within 235	
the veins and necrotic tissues; their signals were also visibly and uniformly localized outside the 236	
veins and necrotic tissues. Calcium is mainly distributed in the necrotic tissues and blade, but low in 237	
the veins. Potassium has a distinctly different distribution in the pinna and pinnule, and is mostly 238	
localized in the blade, and absent in the necrotic tissues.  239	
 240	
In order to compare the elements spatial co-occurrences and correlations, tri-color (Ce, Mn and Ca) 241	
composites maps and Ce-Mn frequency plots of a pinna and a pinnule are provided in Fig. S3. The 242	
results further confirm the co-localization of Ce and Mn both inside and outside the necrotic tissues, 243	
with higher concentrations inside the necrotic tissues and lower outside. However, tri-color elemental 244	
maps and element association frequency plots also show that Ce and Mn are not totally co-localized, 245	
e.g. there are some high Ce areas at the right of the pinnule (Fig. S2), where Mn is relatively low. 246	
 247	

248	



	

12	
	

Localization of REEs in pinnule and midvein cross-section 249	

In order to establish the localization of REEs at the cellular level, XFM mapping was performed on 250	
cross-sections of midvein and pinnule. The elemental maps revealed that La + Ce and Mn are co-251	
localized in the epidermis (Fig. 6; Fig. 7). The La + Ce and Mn in the upper epidermis are much 252	
more concentrated than in the low epidermis. In the midvein cross-section, there is a “ring” shaped 253	
peak of La + Ce and Mn between the vascular bundle and the cortex, likely the pericycle. In the 254	
pinnule cross-section, the vascular bundle and cortex are difficult to differentiate. However, 255	
compared to La + Ce, Mn signals are more prominent in the cortex and mesophyll, while less marked 256	
in the vascular bundle. Potassium is low in the cortex, but concentrated in the mesophyll, epidermis 257	
and vascular bundle. Calcium is predominantly localized in the mesophyll and epidermis, but low in 258	
the vascular bundle and cortex. The subcellular elemental distribution could not be differentiated for 259	
any element. 260	
 261	
Localization of REEs in petiole and stolon cross-section 262	

The elemental XFM maps of the petiole and stolon cross-sections show La + Ce enrichment in the 263	
epidermis and vascular bundle, while in the cortex and the pericycle of the petiole cross-section 264	
prevailing concentrations are very low (Fig. 8 and Fig. S4). In contrast, in both the petiole and stolon 265	
cross-sections, the K, Ca and Mn are similar and mostly concentrated in the epidermis, pericycle and 266	
vascular bundle, with distinct localizations in the cortex. Within the vascular bundle of petiole cross-267	
sections, La + Ce, Mn, K and Ca are mainly localized in the protoxylem and metaxylem.  268	
 269	
Discussion 270	
 271	
Dicranopteris linearis accumulates the highest concentrations of REEs in necrotic tissues, which 272	
differs significantly from the behavior of most other metal hyperaccumulators. Potassium is an 273	
essential element that plays a critical role in cellular osmotic regulation in the young and fresh leaves, 274	
and the absence of K in necrotic tissues suggests that these areas are physiologically inactive. The 275	



	

13	
	

markedly higher concentrations of REEs, Al and Si in the standing litter pinnae, as compared to the 276	
live pinnae further affirms that these elements are rather immobile as opposed to K which is strongly 277	
depleted in litter tissues (Fig. S1; Table 1). The concentrations of Mn in the pinna of D. linearis 278	
(Table 1) are much greater than what is typically toxic in most of the plants (e.g. < 200 mg kg-1 in 279	
maize) (Shao et al., 2017). Therefore, the necrosis in these tissues is possibly, among other reasons, 280	
the result of Mn accumulation, oxidation and localised toxicity within the pinnules, which then 281	
induces cell death, necrotic spots, substantially larger necrotic tissue and then finally acts as a “dump 282	
site” for REEs. A similar phenomenon has been reported in the leaf of soybean and cowpea in 283	
response to Mn toxicity; the toxicity started with Mn pumped under the cuticle via the apoplast, or 284	
expelled via hydathodes towards the leaf tip, and then increasing concentrations of Mn leading to Mn 285	
oxidation (+2 to +3 and +4 valences) and necrotic lesions, which in turn stimulate more Mn 286	
translocation as a result of higher evaporation (Blamey et al., 2018a & 2018b). However, Ce and Mn 287	
were not totally co-localized, it is therefore also possible that the necrotic tissues were induced by Ce 288	
accumulation and oxidation (+3 to +4 valences). It could be also interpreted as a tolerance 289	
mechanism in which some cells are sacrificed and used as a dump, while in the others, 290	
photosynthesis and normal activity can continue (Küpper et al., 2007). The underlying mechanisms 291	
as to why REEs prefer to compartmentalize into the upper epidermis, margins and veins are not fully 292	
understood. Previous studies on hyperaccumulator plants suggest that it may reflect a physiological 293	
and/or defense-related response – protection of photosynthetically active tissues such as mesophyll, 294	
and defense from predation by herbivores and pathogens (Martens & Boyd, 1994; Cappa & Pilon-295	
Smits, 2014).  296	
 297	
The distinct localization in vascular bundles, while prevailing concentrations are low in the cortex of 298	
petiole and midvein, suggests an efficient REE transport system in this plant. The transport of REEs 299	
to the pinna probably occurs as mass flow through the vascular tissue, driven by transpiration. In 300	
non-accumulating species of beech and oak (Fagaceae), REEs transport within xylem was suggested 301	
to be associated with general nutrient flux (Brioschi et al., 2013). However, in the vascular bundles 302	
of D. linearis, we found both a small area of La + Ce peaks within vascular bundle and a very bright 303	
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“ring” shaped peak between vascular bundle and cortex (Fig. 7). The significant La + Ce enrichment, 304	
with no obvious Ca and Mn enrichment within the vascular bundle of veins, suggests that REEs are 305	
translocated to the blade to a lesser extent than Ca and Mn. This might be due to the features of the 306	
pericycle tissue where cells are dense, preventing REEs translocation from the xylem into the blade 307	
via the intercellular space. It is possible that once the REEs enter into the vascular system of veins 308	
(xylem), they are partly fixed by the pericycle, and then transported to the D. linearis blades 309	
(especially to the epidermis and necrotic tissues) via transpiration flow. In this case, the transport and 310	
accumulation of REEs should mainly be passive convection processes. Thus, the distribution of 311	
REEs in D. linearis pinna could be influenced by various parameters that are associated with the 312	
evaporation (e.g. biological variety, seasonal and climatic changes) and Mn toxicity (e.g. light, 313	
pinnule age and height at sampling) (Küpper et al., 2004; Fernando & Lynch, 2015; Bartoli et al., 314	
2018). The highest concentrations recorded within the necrotic tissues of pinna may be ascribed to a 315	
lack of wax coats at the surface of pinna, and/or the damage of the pericycle tissue or cells between 316	
vascular bundle and cortex in the veins, thus leading to a higher evaporation rate. The higher 317	
evaporation rate may also lead to higher concentrations of REEs in the upper epidermis, compared to 318	
the lower epidermis (Fig. 6; Fig. 7). 319	
 320	
As vacuoles in necrotic tissues of the pinnae disintegrate, compartmentalization and accumulation in 321	
these areas indicate that the REEs are likely to be sequestrated by cell walls or exist under immobile 322	
forms. Many studies found that REEs tend to complex with phosphate and form deposits in the cell 323	
walls and more generally in the intercellular space of plant tissues (Ding et al., 2006; Ruíz-Herrera et 324	
al., 2012). However, the molar ratio of P in D. linearis pinnae was much lower than that of REEs 325	
(Table 1). Moreover, we found that D. linearis also accumulates high concentration of Al and Si 326	
(Table 1; Chour et al., 2018). Detoxification of Al and other heavy metals by Si has been observed in 327	
many plants (Liang et al., 2007). For example, Al localization coincided with Si distribution in cell 328	
walls of the Al hyperaccumulator Rudgea viburnoides (Malta et al., 2016). The co-deposition of Si 329	
and Cd in the cell walls as a [Si-wall matrix]Cd co-complex inhibited Cd ion uptake by rice cell (Liu 330	
et al., 2013). In the Al and Si hyperaccumulator Faramea marginata, Al and Si are thought to be co-331	
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deposited as phytolith Al (Britez et al., 2002). Also, silicon may co-deposit with Mn at the apoplast 332	
and decrease the oxidation of Mn in cowpea, soybean and sunflower (Blamey et al., 2018a). Rare 333	
earth elements are a group of trivalent elements, which exhibit many chemical similarities to Al 334	
(Pletnev & Zernov, 2002). Considering the high concentration of REEs, Mn, Al and Si, a co-335	
deposition of REEs, Mn and Al with Si may be involved in the homeostasis of high concentrations of 336	
REEs, Mn and Al in D. linearis. Therefore, it would be crucial to study the localization of Al and Si 337	
in D. linearis tissues with other methods to confirm these hypotheses. 338	
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 593	

 594	
 595	
Fig. 1. Live Dicranopteris linearis grown at (a) the understory of Cunninghamia lanceolata; (b) an 596	
ion-adsorption REE mine tailing abandoned for about 10 years at Ganzhou, Jiangxi Province, 597	
Southern China.  598	
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 600	
 601	
Fig. 2. Elemental µ-XRF maps of fresh Dicranopteris linearis pinna. The maps measure 8.86 × 8.56 602	
mm. The elemental image was acquired in step size 15 µm with dwell 15 ms per pixel, 12.0 keV, 603	
incident beam.  604	
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 606	
 607	
Fig. 3. Elemental µ-XRF maps of fresh Dicranopteris linearis pinna. The maps measure 13.1 × 8.58 608	
mm. The elemental image was acquired in step size 25 µm with dwell 15 ms per pixel, 12.0 keV, 609	
incident beam.  610	

611	
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 612	
 613	
Fig. 4. Elemental µ-XRF maps of fresh Dicranopteris linearis pinnule. The maps measure 10.2 × 614	
4.26 mm. The elemental image was acquired in step size 20 µm with dwell 20 ms per pixel, 12.0 615	
keV, incident beam.  616	

617	
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 618	
Fig. 5. Elemental µ-XRF maps of fresh Dicranopteris linearis pinnule. The maps measure 12.95 × 619	
2.88 mm. The elemental image was acquired in step size 8 µm with dwell 15 ms per pixel, 12.0 keV, 620	
incident beam.  621	
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 622	
 623	
Fig. 6. Elemental µ-XRF maps of fresh Dicranopteris linearis pinnule cross-section. The maps 624	
measure 2.25 × 0.86 mm. The elemental image was acquired in step size 5 µm with dwell 15 ms per 625	
pixel, 12.0 keV, incident beam.  626	
 627	
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 628	
 629	
Fig. 7. Elemental µ-XRF maps of fresh Dicranopteris linearis midvein cross-section of pinna. The 630	
maps measure 4.70 × 1.57 mm. The elemental image was acquired in step size 8 µm with dwell 15 631	
ms per pixel, 12.0 keV, incident beam. The concave side represents the adaxial side in the figure. 632	
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 633	
Fig. 8. Elemental µ-XRF maps of fresh Dicranopteris linearis petiole cross-section of pinna. The 634	
maps measure 5.62 x 3.41 mm. The elemental image was acquired in step size 12 µm with dwell 15 635	
ms per pixel, 12.0 keV, incident beam. 636	
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TABLES 637	
 638	

Table 1. Bulk elemental concentrations in pinna of Dicranopteris linearis (mg kg-1 dry weight). 639	

 640	
Type n Al Si REEs* Ca Mn P K 

Live pinna 

1 2860 13400 1540 1330 1350 232 3330 

2 3180 19500 2450 2160 1340 179 2600 

3 1490 11800 1400 1160 1020 213 3390 

4 3860 14100 2190 2580 2230 220 2700 

Mean ± sd 2850±997a 14700±3310a 1900±505a 1810±676a 1480±523b 211±23.0b 3000±413b 

Standing 
litter pinna 

1 4910 36600 3620 2300 541 130 240 

2 5280 36800 3750 988 241 156 432 

3 4370 28200 3130 908 149 100 131 

Mean ± sd 4850±455b 33900±4910b 3500±327b 1400±779a 310±205a 129±28.0a 268±152a 

* The summed concentration of La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and Y, see the concentration of each rare earth element 641	
in Table S2. 642	
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 28 

 29 

Fig. S1. Live Dicranopteris linearis grown at (a) the understory of Cunninghamia lanceolata; (b) an 30 

ion-adsorption REE mine tailing abandoned for about 10 years at Ganzhou, Jiangxi Province, 31 

Southern China.  32 

33 
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 34 

 35 

Fig. S2. Dicranopteris linearis growing at an ion-adsorption REE mine tailings. (a) D. linearis 36 

thicket with both live pinnae and dead standing litter pinnae; (b) dead standing litter pinnae; (c) 37 

morphological characteristics of D. linearis.38 
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 39 

 40 

Fig. S3. Elemental µ-XFM maps of hydrated Dicranopteris linearis pinna. The maps measure 13.1 × 41 

8.58 mm. The elemental image was acquired in step size 25 µm with dwell 15 ms per pixel, 12.0 42 

keV, incident beam.  43 
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 44 

 45 

Fig. S4. Elemental µ-XFM maps of hydrated Dicranopteris linearis pinnule. The maps measure 10.2 46 

× 4.26 mm. The elemental image was acquired in step size 20 µm with dwell 20 ms per pixel, 12.0 47 

keV, incident beam.  48 

49 
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 50 

 51 

Fig. S5. Elemental µ-XRF maps of hydrated Dicranopteris linearis pinnule. The maps measure 52 

11.25 × 2.79 mm. The elemental image was acquired in step size 8 µm with dwell 15 ms per pixel, 53 

12.0 keV, incident beam. The REE content was below detection limits.  54 

55 
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 56 

 57 

Fig. S6. Tri-color elemental maps (red = Ce, green = Mn, blue = Ca) in a pinna (top left) and element 58 

association (Ce and Mn) frequency plots (top right). Two areas were marked and plotted on the pinna 59 

elemental map (bottom two panels) showing occurrence of Mn-Ce associations in green. 60 

61 
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 62 

 63 

Fig. S7. Elemental µ-XFM maps of hydrated Dicranopteris linearis petiole cross-section of pinna. 64 

The maps measure 5.62 x 3.41 mm. The elemental image was acquired in step size 12 µm with dwell 65 

15 ms per pixel, 12.0 keV, incident beam.  66 

 67 
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68 

  69 

Fig. S8. Elemental µ-XRF maps of hydrated Dicranopteris linearis stolon cross-section. The maps 70 

measure 2.84 x 2.81 mm. The images were acquired in step size 12 µm with dwell 15 ms per pixel, 71 

12.0 keV, incident beam. The REE content was below detection limits. 72 
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Table S1. Rare earth elements concentrations in Dicranopteris linearis and rhizosphere soil 73 

collected from different sites. 74 

 75 

Type 
Aboveground 
part / mg kg-1 

Underground 
part / mg kg-1 

Rhizosphere 
soil / mg kg-1 

Aboveground part / 
Rhizosphere soil 

Aboveground part / 
Underground part 

MT 1470±199 a 727±426 a 518±208 a 3.27±1.55 a 2.77±1.89 a 

TE 875±449 ab 198±66.0 bc 304±159 ab 4.09±3.57 a 5.12±3.49 a 
NM 1430±733 a 393±71.8 b 573±307 a 2.92±1.45 a 3.52±1.18 a 
HB 1160±806 ab 189±93.3 bc  363±81.9 ab 3.21±1.88 a 8.01±6.94 a 
LB 297±296 b 24.8±18.2 d 117±52.6 b 2.68±2.32 a 18.4±22.1 a 

 76 

Dicranopteris linearis samples and rhizosphere soils were collected in non-mining area near ion-adsorption REE 77 

mine tailings (NM), ion-adsorption REE mine tailings (MT), edge of the ion-adsorption REE mine tailings (TE), 78 

high levels of REEs background (HB) from Ganzhou, Jiangxi province, and low levels of REEs background (LB) 79 

from Guangzhou, Guangdong province of China. Different letters in the figure represent significant difference 80 

among each group (ANOVA, Duncan, p<0.05). Plant samples were divided into aboveground part and 81 

underground part, thoroughly washed with deionized water, dried in an oven at 105� for 1 hour and then 60� for 82 

48 hours, and then carefully crushed. Soil samples were air-dried and sieved to 0.15 mm. 50 ± 0.5 mg of dry plant 83 

samples and soil samples were introduced in a Teflon crucible equipped with cylinder sleeve, heated to 195� in an 84 

oven for 48 hours after adding 3 mL HNO3 (UP, 65%) and 1 mL HF, and then evaporated on a hot plate to dryness. 85 

One mL 20% HNO3 was added to the Teflon crucible and heated to 195 � for 2 hours (1). The digestion solution 86 

was transferred to 15 mL tubes with 2% HNO3. The REEs were determined using an X Series 2 ICP-MS (Thermo, 87 

USA). The internal standard used was 115In. The external standard used during analysis was shrub branches and 88 

leaves (GBW07602) and yellow-red soil (GBW07405). The recovery of In during the testing was 95–105%. The 89 

measured values of the external standards were in the range of standard values of references. 90 
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Table S2. Rare earth elements concentrations of live pinnae and dead standing litter pinnae collected from an ion-adsorption REE mine tailing in 91 

Southern China (mg kg-1 dry matter). 92 

 93 

Type La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y 

Living pinna 
(n=4) 

686±2
84 a 

355±2
38 a 

121±30
.2 a 

366±63
.2 a 

82.9±6.
68 a 

12.4±0.
74 a 

80.0±6.
51 a 

9.00±1.
16 a 

37.6±8.
15 a 

5.92±1.
71 a 

15.2±3.
51 a 

1.58±0.
55 a 

8.11±3.
07 a 

1.07±0.
44 a 

114±29
.2 a 

Dead standing 
pinna 
(n=3) 

1710±
420 b 

277±1
10 a 

325±63
.0 b 

948±16
1 b 

229±63.
9 b 

35.1±8.
86 b 

188±39.
1 b 

21.7±5.
42 b 

85.2±22
.0 b 

12.7±3.
39 b 

33.3±8.
81 b 

3.25±0.
97 b 

17.2±5.
56 b 

2.28±0.
76 b 

236±60
.0 b 

Different letters in the figure represent significant difference among each group (ANOVA, Duncan, p<0.05).94 
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Table S3 Rare earth elements concentrations in the shoot of accumulator plants 95 

 96 

Family(a) Species REE / mg kg-1 
Sampling 

sites  
Reference  

Gleicheniaceae Dicranopteris linearis Up to 7000 China (2) 

 Dicranopteris strigose 12; BF>1(b) Japan (3) 

Juglandaceae Carya cathayensis 2300(c) 
USA 

(4) 

 Carya tomentosa 136 (5) 

Thelypteridaceae Pronephrium simplex 1230 

China 

(1) 

 Pronephrium triphyllum 1030 (6) 

Phytolaccaceae Phytolacca americana 1040 (7) 

Blechnaceae 
Blechnum orientale 1020 

(8) Woodwardia japonica 367 

Lindsaeaceae Stenoloma chusana 725 

Athyriaceae Athyrium yokoscence 202 

Japan 

(9) 

Dryopteridaceae 
Dryopteris erythrosora 32; BF>1(b) 

(3) 

Dryopteris fuscipes 10; BF>1(b) 

Aspleniaceae 

Asplenium filipes 25; BF>1(b) 

Asplenium hondoense 14; BF>1(b) 

Asplenium ruprechtii 40; BF>1(b) 

Asplenium ritoense 12; BF>1(b) 

Asplenium subnomale 14; BF>1(b) 

Asplenium trichomanes 21; BF>1(b) 

Blechnaceae Blechnum niponicum 9.7; BF>1(b) 

Adiantaceae Adiantum monochlamys 11; BF>1(b) 

 97 

The table is adapted from Liu et al. (10) with minor modifications. (a) The lanthanum (La) 98 

concentration in Glochidion triandrum (Phyllanthaceae) leaf < 1 mg kg-1, thus not a REEs 99 
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accumulator and removed from the figure; (b) means the La concentration in the shoot, BF means 100 

bioaccumulation factor (i.e. La in the shoot / La in the soil); (c) the REE concentrations in the ash. 101 

102 


