Ludovic Goudenège 
  
Luigi Manca 
  
α-Navier-Stokes equation perturbed by space-time noise of trace class

Keywords: Navier-Stokes, Camassa-Holm, Lagrange Averaged alpha, stochastic partial differential equations, trace class noise. MSC : 60H15, 60H30, 37L55, 35Q30, 35Q35, 76D05

We consider a stochastic perturbation of the α-Navier-Stokes model. The stochastic perturbation is an additive space-time noise of trace class. Under a natural condition about the trace of operator Q in front of the noise, we prove the existence and uniqueness of strong solution, continuous in time in classical spaces of L 2 functions with estimates of non-linear terms. It is based on a priori estimate of solutions of finite-dimensional systems, and tightness of the approximated solution.

Moreover, by studying the derivative of the solution with respect to the initial data, we can prove exponential moment of the approximated solutions, which is enough to obtain Strong Feller property and irreducibility of the transition semigroup. This leads naturally to the existence and uniqueness of an invariant measure.

Introduction

The (stochastic) Navier-Stokes equation has been widely studied under various boundary conditions in domains of R d with d = 2, 3, also the compressible or incompressible case. But the stochastic version of the α-Navier-Stokes model, which has been introduced for modeling of turbulence, has not been studied deeply in the mathematical literature.

The deterministic version has first been introduced by Holm et al. in [START_REF] Chen | A connection between the Camassa-Holm equations and turbulent flows in channels and pipes[END_REF][START_REF] Holm | The Euler-Poincaré equations and semi-direct products with applications to continuum theories[END_REF] as a Large Eddy Simulation (LES) model (see [START_REF] Leonard | Energy cascade in large-eddy simulations of turbulent fluid flow[END_REF]). Indeed, starting from the fact that a precise description of the fine scales in a turbulent flow may be irrelevant for numerical simulation in engineering applications, the complete Navier-Stokes equation could certainly be relaxed in a weaker form.

From the first study, this relaxation has been derived by applying temporal averaging procedures to Hamilton's principle for an ideal incompressible fluid flow and Euler-Poincaré variational framework (see [START_REF] Chen | A connection between the Camassa-Holm equations and turbulent flows in channels and pipes[END_REF]). In [START_REF] Guermond | An interpretation of the Navier-Stokes alpha model as a frame indifferent Leray regularization[END_REF], it has been interpreted as a perturbation of the Leray regularization to restore frame invariance. It is also known as the Lagrangian averaged Navier-Stokes-α (LANSα) (see [START_REF] Marsden | Global well-posedness for the Lagrangian averaged Navier-Stokes (LANS-) equations on bounded domains[END_REF]) or the viscous Camassa-Holm equation (VCH) (see [START_REF] Bjorland | On questions of decay and existence for the viscous Camassa-Holm equations[END_REF]).

It has been shown that this model possesses a lot of physical properties (conservation laws for energy and momentum), and it is also suitable for numerical simulation. For instance, these equations on a fluid v possess a Kelvin-Noether circulation theorem and conserves helicity (see [START_REF] Foias | The Navier-Stokes-alpha model of fluid turbulence[END_REF]) which is defined on a volume V by:

H(V )(t) = V v(t, x) • (∇ × v(t, x)) dx 3 .
This α-Navier-Stokes model must not be confused with Leray-α regularization of the Navier-Stokes, or a hyper-viscous Navier-Stokes equation (bi-Laplacian) since these last models do not provide the same physical properties. We can also cite the results about higher-order Leray models and deconvolution (see [START_REF] Layton | A high accuracy Leray-deconvolution model of turbulence and its limiting behavior[END_REF][START_REF] Rebholz | A family of new, high order NS-α models arising from helicity correction in Leray turbulence models[END_REF]).

In [START_REF] Chen | Direct numerical simulations of the Navier-Stokes alpha model[END_REF], Direct Numerical Simulations (DNS) have been realized to demonstrate that it reproduces most of the large scale features of Navier-Stokes turbulence (detailed previously) even when these simulations do not resolve the fine scale dynamics, at least in the case of turbulence in a periodic box. They have compared vorticity structures and alignment, and also two point statistics (e.g. speed increments and flatness) to illustrate the altered dynamics of the alpha models. 

       ∂v ∂t + v • ∇v + (∇v) T • v + ∇p = ν∆v + f, div v = 0 v = I -α 2 ∆ -1 v,
where we consider a periodic fluid in a box, or a fluid with homogeneous Dirichlet condition, and the initial data is given by v| t=0 = v 0 . Alternatively, using the Helmoltz operator I-α 2 ∆, and eliminating v by setting v = I -α 2 ∆ v, we can write

   ∂(v -α 2 ∆v) ∂t + v • ∇(v -α 2 ∆v) + (∇v) T • (v -α 2 ∆v) + ∇p = ν∆(v -α 2 ∆v) + f, div v = 0.
Sometimes the term (∇v) T • v does not appear in model, since it should disappear with Leray projection. We can also use a dynamic pressure p to obtain the α-Navier-Stokes model in rotational form

   ∂v ∂t -v × (∇ × v) + ∇p = ν∆v + f, div v = 0,
and the two equations on the vorticity q := ∇ × v and the helicity H := v, ∇ × v = v, q are given by

         ∂q ∂t + v • ∇q -q • ∇v = ν∆q + ∇ × f, 1 2 
dH(t) dt = V ν∆v • q dx 3 + V (∇ × f ) • (∇ × v) dx 3 .
In this paper, we will consider the stochastic version of α-Navier-Stokes equation by substituting to the forcing term f , a time derivative of a gaussian Wiener process, to take into account random agitations or uncertainties.

In the next sections, we will clarify the definition of an abstract setting such that the stochastic α-Navier-Stokes equation reads

du + νAu + (I + α 2 A) -1 B(u, u + α 2 Au) dt = dξ in H, u(0) = u 0 ∈ H, (1.1)
where ξ is a noise term, and with the property that if α = 0, this is equivalent to stochastic Navier-Stokes du + (νAu + B(u, u)) dt = dξ in H, u(0) = u 0 ∈ H.

(1.2)

Notice that (v • ∇v) i = j v j ∂ j v i for i = 1, ..., d with d = 2, 3.
For the stochastic Navier-Stokes equation, there exist many results since the early work of Bensoussan and Temam [1]. It is well-known that there exists a probabilistic weak (martingale) solution in the three-dimensional case (see for instance [START_REF] Flandoli | Martingale and stationary solutions for stochastic Navier-Stokes equations[END_REF][START_REF] Mikulevicius | On equations of stochastic fluids mechanics[END_REF]). Concerning the uniqueness, there exists a (probabilistic) strong maximal local solution in W 1 p with p > 3 obtained in [START_REF] Brzeźniak | Strong local and global solutions for the Stochastic Navier-Stokes[END_REF][START_REF] Mikulevicius | On equations of stochastic fluids mechanics[END_REF]. In [START_REF] Glatt-Holtz | Strong pathwise solutions of the stochastic Navier-Stokes system[END_REF][START_REF] Mikulevicius | On Strong H 1 2 -solutions of stochastic Navier-Stokes equations in a bounded domain[END_REF], there is existence and uniqueness of local (probabilistic) strong pathwise solution in W 1 2 = H 1 . Using a Galerkin approximation and Kolmogorov equation, the authors in [START_REF] Prato | Stochastic Cahn-Hilliard equation Nonlinear Analysis: Theory[END_REF] are able to construct a transition semi-group with a unique invariant measure, which is ergodic and strongly mixing. For the two-dimensional case, there exist global results in L 2 space. It worths mentioning the paper [START_REF] Caraballo | Asymptotic behaviour of the threedimensional α-Navier-Stokes model with delays[END_REF] where the authors have studied the asymptotic behavior in a deterministic context but with some terms containing some kind of memory (e.g. delay). They prove existence, uniqueness, and exponential convergence to a stationary solution provided the viscosity is large enough.

Concerning the α-Navier-Stokes equation, the authors of [START_REF] Caraballo | On the existence and uniqueness of solutions to Stochastic three-dimensional Lagrangian averaged Navier-Stokes equations[END_REF] have proved the existence and uniqueness of variational solutions with multiplicative noise. But they have only obtained estimation of the fourth moments in the random space L 4 (Ω). In [START_REF] Deugoue | M Sango On the Stochastic 3D Navier-Stokes-α Model of Fluids Turbulence[END_REF], the authors have relaxed the Lipschitz condition (but conserving the sublinearity) on the coefficients in the second member and in the multiplicative noise, to obtain the existence of weak solutions. The uniqueness is satisfied by assuming some Lipschitz conditions. They have estimations for all the moments of the solution, but the noise only appears in a finite number of modes.

In our paper, we are able to show that there exists a unique strong solution that has moments of any order for an additive infinite-dimensional space-time noise. With an additional assumption on the noise, we show a Strong Feller-type property of the transition semigroup associated to the solution of the SPDE. This leads naturally to the existence and uniqueness of invariant measure. Moreover, we are able to prove exponential moments of the approximated solutions which is enough to obtain a concentration property for the invariant measure.

We will make the assumption that the noise process is of trace class (more details will be given later in Section 2). In Section 2 and 3, we will use the classical abstract formalism of stochastic PDEs to obtain a strong and weak solution with continuous path in Hilbert spaces of square integrable functions with free divergence (see Section 4 for definition of solutions). Moreover, and this is the crucial point of this article, we will give very strong estimates of moment of the solution in Section 5. We have clarified the dependency in the parameter α, such that in the limit α → 0, we will recover the expected behavior of blow-up of the moment of classical Navier-Stokes solution.

The proof relies on the existence and uniqueness of solution for Galerkin approximated problems (Section 6), which possesses exponential moments (Section 7). We have proved estimates in Sobolev spaces (Section 8), using compactness argument (Section 9) to make identification of the limit (Section 10). The results in Section 7 have been used to derive a priori estimates and some concentration properties for the invariant measure in Section 11.

Preliminaries and abstract formulation

Depending of the boundary conditions (periodic or homogeneous Dirichlet) we have to define spaces of free divergence vector fields to treat with classical operators of the α-Navier-Stokes equations. In case of periodic boundary conditions, we consider a domain U = [0, L] d with d = 2, 3 and we set

(periodic) V = {ϕ ∈ (P trig ) d : div ϕ = 0 in U and U ϕ(x)dx = 0}
the classical space of vector valued trigonometric polynomial functions with free divergence and with vanishing mean. In case of homogeneous Dirichlet boundary condition, we consider a smooth domain U ⊂ R d with d = 2, 3 which is bounded, open and simply connected. We set 

(Dirichlet) V = {ϕ ∈ (C ∞ 0 (U)) d : div ϕ = 0 in U} the classical
H = {u ∈ (L 2 (U)) d : div u = 0 in U and n • u = 0 on ∂U}. Its orthogonal complement in (L 2 (U)) d is H ⊥ = {u ∈ (L 2 (U)) d : u = ∇p in U and p ∈ H 1 (U)},
and the space V is V = {u ∈ (H 

= λ k e k , with 0 < λ 1 ≤ λ 2 ≤ • • • ≤ λ k → +∞. For ρ ∈ R, the Sobolev spaces D(A ρ ) are the closure of C ∞ 0 (U) with respect to the norm x D(A ρ ) = k∈N * λ 2ρ k x, e k 2 1 2 
.

As well known (see, for instance, [START_REF] Foias | The three dimensional viscous Camassa-Holm equations, and their relation to the Navier-Stokes equations and turbulence theory[END_REF]) the operator A can be continuously extended to V = D(A

1 2 ) with values in V = D(A -1 2 ) such that for all u, v ∈ V Au, v V ,V = (A 1/2 u, A 1/2 v) = U (∇u • ∇v) dx,
Similarly A 2 can be continuously extended to D(A) with values in D(A) (the dual space of the Hilbert space D(A)) such that for all u, v ∈ D(A)

A 2 u, v D(A) ,D(A) = (Au, Av).

One can show that there is a constant c > 0 such that for all w ∈ D(A)

c -1 |Aw| 2 ≤ w H 2 ≤ c |Aw| 2 .
We assume that ξ is the time derivative of a gaussian noise of the form QW (t), t ≥ 0 where

• K is a separable Hilbert space (norm | • | K and scalar product •, • K );
• W (t), t ≥ 0 is a cylindrical white noise defined on a stochastic basis (Ω, F, (F t ) t≥0 , P) with values in K;

• Q : K → H is a Hilbert-Schmidt operator.
The equation takes the abstract form

du + νAu + (I + α 2 A) -1 B(u, u + α 2 Au) dt = QdW (t) in H, u(0) = u 0 ∈ H. (2.1)
Hypothesis 2.2. We assume that the operator Q and A satisfies the following trace class condition

Tr[Q * (I + A)Q] < ∞.
The next assumption will be useful when we shall study the uniqueness of an invariant measure for the semigroup associated to the solution of the SPDE. Essentially, it allow to use the Bismut-Elworthy formula and derive a Strong Feller-type property.

Hypothesis 2.3. The operator Q : K → H is invertible and D(A 3/2 ) ⊂ D(Q -1 ).

Remark 2.4. For two separable Hilbert spaces X, Y , let us denote by L 2 (X; Y ) the set of Hilbert-Schmidt operators B : X → Y . The assumption in Hypothesis 2.2 means that Q ∈ L 2 (K; V). Moreover, for any

x ∈ V |Q * A 1 2 x| 2 ≤ |x| 2 2 Tr[Q * AQ]. Then, Q * A 1 2 : V → K can
be extended to a bounded operator on H (we still denote it by

Q * A 1 2 ). Similarly, for x ∈ D(A) |Q * Ax| 2 ≤ |A 1 2 x| 2 2 Tr[Q * AQ] = |∇x| 2 2 Tr[Q * AQ]
therefore Q * A can be extended to a bounded linear operator on V.

With this in mind, we get the following formula which will be useful in the following

|Q * (I + α 2 A)x| 2 = |Q * (I + α 2 A) 1 2 (I + α 2 A) 1 2 x| 2 ≤ Tr[Q * (I + α 2 A)Q] |x| 2 2 + α 2 |∇x| 2 2 . (2.2)
3 The nonlinear operator Some results of this section can be found in [START_REF] Foias | The three dimensional viscous Camassa-Holm equations, and their relation to the Navier-Stokes equations and turbulence theory[END_REF]. We recall it here for completeness. First remark that, following classical description of the Navier-Stokes equation, for u, v ∈ V we usually use the bilinear operator

B(u, v) := P ((u • ∇)v) = (∇v) T u such that (B(u, v)) j = d i=1 u i ∂v j ∂x i , for j = 1, . . . , d.
If u, v, w ∈ V then we can observe that

B(u, v), w = -B(u, w), v .
For the α-Navier-Stokes equation, recalling the vector identity

u × (∇ × v) := u × rot v = ∇v -(∇v) T u
we can set -by analogy with Navier-Stokes equation-a bilinear operator

B(u, v) := -P (u × (∇ × v)) .
Following again the classical framework, we set b(u, v, w) the trilinear operator

b(u, v, w) = d i,j=1 u i ∂v j ∂x i , w j = (u • ∇)v, w then for u, v, w ∈ V b(u, v, w) = (∇v) T u, w = u, (∇v)w . It is easy to show that for u, v, w ∈ V we have b(u, v, w) = -b(u, w, v) and b(u, v, v) = 0.
This implies that for any w ∈ V (actually, w ∈ (L 2 (U)) d is enough)

B(u, u), w = b(u, u, w) -b(w, u, u) = b(u, u, w) = (u • ∇)u, w = B(u, u), w
and so for α = 0 equation (2.1) becomes the Navier-Stokes equation. We obtain the following identity for u, v, w

∈ V, since w = Pw, b(u, v, w) -b(w, v, u) = (∇v) T u, w -(∇v) T w, u = (∇v) T u, w -w, (∇v)u (3.1) = -(∇v)u -(∇v) T u , Pw = B(u, v), w (3.2) 
= (∇u) T w -(∇w) T u, v (3.3) 
Proposition 3.1. We have the following estimations which will be used later in the proofs. (i) B can be extended continuously to V × V with values in V ; for any u, v, w ∈ V it satisfies

B(u, v), w V ,V ≤ c|u| 1/2 2 |u| 1/2 V |v| V |w| V , B(u, v), w V ,V ≤ c|u| V |v| V |w| 1/2 2 |w| 1/2 V .
(ii) B satisfies :

B(u, v), w V ,V = -B(w, v), u V ,V , ∀u, v, w ∈ V; B(u, v), u V ,V = 0, ∀u, v ∈ V. B(u, v), v V ,V = -b(v, v, u), ∀u, v ∈ V. (iii) B(u, v), w D(A) ,D(A) ≤ c|u| 2 |v| V |w| 1/2 V |Aw| 1/2 2 , ∀u ∈ H, v ∈ V, w ∈ D(A). and B(u, v), w ≤ c|u| 1/2 V |Au| 1/2 2 |v| V |w| 2 , ∀u ∈ D(A), v ∈ V, w ∈ H. (iv) For any u ∈ V, v ∈ H, w ∈ D(A) it holds B(u, v), w D(A) ,D(A) ≤ c |u| 1/2 2 |u| 1/2 V |v| 2 |Aw| 2 + |u| V |v| 2 |w| 1/2 V |Aw| 1/2 2 . (v) For any u ∈ D(A), v ∈ H, w ∈ V it holds B(u, v), w V ,V ≤ c |u| 1/2 V |Au| 1/2 2 |v| 2 |w| V + |Au| 2 |v| 2 |w| 1/2 2 |w| 1/2 V . (vi) For any u ∈ V, v ∈ H, w ∈ D(A) it holds B(u, v), w D(A) ,D(A) ≤ c|u| V |v| 2 |Aw| 2 .
Proof. Points (i)-(v) can be found in [START_REF] Foias | The three dimensional viscous Camassa-Holm equations, and their relation to the Navier-Stokes equations and turbulence theory[END_REF]. By the results obtained in [START_REF] Foias | The three dimensional viscous Camassa-Holm equations, and their relation to the Navier-Stokes equations and turbulence theory[END_REF], for some c > 0 it holds

c|Aw| 2 ≤ w H 2 ≤ c -1 |Aw| 2 for any w ∈ D(A) and c|A 1/2 w| 2 ≤ w H 1 ≤ c -1 |A 1/2 w| 2 for any w ∈ V. Then, since D(A 1/2 ) = V, |w| 2 ≤ w H 1 ≤ c|w| V and |w| V ≤ c|Aw| V
for some c > 0 independent by w. Consequently, (vi) of Proposition 3.1 follows by (iv).

Remark 3.2. In [START_REF] Li | Ergodicity of 3D Leray-α model with fractional dissipation and degenerate stochastic forcing Infinite Dimensional Analysis[END_REF], there is a study of a Leray-α model with fractional power of Laplace operator with periodic boundary conditions. The abstract framework is very similar, but the assumption on the noise states that, for some sufficiently large index N , Range(Q) = P N H where P N is the projector on the finite dimensional space V ect(e 1 , . . . , e N ). In this case, Q vanishes on the complement space, such that their results only apply to finite dimensional noises (highly degenerate), but with enough noise to ensure hypoellipticity (also they need large enough viscosity).

Definition of solution

We are now able to define the concept of solution of equation (2.1).

Definition 4.1 (Strong solution)

. Assume that the linear operators Q satisfy Hypothesis 2.2 and let W (t), t ≥ 0 be a cylindrical Wiener process with values in H. Also assume that u 0 is a random variable with values in H, independent by the filtration generated by W (t), t ≥ 0. We say that a stochastic process u(t), t ≥ 0 with values in H is a strong solution of (2.1) starting by u 0 if

• u(t) has paths in C([0, ∞[; H) and it is adapted to the filtration generated by W (t), t ≥ 0 ;

• for any T > 0 and P-almost surely,

T 0 |Au(t)| 2 dt + T 0 |(I + α 2 A) -1 B(u(t), u(t) + α 2 Au(t))| 2 dt + Tr[Q * Q] < ∞; (4.1) 
• for any t ≥ 0 the process u(•) verifies

u(t) + ν t 0 Au(s)ds + t 0 (I + α 2 A) -1 B(u(s), u(s) + α 2 Au(s))ds = u 0 + QW (t). (4.2)
Definition 4.2 (Weak solution). Let T > 0 and let µ 0 be a probability measure on (H, B(H)).

Assume that the linear operator Q satisfies Hypothesis 2.2. We say that (u, (Ω, F, P,

(F t ) t∈[0,T ] ), W ) is a weak solution of (2.1) with initial distribution µ 0 if • (Ω, F, P, (F t ) t∈[0,T ]
) is a complete filtered probability space;

• u has paths in C([0, ∞[; H) and is adapted to the filtration (F t ) t∈[0,T ] ;

• the law of u(0) is µ 0 ;

Moreover, P-a.s., (4.1) and (4.2) hold.

Main result

Theorem 5.1. Assume that the linear operator Q satisfies Hypothesis 2.2. Let u 0 be a random variable with values on (V, B(V)) such that for some k ≥ 1 it holds

E |u 0 | 2 2 + |∇u 0 | 2 2 k < ∞.
Then there exists a unique strong solution u(t), t ≥ 0 of problem (2.1) with initial value u(0) = u 0 . Moreover, there exists a constant c > 0, depending only on k, Q, U such that for any T > 0 it holds

E sup 0≤t≤T |u(t)| 2 2 k ≤ c E |u 0 | 2 2 + α 2 |∇u 0 | 2 2 k + T E T 0 |u(s)| 2 2 + α 2 |∇u(s)| 2 2 k-1 |∇u(s)| 2 2 + α 2 |Au(s)| 2 2 ds ≤ c E |u 0 | 2 2 + α 2 |∇u 0 | 2 2 k + T (5.1)
We denote by B b (V) the set of real Borel measurable and bounded functions ϕ : V → R. The transition semigroup P t , t ≥ 0 associated to the solution of problem (2.1) is defined by

P t ϕ(x) = E [ϕ(u(t, x))]
where ϕ ∈ B b (V) and u(t, x) is the solution of (2.1) at time t starting at point x ∈ V. Theorem 5.2. Le us assume that Hypothesis (2.2), (2.3) hold. Then, there exists a unique invariant probability measure µ for the transition semigroup P t , t ≥ 0. Moreover µ(D(A)) = 1 and for any ε > 0 sastisfying -ν

+ 2ελ -1 1 Tr[Q * (I + α 2 A)Q] < 0 there exists K ε > 0 such that V e ε(|x| 2 2 +α 2 |∇x| 2 2 ) |∇x| 2 2 + α 2 |Ax| 2 2 µ(dx) ≤ K ε ε(ν -ελ -1 1 Tr[Q * (I + α 2 A)Q]) . (5.2)
6

The approximated problem

Here we use the Galerkin approximation method. Recall that we have denoted by 0 < λ 1 < λ 2 < . . . the eigenvalues of the Stokes operator A in its domain D(A) and by e 1 , e 2 , . . . the correspondent eigenvectors. Then, P n : H → H is the orthogonal projection of H onto span{e 1 , . . . , e n }. We set Bn (u, v) := P n B(P n u, P n v). Clearly, the results given in Proposition 3.1 remain valid for B n . The Galerkin approximated problem is given by the equation

du n + νAu n + (I + α 2 A) -1 B n (u n , u n + α 2 Au n ) dt = P n QdW (t) in H, u(0) = P n u 0 . (6.1)
Actually, (6.1) is a finite dimension ordinary stochastic differential equation with a polynomial nonlinearity. Then, there exists a unique local solution up to a (possible) blow up time τ n > 0. The results of this section concern the existence and uniqueness of a global solution for the approximated equations (i.e., τ n = ∞ almost surely). Moreover, we shall show uniform estimates on the solutions u n , which will be essential in order to use compactness arguments.

Theorem 6.1. Let u 0 ∈ V and assume that Hypothesis 2.2 holds. Then, for any n ∈ N, T > 0 there exists a solution

u n ∈ L 2 ([0, T ]; D(A)) of problem (6.1). Moreover, for any k ∈ N * there exists a constant c = c(k, U, Q) > 0 such that for any n ∈ N * , t ≥ 0 E |u n (t)| 2 2 + α 2 |∇u n (t)| 2 2 k + kνE t 0 |u n | 2 2 + α 2 |∇u n | 2 2 k-1 |∇u n | 2 2 + α 2 |Au n | 2 2 ds ≤ E |u 0 | 2 2 + α 2 |∇u 0 | 2 2 k + ct. Proof. Set F(t) = F(t, u n ) = |u n | 2 2 + α 2 |∇u n | 2 2 (6.2)
For any N > 0, n ∈ N * we consider the stopping time

τ n N = inf{t : F(t, u n (t)) > N } if the set is non empty +∞ otherwise. (6.3)
Notice that (6.1) is a system of ordinary differential equations with polynomial nonlinearities. Then, there exists a local solution u n up to a blow up time τ (ω). Since the function u n (t ∧ τ n N ) is bounded by N , we can apply the Itô formula to obtain

F k (t ∧ τ n N ) + 2kν t∧τ n N 0 F k-1 × |∇u n | 2 2 + α 2 |Au n | 2 2 ds = F k (0) + k t∧τ n N 0 F k-1 Tr[(P n Q) * (I + α 2 A)(P n Q)]ds +2k(k -1) t∧τ n N 0 F k-2 |(P n Q) * (I + α 2 A)u n | 2 2 ds +2k t∧τ n N 0 F k-1 u n + α 2 Au n , (P n Q)dW (s) = F k (0) + I 1 + I 2 + M t
where M t is the martingale term. Taking into account (2.2) there exists c 1 > 0, independent by u n and T , such that

I 1 + I 2 ≤ c 1 t∧τ n N 0 F k-1 + F k-2 (|u n | 2 2 + α 2 |∇u n | 2 2 ) ds ≤ 2c 1 t∧τ n N 0 F k-1 ds.
By Poincaré inequality |x| 2 ≤ C P |∇x| 2 and by the definition of the operator A,

|∇x| 2 ≤ 1 √ λ 1 |Ax| 2 . Then, F k ≤ c 2 F k-1 (|∇x| 2 2 + α 2 |Ax| 2 2 )
, where c 2 > 0 depends only on U. By Young's inequality there exists c 3 > 0, depending only by

Q, U, k, such that F k-1 ≤ kνF k /(2c 1 c 2 ) + c 3 /(2c 1 ). Then 2c 1 t∧τ n N 0 F k-1 ds ≤ t∧τ n N 0 kν c 2 F k + c 3 ds ≤ kν t∧τ n N 0 F k-1 (|∇u n | 2 2 + α 2 |Au n | 2 2 )ds + c 3 t ∧ τ n N .
We get

F k (t ∧ τ n N ) + kν t∧τ n N 0 F k-1 × |∇u n | 2 2 + α 2 |Au n | 2 2 ds ≤ F k (0) + c 3 t ∧ τ n N + 2k t∧τ n N 0 F k-1 u n + α 2 Au n , (P n Q)dW (s) . (6.4)
Before taking expectation, we need to verify that the martingale term is integrable. Arguing as before, there exists c 4 , c 5 > 0 such that

F k-1 |(P n Q) * (I + α 2 A)u n | 2 ≤ c 4 F k-1 (|u n | 2 + α 2 |∇u n | 2 ) ≤ c 5 (1 + F k ).
Then, since F k (t ∧ τ n ) ≤ N k , we can take expectation to obtain

2kE t∧τ n N 0 F k-1 u n + α 2 Au n , (P n Q)dW (s) = 0.
Finally, by taking expectation in (6.4) we get

E[F k (t ∧ τ n N )] + kνE t∧τ n N 0 F k-1 × |∇u n | 2 2 + α 2 |Au n | 2 2 ds ≤ E F k (0) + c 3 E [t ∧ τ n N ] .
Letting N → ∞ we conclude the proof.

We can remark that the constant c appearing in Theorem 6.1 actually depends on k, U (since we need a Poincaré inequality) and

Tr[Q * (I + α 2 A)Q].
Corollary 6.2. Let u 0 ∈ V and assume that Hypothesis 2.2 holds. Then for any n

∈ N * E |u n (t)| 2 2 + α 2 |∇u n (t)| 2 2 + 2νE t 0 |∇u n | 2 2 + α 2 |Au n | 2 2 ds ≤ E |u 0 | 2 2 + α 2 |∇u 0 | 2 2 + Tr[Q * (I + α 2 A)Q]t. Proof.
The proof is the same as done for Theorem 6.1. Indeed, in the case k = 1, the Itô formula gives immediately the result. Theorem 6.3. Let u 0 ∈ V and assume that Hypothesis 2.2 holds. Then for any k ∈ N there exists c = c(k, U, Q) > 0 such that for any T > 0

E sup t∈[0,T ] |u n | 2 2 + α 2 |∇u n | 2 2 k ≤ cE |u 0 | 2 2 + α 2 |∇u 0 | 2 2 k + cT.
Proof. As done for the previous Theorem, let us set F as in (6.2). By Theorem 6.1 the solution u n is global and all moments of F have finite expectation.

Using Itô formula and arguing as for the proof of Theorem 6.1 we get (see formula (6.4))

E sup t∈[0,T ] F k (t) + kν t 0 F k-1 × |∇u n | 2 2 + α 2 |Au n | 2 2 ds ≤ E F k (0) + c 1 T + 2kE sup t∈[0,T ] t 0 F k-1 u n + α 2 Au n , (P n Q)dW (s) ,
where c 1 > 0 depends by k, Q, U. For the martingale part, we can use Burkholder-Davis-Gundy inequality and (2.2) to get for some constants c 2 , c 3 > 0, depending only on k, Q

E sup t∈[0,T ] t 0 F k-1 u n + α 2 Au n , (P n Q)dW (s) ≤ c 2 E T 0 F 2(k-1) (P n Q) * (I + α 2 A)u n 2 2 ds 1 2 ≤ c 3 E T 0 F 2k ds 1 2
< ∞ Using Theorem 6.1 and Young's inequality, we deduce that the last term is bounded by c(E F k (0) + T ), where c = c(k, Q, U) is a positive constant. This completes the proof.

Exponential moments

The following result will be used to derive some concentration properties for the invariant measure.

Proposition 7.1. Let u 0 ∈ V and assume that Hypothesis 2.2 holds. For any ε > 0 such that

-ν + 2λ -1 1 εTr[Q * (I + α 2 A)Q] < 0 there exists K ε > 0, independent by u 0 , such that for any n ∈ N E e ε(|un(t)| 2 2 +α 2 |∇un(t)| 2 2 ) + ε ν -2λ -1 1 εTr[Q * (I + α 2 A)Q] t 0 E e ε(|un(s)| 2 2 +α 2 |∇un(s)| 2 2 ) (|∇u n (s)| 2 2 + α 2 |Au n (s)| 2 2 ) ds ≤ E e ε(|u0| 2 2 +α 2 |∇u0| 2 2 ) + K ε t. Proof. Let f ε (x) = e ε(|x| 2 2 +α 2 |∇x| 2 
2 ) and set τ N n as in (6.3). In the next calculus we shall use the notation

C Q = Tr[Q * (I + α 2 A)Q].
By Itô formula and (2.2) we have

f ε (u n (t ∧ τ N n ))c = f ε (x) + 2ε t∧τ N n 0 f ε (u n ) (I + α 2 A)u n , (P n Q)dW (s) + 2ε t∧τ N n 0 f ε (u n ) -ν(|∇u n | 2 2 + α 2 |Au n | 2 2 ) + 2ε|Q * (I + α 2 A)u n | 2 2 + 1 2 C Q ds ≤ f ε (x) + 2ε t∧τ N n 0 f ε (u n ) (I + α 2 A)u n , (P n Q)dW (s) + 2ε t∧τ N n 0 f ε (u n ) -ν(|∇u n | 2 2 + α 2 |Au n | 2 2 ) + 2εC Q (|u n | 2 2 + α 2 |∇u n | 2 2 ) + 1 2 C Q ds (7.1)
Taking into account that since

u n ∈ V we have λ 1 |u n | 2 ≤ |∇u n | 2 and λ 1 |∇u n | 2 ≤ |Au n | 2 the last term is bounded by f ε (u n (t ∧ τ N n )) ≤ f ε (u 0 ) + 2ε t∧τ N n 0 f ε (u n ) (I + α 2 A)u n , (P n Q)dW (s) +2ε t∧τ N n 0 f ε (u n ) -ν + 2λ -1 1 εC Q (|∇u n | 2 2 + α 2 |Au n | 2 2 ) + 1 2 C Q ds
Taking into account the obvious inequality (-ax + b)e x ≤ -a 2 xe x + c for x ≥ 0 and some c > 0 we deduce that there exists K ε > 0, independent by u n , such that

f ε (u n (t ∧ τ N n )) ≤ f ε (u 0 ) + 2ε t∧τ N n 0 f ε (u n ) (I + α 2 A)u n , (P n Q)dW (s) + t∧τ N n 0 ε -ν + 2λ -1 1 εC Q (|∇u n | 2 2 + α 2 |Au n | 2 2 )f ε (u n ) + K ε ds
By taking expectation we obtain

E[f ε (u n (t∧τ N n ))]+ε ν -2λ -1 εC Q E t∧τ N n 0 f ε (u n (s))(|∇u n | 2 2 + α 2 |Au n | 2 2 )ds ≤ E [f ε (u 0 )]+K ε t.
Notice that the martingale term is P-integrable since by (2.2)

|f ε (u n )(P n Q) * (I + α 2 A)u n | 2 2 = f ε ( √ 2u n )|(P n Q) * (I + α 2 A)u n | 2 2 ≤ Tr[Q * (I + α 2 A)Q]f ε ( √ 2u n )(|u n | 2 2 + α 2 |∇u n | 2 2 )
and consequently, by the definition of the stopping time, we have

sup s∈[0,t∧τ N n [ |f ε (u n (s))(P n Q) * (I + α 2 A)u n (s)| 2 2 ≤ Tr[Q * (I + α 2 A)Q]e 2εN N.
Letting N → ∞ we get that P-a.s. τ N n → ∞ and we obtain the result.

Estimates in Sobolev spaces

Let X be a Banach space with norm • X . For p ≥ 1, θ ∈]0, 1[ we denote by W θ,p ([0, T ]; X) the classical Sobolev space of all functions f ∈ L p ([0, T ]; X) such that

T 0 T 0 f (t) -f (s) p X |t -s| 1+θp dsdt < ∞,
endowed with the norm

f W θ,p ([0,T ];X) = f p L p ([0,T ];X) + T 0 T 0 f (t) -f (s) p X |t -s| 1+θp dsdt 1 p
.

The proof of the following lemma is left to the reader.

Lemma 8.1. Let X a Banach space. For any T > 0, θ ∈]0, 1/2[, p ≥ 2 there exists c = c(θ, p, T ) such that for any f ∈ L 2 ([0, T ]; X) it holds

• 0 f (τ )dτ W θ,p ([0,T ];X) ≤ c(θ, p, T ) f L 2 ([0,T ];X) .
Proposition 8.2. For u 0 ∈ V, T > 0, n ∈ N, let u n be the solution of (6.1) in [0, T ]. For any

T > 0, θ ∈]0, 1/2[, p ≥ 2 there exists a constant c = c(T, θ, p) > 0 such that for any n ∈ N E u n 2 W θ,p ([0,T ];H) ≤ c 1 + 1 α 2 E |u 0 | 2 2 + α 2 |∇u 0 | 2 2 + 1 2 .
Proof. For any n ∈ N, we have

u n (t) = P n u 0 -ν t 0 Au n (τ )dτ - t 0 (I + α 2 A) -1 B n (u n , u n + α 2 Au n )(τ )dτ + (P n Q)W (t) = P n u 0 + J 1 (t) + J 2 (t) + J 3 (t).
We proceed as for Proposition 8.2 by estimating each term. Clearly,

E P n u 0 2 W θ,p ([0,T ];H) ≤ T 2 p |u 0 | 2 2 .
For J 1 we have, using Lemma 8.1 and Theorem 6.1 (with k = 1), that there exists c 1 > 0 such that

E J 1 (•) 2 W θ,p ([0,T ];H) ≤ c(θ, p)E T 0 |Au n (τ )| 2 2 dτ ≤ c 1 α 2 E |u 0 | 2 2 + α 2 |∇u 0 | 2 2 + T
In order to estimate J 2 , observe that by (iv) of Proposition 3.1 and Young inequality, for any ξ ∈ H we have 2 we get that for some c > 0, independent by u n , it holds

B(P n u n , P n (u n + α 2 Au n )), P n (I + α 2 A) -1 ξ (D(A) ,D(A)) ≤ c|u n | V |u n | 2 + α 2 |Au n | 2 |P n (I + α 2 A) -1 ξ| D(A) ≤ c α 2 |u n | V |u n | 2 + α 2 |Au n | 2 |ξ| 2 which implies |(I + α 2 A) -1 B n (u n , u n + α 2 Au n )| 2 ≤ c α 2 |u n | V |u n | 2 + α 2 |Au n | 2 . (8.1) Since |u n | V ≤ c|∇u n | 2 , by Young inequality (a + b) 2 ≤ 2a 2 + 2b
|(I + α 2 A) -1 B n (u n , u n + α 2 Au n )| 2 2 ≤ c α 4 |u n | 2 2 + α 2 |∇u n | 2 2 |∇u n | 2 2 + α 2 |Au n | 2 2 .
By Lemma 8.1 we deduce that there exists c > 0 such that

E J 2 (•) 2 W θ,p ([0,T ];H) ≤ cE T 0 |u n | 2 V |(I + α 2 A) -1 B n (u n , u n + α 2 Au n )| 2 2 dτ ≤ c α 4 E T 0 |u n | 2 2 + α 2 |∇u n | 2 2 |∇u n | 2 2 + α 2 |Au n | 2 2 dτ
Taking into account the bound given by Theorem 6.1 we obtain that for some c > 0 it holds

E J 2 (•) 2 W θ,p ([0,T ];H) ≤ c α 4 E (|u 0 | 2 2 + α 2 |∇u 0 | 2 2 ) 2 + T .
For the last term, observe that by the gaussianity of QW (t) that there exists c = c(p) such that

E[|(P n Q)W (t)| p 2 ] ≤ c(Tr[Q * Q]) p 2 t p 2 . Similarly, E[|(P n Q)(W (t) -W (s))| p 2 ] ≤ c(Tr[Q * Q]) p 2 |t -s| p 2 . Then, E[|J 3 (•)| 2 L p ([0,T ];R) ] ≤ cTr[Q * Q]
where c > 0 depends only on p, T . Since 2/p ≤ 1 by Jensen inequality we get

E   T 0 T 0 |(P n Q)(W (t) -W (s))| p 2 |t -s| 1+θp dsdt 2 p   ≤ T 0 T 0 E[|(P n Q)(W (t) -W (s))| p 2 ] |t -s| 1+θp dsdt 2 p ≤ Tr[Q * Q] T 0 T 0 1 |t -s| 1+p(θ-1 2 ) dsdt 2 p ≤ cTr[Q * Q] provided θ < 1/2.
Here, c > 0 depends by T, θ, p. Taking into account the estimates on P n u 0 , J 1 , J 2 , J 3 we get the result.

Compactness

Lemma 9.1 (Tightness). For u 0 ∈ V, T > 0, n ∈ N, let u n the solution of (6.1) in [0, T ]. Then, for any p > 2, ρ > 0, the laws of u n , n ∈ N are tight in

C([0, T ]; D(A -ρ )) ∩ L p ([0, T ]; V).
Moreover, the laws of Au n , n ∈ N are tight in the space L 2 ([0, T ]; H) endowed with the weak topology.

Proof. The classical interpolation inequality

u H 1+ρ ≤ u 1-ρ H 1 u ρ H 2 , ρ ∈ [0, 1] implies u p H 1+ 2 p ≤ u p-2 H 1 u 2 H 2 , p ∈ [2, ∞[.
Then, by Theorem 6.1 and Proposition 8.2 we deduce that (u n ) n is bounded in 

L p Ω; L p ([0, T ]; H 1+ 2 p ) ∩ L 2 Ω; L 2 ([0, T ]; D(A)) ∩ L 2 Ω; W θ,
W θ,p ([0, T ]; H) → C([0, T ]; D(A -ρ )), ρ > 0 L p ([0, T ]; H 1+ 2 p ) ∩ W θ,p ([0, T ]; H) → L p ([0, T ]; V)
are compact. Moreover, we have that L 2 ([0, T ]; H) endowed with the weak topology is a complete metrizable space. Then, by Theorem 6.1, we deduce that the laws of the random variables Au n are tight in L 2 ([0, T ]; H), endowed with the weak topology.

Then, the result follows by Prokhorov's theorem.

Theorem 9.2. Let u 0 ∈ V. Then, there exists a probability space ( Ω, F, P), a cylindrical Wiener processes W (t), defined on ( Ω, F, P), a stochastic process

u ∈ C([0, T ]; D(A -ρ )) ∩ L p ([0, T ]; V) ∩ L 2 ([0, T ]; D(A)), ρ > 0,
adapted to the filtration generated by W and a subsequence ( for simplicity it is not relabeled ) such that for any p < ∞ and P-a.s. the solution u n of problem (6.1) with W (t) instead of W (t) satisfies Proof. Taking into account Lemma (9.1), by Skorohod representation theorem and by a diagonal extraction argument, there exists a probability space ( Ω, F, P), a cylindrical Wiener process W (t) defined on ( Ω, F, P), a stochastic process u such that the convergence conditions in (i)-(ii) hold. For (iii), notice that there exists a random variable v such that Au n → v weakly in L 2 ([0, T ]; H) (modulo a new subsequence). The fact that v can be identify with Au follows by the closure of the operator A and by the density of D(A) in H.

(i) u n → u strongly in C([0, T ]; D(A -ρ )), ρ > 0 (ii) u n → u strongly in L p ([0, T ]; V), p ∈ [1, ∞[ (iii) 
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Existence

By Theorem 9.2 we know that there exists a subsequence (u n ) n , converging P-a.s. to a process

u ∈ C([0, T ]; D(A -ρ )) ∩ L p ([0, T ]; V) ∩ L 2 ([0, T ]; D(A)), ρ > 0, p ≥ 1.
The rest of the proof will be splitted in several lemma : in Lemma 10.1, we shall show that the process u satisfies the bounds (5.1). Then, in Lemma 10.2 we shall show that u is a weak solution of the abstract problem. Finally, in Lemma 10.3 we shall show that pathwise uniqueness holds, which will give the existence and uniqueness of a strong solution.

Lemma 10.1. Under hypothesis of Theorem 5.1, we have that (5.1) holds. Moreover, P-a.s. we have u ∈ C([0, T ]; H w ), where H w is the space H endowed with the weak topology.

Proof. Let us show the first bound of (5.1). Let us notice that by the definition of the norm in D(A ρ ) it holds u D(A -ρ ) ≤ |u| H , for all ρ > 0. By Theorem 9.2,

sup t∈[0,T ] u(t) D(A -ρ ) = lim n→∞ sup t∈[0,T ] u n (t) D(A -ρ ) ≤ lim inf n→∞ sup t∈[0,T ] |u n (t)| H .
By Fatou's lemma and Theorem 6.3 we deduce that for any k > 0 there exists c > 0 depending on k such that

E sup t∈[0,T ] |u| 2k H ≤ lim inf n→∞ E sup t∈[0,T ] |u n | 2k H ≤ c E (|u 0 | 2 2 + α 2 |∇u 0 | 2 2 ) k + T
which implies that the first bound in (5.1) holds. Let us show the second bound. Let us fix p ≥ 1. Notice that by Theorem 9.2 we have, P-a.s. that for any ξ ∈ L 2 ([0, T ], H) the limit

ξ(•)|u n (•)| p/2 V → ξ(•)|u(•)| p/2
V holds strongly in L 2 ([0, T ]; H). Then, since Au n → Au holds weakly in L 2 ([0, T ]; H) (see (iii) of Theorem 9.2),

lim n→∞ T 0 Au n (t), |u n (t)| p/2 V ξ(t) dt = T 0 Au(t), |u(t)| p/2 V ξ(t) dt.
We deduce that P-a.s. the limit

Au n (•)|u n (•)| p/2 V → Au(•)|u(•)| p/2
V holds weakly in L 2 ([0, T ]; H). By well known properties of weak limits and Fatou Lemma we get, using Theorem 6.3

E T 0 |Au(t)| 2 2 |u(t)| p V dt ≤ E lim inf n→∞ T 0 |Au n (t)| 2 2 |u n (t)| p V dt ≤ lim inf n→∞ E T 0 |Au n (t)| 2 2 |u n (t)| p V dt ≤ c E (|u 0 | 2 2 + α 2 |∇u 0 | 2 2 ) p+1 + T .
which implies the second bound of (5.1).

In order to complete the proof we need to show that u ∈ C([0, T ]; H w ). Observe that P-a.s.

we have u ∈ L ∞ ([0, T ]; H) ∩ C([0, T ]; D(A -ρ )). Then, P-a.s., u(t) ∈ H for any t ∈ [0, T ] and u ∈ C([0, T ]; H w ) (see, for instance, [27, page 263]).
Lemma 10.2. Assume that the linear operator Q satisfies Hypothesis 2.2. Let µ 0 be a probability measure on (H, B(H)) such that for some k ≥ 1 it holds

H |x| 2 2 + |∇x| 2 2 k µ 0 (dx) < ∞.
Then, there exists a weak solution of (2.1) in the sense of Definition 4.2.

Proof. Let us first show that u solve (2.1). Since u n solves (6.1), it is sufficient to show that the right-hand side of (6.1) converges to the right-hand side of (2.1). Let ξ ∈ L 2 ([0, T ]; D(A)). By Theorem 9.2, (iii) we have

lim n→∞ T 0 u n , ξ(t) dt = T 0 u, ξ(t) dt
and, by the Fubini theorem and the dominated convergence theorem,

lim n→∞ ν T 0 t 0 Au n (τ )dτ, ξ(t) dt = ν T 0 lim n→∞ t 0 Au(τ ), ξ(t) dτ dt = ν T 0 t 0 Au(τ ), ξ(t)dt dτ.
Observe that by Proposition 3.1 (ii) it holds, for some c > 0,

T 0 t 0 B(u(τ ), v(τ )), (I + α 2 A) -1 ξ(t) dτ dt ≤ c T 0 |u(τ )| 2 V dτ 1 2 T 0 |v(τ )| 2 2 dτ 1 2 T 0 |A(I + α 2 A) -1 ξ(t)| 2 H dt 1 2 ≤ c α 2 T 0 |u(τ )| 2 V dτ 1 2 T 0 |v(τ )| 2 2 dτ 1 2 T 0 |ξ(t)| 2 H dt 1 2
This implies that the trilinear form

L 2 ([0, T ]; V) × L 2 ([0, T ]; L 2 (U)) × L 2 ([0, T ]; H) → R (u, v, ξ) → T 0 t 0 (I + α 2 A) -1 B(u(τ ), v(τ )), ξ(t) dτ dt
is continuous. Since by Theorem 9.2 we have that P-a.s.

u n → u strongly in L 2 ([0, T ]; V), that u n + α 2 Au n → u + α 2 Au weakly in L 2 ([0, T ]; L 2 (U)
) and clearly P n ξ → ξ strongly in L 2 ([0, T ]; H), we deduce that P-a.s.

lim n→∞ T 0 t 0 (I + α 2 A) -1 B n (u n , u n + α 2 Au n )(τ )dτ, ξ(t) dt = lim n→∞ T 0 t 0 (I + α 2 A) -1 B(P n u n , P n (u n + α 2 Au n ))(τ ), P n ξ(t) dτ dt = T 0 t 0 (I + α 2 A) -1 B(u, u + α 2 Au)(τ ), ξ(t) dτ dt.
Finally, it is easy to see that P-a.s. it holds

lim n→∞ T 0 t 0 (P n Q)d W (τ ), ξ(t) dt = T 0 t 0 Qd W (τ ), ξ(t) dt.
Let us show that u as paths in C([0, T ]; H). Using Itô formula on |u n | 2 /2 and integrating over [0, T ] we get

1 2 T 0 |u n (t)| 2 2 dt = -ν T 0 t 0 |∇u n (s)| 2 2 ds dt - T 0 t 0 B n (u n (s), u n (s) + α 2 Au n (s)), (I + α 2 A) -1 u n (s) ds dt+ T 0 t 0 u n (s), P n QdW (s) dt.
By Theorem 9.2 and arguing as before all the terms of the previous formula converges and we get

1 2 T 0 |u(t)| 2 2 dt = -ν T 0 t 0 |∇u(s)| 2 2 ds dt - T 0 t 0 B(u(s), u(s) + α 2 Au(s)), (I + α 2 A) -1 u(s) ds dt + T 0 t 0 u(s), QdW (s) dt. 
By identification, we have, dt × P a.e.

1 2 |u(t)| 2 2 = -ν t 0 |∇u(s)| 2 2 ds - t 0 B(u(s), u(s) + α 2 Au(s)), (I + α 2 A) -1 u(s) ds + t 0 u(s), QdW (s) .
By the square integrability of u, the last term on the right-hand side is a square integrable continuous martingale. The term with the nonlinear part is integrable on [0, T ], since

B(u(s), u(s) + α 2 Au(s)), (I + α 2 A) -1 u(s) ≤ c|u(s)| V (|u(s)| 2 +α 2 |Au(s)| 2 )|A(I +α 2 A) -1 u(s)| 2 ≤ c α 2 |u(s)| V (|u(s)| 2 + α 2 |Au(s)| 2 )|u(s)| 2 ≤ c α 2 |u(s)| 2 V (|u(s)| 2 + α 2 |Au(s)| 2 )
By (5.1), the last term on the right-side belongs to L 1 ([0, T ]; R) P-almost surely. We deduce that the map

t → -ν t 0 |∇u(s)| 2 2 ds - t 0 B(u(s), u(s) + α 2 Au(s)), (I + α 2 A) -1 u(s) ds + t 0 u(s), QdW (s) 
is P-a.s. continuous. Then t → |u(t)| 2 2 is P-a.s. continuous. Since by Lemma 10.1 we know that t → u(t) is weakly continuous in H, we deduce that P-a.s. u ∈ C([0, T ]; H), for all T > 0. The proof is complete.

Uniqueness

Lemma 10.3. Under Hypothesis 2.2, for any random variable u 0 with values in H and such that

E |u 0 | 2 2 + |∇u 0 | 2 2 < ∞
there exists a unique strong solution of problem (2.1) with initial value u(0) = u 0 , in the sense of Definition 4.1.

Proof. Let µ 0 be the law of u 0 in H. Notice that the hypothesis implies that µ 0 is concentrated on V. By Lemma 10.1 and Lemma 10.2 we deduce that there exists a weak solution (u, W ) of problem (2.1) with initial distribution µ 0 and such that the bounds

E sup 0≤t≤T |u(t)| 2 2 ≤ c H |x| 2 2 + α 2 |∇x| 2 2 µ 0 (dx), E T 0 |∇u| 2 2 + α 2 |Au| 2 2 ds ≤ c H |x| 2 2 + α 2 |∇x| 2 2 µ 0 (dx) (10.1) 
hold. By the Yamada-Watanabe theorem for SPDEs (see, for instance, [START_REF] Rockner | Yamada-Watanabe theorem for stochastic evolution equations in infinite dimensions[END_REF][START_REF] Tappe | The Yamada-Watanabe theorem for mild solutions to stochastic partial differential equations[END_REF]), it is sufficient to show pathwise uniqueness of the solution. Set w = u(t, x) -v(t, x), where (u, W ), (v, W ) are two solutions with same initial value x ∈ V. Then, w satisfies the equation

d dt w + νAw + (I + α 2 A) -1 B(u, w + α 2 Aw) + B(w, v + α 2 Av) = 0.
We deduce 

1 2 d dt (|w| 2 2 + α 2 |∇w| 2 2 ) = -ν(|∇w| 2 2 + α 2 |Aw| 2 2 ) -B(u, w + α 2 Aw), w since 
≤ c T 0 |w| 2 V |Aw| 2 2 + (|v| 2 2 + α 4 |Av| 2 2 ) dt ≤ c sup t∈[0,T ] (|u| 2 V + |v| 2 V ) T 0 (|Au| 2 2 + |Av| 2 2 )dt + c T 0 |v| 2 2 + α 4 |Av| 2 2 ) dt (10.2) 
Here c > 0 is some real constant which depends only on T and U and can change line by line. By Lemma (10.1) we have that if u, v are solutions of (2.1) such that u(0) = v(0) P-a.s. and with initial distribution µ 0 , then there exists c > 0 such that

E sup t∈[0,T ] (|u| 2 V + |v| 2 V ) + T 0 (|Au| 2 2 + |Av| 2 2 )dt ≤ c H (|x| 2 2 + α 2 |∇x| 2 2 )µ 0 (dx)
This implies that the last term in (10.2) is P-a.s. finite and then w, B(w, v + α 2 Av) is integrable and vanishes P-a.s. By Proposition 3.1 and Young inequality B(u, w + α 2 Aw), w ≤ B(u, w), w + α 2 B(u, Aw), w

≤ c|u| V |w| 2 V + cα 2 |Au| 2 |Aw| 2 |w| V ≤ ν 2 |w| 2 V + να 2 2 |Aw| 2 2 + c |u| 2 V + α 2 |Au| 2 2 |w| 2 V Then, d dt (|w| 2 2 + α 2 |∇w| 2 2 ) + ν(|∇w| 2 2 + α 2 |Aw| 2 2 ) ≤ c |u| 2 V + α 2 |Au| 2 2 |w| 2 V .
Since the quantity 11 Invariant measure

T 0 |u(s)| 2 V + α 2 |Au(s)|

A priori estimates

The aim of this section is to understand how the solutions u m of equation ( 6.1) depend on the initial data. Then, we shall obtain suitable estimates on the derivative of the solution with respect to the starting point x. To do this, the Gateaux derivative u m with respect to the initial datum x alongside the direction h is denoted by η h m (t, x) = Du m (t, x) • h. It is well known that η h m (t, x) is solution of the ordinary differential equation with random coefficients

       d dt η h m (t, x) + νAη h m (t, x) + (I + α 2 A) -1 B m (η h m (t, x), u m (t, x) + α 2 Au m (t, x)) +(I + α 2 A) -1 B m (u m (t, x), η h m (t, x) + α 2 Aη h m (t, x)) = 0 η h m (0, x) = P m h (11.1)
Proposition 11.1. Let u m (t), t ≥ 0 be the solution of (6.1) starting by x ∈ V. Then, there exists c > 0 depending on Q, U such that for any t ≥ 0, ε > 0

E exp ε 1 2 |u m (t)| 2 2 + α 2 2 |∇u m (t)| 2 2 + ν t 0 |∇u m (s)| 2 2 + α 2 |Au m (s)| 2 2 ds ≤ exp ε 2 |x| 2 2 + α 2 |∇x| 2 2 (1 + εTr[Q * Q]t) × exp ε 2 Tr[Q * (I + α 2 A)Q] t + ε 2 Tr[Q * (I + α 2 A)Q]t 2
Proof. By Itô formula we have

1 2 |u m (t)| 2 2 + α 2 2 |∇u m (t)| 2 2 + ν t 0 (|∇u m (s)| 2 2 + α 2 |Au m (s)| 2 2 )ds = 1 2 |P m x| 2 2 + α 2 2 |∇P m x| 2 2 + t 0 u m , (Id + α 2 A)QdW s + 1 2 Tr[(P m Q) * (I + α 2 A)P m Q]t and for ε > 0 exp ε 1 2 |u m (t)| 2 2 + α 2 2 |∇u m (t)| 2 2 + ν t 0 |∇u m (s)| 2 2 + α 2 |Au m (s)| 2 2 ds = exp ε 2 |P m x| 2 2 + α 2 |∇P m x| 2 2 + ε t 0 u m , (Id + α 2 A)QdW s + ε 2 Tr[(P m Q) * (I + α 2 A)P m Q]t ≤ exp ε 2 |x| 2 2 + α 2 |∇x| 2 2 + ε t 0 u m (s), (Id + α 2 A)QdW s + ε 2 Tr[Q * (I + α 2 A)Q]t
By taking expectation and taking into account (2.2) we obtain

E exp ε 1 2 |u m (t)| 2 2 + α 2 2 |∇u m (t)| 2 2 + ν t 0 |∇u m (s)| 2 2 + α 2 |Au m (s)| 2 2 ds ≤ exp ε 2 |x| 2 2 + α 2 |∇x| 2 2 + ε 2 Tr[Q * (I + α 2 A)Q]t × E exp ε t 0 u m (s), (I + α 2 A)QdW s = exp ε 2 |x| 2 2 + α 2 |∇x| 2 2 + ε 2 Tr[Q * (I + α 2 A)Q]t × exp ε 2 2 t 0 E[|Q * (I + α 2 A)u m (s)| 2 2 ]ds ≤ exp ε 2 |x| 2 2 + α 2 |∇x| 2 2 + ε 2 Tr[Q * (I + α 2 A)Q]t × exp ε 2 2 Tr[Q * (I + α 2 A)Q] t 0 E |u m (s)| 2 2 + α 2 |∇u m (s)| 2 2 ds
By using Corollary 6.2 we deduce that the last term is bounded by

exp ε 2 |x| 2 2 + α 2 |∇x| 2 2 + ε 2 Tr[Q * (I + α 2 A)Q]t × exp ε 2 2 Tr[Q * (I + α 2 A)Q] t 0 (|x| 2 2 + α 2 |∇x| 2 2 + Tr[Q * (I + α 2 A)Q]s)ds = exp ε 2 |x| 2 2 + α 2 |∇x| 2 2 + ε 2 Tr[Q * (I + α 2 A)Q]t × exp ε 2 2 Tr[Q * (I + α 2 A)Q] (|x| 2 2 + α 2 |∇x| 2 2 )t + Tr[Q * (I + α 2 A)Q] t 2 2 
which implies the desired result. 11.2 Proof of Theorem 5.2

Remark 11.3. Following a classic strategy (see [START_REF] Prato | Stochastic equations in infinite dimensions[END_REF]), we shall show a Strong Feller type property be using the Bismut-Elworthy formula. Indeed, to apply it we need ker(Q) = {0} and that

T 0 |Q -1 η h m (t, x)| 2 2 dt is defined. Since T 0 |A 3/2 η h m (t, x)| 2 2 dt is bounded, in order to have T 0 |Q -1 η h m (t, x)| 2 2 dt defined it is sufficient to have D(A 3/2 ) ⊂ D(Q -1 ). If we set Q = A -1 2 (1+ε) this condition is fulfilled if 1 2 (1 + ε) ≤ 3/2, that is ε ≤ 2. Moreover, Hypothesis 2.2 reads Tr[A -ε ] < ∞. That is, ε > d/2, where d is the dimension of U. Then, if dim U = 2 or dim U = 3, a covariance operator Q of the form Q = A -1 2 (1+ε) satisfies the conditions 2.2 and D(A 3/2 ) ⊂ D(Q -1 ) whenever ε ∈]d/2, 2].
Before giving the proof of Theorem 5.2, we need two lemma. 

V; R), t > 0, x 0 ∈ V, r > 0 we have lim |h| D(A) →0 sup |x-x0|V<r |P t ϕ(x + h) -P t ϕ(x)| = 0.
Proof. Let us begin with a function φ ∈ C b (V, R). Then, we shall extend the results to Borel and bounded functions. For any m ∈ N * the Bismuth-Elworthy formula yields

DP m t φ(x) • h = 1 t E φ(u m (t, x)) t 0 Q -1 η h m (s, x), dW s K
Using Proposition 11.2 the last term is bounded by

|DP m t φ(x) • h| ≤ 1 t φ ∞ E t 0 |Q -1 η h m (s, x)| 2 K ds ≤ 1 t φ ∞ C Q E t 0 |A 3/2 η h m (s, x)| 2 ds 1 2 ≤ 1 αt φ ∞ C Q Γ(t, |x| 2 2 + α 2 |∇x| 2 2 ) |∇h| 2 2 + α 2 |Ah| 2 2 1 2 .
where Γ : R 2 → R is a suitable continuous function. Here,

Q : K → H and C Q = Q -1 A -3 2 L(H,K) . Then, since P m t φ(x) → P t φ(x) as m → ∞, |P t φ(x + h) -P t φ(x)| = lim m→∞ |P m t φ(x + h) -P m t φ(x)| ≤ lim m→∞ 1 0 DP m t φ(x + θh) • hdθ ≤ 1 αt φ ∞ C Q sup θ∈[0,1] Γ t, |x + θh| 2 2 + α 2 |∇(x + θh)| 2 2 |∇h| 2 2 + α 2 |Ah| 2 2 1 2
By approximating a Borel and bounded function by continous functions, we deduce that the previous estimate holds also for φ Borel and bounded. We deduce that for a fixed t > 0,

|P t φ(x + h) -P t φ(x)| → 0 uniformly in any bounded set of V, as h → 0 in D(A).
The next result concern the irriducibility of the semigroup P t .

Lemma 11.5. Under the hypothesis of Theorem 5.2 for any δ > 0, x ∈ V there exists T > 0 such that P(|u(T, x)| 2 > δ) < 1.

Proof. We set v m (t) = u m (t, x) -P m W A (t), where W A is the solution of the linear stochastic equation dZ = -AZdt + QdW (t)

Z(0) = x. Then, v m solves dv m (t) = -Av m (t) + (I + α 2 A) -1 B m (v m + P m W A , v m + P m W A + α 2 A(v m + P m W A )) dt, v m (0) = 0.
By multilplying by (I + α 2 A)v m both sides and integrating over U we get 

≤ c|W A | 3/2 V |AW A | 1/2 2 |v m | 2 + cα 2 |AW A | 2 2 |v m | V ≤ c|AW A | 2 2 |v m | 2 + α 2 |∇v m | 2 .
In the last inequality we used the fact that |z| V ≤ c z H 2 ≤ c|Az| 2 for some c > 0, independent by z ∈ D(A). Using the inequality a ≤ 2 + 2a 2 we get for some c > 0 Proof of Theorem 5.2. By Corollary 6.2 and Krylov-Bogolioubov theorem we deduce that there exists an invariant probability measure µ for the transition semigroup P t , t ≥ 0. Claim : µ(D(A)) = 1 and (5.2) holds.

B m (P m W A , P m W A + α 2 AP m W A ), v m ≤ c|AW A | 2 2 1 +
We consider, for M > 0 and ε such that -ν + 2ελ .

By letting T → ∞ and we get that for any M > 0

V ϕ ε,M (x)µ(dx) ≤ K ε ε(ν -2ελ -1 1 Tr[Q * (I + α 2 A)Q])
.

Then by Fatou lemma we obtain (5.2) which implies µ(D(A)) = 1. Claim : uniqueness Let us assume that µ is an invariante measure and x 0 ∈ D(A) is in the support of µ. We shall show that for any δ > 0, µ(B V (0, δ)) > 0. Let us fix δ > 0. Since the semigroup is irreductible in V, there exists t > 0, r > 0 such that P t χ BV(0,δ) (x 0 ) ≥ r. By the strong Feller property, x → P t χ BV(0,δ) (x) is continuous in D(A) and P t χ B(0,δ) (x) ≥ r/2 is some ball B D(A) (x 0 , ε), where ε > 0. This implies µ(B V (0, δ )) = Since x = 0 is in the support of any invariant measure, we deduce that the invariant measure is unique.

  The original Navier-Stokes equation reads ∂v ∂t + v • ∇v + ∇p = ν∆v + f for a pressure p, a forcing f , a constant kinematic viscosity ν and a fluid v of constant density. The α-Navier-Stokes model for an incompressible fluid v is given by

T00

  Au n (s), ξ(s) ds → T Au(s), ξ(s) ds for any ξ ∈ L 2 ([0, T ]; H)

  w, B(w, v + α 2 Av) = 0. Notice that this last equality needs w B(w, v +α 2 Av) ∈ L 1 ([0, T ]× U). By Proposition 3.1 and classic inequalities, we get T 0 w, B(w, v + α 2 Av) dt ≤ c T 0 |w| V |Aw| 2 (|v| 2 + α 2 |Av| 2 )dt

Proposition 11 . 2 .

 112 There exists c > 0 and a continuous function Γ : R 2 → R such that for any x ∈ V, h ∈ D(A), m ∈ N, t > 0 it holds The result follows by Proposition 11.1.

Lemma 11 . 4 .

 114 Under the hypothesis of Theorem 5.2 for any φ ∈ B b (

2 + α 2 2 + α 2 |Av m | 2 2 + 2 + α 2 |Av m | 2 2 + 3 )

 2222223 |∇v m | 2 2 ) = -ν |∇v m (t)| 2 B m (v m + P m W A , v m + P m W A + α 2 A(v m + P m W A )), v m = -ν |∇v m (t)| 2 B m (P m W A , v m + α 2 Av m ), v m + B m (P m W A , P m W A + α 2 AP m W A ), v m By Proposition 3.1 we have B m (P m W A , v m + α 2 Av m ), v m ≤ c|AW A | 2 |v m | 2 |v m | V + cα 2 |AW A | 2 |Av m | 2 |v m | V ≤ c|AW A | 2 |v m | 2 |v m | V + cα 2 |AW A | 2 |Av m | 2 |v m | V .By the Poincaré inequality |vm | V ≤ c|∇v m | 2 the last term is bounded by ≤ c|AW A | 2 |v m | 2 |∇v m | 2 + cα 2 |AW A | 2 |Av m | 2 |∇v m | 2 .Using Young inequality, we can bound this last quantity to obtainB m (P m W A , v m + α 2 Av m ), v m ≤ c|AW A | 2 2 |v m | 2 2 + α 2 |∇v m |Still by Proposition 3.1 we haveB m (P m W A , P m W A + α 2 AP m W A ), v m ≤ B m (P m W A , P m W A ), v m + α 2 B m (P m W A , AP m W A ), v m

| 2 2 2 2 dτ |∇v m | 2 2 + α 2 |Av m | 2 2 2 2 2 ds - 1 .

 2222221 Then, by Gronwall lemma we get, for some c > 0 independent by m and v m|v m (t)| 2 2 + α 2 |∇v m | dτ |AW A (s)| 2 2 ds = c e c t 0 |AW A (s)|Then, we deduceP({|u m (T, x)| 2 > δ}) ≤ P({|v m (T, x)| 2 2 + |W A (T )| 2 2 > δ 2 /2}) (11.5) ≤ P({c (e c T 0 |AW A (s)| 2 2 ds -1) + |W A (T )| 2 2 > δ 2 /2})(11.6)where c, c > 0 are real constants, independent by m. By the gaussianity of W A we deduce P({|u m (T, x)| 2 > δ}) < 1 -ε, where ε > 0 is independent by m.

-1 1 2 2 +α 2 |∇x| 2 2 ) (|∇x| 2 2 + α 2 |Ax| 2 2 ) M + e ε(|x| 2 2 +α 2 |∇x| 2 2 ) (|∇x| 2 2 + α 2 |Ax| 2 2 ) 1 T T 0 P 2 2 +α 2 |∇x0| 2 2 )

 1222222221022 Tr[Q * (I + α 2 A)Q] < 0 the function ϕ ε,M (y) = if y ∈ D(A)M elsewhere which is continuous and bounded in V. Let x 0 ∈ V where the ergodic theorem applies for ϕ ε,M :V ϕ ε,M (x)µ(dx) = lim T →∞ t ϕ ε,M (x 0 )dt.Since ϕ ε,M is bounded and continuous on V, P m t ϕ ε,M (x 0 ) → P t ϕ ε,M (x 0 ) as m → ∞. Then by Proposition 7+ K ε T ε(ν -2ελ -1 1 Tr[Q * (I + α 2 A)Q])

VP

  t χ BV(0,δ) (x)µ(dx) ≥ B D(A) (x0,ε) P t χ BV(0,δ) (x)µ(dx) ≥ r 2 µ(B D(A) (x 0 , ε)) > 0.

  space of infinitely differentiable functions with free divergence and with compact support in U. Then the spaces H and V are the closure of V in (L 2 (U)) d and in (H 1 (U)) d respectively. We denote by | • | 2 , | • | V the norms in H, V and by •, • the standard scalar product in H. Remark 2.1. Let n denote the outward normal to ∂U, then, following[START_REF] Temam | Navier-Stokes equations Theory and numerical analysis[END_REF], we can characterize the space H in the homogeneous Dirichlet case as

  The operator A is a positive self adjoint operator. Its inverse, A -1 : H → H, is a compact self adjoint operator, thus H admits an orthonormal basis {e k } k∈N * formed by the eigenfunctions of A, i.e. Ae k

	1 0 (U)) d : div u = 0 in U}.
	We denote by P : (L 2 (U)) d → H the usual orthogonal Leray projector and by A the Stokes
	operator
	A := -P∆ : D(A) → H,
	with domain D(A) = (H 2 (U)) d ∩ V.

  |v m | 2 2 + α 2 |∇v m | 2 2 . ≤ c|AW A | 2 2 1 + |v m | 2 2 + α 2 |∇v m

						(11.4)
	Taking into account (11.3) and (11.4) we obtain	
	d dt	(|v m (t)| 2 2 + α 2 |∇v m | 2 2 ) +	1 2	|∇v m | 2 2 +	α 2 2	|Av m | 2 2