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ABSTRACT
The Internet of Things (IoT) represents one of the fastest emerging
trends in the area of information and communication technology.
Themain challenge in the IoT is the timely gathering of data streams
from potentially millions of sensors. In particular, those sensors
are widely distributed, constantly in transit, highly heterogeneous,
and unreliable. To gather data in such a dynamic environment effi-
ciently, two techniques have emerged over the last decade: adaptive
sampling and adaptive filtering. These techniques dynamically re-
configure rates and filter thresholds to trade-off data quality against
resource utilization.

In this paper, we survey representative, state-of-the-art algo-
rithms to address scalability challenges in real-time and distributed
sensor systems. To this end, we cover publications from top peer-
reviewed venues for a period larger than 12 years. For each algo-
rithm, we point out advantages, disadvantages, assumptions, and
limitations. Furthermore, we outline current research challenges, fu-
ture research directions, and aim to support readers in their decision
process when designing extremely distributed sensor systems.
ACMReference Format:
Dimitrios Giouroukis, Alexander Dadiani, Jonas Traub, Steffen Zeuch and
Volker Markl. 2020. A Survey of Adaptive Sampling and Filtering Algorithms
for the Internet of Things. In .ACM, New York, NY, USA, 13 pages.

1 INTRODUCTION
The Internet of Things (IoT) will create environments with millions
of heterogeneous sensor nodes that provide data in real time [40, 48].
Timely acquisition of data from such a highly distributed sensor de-
ployment poses complex challenges for data management systems.
The main research challenges of sensors networks are: (i) hetero-
geneity of resources, (ii) widely distributed communication networks,
and (iii) nodes with diverse sets of capabilities [21, 39, 55].

In this paper, we examine how current research tackles those
challenges in highly distributed sensor environments. To this end,
we focus on two classes of algorithms that enable data management
in very large IoT environments. In particular, we present adaptive
sampling and filtering algorithms that run on the data sources, i.e.,
on sensor nodes. With these algorithms, we are able to address
many important scalability challenges when one gathers streams of
sensor data from the IoT. Adaptive sampling enables the system to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or
a fee. Request permissions from permissions@acm.org.
DEBS ’20, July 13–17, Montreal, CA
© 2020 Association for Computing Machinery.

Figure 1: Adaptive Sampling example, shows fewer reads,
fewermessages, and better data quality.

decide when, where, and how often to read (i.e., sample) a value from
a sensor. In contrast, adaptive filtering allows the system to decide
which values to transmit to an event-processing engine for further
analysis. Adaptive sampling and filtering enable data management
systems to scale up the number of sensors as well as reduce the vol-
ume of network traffic without harming the precision of the result.

The literature on adaptive sampling and filtering is fragmented
across many different conferences, journals, and research commu-
nities. For this survey, we reviewed 91 publications from 64 distinct
journals and conferences. We first acquired publications based on
keyword searches and then extended our review to related work
for each publication. We selected 19 techniques, which we discuss
in detail in this survey. These techniques are representative for
different sets of algorithms that we have identified in our broad
literature review. To highlight the unique characteristics of adaptive
sampling and filtering, we provide a summary of the core ideas in
the following subsections.

1.1 Adaptive Sampling
Adaptive sampling changes the sampling rates on a sensor node
such that (i) sensors observing an interesting event provide detailed
data (high sampling rate) and (ii) sensors that do not observe in-
teresting events reduce sampling rates to not overload the receiver.
Ideally, at any time, a subset of sensors dynamically switches to a
higher sampling rate while the majority of sensors provides data at
lower rates. Thus, a highly adaptive sampling approach will enable
future IoT deployments with millions of sensor nodes.

An example for adaptive sampling is shown in Figure 1. The
red signal on the left represents a physical phenomenon, such as
air pressure, temperature, or an acceleration. A sensor observes
the phenomenon while sampling (i.e., read the current value) at
a fixed or adaptive sampling rate. The sensor node transmits the
observed values together with sensor readings to a central analysis
engine. The analysis engine reconstructs the physical phenomenon.
Essentially, the goal of adaptation is to compress the data stream
based on interpolation instead of transmission of values, ideally
without loss of information.
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Figure 2: Adaptive Filtering example, shows differences in
context between two similar events.

In Figure 1, blue diamonds mark sensor readings performed with
a fixed rate. In contrast, yellow triangles mark sensor readings per-
formed with an adaptive rate. In this example, adaptive sampling
has three advantages compared to fixed rate sampling. First, it per-
forms fewer sensor reads, which leads to energy savings on the
sensor nodes. Second, it transmits fewer values to the central anal-
ysis engine, which saves network traffic. Third, the reconstructed
phenomenon of the adaptive technique is closer to the original.

1.2 Adaptive Filtering
Adaptive filtering techniques focus on finding a threshold that helps
decide whether a system should transmit a sensor value. In par-
ticular, if a sensor value is similar to previous values or evolves
predictably, a node can avoid data transmission and save network
traffic. In contrast, if a value changes unexpectedly and does not
follow a prediction, a node needs to transmit an update to maintain
the precision of the reconstructed signal on the receiver side. Since
the behavior of a signal may change frequently, static a-priori filter-
ing would lead to sub-optimal decisions. Thus, filter thresholds and
rules for value filtering must adapt over time on the observed values.

Figure 2 depicts an example of adaptive filtering. This example
compares two different signals (left and right). Both signals include
the exact same values for the interval marked in red. However,
on the left hand side, the interval marked with red constitutes an
irregular situation for a price stream. In contrast, the interval on
the right hand side marked in red constitutes a regular signal, in
a stream of human heart pulses. A filtering technique with fixed
thresholds cannot distinguish between the two cases and may un-
derestimate the importance of a change. By adapting the threshold,
a filtering technique reduces network traffic and maintains data
quality by leveraging context from the data.

1.3 Paper Outline
In the remainder of this paper, we present how adaptive sampling
and filtering techniques enable highly distributed sensor deploy-
ment. First, § 2 introduces the methodology for selecting papers,
defines terms that are used throughout the paper, and discusses se-
lection criteria and evaluation metrics. The section concludes with
an introduction to our taxonomy of algorithms in detail. After that,
we present our selected adaptive sampling techniques in § 3 and
adaptive filtering techniques in § 4. We further examine algorithms
that combine adaptive sampling or adaptive filtering with other
techniques in § 5. Finally, we conclude in § 6.

2 METHODOLOGY
In this section we present our research methodology. We provide
a description of the surveyed literature in § 2.1. Next, we introduce

the common terminology of the literature in § 2.2. Then, we list the
selection criteria for the algorithms in § 2.3 and conclude with a
discussion on the evaluation metrics in § 2.4.

2.1 Literature Review
We surveyed publications that contain keywords related to sensor
networks, sampling, filtering, adaptive monitoring, energy expendi-
ture in sensor networks, clustering, data acquisition, and in-network
processing for sensor networks. After the initial results, we studied
their citations and related work and kept publications that relate
to the topics of adaptive sampling and adaptive filtering and are of
algorithmic nature. We excluded any publications that are unrelated
to our core topics and do not specify an algorithm.

In order to analyze and compare the selected algorithms, we sur-
veyed 91 different papers. The papers originate from proceedings
of 23 unique academic conferences, 41 unique academic journals,
and one book. Our survey includes 53 papers from journals, 35
papers from conferences, and one book entry. We also include two
tech reports in our survey. The topics of the surveyed papers range
among clustering algorithms, time synchronization, duty cycling,
topology control, in-network data aggregation, data compression,
and routing algorithms. Our goal is to put algorithms from different
domains and communities together under one survey and help
readers put the algorithms into perspective.

For every paper, we extracted a specific set of properties, i.e.,
the algorithm implementation details, descriptions of strengths and
limitations, andmessage and network overhead estimations. We sum-
marize our findings in Table 1 at the end of this survey.

2.2 Terminology
The literature related to sampling and filtering from sensors defines
many different terms such as data collection [28, 50], data sam-
pling [25, 46], data gathering [29, 31, 51], and data sensing [34, 37].
Some publications use these terms as synonymswhile other publica-
tions use different terms to differentiate concepts. In the following,
we introduce definitions of terms used throughout the paper:

Sensor Node: A sensor node is a device that provides a process-
ing unit, a network interface, and at least one sensor [1, 24]. The
sensor captures values from at least one continuous signal.

Sensor: A sensor is a device that creates information from en-
vironmental events. It converts a physical phenomenon to a stream
of values and transmits them to other devices.

Sampling Rate: A sampling rate, or the sampling frequency, is
the number of samples per time unit taken from a continuous signal
to create a discrete signal.

SamplingPeriod: The sampling period is the time between two
consecutive samples. For example, if the sampling rate is 10Hz (10
values per second), then the sampling period is 0.1 sec.

Sensing and Sampling: The definitions of sampling and sens-
ing are inconsistent in the literature. Zhao et al. [57] use sampling
in the context of a sink assigning sampling tasks to sensor nodes,
which consists of a time window and a sampling period. Trihinas et
al. [47] do not differentiate between sampling and sensing. Aquino
et al. [4], define sensing as the process of measuring a physical
phenomenon with sensor units and sampling as software that takes
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samples from the sensor unit data stream. Deshpande et al. [15] ar-
gue that a sensor only provides samples of an observed, continuous
phenomenon. In this paper, we do not distinguish between sampling
and sensing. We use the definition of Trihinas et al. [47], i.e., one
samples a sensor when she acquires a value from that sensor.

Filtering: It is the process of suppressing values from sensor
samples that do not exceed a certain threshold.

Adaptivity: For sampling, adaptive refers to the change of the
frequency of gathering samples from sensors. For filtering, being
adaptive refers to changing the filtering threshold. In both cases,
adaptivity allows an algorithm to react to changes.

2.3 Selection Criteria
One common goal of the surveyed algorithms is optimal resource us-
age. Energy, memory, network overhead, or computational power
are examples of resources commonly found in the bibliography.
Another common goal of the examined algorithms is optimal sen-
sor node lifetime through energy expenditure reduction. Sampling
the sensor nodes and disseminating the observed values are the
main culprits of energy expenditure in sensor networks. A com-
mon assumption in sensor research is that sensor nodes are heavily
constricted in terms of resources. Given these common goals and
assumptions, we select the algorithms for our taxonomy based on
the following criteria:

Optimization Focus: The algorithms that we examine are fo-
cusing on resource expenditure optimization on sensor nodes (e.g.,
energy usage or network consumption).

Sensor Centered: The algorithms that we examine propose so-
lutions applicable to sensor nodes. Thus, algorithm benefits do not
exploit other levels (e.g., task offloading on a cloud server) and
always start from the level of sensor nodes.

ExplicitAssumptions: The examined algorithms propose solu-
tions that are tested on various settings. The selected papers explain
in detail their assumptions and their implementation.

Clear Evaluation Scheme: The examined papers present their
findings in a separate evaluation section in their text. A clear eval-
uation section makes the paper easy to follow and gives a concise
explanation of the improvement.

2.4 EvaluationMetrics
To provide a better overview of the selected algorithms, we sum-
marize our findings in Table 1. We use a common set of metrics for
the discussion of all algorithms:

Assumptions: The selected algorithms assume specific network
characteristics that are tailored to the observed phenomenon. We
classify these characteristics as the basic assumptions of an algo-
rithm, since the assumptions are necessary for the correct execution
of the algorithms.

Advantages: We present the advantages of selected algorithms,
as defined in their respective papers. We also include unique algo-
rithm traits.

Limitations: Limitations refer to design caveats, e.g., an algo-
rithm is unsuitable for large-scale deployment or is unsuitable for
a specific task.

Message Overhead: We include message overhead as a prop-
erty in our study since it varies between network types. Overhead,

Sensor Node Algorithms

Hybrid Algorithms

Chatterjea et al. [11]
AdAM [47]
FAST [20]

Adaptive Filtering

Adaptive
Thresholds

Meng et al. [35]
Solis et al. [44]
Conch [42]
CME [54]
SIP [23]

Model-Based
Filtering

Jiang et al. [26]
ASAP [22]
BBQ [15]
KEN [14]

Adaptive Sampling

Adaptive
Compression

STCDG [13]
EDCA [12]
CDG [31]

Adaptive
Rates

Backcasting [53]
Jain et al. [25]
USAC [37]
EASA [45]

Figure 3: Taxonomy of the Selected Algorithms

e.g., control messages, may lead to message delays. We define dif-
ferent classes of message overhead, specifically Low, Medium, and
High. In the Low class, sensor nodes work autonomously, i.e., the
sinks do not send control messages. In the Medium class, sensor
nodes operate autonomously with minimal sink communication.
In the High class, there is frequent exchange of control messages.

2.5 Taxonomy
Figure 3 depicts our taxonomy in its entirety. The first major class
of algorithms isAdaptive Sampling. TheAdaptive Sampling category
is divided further into two sub-classes, Adaptive Rates and Adaptive
Compression. § 3 covers the Adaptive Sampling class and contains
algorithms that manipulate the sampling rates of sensors. The sec-
ond major class, Adaptive Filtering, consists of two sub-classes, i.e.,
Adaptive Thresholds and Model-Based filtering. § 4 covers the Adap-
tive Filtering class. The section contains algorithms that focus on
suppressing sampled data by utilizing spatial or temporal thresholds
over sampled values. The final class, Hybrid Algorithms, contains
techniques that combine either adaptive sampling or filtering with
another class. § 5 covers the Hybrid Algorithms class. In our listing,
we address each algorithm by its assigned name from the relevant
paper. We reference the authors in cases where the algorithms are
not explicitly named.

3 ADAPTIVE SAMPLING
The category of Sampling algorithms incorporates algorithms that
focus on the manipulation of the sampling rate of sensor nodes.

In Figure 1, a fixed rate technique and an adaptive technique
both sample the same stream while sending results to a visualiza-
tion dashboard. The example highlights the benefits of adaptive
sampling, i.e., fewer sensor reads, fewer transmissions, and higher
precision of the reconstructed phenomenon in the dashboard. The
surveyed algorithms within the Sampling category aim for the same
benefits but utilize different approaches. Therefore we further split
the Sampling category in two sub-categories: adaptive rates and
compressive sampling. Both sub-categories target the sampling rates
of sensor nodes in order to reduce resource consumption. However,
adaptive sampling algorithms react to changes in the behavior of
an observed phenomenon through manipulation of the sensing rate.
In contrast, compressive sampling utilizes techniques that sample
signals below a certain rate [10] and later reconstruct them with
high accuracy. An exemplary sampling rate is the Nyquist rate,
well known in the field of signal processing for being the minimum
acceptable sampling rate for artifact-free results.
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3.1 Adaptive Rates
Algorithms in the adaptive rates subcategory deal with the dynamic
adjustment of the sampling rate, based on the current metric evo-
lution, in order to reduce energy consumption and back-pressure
when there are stable phases in a data stream [47]. For the remain-
der of the subsection, we will go through the selected algorithms
that focus on the dynamic adjustment of the sampling rate.

3.1.1 Backcasting. The key idea of Backcasting [53] is that a moni-
tored environment exhibits correlations in the domains of time and
space. This property may be exploited in order to reduce the num-
ber of required sensor nodes. Essentially, a subset of the sensors
transmits values to a fusion center, where it aggregates information.

Assumptions:Willet et al. [53] assume that the sensor network
is deployed in a uniformly distributed fashion. Initially, a subset of
the sensor nodes is chosen by the sink to provide an initial estimate
of the sensed phenomenon with a Recursive Dyadic Partition (RDP).
An RDP is a tree where leaves are cells to a dyadic partition of the
domain [43]. In the case of Backcasting, the domain is the set of
sensor nodes. Subsets of nodes form multiple clusters of nodes,
with a cluster head assigned to every cluster. Cluster heads route
the data from the sensor nodes to the sink and vice versa. The sink
receives the sensed data and activates additional nodes to improve
the quality of the sampling by reducing the Mean Squared Error.

Advantages and Limitations: The increase of the number of
nodes leads to additional message overhead since control messages
are routed through the network. The authors evaluate their ap-
proach and conclude that a Wireless Sensor Network (WSN) with
10K sensors and enough energy to operate continuously for a year,
would run for 10 years with Backcasting. The authors point out that
the network lifetime can be improved if mechanisms for cycling
the position of cluster head were present. Although Backcasting
does not manipulate the sampling rates of individual sensor nodes,
it adaptively changes the sensing tasks of nodes based on the dy-
namics of the observed phenomenon.

3.1.2 Algorithm of Jain et al. The main contribution of the algo-
rithm of Jain et al. [25] is changing the sampling rate of individual
sensor nodes in a stream sensor network based on the importance of
the observed event. An important event may be a camera observing
non-standard driving behavior of a car, e.g., driving in an erratic
course or a temperature spike in a data center.

Assumptions: At the sensor node level, Kalman filters predict
sensed values. The algorithm compares the predicted values with
the actual sensed values. The values are stored locally, in a sliding
window context. An estimation error is computed over the sliding
window. The estimation error indicates the changing dynamics of an
observed phenomenon. After each sample, a sensor node adjusts its
sampling rate. If the desired sampling rate lies in the range predicted
by the Kalman filter, the sensor node can change its sampling rate
autonomously. Otherwise, the sensor node has to request a new sam-
pling rate from the sink. The sink keeps ametric of available commu-
nication resources, which is updated after a request to change a sam-
pling rate is accepted. The requests are then stored in a queue. The
approval of a sampling rate request is a linear optimization problem.

Advantages and Limitations: The additional communication
with the sink induces a high message overhead. Jain et al. [25] eval-
uate their approach on synthetic spatiotemporal data. The major
metrics are the mean fractional estimation error 𝜂, the proportion
of messages that the source and the sink exchange, and the number
of values sensed by the source nodes m. The adaptive sampling
technique outperforms the alternative uniform sampling algorithm
in the majority of the tests. Their tests included the use of differ-
ent numbers of sensor nodes as well as sliding window sizes. The
authors indicate that the algorithm does not apply to multi-hop
sensor networks where sensor nodes are required to have direct
connections to a sink. Furthermore, both the sliding window and
the sampling rate interval parameters are manually tuned. The
authors state that the message overhead is high. The main goal of
the algorithm is to optimize bandwidth usage in the network. This
makes the algorithm less suitable for WSNs as the communication
overhead consumes a major amount of energy [38].

3.1.3 Utility-based Sensing And Communication protocol (USAC).
The algorithm of Padhy et al. [37] is an adaptive sampling scheme
for WSNs. It is designed for a sensor network that monitors glaciers.
USAC uses a linear regression model on each sensor node. The node
timely captures phase shifts of observed phenomena.

Assumptions: The model predicts values locally, at the sensor
node. The values are checked against the actually sensed readings.
If a predicted value lies in the user-defined confidence interval
then the sensor node reduces its sampling rate by a multiplicative
factor 𝛼 until the sampling rate reaches 𝑓𝑚𝑖𝑛 . The 𝑓𝑚𝑖𝑛 parameter
is user-defined. If the value is not within the interval bounds, then
the sensor node raises its sampling rate to 𝑓𝑚𝑎𝑥 to capture changes
in the dynamicity of the observed phenomenon. No additional com-
munication happens with the sink.

AdvantagesandLimitations: Padhy et al. [37] test USAC against
the older protocol of the glacier monitoring applicationGLACSWEB.
In the GLACSWEB protocol, sensor nodes send their data directly
to a sink. GLACSWEB is energy inefficient as the power required to
transmit data from one node to another is proportional to the square
of the distance between the nodes. Additionally, GLACSWEB has
a static sampling rate that induces unnecessary sampling.

Testing is conducted in a simulated environment with historical
data from the application. The authors experiment with different
network topologies, number of sensor nodes in a network, and the
number of changes in the dynamicity of the data. The experiments
show that USAC outperforms its baseline GLACSWEB, by 470%,
when distributing sensor nodes randomly around a central base
station. The main metric is the value of data gained over the amount
of energy consumed, for every test case.

3.1.4 Energy Aware Adaptive Sampling Algorithm (EASA). The al-
gorithm of Srbinovski et al. [45] is an adaptive sampling algorithm
for energy-hungry sensors for perpetually operating RSNs, which
builds upon the Adaptive Sampling Algorithm (ASA) [2]. The ASA
algorithm leverages the Nyquist Theorem for finding the optimal
(minimum) sampling rate 𝐹𝑁 :

𝐹𝑁 >𝐹𝑚𝑎𝑥 ·2 (1)
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Assumptions: Srbinovski et al. [45] claim that the sensor unit
is the main energy consumer [8], contrary to the assumption that
communication consumes the most energy in sensor nodes [41].

To estimate the maximum rate in the power spectrum 𝐹𝑚𝑎𝑥 , a
fast Fourier transform is used on the first𝑊 samples of the process.
The algorithm runs on the sink due to computational complexity;
thus some message overhead is present. EASA expands ASA with
energy awareness, i.e., adjusting the optimal sampling rate of a
sensor node based on current and critical battery level and rate of
energy saved per time unit. When the battery level drops below a
user-defined critical threshold m, the sampling rate deviates from
the optimal ASA value.

Advantages and Limitations: The EASA-induced threshold
may lead to sensors that do not capture the signal fully since the
Nyquist theorem may be violated. The authors argue that a po-
tential loss in data quality is the cost of staying continuously in
the network. The authors test EASA extensively on data from two
deployments. EASA is tested with different saving rates against
ASA and on the second deployment against a fixed rate. A simu-
lated environment hosts all tests. In both deployments, ASA and
EASA have the same sampling rate when the battery level is above
𝑚. ASA may deliver data at higher quality since the sampling rate
is always optimal. EASA on the other hand stabilizes the energy
levels of the sensor node after 36 days of operation at 60% with a𝑚
of 1/3 in the first deployment. With ASA the energy levels stay at
20%. In the case of the second deployment, ASA is outperformed in
energy consumption by EASA. The fixed sampling rate deployment
depleted its energy after 13 days.

3.2 Discussion of Adaptive Rates Algorithms
In § 3.1, we detailed the algorithms that focus on adjusting the
sampling rates of sensors and thus increase or decrease the amount
of messages over the network. In Table 1, the average message
overhead of the category is medium, according to our classification,
since network consumption depends on algorithm assumptions.
Backcasting and USAC have low message overhead while EASA
and the algorithm of Jain et al. [25] exhibit high message overhead.
In general, the algorithms provide high quality data streams since
they capture sudden changes in the phenomenon at run time. The
number of sensed events immediately impacts the effectiveness
of the algorithms, since they reduce network traffic significantly
when events are few or non-existent. If the stream contains a lot of
consecutive events, the algorithms adapt and provide a high quality
representation of the stream but at the cost of computation and net-
work resources, which results to small spikes of energy expenditure.

3.3 Adaptive Compression
Adaptive compression enables the reconstruction of a discrete signal
from a set of randomly chosen values from a vector that is computed
by a linear transform on the original discrete signal [16, 33]. The
main principles of adaptive compression are sparsity and incoher-
ence [10]. A sparse signal contains a large number of zero-valued
elements [17]. Incoherence is the point in time when a sample of
a sparse signal has an extremely dense representation in a domain.
For the remainder of the subsection, we will go through the selected
algorithms that focus on sampled signal compression.

3.3.1 Compressive Data Gathering (CDG). The goal of the algo-
rithm of Luo et al. [31] is to decrease energy expenditure and distrib-
ute energy consumption evenly across all sensor nodes, in order to
maximize the lifetime of the network in large scale sensor networks.

Assumptions: CDG aims to reduce data traffic in a network. By
compressing data readings at each hop,𝑀 messages arrive at a sink
from𝑁 sensor nodes, where𝑀 <<𝑁 . The sink broadcasts a random
seed to the network that is the basis for local seed creation in each
sensor node. Afterwards, no other message overhead is present.
Sensor nodes use the local seed to generate a random coefficient
𝜙𝑖 , which they transmit together with their sensor reading 𝑑𝑖 to
their parent node. Parent nodes receive readings from their children
nodes and sum up the input with their own 𝑑 and 𝜙 . Therefore,
every sensor node transmits only one value. This ensures the sink
receives𝑀 weighted sums 𝑦. Each sum consists of a matrix of the
random coefficients, Φ and the following sensor readings d:
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The random matrix Φ is not transmitted since the sink may com-

pute the matrix if it knows the identifier of the sensor nodes. The
original sensor readings d can be reconstructed at the sink level by
solving the following equation:

min
𝑥 ∈𝑅𝑁

| |𝑥 | |𝑙1 𝑠 .𝑡 . 𝑦=Φd, d=Ψ𝑥 (2)

Ψ is the domain in which d can be represented by 𝐾 << 𝑁

coefficients and 𝑥 is the vector of coefficients.
Advantages and Limitations: Luo et al. [31] evaluated CDG

against centralized exact (all nodes transmit as soon as they acquire
a reading) with the ns-2 simulator [7]. They evaluate the reconstruc-
tion capability on two real-life data sets. For the simulated environ-
ment, the authors create two synthetic sensor networks. The first
network is a network with a chain topology, with 1K sensor nodes
placed 10 meters apart from each other and with sinks located at
each extremity of the chain. The second network set-up is a grid-like
routing tree with 1089 sensor nodes and a sink node in the center of
the network. The authors vary the signal input intervals and observe
the package loss and output interval change. CDG outperforms cen-
tralized exact in both topologies, with input intervals five times and
2.3 times smaller than the centralized exact in the chain and grid
topologies, respectively. CDG achieved a packet loss of near zero in
both topologies, while the centralized exact measures package loss
rates of 5% and 20% in the chain and grid topologies, respectively.

The real-life datasets consist of measurements collected in the
Pacific Ocean by a single moving device and a sensor network in a
data center. The authors argue that the Pacific Ocean dataset has the
same properties as data collected by a sensor network. The authors
found the Pacific Ocean data to be sparse in the wavelet domain.
CDG reconstructs the initial 1K data points from 40 data points
with >98% precision. The data points are the 40 highest coefficients
in the wavelet domain of the data. The authors did not find a sparse
representation of the datacenter dataset as the data exhibit little
spatial correlation. Instead, they opted for data set reorganization
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by sorting the temperature values in ascending order at moment 𝑡0.
The result is sparse in the wavelet domain, and the original signal
is reconstructable.

3.3.2 Efficient Data Collection Approach (EDCA). The algorithm
of Cheng et al. [12] builds upon the low-rank feature of a matrix,
where related work has proven that a matrix formed from spatially
and temporally correlated data is approximately low-rank and is
recoverable with only a subset of that data [9, 49].

Assumptions: In EDCA, sensor nodes sample at a fixed rate
and send values to a central sink in a multi-hop scheme. The sink
sends only the sampling rate to the nodes and no other control
messages. However, Cheng et al. [12] point out that missing values,
i.e., no values in some time slots, are recoverable with low error
probability. The focus of the algorithm lies in the recoverability of
low-rank matrices. The authors use the nuclear norm to solve the
following rank minimization problem:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑟𝑎𝑛𝑘 (𝑋 ), 𝑠 .𝑡 . 𝐴(·)=𝐵 (3)

where𝑋 is the matrix arriving at the sink and𝐴(·) is an operator
that represents the incompleteness of the matrix. Since the problem
is NP-hard, the authors use a heuristic and shift the problem to a
convex optimization problem:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 | | 𝐴(𝐿𝑅𝑇 )−𝐵 | |2𝐹 +|| 𝐿 | |2𝐹 +|| 𝑅 | |2𝐹 (4)

where 𝑋 is deconstructed with SVD into 𝑋 = 𝑈 Σ𝑉𝑇 and 𝐿 =

𝑈 Σ1/2; 𝑅=𝑉 Σ1/2. The solution is taken from Zhang et al. [56].
Advantages andLimitations: The authors use a publicly avail-

able dataset of temperature measurements from sensor nodes from
the Intel Berkeley Research lab [19] and a synthetic dataset. The
authors test the accuracy of EDCA with different sampling ratios
for the 54 sensor nodes. The authors observe only small recovery
errors. With a sampling ratio of 0.2, i.e. every fifth sensed value is
actually transmitted, the standard deviation 𝜎 is <0.15𝐶 . With the
synthetic data set, the authors compared EDCA with centralized
exact, where the sink receives all sensed data points, on the metric
of network lifetime. The authors define the lifetime of a sensor net-
work as the time duration of the first sensor node which runs out
of power. The lifetime ratio is defined as (1/𝑀𝑚𝑎𝑥 )/(1/𝑀0), where
𝑀𝑚𝑎𝑥 is the maximum power wasted on every EDCA simulation
and𝑀0 is the power wasted by the centralized exact technique. The
authors find that the lifetime ratio is 5 when the sampling ratio is
0.2, compared to the centralized exact.

3.3.3 Spatio-Temporal Compressive Data Collection (STCDG). The
algorithm of Cheng et al. [13] is an expansion of EDCA [12]. STCDG
exploits the low-rank feature and the short-term stability of data
gathered through a sensor network, similar to EDCA.

Assumptions: Cheng et al. [13] argue that, unlike CDG [31],
STCDG is more flexible and does not need customization for a
specific sensor network. With CDG the domain in which the data
is sparse has to be known in advance. Additionally, CDG utilizes
only the sparsity of the data, which requires a full dataset reorder
if the data is not sparse. The authors of STCDG deploy a sensor
network in a residential building. They use the data to analyze
the short-term stability and low-rank of spatially and temporally

correlated data. The authors find that the data have a good low-
rank approximation and short-term stability. Short-term stability is
defined as the difference between adjacent gaps of sensor readings,
with gaps being the time between two adjacent sensor readings.
The difference is defined as:

𝑑𝑖 𝑓 (𝑛,𝑡)=𝑋 (𝑛,𝑡+1)+𝑋 (𝑛,𝑡−1)−2𝑋 (𝑛,𝑡) (5)
where 1<=𝑛<=𝑁 𝑎𝑛𝑑 2<=𝑡 <=𝑇 −1; thus, if 𝑑𝑖 𝑓 (𝑛,𝑡) is small,
then sensor readings at node n around timeslot t are stable.

The authors expand their optimization problem formulation to
include a tuning parameter 𝜁 , in order to express the trade-off be-
tween fitting the algorithm to the data and achieving low-ranking.
The notion of short term stability is added to the optimization prob-
lem, as the difference for all data points in the original matrix 𝑋 ,
| | (𝐿𝑅𝑇 )𝑆𝑇 | |2

𝐹
the optimization problem is:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 | | (𝐿𝑅𝑇 ) . ·𝑄−𝐵 | |2𝐹 +𝜁 ( | |𝐿 | |
2
𝐹 +||𝑅 | |

2
𝐹 )+𝜂 | | (𝐿𝑅

𝑇 )𝑆𝑇 | |2𝐹 (6)

Another novelty of STCDG is the handling of empty columns.
Empty columns may appear at the sink when the sampling ratio is
low or the packet loss rate is high. The authors point out that such
cases can lead to very high number of recovery errors. Therefore,
the algorithm ignores empty columns first and recovers the orig-
inal matrix. The short-term stability features populate the empty
columns. Additionally, abnormal values sensed by sensor nodes are
transmitted independently of the static sampling ratio.

Advantages andLimitations: The authors test STCDG against
EDCA and CDG on three different datasets in terms of recovery
error, power consumption and network capacity. The datasets used
are the Intel Berkeley Research lab [19] sensor data, a synthetic trace
generated with the ns-2 simulator [7], and the residential building
data gathered by the authors. Specifically, the authors subdivided
the laboratory and residential building data sets into singular sensed
phenomena, namely light and temperature. Normalized Mean Abso-
lute Error (NMAE) was used to measure the recovery performance
of the algorithms. The authors found that the algorithms have
critical sampling ratios, which if surpassed, lead to a high NMAE.
STCDG performs better than the other techniques, having low
NMAE (sub 0.1) with low sampling ratios (0.1 - 0.2). CDG is the low-
est performer on all metrics. The authors state that the sparsity fea-
ture is not always present in real life data sets. The performance of
all algorithms drops on datasets with low temporal/spatial correla-
tion and few sensor nodes (24 and 54 sensor nodes in the residential
building and laboratory datasets, respectively). The authors argue
that CDG is outperformed at high sampling ratios by a centralized
exact scheme, which sends all sensor readings at every time slot to
the sink. STCDG and EDCA exhibit similar energy consumption.

3.4 Discussion on Adaptive Compression
In § 3.3, we present algorithms that focus on compressing the re-
sults of sensor sampling while retaining data quality, instead of
performing filtering. In Table 1 the average message overhead of the
category is low. We categorize all adaptive compression algorithms
in the low category, since this is the main goal of compressing the
original signal. In general, the algorithms are suitable for large-scale
networks and they are resilient to packet loss. They are suitable for
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large networks since the benefit of reduced network usage scales
well to the number of nodes while helping reduce energy expendi-
ture from the relayed messages. Resiliency to packet loss is relevant
to the number of erroneous messages saved by transmitting only
a subset of the messages.

4 ADAPTIVE FILTERING
The category of Filtering contains algorithms that primarily focus
on the reduction of the volume of data sent through the network
after they are sampled. Although some algorithms perform filter-
ing of some form [47], the category includes only value-filtering
algorithms.

In Figure 2, two data streams are shown to exhibit the same pat-
tern under different context. Sampling algorithms should be able
to adjust their thresholds at run time in order to capture the impor-
tance of the sensed phenomenon and filter the second patter, since
it’s common for that stream. The example highlights the benefits
of adaptive filtering, i.e.,fewer transmissions and higher precision
in preserving context. The surveyed algorithms of the Filtering
category aim for these benefits but with different approaches. For
this reason, we further split the Filtering category in sub-categories.

The algorithms are classified further in two sub-categories,model-
based filtering and adaptive thresholds. Model-based filtering algo-
rithms use probabilistic models to suppress sensor readings, if the
readings can be predicted with acceptable accuracy at another sen-
sor node or sink. The Adaptive thresholds subcategory includes
techniques that suppress sensed values based on temporal and
spatial correlations between sensor nodes in the network.

4.1 Model-Based Filtering
We categorize filtering algorithms as model-based if they use a
prediction model to filter sensor data at a sink or event stop data
transmission altogether. For the remainder of this subsection, we
expand on the selected algorithms.

4.1.1 Barbie-Q (BBQ). The algorithm of Deshpande et al. [15] com-
prises a query processing engine that answers user queries to a sen-
sor network until some error threshold is met. The system utilizes a
prediction model where sensed values are transmitted through the
network only if the prediction is not considered as accurate enough.

Assumptions: BBQ employs a model-based scheme in order to
answer user queries. The authors argue that while easing the com-
munication load on a network, statistical models may identify faulty
sensors and fill missing values in the network by extrapolation of
missing data. The authors use a time-varying multivariate Gauss-
ian model in BBQ, however they point out that their framework is
model agnostic.

In BBQ, model construction uses historical data; therefore initial
values need to be collected to initialize the model. Afterwards, users
may query the network, e.g. ask for the temperature sensed by a
group of sensors, with an error margin and a confidence interval.
BBQ answers the query while minimizing the number of sensor
nodes asked. Based on the underlying model, the system builds an
observation plan, which specifies how and in which order the sensor
nodes are queried. The reason behind this is that some attributes,
like temperature and voltage, are highly correlated. The authors
show that the correlation can be leveraged by the model, as voltage

may be cheaper to sample than temperature. Additionally, spatial
and temporal correlations are also leveraged in order to reduce the
number of sensors queried.

Advantages and Limitations: The authors evaluate BBQ and
compare it with TinyDB [32] and Approximate-Caching on two
datasets collected from sensors (11 sensors and 54 sensors each).
TinyDB is a sensor network query system in which the readings
of sensor nodes are routed through the network and aggregated
en-route to the sink. The concept of Approximate-Caching is intro-
duced in the paper. With Approximate-Caching, sensor nodes send
their sensed values to a sink only if they differ from the previous
values by user-defined margin 𝜖 . In comparison, TinyDB reports the
exact values for a query while Approximate-Caching is tweakable
with error bounds. The acquisition costs of TinyDB are constant
while BBQ outperforms the other algorithms on high error margins
(𝜖 = 1). Acquisition costs are an order-of-magnitude lower than
those of Approximate-Caching. As the authors point out, BBQ is
not suitable for anomaly detection, since constant sensor sampling
is a prerequisite for such a task.

4.1.2 KEN. The algorithm of Chu et al. [14] targets queries where
every sensor node in the network has to report values. No data
reduction takes place and such queries are thus expensive, with
regards to energy consumption and communication.

Assumptions: KEN employs a prediction model that synchro-
nizes at sink and sensor node levels. Users query the sensor network
with sampling rate and error interval arguments, e.g., values from
all sensor nodes every 𝑓 seconds with an error margin of ±𝜖 . A
sensor node collects values and checks if the sink can predict the
accumulated values correctly within ±𝜖 . If the values lie within
the interval, the sensor node suppresses its reading. If the values
do not lie within the interval, the sensor node pushes its values
down the network to the sink. The models at the sink node use the
new values to re-synchronize with the model at the sensor nodes.
In a multi-hop sensor network, additional compression based on
spatial correlation may take place between different hops. In or-
der to enable compression based on spatial correlation, Chu et
al. [14] propose a novel clustering scheme. In this scheme, there
are multiple clusters of sensor nodes with a single cluster head that
communicates directly with the sink.

Advantages and Limitations: The scheme reduces communi-
cation overhead, as sensor readings do not have to be stored cen-
trally in the network. Each cluster head maintains a synchronized
prediction model with its children nodes. Additionally, the sink
maintains prediction models synchronized with the cluster heads.
To find such clustering groups, KEN uses a heuristic approachwhere
sensor nodes are assigned to a cluster head from a performance
indicator for the model. The cluster formation algorithm is run at
the sink, which induces communication overhead if clusters have to
re-organize. The authors evaluate their approach on two real-world
datasets with small, fixed amount of sensors (one with 11 and the
other with 49 sensors). KEN is tested with the clustering technique
enabled and with an average model, where predictions utilize the
average of all sensed values. No clusters are built or re-organized.
The authors conclude that KEN performs better with the clustering
scheme, when the communication costs to the sink are higher than
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communicating with a neighbor. KEN is not able to handle the
presence of outliers, since it requires re-construction of the model.

4.1.3 Adaptive Sampling Approach (ASAP). ASAP [22] expands on
KEN [14] and addresses its major issues. ASAP deals with cases
where the observed phenomenon changes unpredictably over the
course of time, which is not covered in detail with KEN.

Assumptions: In cases where the observed phenomenon is un-
predictable, the prediction model has to adapt, which introduces
high communication overhead if the model is constructed centrally
at the sink. Additionally, the authors of KEN did not account for the
extra energy expenditure of cluster heads into account, compared to
regular sensor nodes. ASAP addresses these issues in its implemen-
tation and organizes sensor nodes into clusters. Clustering is done
periodically, i.e. every 𝜏𝑐 seconds. This rotates the cluster heads
and prevents premature power outage of a sensor node. The forma-
tion of clusters and the election of cluster heads is done inside the
network, without the mediation of the sink. Each sensor node com-
putes the probability of becoming a cluster head, based on a user
set percentage of sensor nodes becoming cluster heads (𝑓𝑐 ) and the
relative energy level from neighboring sensor nodes. Sensor nodes
that did not become cluster heads choose their cluster head by an at-
traction factor, a combination of the hop distance to the cluster head
and a weighted data similarity with the readings of the cluster head
and the sensor node, 𝛼 . After cluster construction, cluster heads di-
vide their clusters into sub-clusters, of size 𝛽 , based on correlations
between every sensor node in the cluster. Sensed values of all clus-
ter nodes are collected in the cluster head. This is repeated every 𝜏𝑓
seconds to update correlations and adapt to the changing dynamics
in an observed phenomenon. The cluster head selects the fraction
𝜎 of sensor nodes to act as samplers in a sub-cluster, based on the
remaining energy of each sensor node. Only the sampler nodes and
the cluster head sense the environment (with a sampling rate of 𝜏𝑑 )
and communicate their sensed values to the sink. Additionally, for
each sub-cluster, cluster heads compute a data mean vector and a
covariance matrix, which they send to the sink as model parameters.
The sink receives the sensed values from the sampler nodes and
predicts the values for the rest of the sensor nodes.

Advantages and Limitations: Message communication cost,
network performance, energy consumption and data quality are the
main metrics of the tests. Centralized exact and extreme variations
of ASAP are used for comparison. The variations are two-fold, one
local and one centralized approach. In the local approach predic-
tions happen at the cluster heads and predicted values are sent to
the sink. In the central approach all predictions are carried out at
the sink level and values of all sensor nodes for updating the model
are also sent to the sink. The authors find that ASAP outperforms
other algorithms in the number of messages sent per second as
well as the per-sensor-node energy consumption, while alternating
𝜎 . The authors study the trade-off between the prediction error
and network lifetime and observe high lifetime improvements (90%
longer lifetime in comparison to centralized exact), if user-defined
absolute error thresholds are close to 1.

ASAP is best suited for environmental monitoring as anomaly
detection is not feasible due to only a subset of sensors being ac-
tive at a time. Users should allow some prediction error in order

to utilize ASAP effectively. In the paper, the authors suggest an
alternative configuration that minimizes overhead.

4.1.4 Algorithm of Jiang et al. The algorithm of Jiang et al. [26] is
based on the computational overhead of prediction schemes, which
outweights energy savings of predicting a value at a sink, instead
of sending the value through the network. The algorithm utilizes
clustering and duty cycling for saving energy.

Assumptions: A sensor network is divided into clusters. Sensor
nodes that are not cluster heads, are either asleep, awake, or sens-
ing the environment. An asleep node is inactive (e.g., powered off)
while an awake node is waiting for commands. A sensing sensor
means that the device converts a phenomenon to values. Sensor
nodes hold a history of predicted or sensed data points, while clus-
ter heads have a history of the values from all sensor nodes in their
cluster. Based on the historical data, an auto-regressive model can
be trained to predict data locally at sensor nodes and cluster heads.
Cluster heads issue prediction bans to sensor nodes if a local predic-
tion is less energy-efficient than communicating the values to the
cluster head. The authors want to prevent sensor nodes from com-
puting a prediction if the prediction is not accurate enough since
the sensed data still has to be sent. In these cases, the power used for
the prediction is wasted. If no ban is issued and the predicted value
lies in the user-specified error bound, the sensor node updates its
local historical data with the value but doet not transmit it. If a ban
is issued, the affected sensor node sends sampled data to the cluster
head and updates the local historical data with the sampled data.
The authors point out that for applications with data loss, acknowl-
edgment messages can be sent from sensor nodes to cluster heads.

Advantages and Limitations: The authors evaluate their algo-
rithm on a synthetic dataset by varying the ratio of transmission
energy consumption and prediction energy consumption. They
compare their algorithm with and without the prediction ban fea-
ture and conclude that additional energy savings may be achieved
when prediction costs are higher than communication costs. The
authors claim that the algorithm does not focus on cluster creation
and other algorithms, e.g., ASAP, are more suitable for such a task.

4.1.5 Spanish Inquisition Protocol (SIP). Under SIP [23], a sensor
node transmits a value only if the receiver node does not expect it.
Each node transmits values only when the observed stream contains
values that the receiving node could not predict.

Assumptions: SIP is based on the core notion of a Dual Pre-
diction Scheme (DPS) algorithm. DPS algorithms expect the same
phenomenon model to be present in every pair of source - sink
nodes. SIP transmits a state vector estimate instead of every ob-
served reading. The basic trade-off of SIP lies between the accuracy
of recorded values and number of transmitted packets, with lower
accuracy thresholds leading to lower number of transmissions. For
the estimation of the state to be transmitted, SIP utilizes a number
of methods, namely Kalman Filters, Normalized Least Mean Squares
(NLMS), or Exponentially Weighted Moving Average (EWMA). The
current sampling rate, acceptable error threshold, as well as the
data itself affect the reduction of future transmissions.

Advantages and Limitations: SIP aims to reduce the overall
energy consumption of sensor nodes, throug the reduction of the
number of transmitted packets. SIP provides an accurate depiction
of the original data stream with just less than 5% of the original
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samples. For the Intel Lab data set [19], SIP transmitted packets
10 times less than other schemes. These advantages are affected
when different versions of networking stacks are used on the sensor
nodes [21]. SIP needs careful planning with regards to the underly-
ing networking stack since the gained tranmission benefits range
from 10-fold to just 21%, in total.

4.2 Discussion onModel-Based Filtering
In § 4.1, we gave details on algorithms that focus on the suppres-
sion of the results of sensor sampling through the use of various
model prediction schemes. As seen in Table 1, average message
overhead of the category, based on our classification, is low, since
message suppression is the focus. The only exception is KEN [14],
where further communication is needed when constructing the
models in unpredictable phenomena. The examined algorithms suit
networks with slow or no topology changes, since to the filtering
process is dependent on the spatiotemporal characteristics of the
node. Model re-construction contributes to this intricacy as well,
since edge nodes may not be capable to aggregate and perform
adequate training of the model. In general, the algorithms offer a
large reduction in energy expenditure and network transmissions.

4.3 Adaptive Thresholds
Algorithms fall into the category of adaptive thresholds if, and only
if, they only deal with the reconfiguration of a threshold for their
filter function, during execution. In the remainder of the subsection,
we expand on the four selected algorithms.

4.3.1 Algorithm of Meng et al. The algorithm of Meng et al. [35]
focuses on in-networkmessage suppression, based on ContourMap-
ping. The approach exploits the spatial and temporal correlation
in the messages.

Assumptions: The authors describe Contour Mapping as a tech-
nique where data points in a diagram are connected based on simi-
larities. Step size controls the factor similarity. The authors use this
technique to construct Contour Maps in sensor networks so sen-
sor nodes with similar readings do not have to transmit data. The
suppression is done locally on every sensor while sinks interpolate
suppressed readings. For that reason, sensor nodes sample their
sensor every 𝜏 seconds, where 𝜏 is between 𝜏𝑚𝑖𝑛 and 𝜏𝑚𝑎𝑥 . The
sampling period is based on the magnitude of the sensed value so an
initial randomness factor is required. This is necessary as some sen-
sor nodes will report their readings first while neighboring sensor
nodes listen for those readings. A sensor node that overhears the
values of its neighbors decides if it will transmit its readings based
on the distance of its data to the average 𝛿 of the neighbor data.
Additionally, a sensor node may compare sampled values to𝑚 previ-
ous sampled values and based on the same threshold 𝛿 , it suppresses
or transmits its readings. Sensor nodes consume some energy while
overhearing messages sent by neighbor nodes. The sinks know the
geographical location of the sensor nodes as well as which sensor
nodes (silent nodes) suppressed their readings. Therefore, the miss-
ing values of the silent nodes are interpolated by the average of
the readings of nearby sensor nodes. Additional smoothing may be
applied on the data by using the values of neighbors that are more
than one hop away from a silent node, as weighted averages.

Advantages and Limitations: The authors test the accuracy
and energy consumption of the algorithm in a simulated environ-
ment with 528 sensor nodes, from which only 92 sent readings to
the sink. The maximum error did not exceed 10, i.e., the distance
between the value assigned to a silent node by the sink and the
actual value. With the introduction of network loss, 17 readings out
of 92 are dropped on the way to the sink. In that case, the maximum
error was 20. Energy savings were compared against a centralized
exact scheme while transmitting data, listening for neighbors data,
and receiving data. The algorithm of Meng at al. [35] achieves ≈88%
better energy savings over centralized exact in each category.

4.3.2 Algorithm of Solis et al. The algorithm of Solis et al. [44]
leverages contour mapping to generate maps of environmental phe-
nomena. Similar to the algorithm of Meng et al. [35], the algorithm
suppresses the reporting of readings at sensor nodes which are in
the same isocluster, with no isoline between them.

Assumptions: Space between isolines depends on the applica-
tion. Less space equals to higher data resolution since potential
isolines exist between sensor nodes. This comes at the expense
of energy as more readings are communicated. The area between
isolines is user configured and propagates to every sensor node. An
isoline moves if a sensor node senses a reading that differs from a
previous one. The sensor node broadcasts the change in isolines to
its neighbors. Readings are scheduled from the farthest leaf nodes
(in the case of a tree topology) to the sink. This enables additional
energy conservation as sensor nodes go into a sleep mode after
sampling. Solis et al. [44] indicate that further temporal suppression
is applicable as sensor nodes only report a single reading, if that
reading changed the isocluster.

Advantages and Limitations: The authors evaluate their ap-
proach in a simulated environment against other approaches, e.g.,
an aggregation scheme, where data is aggregated at parent nodes
into groups and the averages of the groups are sent in the network.
The other schemes are a centralized exact approach with and with-
out additional temporal suppression. The authors find that their
approach outperforms the other algorithms in energy saving as well
as accuracy, when constructing contour maps from the readings.

4.3.3 Conch. The algorithm of Silbersten et al. [42] focuses on the
reduction of reporting messages for a monitoring system. Conch
leverages the differences of consecutive sensor nodes values, e.g.,
when two sensor nodes differ significantly in their readings. When
one reading may be inferred from another, no values are transmit-
ted.

Assumptions: In Conch, a sensor node has a set of sensor nodes
from which it receives updates (updaters) and a set of sensor nodes
to which it updates to (reporters). A sensor node broadcasts its
sensed values to the reporters, if its new sensed value differs from
the old sensed value by some margin. When a sensor node receives
a value from an updater node, it computes the difference to its own
sensed value. If no value is received, the sensor node assumes no
changes. The sink monitors all differences between sensor nodes
(called edges), so initially all reporters send their edges to the sink.
Some sensor nodes are monitored directly. The directly monitored
sensor nodes route their sensed values and their edges to the sink
directly. At every time step, which is derived from a pre-configured
sampling rate, the sink receives updated edges from reporter nodes
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and sensed values from directly monitored sensor nodes. This en-
ables the sink to compute the value of every sensor node at any time
step, if every sensor node is reachable from a directly monitored
sensor node and the corresponding edges.

Advantages and Limitations: Conch is a monitoring algo-
rithm; routing schemes are used to route a report from a sensor
node to the sink efficiently. The authors [42] consider Conch as
flexible since they present ways to build Conch plans, i.e., moni-
toring topologies, to focus on minimizing energy consumption or
increasing sensor node and message failure resilience. The authors
tested Conch in different simulated environments against multi-
ple algorithms and on SNs with different sensor node densities,
predictable increases of the observed value, and outlier detection.
Conch outperforms all other schemes in terms of energy consump-
tion at every test and only the algorithm of Meng et al. [35] exhibits
similar energy consumption with increasing sensor density.

4.3.4 CME. CME [54] leverages contour mapping and utilizes bi-
nary classification and clustering to detect contours and reduce the
total number of transmissions from sensor nodes. In contrast to So-
lis et al. [44], CME employs node clustering to create contour maps.

Assumptions: In CME, a contour is a curve that connects points
with equal feature values. The range between two contours is ap-
plication specific. Contour nodes describe sensor nodes that have a
reading that belongs to a different contour range than the reading
of neighbor sensor nodes. All nodes participate in contour node
identification in a cluster, by broadcasting their sampled values.
Only contour nodes communicate their readings to the cluster head.
CME employs Support Vector Machines (SVM) at the cluster head
to classify nodes membership to one side of the contour. The cluster
head computes the contour segment of its cluster and then it sends
it to the sink, where the contour map of the network may be con-
structed. Xu et al. [54] point out that in a multi-hop routing scheme,
additional aggregation may take place on routing cluster heads.

Advantages and Limitations: The authors evaluate CME in a
simulated event detection scenario with 2500 sensor nodes. They
compared CME against a centralized exact implementation and
Solis et al. [44]. The authors test CME on energy consumption and
contour map accuracy, while varying contour steps and network
sizes. CME outperforms every algorithm in every test and exhibits
similar accuracy with lower energy expenditure.

4.4 Discussion on Adaptive Thresholds
In § 4.3, we detailed our selected algorithms that focus on the
suppression of the results of sensor sampling through the recon-
figuration of filtering thresholds. In Table 1 the average message
overhead of the category ismedium, based on our own classification.
The examined algorithms suit networks with slow or no topology
changes, due to the process being dependent on the spatiotemporal
correlation of the produced signals. Adaptation of the thresholds
plays a large impact in the generated traffic and in the quality of
the resulting data stream. In general, the algorithms offer flexibility
between energy efficiency and number of network transmissions,
with the risk of over/under shooting the threshold selection sig-
nificantly. Finally, they require prior knowledge of the topology.
We expect the algorithms of Adaptive Thresholds to have lower
adaptability to the sampled stream compared to the category of

Model-Based Filtering. In contract, we expect the algorithms to
allow for better energy expenditure on the sensor nodes since they
are not as expensive computationally.

5 HYBRIDALGORITHMS
In this section, we present a set of algorithms that combine tech-
niques; thus considered as hybrid. The algorithms in the subcate-
gory combine sampling or filtering with other approaches.

5.1 AlgorithmDescriptions
For the remainder of the section, we will go through the selected
algorithms that we consider as hybrid approaches.

5.1.1 AdAM. By incorporating an adaptive sampling and an adap-
tive filtering algorithm in the same algorithm, AdAM [47] provides
a monitoring framework for the IoT.

Assumptions:While AdAM runs on sensor nodes, a data stream
𝑀 reduces the number of sampling periods when the metric stream
does not fluctuate and vice versa. A sampling period𝑇𝑖 is computed
by estimating the metric stream evolution. Trihinas et al. [47] use
a Probabilistic Exponential Weighted Moving Average (PEWMA)
to produce an estimated metric stream𝑀 ′. PEWMA is a variation
of Exponential Weighter Moving Average (EWMA) that provides
a one-step-ahead estimation.

Advantages and Limitations: The authors state that PEWMA
is more robust against abrupt transient changes in the metric evo-
lution than EWMA. When 𝑀 ′ differs from 𝑀 by a user-specified
imprecision value 𝛾 , then 𝑇𝑖 increases to a maximum sampling pe-
riod 𝑇𝑚𝑎𝑥 . Otherwise, 𝑇𝑖 decreases to a minimal sampling period
𝑇𝑚𝑖𝑛 . Sampled data points 𝑣𝑖 are temporally suppressed if they lie
in a user-specified interval 𝑣𝑖 ∈ [𝑣𝑖−1−𝑅𝑖 ,𝑣𝑖−1+𝑅𝑖 ], where 𝑅𝑖 is the
adaptable filter range. With AdAM, an adaptive filtering range is
computed at a sensor node in every time step 𝑖 . Fano Factor is used
to measure the variability of the data stream at a current timestep.
If the variance of the data stream increases, then the Fano Factor
increases as well. The Fano Factor is compared against 𝛾 . 𝑅𝑖+1 is
shortened if the Fano Factor is greater than 𝛾 and widened if the
Fano Factor is less than 𝛾 .

5.1.2 FAST. The goal of FAST [20] is enabling private and contin-
uous streams of aggregate information for data mining purposes.
It uses sampling in order to extract selected values in time series.
It utilizes filtering in order to predict dynamically non-sampled
values as well as corrections for the sampled values.

Assumptions: FAST includes an adaptive sampling component,
based on a Proportional-Integral-Derivative (PID) controller [3, 5, 6,
36] to adapt the sampling interval𝑇 . PID controllers are a common
technique for feedback control in industry and research [18, 30, 52].

A PID controller achieves a desired result (e.g., desired speed)
by continuously adjusting a configuration (e.g., acceleration). The
controller uses an error (e.g., the difference between desired and
current speed) to calculate three terms: the proportional (P), integral
(I), and derivative (D) term.

P is proportional to the current error. The larger the error, the
larger the configuration change. I integrates over past values of the
error. Thus, the longer an error persists, the larger the configuration



PR
EP

RIN
T

A Survey of Adaptive Sampling and Filtering Algorithms for the Internet of Things DEBS ’20, July 13–17, Montreal, CA

Algorithm Assumptions Advantages Limitations Message
Overhead

Ad
ap
tiv

e
Ra

te
s

Backcasting [53] Spatial and temporal correlationof signal. Random sensor deployment. Death of cluster heads. High
Jain et al. [25] Continuous sensor data streams. Important data receives more bandwidth. Only single-hop SN. High
USAC [37] Fixed number of sensors. Captures sudden changes. Static confidence interval. Low
EASA [45] Sensing consumes more energy than

communicating.
Adaptive to energy levels. Complex computations. High

Ad
ap
tiv

e
Co

m
pr
es
sio

n CDG [31] Knowing where observed signal is
k-sparse.

Minimal packet loss. Unsuitable for small SN. Low

EDCA [12] Matrix of collected values exhibits
low-rank features.

Robust against packet loss. Empty columns reduce recovery
accuracy.

Low

STCDG [13] Low-rank and short term stability of
matrix.

Adaptable since SN-type is independent. Unsuitable for small SN. Low

Ad
ap
tiv

e
Th

re
sh
ol
ds

Meng et al. [35] Events are sensed by more than one
sensors.

Suppression is computationally simple. Small difference sensor reads are not
leveraged.

Medium

Solis et al. [44] Spatial correlation of sensor readings. Simple computation at sensor nodes. No contour map calculation given. Medium
Conch [42] Spatial and temporal correlation of

signals.
Trade-off network robustness for energy. Sensor nodes must know network

topology.
Low

CME [54] Stationary sensor nodes. Enables scalability. Death of cluster heads. Medium

M
od

el
-B
as
ed

Fi
lte

rin
g

BBQ [15] Slow topology changes. Exploit correlation between sensor and
voltage levels.

Unsuitable for anomaly detection. Low

KEN [14] Slow topology changes. Suitable for anomaly detection. Prediction models constructed on
sink-level.

Low-
Medium

ASAP [22] Forgo data quality for less energy
expenditure.

In-network construction of models and
clusters.

Unsuitable for anomaly detection. Low

Jiang et al. [26] Forgo data quality for less energy
expenditure.

Prevents energy costs and inaccurate
predictions.

Unsuitable for anomaly detection. Low

SIP [23] Transmit only values that the sink does
not expect.

Large reduction of transmissions, energy. Homogeneous networking stack. Low

H
yb

rid
A
lg
or
ith

m
s AdAM [47] Hybridof adaptive sampling andfiltering. Easily tunable for performance. Trade-off accuracy for efficiency. Low

FAST [20] Existence of PID controllers and Kalman
Filters.

Anticipate changes in sampled values. Domain knowledge needed for tuning
filters.

Low

Chatterjea et al. [11] Sampling rate adapts to the predictions
of the model.

Event detection with high probability of
success.

Unsuitable for time-critical applications. Low

Table 1: Table of presented Algorithms

change. D operates based on the change in the error. The smaller
the change, the more dampening occurs to prevent overshooting.

FAST uses a Kalmann Filter Prediction procedure [27] to compute
a prediction (𝑥𝑖−1) of the metric evolution of 𝑀 . After reading a
new value, a correction mechanism updates 𝑥𝑖−1 to 𝑥𝑖 . The error
between 𝑥𝑖−1 and 𝑥𝑖 is calculated as follows:

𝐸𝑖 = |𝑥𝑖−1−𝑥𝑖 | / 𝑥𝑖 (7)
The error 𝐸𝑖 is the input of the PID-Controller used by FAST:

Δ𝑇 =𝐶𝑝𝐸𝑖+
𝐶𝑖

𝑘

𝑖∑
𝑗=𝑖−𝑘

𝐸 𝑗 +𝐶𝑑
𝐸𝑖−𝐸𝑖−1
𝑇𝑖

(8)

𝑘 is the number of previous error values that is considered in the in-
tegral term.𝐶𝑝 ,𝐶𝑖 , and𝐶𝑑 specify the weight of the proportional, in-
tegral, and derivative term. The result (Δ𝑇 ) and two pre-configured
interval adjustment parameters (𝜃 and 𝜉) allow for computing 𝑇𝑖+1:

𝑇𝑖+1=𝑇𝑖+𝜃 (1−𝑒
Δ𝑇 −𝜉

𝜉 ) (9)

Advantages and Limitations: FAST combines PID controllers
with Kalman Filter Prediction. FAST anticipates the changes in the
sampled values and reduces the gravity of perturbation errors. Such
errors may be introduced by any differential privacy mechanism.
FAST combines any noisy observations with a Kalman predicted
value. The resulting value is used as feedback to the system itself, for
further correcting future predictions as well as adjusting sampling.

The Kalman filter needs noisy input data to accurately predict
values. Fan et al. [20] claim that domain expert knowledge is needed

in order to further tune the filter threshold R. R is the Gaussian mea-
surement noise used to approximate the Laplace perturbation noise
and highly depends on the nature of the data.

5.1.3 Algorithm of Chatterjea et al. The algorithm of Chatterjea et
al. [11] leverages model-based prediction and adaptive sampling to
reduce energy expenditure in energy-hungry sensor networks. A
sensor node is energy-hungry when computation tasks consume
more energy than communication tasks.

Assumptions: Every sensor node fills a buffer 𝑟 with a user-
specified length with sampled values at a user-specified sampling
period. Afterwards, a time series model predicts an amount from
a sample at each consecutive period. If the prediction falls within a
user-specified error margin 𝛿 , a counter is incremented by one, spec-
ifying the number of next sampling periods to skip. The maximum
value of the counter is based on the number of neighbors that can
detect an event, for a specific sensor node. Successful predictions
are stored in the buffer and if predictions do not satisfy the error
margin, the buffer stores the sampled values and the counter is reset.
Additionally, the sink stores the prediction models for every sensor
node. Initially all sensor nodes send their model parameters to the
sink and keep a copy of the model locally. If a sensor node detects
an inaccurate prediction at the sink level, it sends an updated sink
model to the sink.

Advantages and Limitations: The algorithm of Chatterjea et
al. [11] detects events with high success probability but the detec-
tion may be untimely and introduce latency, from the occurrence
of the event itself until it is reported. The authors point out that
their algorithm is not suitable for time-critical applications.
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5.2 Discussion onHybrid Algorithms
In § 5.1, we elaborated on the selected algorithms that combine tech-
niques under a single implementation. The essence of the works
of Adam [47], FAST [20], and Chatterjea et al. [11] is that multiple
techniques may be used to reduce sampling in periods of low vari-
ability of an observed signal and further reduce communication
load by suppressing already sampled values or predicting them at
the sink level. For this reason, all algorithms are under the low class
of message overhead in Table 1. The algorithms in the category
expose a way to tune between efficiency and accuracy. Compared to
other categories, they allow a certain level of configuration, where
the total behavior changes, depending on user input. One interest-
ing topic of research is to further tune the required configuration,
based on the observed phenomenon and any trade-off thresholds.

6 CONCLUSION
In this paper we present a catalogue of sampling algorithms for sen-
sor data. We show state-of-the-art algorithms that address scalabil-
ity challenges in real-time, extremely distributed sensor networks.
The algorithms are categorized into adaptive sampling, compressive
sampling, model based filtering schemes, and adaptive filtering. We
additionally show hybrid algorithms, which combine techniques in
a single approach. We summarize our findings in a compact taxon-
omy and sum up the evaluation of the algorithms in a table. With
our work, we aim to help researchers that work in the intersection
of sensor networks and distributed stream processing.
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