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A new slope stability method

Derivation of equilibrium equations

The central idea in this proposed method is to explore the possibility of adopting slices of dierent geometry than the usually adopted, which, for the majority of methods, consist of thin vertical slices. In this coordinate system, the potential slip surface -of any shape -would consist of radial segment slices. An example would be the hypothetical potential failure surface depicted in Figure 1 below: For the derivation of the equations of equilibrium, consider the element shown below: 1

The meaning of the symbols shown in Figure 2 are as follows (subscripts L and R indicate the left and right sides): E L and E R are the inter-slices eective normal forces; X L and X R are the inter-slices shear forces, P wL and P wR are the pore-water pressure resultants at the sides of the slice; W is the weight of the slice; N 0 is the eective normal force at the base of the slice, U is the pore-pressure resultant at the base of the slice and T is the shear force at the base of the slice. In addition, is the angle between the vertical direction and the radial direction, is the slice inner angle, is the angle between the direction of the base of the slice and the direction perpendicular to the radial line and is the angle between the horizontal direction and the direction of the base of the slice. It is worth noting that = ¡ . Also, in the derivation of all equations, is considered positive in the counter-clock direction, forces pointing towards the moment center are considered negative and moments and tangential forces are positive in the counter-clock direction.

Writing the equations of equilibrium for forces in the radial and tangential directions as well as the moment equilibrium equation about the moment center gives, respectively:

W cos + (X R ¡ X L ) cos 2 ¡ (N 0 + U ) cos ¡ T sin + (E L + E R + P wL + P wR ) sin 2 = 0 (1) (E L + P wL ¡ E R ¡ P wR ) cos 2 ¡ W sin + T cos ¡ (N 0 + U ) sin + (X L +X R ) sin 2 = 0 (2) (E L D e L + P w L D w L ¡ E R D e R ¡ P w R D w R ) cos 2 ¡ W sin D + T cos D b ¡ (N 0 + U ) sin D b = 0 (3)
In equations ( 1) to (3), D is the distance from the centroid of the slice to the moment center, D e L and D e R are the distances from E L and E R to the moment center, D w L and D w R are the distances from P w L and P w R to the moment center, and D b is the distance from the midpoint of the base of the slice to the moment center.

In the above equations it is assumed that pore pressures are known as well as the locations of their resultants.

Assuming that the strength of the soil is given by the Mohr-Coulomb failure criteria, = c 0 + 0 tan 0 , and assuming a single safety factor for all slices, F , then, the mobilized shear at the base of the slice is given by:

= c 0 F + 0 tan 0 F (4)
Considering that the width of the base of the slice is l, then the shear force at the base of the slice is:

T = c 0 F + 0 tan 0 F l (5)
Considering also that the eective normal stress resultant at the base of the slice is N 0 = 0 l, then:

T = c 0 l F + N 0 tan 0 F (6)
Equations ( 1) to (3) are the discretized versions of the dierential equations of equilibrium presented in Appendix A.

Number of unknowns

The unknowns and their numbers for the force equilibrium equations are given in the following table :   Unknown Quantity For the moment equilibrium equation it follows that the additional unknowns are the distances D e and the distance from the forces N 0 to the center of the slice, totaling 2n ¡ 1 unknowns. As the number of available equations from statics is 3n, the problem is statically undetermined and additional assumptions are required to solve the problem. In this method, a relationship between inter-slice forces X and E such as the one devised in the Morgenstern-Price (MP) method is assumed. For the sake of simplicity, a constant ratio a = X /E will be assumed, although this is not required and other functions could be used. Although a is similar to MP's in the sense that it represents a ratio between normal forces and shear forces at the side of the slice, a and dier in relation to direction. While represents a ratio of inter-slice forces in the vertical plane, a represents a ratio of inter-slice forces acting on a slice in which the direction changes in accordance with a given slice.

N 0 n X n-1 E n-1 F 1
In addition, it is considered that slices are small and therefore N 0 is assumed at the center of each slice. With these assumptions the system becomes determinate and the factor of safety as well as all slice forces can be obtained for a given prescribed potential failure surface.

Global safety factors

From Figure 2, the safety factor for horizontal forces considering the whole potential slip surface and only external forces can be written as:

F f = P (c 0 L + N 0 tan 0 ) cos P (N 0 + U ) sin (7)
On the other hand, the global safety factor for moments considering only external forces for the potential slip surface is:

F m = P D b ¡ c 0 l + N 0 tan 0 cos P [W sin D + (N 0 + U )sin D b ] (8)
4 Solution of the non-linear system

Equations (1), (2), (3) and ( 6) constitute a set of nonlinear equations requiring a solving strategy. A scheme that can be used is the following. Working from one end of the potential failure surface to the other, assume a safety factor F , a value (or a function) for a = X /E and solve for E and N 0 (or X and N 0 ) on the other radial line of the same slice using the equations of equilibrium of force, equations (1) and (2). The rst pair of forces E and X at the boundary are both equal to zero if no external forces are applied. With the forces determined as described above for the rst slice, the calculation proceeds in the same way to the last slice, where again, the pair of forces E and X must be zero, unless, again, external forces are applied. Once all E, X and N 0 forces are determined, the positions D eL and D eR are determined for each slice using equation (3). Here again the calculation of these distances proceeds from one end of the potential slip surface to the other. After all required forces and distances are determined, the safety factors for moments and for horizontal forces are calculated using equations ( 7) and (8) and compared with the assumed safety factor used at the beginning of the trial. If safety factors are equal to one another to a certain degree of tolerance then the system was solved satisfactorily. On the other hand, if the safety factors are not the same, then another trial is required. In order to expedite the solution, iteration equations for F f and F m can be used. It can be shown that (see Appendix B), by using equations (1), ( 6) and (7) the following equation for the safety factor of forces can be obtained:

F f = P h c 0 l + A1F ¡ A2 FM tan 0 i cos P h A1F ¡ A2 FM + U i sin (9) 
where:

A 1 = W cos + (X R ¡ X L ) cos 2 ¡ U cos + (E L + E R + P w L + P w R ) sin 2 (10) A 2 = c 0 l sin (11) M = cos + tan 0 sin F (which is Bishop 0 sM function) (12) 
The iteration equation for moments can be obtained by combining equations ( 1), ( 6) and ( 8) resulting in:

F m = P h c 0 l + A1F ¡ A2 FM tan 0 i D b cos P h W sinD + A1F ¡ A2 FM sin D b + UD b sin i (13)
Equations ( 9) and ( 13) can be further developed into the following equations:

F f = ¡ P B 8 P B 7 ( 14 
)
F m = ¡ P A 14 P A 13 (15)
The derivation of equations ( 14) and ( 15) as well as the expressions of parameters B 7 , B 8 , A 13 and A 14 are also provided in Appendix B. It is worth noting that equations ( 14) and ( 15) are advantageous over equations ( 9) and ( 13) as no numerical procedure such as Newton-Raphson's technique is required for obtaining the next set of safety factors for F f and F m .

The converged safety factors that results from the use of equations ( 14) and ( 15) can be used to make curves of a versus F m and F f . In such plot, the intersection point between these two curves is the safety factor solution to the nonlinear system.

Matrix representation of the equations of equilibrium

Equations of equilibrium (1) to (3) can be represented in matrix form. In order to facilitate the understanding of the numerical procedure for solving the nonlinear system, equations ( 1) and ( 2) are grouped together in the following fashion:

a cos 2 + sin 2 ¡M a sin 2 ¡ cos 2 tan 0 cos F ¡ sin E r N 0 = c 0 l F sin ¡ W cos + U cos ¡ (P wL + P wR ) sin 2 + ¡ a cos 2 ¡ sin 2 E L W sin ¡ c 0 l F cos ¡ (P wL + P wR ) cos 2 + U sin ¡ ¡ a sin 2 + cos 2 E L (16)
Matrix equation ( 16) implies working from left to right along the potential slip surface. It is worth noting that the coecient matrix above has two interesting elements, both related to the eective normal force N 0 . The rst is Bishop's M function. The second, tan 0 cos F ¡ sin , when equated to zero and after a little algebraic work, can be shown to be equivalent to the expression for the factor of safety in innite slopes. When solved, this matrix equation provides the values of the unknowns E r and N 0 . Since a is assumed for solving the system of equations, the inter-slice shear forces X can be obtained. The last set of unknowns, of distances D e , can be obtained by making use of equation (3). When working from left to right along the potential slip surface, the expression for D e becomes:

D eR = ¡W sin D + T cos D b ¡ (N 0 + U ) sin D b + (E L D eL + P wL D wL ¡ P wR D wR ) cos 2 E R cos 2 (17)
Equations ( 16) and ( 17) when applied in conjunction with the procedure mentioned above for solving the nonlinear system solves the problem of the determination of the safety factor of a potential slip surface in the present method. The equations and procedure described above were applied to simplied cases illustrated by examples in Sections ( 5), ( 7) and ( 8) below. Calculations were carried in GNU Octave, [START_REF] Eaton | GNU Octave version 4.2.1 manual:a high-level interactive language for numerical computations[END_REF].

Circular slip surface and dry slope simplied case

In this case, U = P wL = P wR = 0, cos = 1, sin = 0 and D b = R (the distance from the moment center to the base of the slice becomes the radius R of the circle). Therefore Equations ( 1) to (3) become:

W cos + (X L ¡ X R ) cos 2 ¡ N 0 + (E L + E R ) sin 2 = 0 (18) (E L ¡ E R ) cos 2 ¡ W sin + T + (X L +X R ) sin 2 = 0 (19) (E L D e L ¡ E R D e R ) cos 2 ¡ W sin D + T R = 0 (20)
For this simplied case, the expressions for the factors of safety F f and F m are then given by:

F f = P (c 0 L + N 0 tan 0 ) cos P N 0 sin (21) F m = R P ¡ c 0 l + N 0 tan 0 P W sin D (22)

Example 1

A calculation was carried out for a 15 m high slope with an angle of 38. In comparison, the safety factors for the same case when run with the student version of a commercial software using the constant Morgenstern-Price method with the same number of slices were 1.249, 1.180, 1.168 and 1.165, respectively. The dierence in safety factor for the 32 slices slip surface was about 0.2%.

Although it is known that stresses from limit equilibrium methods are not representative of the actual stresses in the ground, a comparison was made for normal stresses at the base of slices for the sake of understanding the dierences and similarities between methods. As it can be seen from the gure below, results are in close agreement. Despite the good agreement between the results mentioned above, a signicant dierence was noticed in relation to the inter-slice force constant. While in the Morgenstern-Price method the value of was 0.697, in the new method, the value of a was 0.387. Another important point is the position of the line of thrust. Although the calculated line of thrust is located within the potential slip surface, it passes through the lower third, not the middle third as one might have expected to avoid tensile stresses in the soil mass. At the same time no slice presented tensile normal stresses. A small tensile normal stress, ¡0.33kPa, was noted in the last slice (slice 32) for the calculations with the commercial software. However, it is worth noting that the tension zone depth option was not used when working with this software.

Example 2

A second test was carried out for a 15 m high slope with an angle of 56. As it can be seen in the gure below, the converged safety factor for a 32 slices slip surface was 2.794. In comparison, the safety factor from the commercial software was 2.747. The dierence in safety factor is therefore about 1.7%. In relation to normal eective stresses at the base of the slices, the gure below shows a similar pattern, although not as close as in the rst example. In addition, only the uppermost slice presented a tensile stress of 2.47 kPa while none was observed when using the commercial software. For this second example a = 0.481 in comparison to = 0.273 from the Morgenstern-Price constant method. Line of thrust was found to pass through the lower third as in the previous example.

Innite slope in dry cohesionless soil simplied case

For this simplied case, consider equation (13) again. An innite slope can be considered as a shallow circular surface where its length is much greater than its average thickness. In other words, it can be seen as a circle with a large radius R and a small angle opening. In this limit case, D b D and both are equal to the radius of the circle, R. Because the surface is circular, = 0 and therefore cos = 1, sin = 0 and M = 1. In addition, for a dry cohesionless soil, c 0 = 0 and U = P w L = P w R = 0. Introducing these simplications in equation ( 13) gives:

F m = P A 1 tan 0 P W sin (23) 
Substituting equation ( 10) in ( 24) and making the same simplications mentioned above results in:

F m = P W cos + (X R ¡ X L ) cos 2 + (E L + E R ) sin 2 tan 0 P W sin (24)
Now, considering a whole innite slope surface, internal forces cancel each other and therefore need not be considered. In addition, because the soil is homogeneous and every slice is in essence the same, the summation symbols drop and equation ( 24) simplies to read:

F m = W cos tan 0 W sin (25) 
Finally, as = 0, from the relationship between , and , which is = ¡ , it follows that = .

Introducing this simplication and canceling the weight in equation ( 25) leads to:

F m = tan 0 tan (26)
Which is the innite slope equation. This result can, of course, also be arrived at by considering equations ( 7), ( 8) or (9).

Non-circular slip surface and dry slope simplied case

As in the simplied case from Section 5, U = P wL = P wR = 0. Therefore Equations ( 1) to (3) become:

W cos + (X R ¡ X L ) cos 2 ¡ N 0 cos ¡ T sin + (E L + E R ) sin 2 = 0 (27) (E L ¡ E R ) cos 2 ¡ W sin + T cos ¡ N 0 sin + (X L + X R ) sin 2 = 0 (28) (E L D eL ¡ E R D eR ) cos 2 ¡ W sin D + T cos D b ¡ N 0 sin D b = 0 (39)
And the safety factors F f and F m become:

F f = P (c 0 L + N 0 tan 0 ) cos P N 0 sin (30) 
F m = P D b ¡ c 0 l + N 0 tan 0 cos P (W sin D + N 0 sin D b ) (31)

Example 3

An exercise was carried out on a 9 m high slope with a 27.9 o angle with the horizontal direction in a dry homogeneous soil. The soil parameters used in this test were 0 = 25 o , c 0 = 2kPa and = 18kN /m 3 . The potential slip surface chosen for comparison is shown in gure 3 below. Figure 9 above shows also the center used for moment equilibrium calculation and the 24 slices used in the last run of this case. In addition to the case with 24 slices, calculations were also carried out dividing the chosen potential sliding mass into 5 and 10 slices. In increasing order of number of slices, the safety factors were 1.326, 1.419 and 1.347. Due to the discrepancy in results, a dierent algorithm for the determination of the safety factor was used as a check. The algorithm suggested by Espinoza (1992) was chosen and consists in rst calculating the safety factor for moments for a given (initially is set to zero) followed by the determination of inter-slice forces by an iterative procedure and afterwards by the determination of the safety factor for forces. If, at the end of the procedure for a given , the safety factors for moments and forces match within a certain numerical tolerance, then this is the nal value for the safety factor. If the safety factors do not match then another value of is chosen and the procedure is repeated until there is close agreement for the calculated values of both safety factors. The converged safety factor for the 24 slices run in accordance to this procedure was 1.447. The results from the commercial software for 5, 10, 24 and 32 slices were respectively 1.421, 1.421, 1.420 and 1.421. Therefore, the dierence in safety factor for the 24 slices case was about 1.9%. In light of the dierence noted for the 24 slices case, the algorithm suggested by Espinoza (1992) was applied and the converged safety factors found were 1.388 and 1.425 for the 5 and 10 slices cases, which are much closer to the results from the commercial software. The value of a was 0.389 while was found to be 0.421 in the Morgenstern-Price constant method.

Regarding the line of thrust, again it was found that it passes through the lower third of each slice. However, contrary to what was found in the rst exercise, three slices presented negative normal eective stresses, which is incorrect for materials that cannot sustain tension. This is, however, a result of using a failure criteria with a term, c 0 , which is independent of eective normal stresses. These negative tensile normal stresses occurred near the sharp upper corner of the slip surface (slices 22 to 24)and can be seen in the gure below. One nal remark regarding convergence of the factor of safety for moments with the factor of safety for forces. Due to the convergence problems experienced in this exercise, a plot of F m and F f versus a in accordance with the algorithm suggested by Espinoza was made. The results are shown below in Figure 11 for values of F m and F f calculated in 0.0001 increment steps. As it can be seen, the safety factor curves cross at two points for the interval of a used in the calculations. The rst is at a = 0.389 and the second is at a = 0.697. What dierentiates one solution from the other is the position of the line of thrust. For a = 0.389, the line of thrust, although passing in the lower third, is contained within the slip soil mass while in the second, for some slices, the line of thrust passes outside these slices and therefore is not a valid solution for this case. As a last example, calculations were made for the slip surface and soil from example 3 for the complete submergence case. The safety factor calculated with the new method in accordance to Espinoza's algorithm was 1.629 as can be seen in the gure below. In comparison, the safety factor from the commercial software using the Morgenstern-Price constant method was 1.578, a dierence of about 3.2%. In the new method the inter-slice parameter was a = 0.391 versus = 0.025 from the commercial software, which is a signicant change. As seen in the previous example the curves for the safety factor of forces and moments obtained using Espinoza's algorithm also cross each other twice. In relation to the normal stress at the base of the slice, close agreement was once again veried as can be seen in the gure below. As seen in the previous example, tensile stresses were noted near the upper right limit of the slip surface for both the new method and for Morgenstern-Price's method. Regarding the line of thrust, the dierence in position in relation to the previous example was negligible. Finally it is worth noting that while in the new method, the calculation was carried out using the submerged weights of the slices, in the commercial software, total weights were used in combination with external pore-pressure resultants applied at the boundaries and at the free surface of the potential sliding mass. Both procedures are, of course, equivalent (see for example [START_REF] Lambe | Soil Mechanics. John Wiley and Sons 13[END_REF].

Discussion

Despite the close agreement observed between the new method and the Morgenstern-Price constant method, results were not identical. This good agreement is not surprising as both have essentially the same assumptions. The dierences in results are believed to be related to some approximations made in relation to the position of the centroid of slices in the new method. The rst approximation is the position of the centroid of inner slices. Although a signicant number of slices was used for the nal calculations of all examples, as the centroid position was estimated using the equation for trapezoids and considering an average height for each slice, a small dierence for sure exists between this simplied calculation and that of the actual slice polygon. A similar source of inaccuracy comes from the end slices. In these slices, although the position of the centroid was determined using the centroid equations for triangles, the centroid is not located in the radial line that bisects the slice. These dierences were also noted in some inner slices, especially where the geometry changed sharply. These dierences, however, were in the order of a fraction of a degree and therefore are not expected to amount to a signicant dierence. In addition, these inaccuracies can be dealt with by considering the more accurate equations automatically in computer programs. These sources of inaccuracy might perhaps explain the small dierence in safety factors observed between methods.

Another point worth discussing is about the tensile normal stresses noted in a few slices in examples 2, 3 and 4. It is a consensus that the great majority of soils do not present true cohesion. As such, they cannot resist tensile stresses. At the same time, the need for simplicity in calculations makes us approximate a curved failure envelope by a straight line. In this representation, the parameter c 0 is a mere mathematical entity with no physical resemblance. It is only a tting parameter. Fixing this problem comes with a cost: complexity in calculations. This point is congruent with the one made by [START_REF] Ching | Some diculties associated with the limit equilibrium method of slices[END_REF], The problem of a negative normal force at the base of a specic slice is not as serious as it may rst appear. The negative normal is simply a quantity satisfying equilibrium for the specied shear strength parameters. As a point of clarication the calculations made with the commercial software did not make use of the so-called tension zone depths option and also showed small tensile stresses near or at the same slices where tensile stresses were noted in the new method.

An interesting characteristic of the new method, when applied to circular surfaces, is related to the parameter M . It is well known that numerical problems can arise when this parameter is very small, zero or negative. In this new method, for circular failure surfaces, M is always one. This is due to the use of polar coordinates for the derivation of the equations of equilibrium. As such, is the angle between the direction of the base of the slice and the direction perpendicular to the radial line. Therefore, for circular slip surfaces, is zero. This interesting characteristic comes with a trade o. From equations ( 9) and ( 13) it can be seen that for = 0 or the right combination of parameters, the denominator of these equations can drop to zero causing numerical problems. Finally, it is worth noting that the algorithm suggested by Espinoza worked very well where the algorithm rst used failed. Taking everything into consideration it is yet to be determined how the new method fares in comparison to other methods in numerical terms. More cases are needed in this regard.

Conclusions

Based on the results of the examples explored in this work, the new method seems to be in good agreement with rigorous methods such as the Morgenstern-Price and Spencer methods as percentage dierences in safety factors were, on average, less than 3%. Also, curves of eective normal stresses at the base of the slices were, although not identical, similar in magnitude and shape. These results, in addition to the position of the line of thrust, which were located within the potential sliding mass in all four cases explored in this work, seem to indicate the validity of the new method. Due to the limited number of cases explored in the present paper, more work is needed in order to determine potential advantages and shortcomings of the new method.
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To the memory of my late father, Joa ~o Alexandre Junior, I dedicate this work. where:

A 13 = A 3 + A 5 + A 7 A 14 = A 4 ¡ A 6 + A 8 ¡ A 9 ¡ A 11
For a constant safety factor F equation (A:B12) can be expressed as: 
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 1 Figure 1. Hypothetical slip surface made on radial segment slices.
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 2 Figure 2. Forces acting on a radial segment slice.

  28 o with the horizontal direction in a dry homogeneous soil. The soil parameters used in this example were 0 = 35 o , c 0 = 3kPa and = 18kN /m 3 . The potential slip surface chosen for comparison is shown in Figure 3 below.
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 3 Figure 3. Geometry considered in example 1.Calculations were carried out dividing the slip surface in 3, 6, 12 and 32 slices. In all four cases convergence was achieved for safety factors of 1.203, 1.173, 1.167 and 1.167, respectively. The tolerance for the convergence of the safety factors of moment and horizontal forces was set to 110 ¡4 in absolute values in this and all other examples explored in this work. Figure4below shows the curves for moments and forces for the calculation with 32 slices.
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 4 Figure 4. Safety factor curves for the 32 slices slip surface.
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 5 Figure 5. Eective normal stresses for the 32 slices slip surface.

  3 o with the horizontal direction in a dry homogeneous soil. The soil parameters used in this test were 0 = 35 o , c 0 = 20 kPa and = 20kN /m 3 . The potential slip surface chosen for comparison is shown in Figure 6 below.
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 6 Figure 6. Geometry considered in the second example.
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 7 Figure 7. Safety factor curves for the 32 slices slip surface.
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 8 Figure 8. Eective normal stresses for the 32 slices slip surface.

Figure 9 .

 9 Figure 9. Geometry considered in example 3.
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 10 Figure 10. Eective normal stresses for the 24 slices slip surface.
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 11 Figure 11. Safety factor curves for the 32 slices slip surface using Espinoza's algorithm.
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 12 Figure 12. Safety factor curves for the 32 slices slip surface using Espinoza's algorithm.

Figure 13 .

 13 Figure 13. Eective normal stresses for the 24 slices slip surface.
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 14 Figure 14. Innitesimal radial slice and forces considered.
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 1 Unknowns related to force equilibrium equations.

in which second order terms were dropped.

14 Appendix B 14.1 Derivation of equations ( 9) and ( 14)

Substituting equation ( 6) in (1) results in:

which, with the use of the following auxiliary expressions:

results in the following when solved for N 0 :

Substituting (A:B2) in (7) gives:

which is equation ( 9). By making F f = F , equation (A:B3) can be modied to read:

Introducing the following auxiliary expressions:

and for FM = / 0, it follows that:

Considering that:

and taking into account that B 6 ¡ B 4 tan 0 sin = 0, equation (A:B5) can be re-written as:

where:

For a constant safety factor, F , (A:B6) can be rearranged as:

From which the safety factor is either 0 or:

which is equation ( 14).

Derivation of equations (13) and (15)

Combining equations (A:B2) and ( 8) yields:

Which is equation ( 13). By making F m = F , equation (A:B9) can be modied to read:

Taking FM = F cos + tan 0 sin into (A:B10) for FM = / 0 leads to: