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Abstract

In climate science regime transitions include abrupt changes in modes of climate
variability and shifts in the connectivity of the whole system. While important, their
identification remains challenging. This paper proposes a new framework to investigate
regime transitions and connectivity patterns in spatiotemporal climate fields. Firstly,
local regime shifts are quantified by means of information entropy; secondly, their spatial
heterogeneity is examined by identifying the underlying spatial domains of the entropy
field; finally, a weighted, direct and time-dependent network is inferred to capture
the linkages between these domains. The spatiotemporal variability in sea surface
temperature (SST) in two simulations of the last 6000 years is investigated with the
proposed approach. The largest regional regime shifts emerge as abrupt transitions from
low to high-frequency SST oscillations, or vice versa, in both simulations. Furthermore,
the variability in time of the two climate networks is studied in terms of their network
density. Generally, rapid and sudden transitions in the degree of connectivity of the
system are observed in both simulations but, in most cases, at different times, with
few exceptions. This suggests that our ability to predict the climate system may be
hampered by its inherent complexity resulting from internal variability.
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1 Introduction

Our ability to predict Earth’s climate is limited by the nonlinear and intrinsically complex inter-
actions between its components. Quantifiable changes in the system dynamics, i.e. dynamical
transitions or climate regime shifts, are manifestations of such complexity. A global-scale example
of major climate shifts are the Snowball Earth glaciations that may have occurred 650-700 million
years ago [1, 2, 3, 4]. In addition, the climate system has experienced a large variety of regional
regime shifts, such as the Dansgaard-Oeschger events [5, 6] or the abrupt hydrological fluctuations
in the African and Asian monsoon regions [7, 8], the sudden cooling of the North Pacific sea surface
temperature in the mid-Holocene [9] or the 4.2-kiloyear BP aridification event during the Holocene
epoch [10] to cite a few 1.
In recent years, methods stemming from non-equilibrium statistical mechanics, information theory,
and network analysis have proven valuable for understanding and investigate complex climate
transitions [13, 14]. Examples include the work by Donges et al. [15], who investigated climate
fluctuations in Northern and Eastern Africa and linked them to rapid changes in hominid evolution,
or by Donges et al. [16], who showed that nonlinear regime shifts of the Asian monsoon were
associated to the migration and collapse of ancient societies. In the study of dynamical systems,
the permutation entropy metric [17] is often used in nonlinear time series analysis to quantify the
complexity of a dynamical system, with changes in complexity being linked to regime shifts. This
metric has been applied recently to climate fields to studying the complexity of a proxy record of
the El Niño Southern Oscillation (ENSO) [18] and to identifying anomalies and post-processing
issues of deep polar ice-cores [19]. An alternative, more traditional measure of complexity in
dynamical systems is provided by Lyapunov exponents [20] that quantify the rate of separation
of infinitesimally close trajectories. However, recently developed entropy quantifiers are easier to
estimate and preferable when dealing with arbitrary real-world observations and large datasets
[17]. Independently of the methodology used, the majority of the studies employing nonlinear data
analysis techniques for studying climate dynamics have focused so far on single time series (i.e.,
on paleoclimate proxies or their modeled equivalent). Here, we propose a novel approach that
allows for extending nonlinear time series analysis to the investigation of dynamical transitions in
spatiotemporal fields. The methodology couples an entropy quantifier recently proposed by Corso et
al. [21] with δ-MAPS a dimensionality reduction scheme developed by Fountalis et al. [22]. Given
a spatiotemporal field, our framework allows to quantify the local (i.e., for each grid cell) time
evolution in information entropy and identify spatially contiguous sets of grid cells (domains) with
highly correlated entropy variability. Changes in the information entropy of a time series reflect
changes in its recurrent structure and hence in its system’s dynamics. It follows that the identified
domains consist of grid cells sharing the same dynamical transitions. Studying the average entropy
signal inside domains enables to assess the timing, strength and location of climate regime shifts. In
this paper we generally focus on abrupt regime shifts, broadly defined as fast and sudden transitions
in the system’s dynamics. A strong abrupt regime shift in the sea surface temperature (SST) field,
and reported in this work, would consist in a sudden transition in regional dynamics from high- to
low- frequency variability, or vice versa, that occurs over a period much shorter than the length of
the integrations, for example over 200 to 300 years.
Additionally, the dynamics of the climate system establish linkages between domains, and complex

1For a review of abrupt regional shifts and tipping points in the climate system, the reader is referred to
the work by Alley et al. [11] and Lenton et al. [12].
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network science provides a well-established methodology to quantify these connections [23, 24].
Here we adopt a functional network inference that allows to quantify the magnitude of connections
between domains, their directionality, and their evolution in time [22]. In our framework, domains
are considered as static nodes of the climate network and links quantify their connections [25, 26].
The strength of our approach relies in exploring climate variability simultaneously in space and
time.

To showcase this novel methodology, we analyze two global ocean-atmosphere coupled simu-
lations of the last 6000 years performed with different versions of the IPSL Earth system model
[27, 28]. These simulations test the response of the climate system to the slow variations in
Earth’s orbit and to changes in trace gases. They produce a wide range of variability resulting
from the combination of the response to external forcing (Earth’s orbit and gases) and intrinsic
climate variability [28, 29]. These two long, global climate simulations provide an ideal testbed for
assessing the efficiency of the new method and its ability in identifying major shifts in the simulations.

The paper is organized as follows: Section 2 introduces the proposed approach; the climate
simulations analyzed are described in Section 3; results are presented in Section 4 and a comparative
application to a reanalysis data set follows in Section 5. A discussion of the method and its
preliminary applications concludes the work.

2 Methodology and strategy

The proposed strategy builds upon concepts of recurrence plots, information entropy and δ-MAPS.
Here we briefly introduce these tools and present the rationale behind and strategy followed by
our comprehensive approach. More details on each component can be found in Marwan et al. [30],
Corso et al. [21] and Fountalis et al. [22].

2.1 Recurrence plots and information entropy

A recurrence plot (RP) is a nonlinear time series analysis method introduced by Eckmann et al.
[31] that allows for visualizing a d -dimensional dynamical system in terms of its recurrences, a
fundamental property of these systems [32, 33].
Given a trajectory xi of a dynamical system in a d -dimensional state space at time i, a RP is an
N ×N matrix of 1 and 0 given by:

RPi,j(ε) = Θ(ε− ‖xi − xj‖), xi ∈ Rd, i, j ∈ [1, N ] . (1)

Here ε is the threshold distance and defines the neighborhood of a state xi, Θ is the Heaviside
function, ‖ · ‖ is a norm and N is the number of states considered.
The analysis of structures (such as diagonal, vertical or horizontal lines) in a RP is known as
recurrence quantification analysis (RQA) and has found numerous applications [30]. RQA allows
for the definition of different measures of complexity of time series. Here we focus on one such
measure, developed by Corso et al. [21] and based on the probability of occurrence of microstates in
a RP. A microstate of size M is defined as an M ×M matrix inside the RP. The total number of
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configurations of 1 and 0 in a microstate of size M is M∗ = 2M
2
. It is then possible to define a

probability of occurrence Pk of a microstate k as Pk = nk
M∗ , with nk being the number of occurrences

of the k-th microstate in the RP. The information entropy of the time series is then given by:

S(M∗) = −
M∗∑
k=1

Pk logPk . (2)

The maximum entropy corresponds to the case in which all microstates appear with the same
probability Pk = 1

M∗ . It can be analytically calculated as Smax(M∗) = M log 2 and used to normalize
the entropy, so that S = 0(1) implies total predictability (unpredictability) of the system dynamics.
The number of admissible microstates M∗ grows exponentially as a function of M , but Corso et al.
[21], showed that in practice only few of them actually populate the RP. It is therefore reasonable
to sample M̄ of the possible microstates in the RP and to expect a rapid convergence to S(M∗). In
this case, the maximum entropy will be equal to Smax(M̄) = log M̄ . The computed information
entropy is a measure of the complexity of the time series examined and from now on the two terms
will be used interchangeably.
There are other methods to estimate complexity of time series, for example related to RQA [30],
recurrence network analysis [34] and information theory [13, 17]. Some of these quantifiers have
been applied to climate science to analyze regime shifts and tipping points [15]. These methods
usually require embedding the time series in a higher dimensional space, a procedure known as
“state space reconstruction” [35]. Among these methods the entropy quantifier proposed by Corso
et al. [21] has clear advantages when dealing with large spatiotemporal fields (∼ 104 time series
in this work given the focus on two-dimensional spatial fields that evolve in time): (a) it avoids
the state space reconstruction that may lead to false results [36, 37] and (b) it relies on just one
parameter, the vicinity threshold ε. Additionally, Corso et al. [21] showed that given a generic time
series, results are (a) well correlated with its maximum Lyapunov exponent and (b) have a weak
dependence on the distance threshold ε.

Here, for a given climate field X(t), we compute the information entropy and its variability
for all the time series embedded in a spatial grid to derive its spatiotemporal entropy field SX(t).
In order to reduce its dimensionality, we then identify sets of grid cells (domains) that behave
homogeneously in terms of their complexity using δ-MAPS [22], briefly described below.

2.2 δ-MAPS

2.2.1 Dimensionality reduction

Given a generic spatiotemporal field, δ-MAPS aims at identifying spatiotemporal patterns, defined
as spatially contiguous sets of grid cells with highly correlated activity and referred to as domains.
The underlying hypothesis of the domain identification algorithm is that domains have epicenters or
cores where their local homogeneity is maximum. The first step is then to identify these cores and
expand them. Formally, each grid cell i of a spatiotemporal field S(t), is associated with a time
series si(t). Linear trends are removed from the time series. The similarity between two grid cells i
and j is quantified by their Pearson correlation ri,j at lag τ = 0.
Cores are identified by defining a K−neighborhood ΓK(i) including a grid cell i and its K closest
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(in terms of geodesic distance) cells. We then compute the local homogeneity of a cell i, defined as
the average pairwise correlation in ΓK(i). A grid cell i is marked as a core if its local homogeneity
is a local maximum and greater than a threshold δ. Finally, cores are then iteratively expanded and
merged to identify domains [22]. The total number of domains D will depend on the threshold δ
and its minimum sized on the K parameter. Details on the methodology are discussed in Appendix
A and more in depth in [22] and [38].

2.2.2 Network Inference

The temporal variability of domains is quantified by computing their signals. Given a spatiotemporal
field X(t), the signal XA(t) of a domain A is the weighted cumulative anomaly of all time-series
within that domain:

XA(t) =

|A|∑
i=1

xi(t) cosφi , (3)

where xi(t) is a time series of length T associated to grid cell i with latitude φi and |A| is the
cardinality of the set.
Given D domains, the network is inferred by considering each possible pair of domains A and B
and computing their Pearson correlation rA,B(τ) for a lag range τ ∈ [−τmax, τmax]. The statistical
significance is then tested for the 1

2D(D − 1)(2τmax + 1) correlations adopting the False Discovery
Rate (FDR) proposed by Benjamini and Hochberg [39] against multiple testing, and excluding
autocorrelations by using the Bartlett’s formula [40].
Two domains A and B are connected if there exists at least one significant correlation between
the two at any lag in the range τ ∈ [−τmax, τmax], denoted as RA,B(τ). If RA,B(τ) includes the lag
τ = 0, the link is left undirected, and treated here as a two-way link A↔ B. If RA,B(τ) is strictly
positive (negative) the link will be directed from A to B (B to A). Finally a weight wA,B is assigned
to each link and based on the covariance between the two signals XA(t) and XB(t) at the lag τ∗ at
which their significant correlation rA,B(τ) is maximized.
In this work, we quantify the degree of connectivity of the climate network, along with its time
variability, with the network density metric. Given a weighted, direct network N between D domains,
with weights wA,B, we define its density ρN as:

ρN =

∑D
A,B,A 6=B |wA,B|∑D
A,B,A 6=B σAσB

, (4)

where σA denotes the standard deviation of the signal XA(t) of domain A.
The denominator is never zero and accounts for the case in which all possible connections exist with
correlation |rA,B(τ∗)| = 1. Therefore, if ρN = 1 the network is a complete direct weighted graph,
with each node connected to every other node and with their weights maximized. If ρN = 0 the
network has no links.
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3 Strategy to study climate variability in long tran-

sient simulations

3.1 Model simulations

We analyze two 6000-years long transient simulations of the global climate system realized with
the IPSL model, Vlr01 and Sr02 hereafter. The Vlr01 simulation was run with the standard
IPSL-CM5A-LR version [27] utilized also in the Coupled Model Intercomparison Project Phase
5 (CMIP5). The atmospheric model resolution is 3.75◦ in longitude, 1.875◦ in latitude and 39
vertical levels. The ocean model resolution is 2 ◦, with spatial refinement at the equator and in
the Arctic, and 31 vertical levels. The Sr02 simulation has a higher horizontal resolution in the
atmosphere (2.5◦ in longitude, 1.125◦ in latitude) and includes the new 11-layer ORCHIDEE land
surface model and a dynamical vegetation module [28]. The latter allows both the Leaf Area Index
and the vegetation type to vary in each grid cell as a function of climate and CO2.
1000-years long simulations were performed to produce initial conditions in equilibrium with the
external forcing [29]. Both simulations are forced by yearly-updated Earth’s orbital parameters
[41], and atmospheric composition derived from ice-core reconstructions [28, 42]. When showing
time-series we always report the simulation time on the x-axis (i.e., time going from 1 to 6000 with
6000 = year 1950).
The focus of the analysis is on sea surface temperature (SST) fields, saved as monthly averages.

3.2 Strategy

Given a spatiotemporal climate field, the objectives of our approach are (a) to identify spatially
contiguous regions undergoing regime shifts, and (b) to investigate the time dependent connectivity
patterns between those regions.

This can be achieved as follows:

• We consider a climate field X(t) and assign to each grid cell i a (constant) value of the
vicinity threshold εi. The selection of εi for a time series xi(t) is based on the rationale that
its entropy si(εi) should be invariant under small perturbations around its value such that
si(εi) ∼ si(εi ± δi), δi << εi. Details on the heuristics can be found in Appendix B. For every
grid cell i we have a (linearly) detrended, anomaly time series xi(t) with T data points. We
consider W years of data, and compute its recurrence entropy si (see section 2.1). We do so
every ∆W years and for each i. This step results in the computation of a spatiotemporal
complexity field SX(t).

• Given SX(t), its dimensionality is reduced by identifying its domains (see section 2.2.1) and

for each domain A the average entropy (complexity) signal is computed as SA(t) =
∑|A|

i=1 si(t)
|A| ,

where si(t) is the entropy time series at grid cell i and |A| the number of grid cells inside
the domain. The information on climate regime shifts of each domain A is then contained in
SA(t). Changes in information entropy are directly linked to structural changes in the RP
and therefore to transitions in the system’s dynamics. The domains identified can then be
regarded as spatially contiguous sets of grid cells undergoing regime transitions or shifts in a
homogeneous way.
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• Complexity is a metric that quantifies the variability of a given time series and the D domains
can be thought as the true, semi-autonomous components of the system in the 6000 years
analyzed (all the grid points within a domain are characterized by highly correlated variability).
This allows to consider them as “static” nodes of the climate network and investigate their
connections in time, given that the D domains identified can be connected through oceanic
and/or atmospheric teleconnections. Their connections are captured by the network topology
in the X(t) field. We consider now Y years of data and infer a weighted and direct network
between domains. We do so every ∆Y years. This step results in the computation of a time
dependent network between all D domains.

This strategy is applied to the two SST fields presented in section 3.1. The time resolution is
monthly, and the length of the simulations is 6000 years.

It should be noted that the domain identification and network inference act on different fields:
first, the dimensionality of the entropy field SX(t) is reduced by identifying its underlying spatial
components, then the connectivity patterns between these domains identified in the entropy field
are inferred in the original climate field X(t).

3.3 Parameters

We compute the complexity of (linearly) detrended SST anomalies using time windows of W = 100
years every ∆W = 20 years.This choice of W allows for the investigation of periods with decadal
and multidecadal variability and shifts between them. We choose ∆W = 20 years as a compromise
between having a reasonable time resolution in the entropy field and restricting the large amount
of computations. The recurrence entropy of each time series is computed by sampling M̄ = 10000
microstates of sizeM = 4 (as in Corso et al. [21]). The dimensionality reduction in the spatiotemporal
entropy field SX(t), allows for the identification of regions undergoing the same dynamical transitions.
For this step we use a value of α = 0.01 to select the threshold δ (as done in Fountalis et al. [22] and
Falasca et al. [38]) and K = 2 and K = 6 for the low- and high-resolution simulations, respectively.
Results are qualitative similar for other values of K close to the selected ones. Networks between the
D domains are inferred using Y = 100 years of (linearly) detrended anomalies every ∆Y = 3 years.
This results in a total of 1967 networks computed in each simulation. We choose Y = 100 years for
consistency with the entropy computation. A choice of ∆Y = 3 years is feasible given the reduced
dimensionality of the dataset (i.e., D domains instead of all grid cells) and has the advantage of
quantifying temporal shifts in connectivity patterns with high precision. For the network inference
we set τmax = 12 months and and the FDR parameter q = 0.04. Therefore, for every network at
most 4% of the inferred links may be false positives.

4 Results

4.1 Mean complexity pattern

We first focus on the mean state of the complexity field in the two simulations. Figure 1a,b shows
the mean spatiotemporal entropy field 〈SSST (t)〉.

The spatial distribution and magnitude of the SST mean complexity is nearly identical across
simulations (Figure 1a,b). There is a marked latitudinal gradient between the tropics and mid- to
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Figure 1: (a,b) Mean complexity field for Vlr01 and Sr02 simulations. (c,d) Average latitudinal
dependence of complexity in both simulations.
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high latitudes (Figure 1c,d) resulting mostly from the large complexity in the equatorial Atlantic
and Indian Ocean basins. In the inter-tropical belt, the SST mean complexity depicts significant
basin-dependency in both magnitude and spatial gradients. The tropical Indian Ocean is character-
ized by very large SST mean complexity, with values ranging from ∼ 0.9 (1 = maximum complexity)
in its eastern equatorial part to ∼ 0.8 in its western tropical part. Similar values are found in the
equatorial Atlantic, also with a small east-to-west gradient. The tropical Pacific mean complexity,
on the other hand, exhibits non-trivial spatial features. There is a steep west-to-east gradient
in complexity, with the highest values in the upwelling cold tongue and significantly lower mean
complexity in its western part. Additionally, the lowest global mean complexity is located in the
central Pacific on two hemispheric-symmetric stripes.
The equatorial Pacific hosts the strongest mode of interannual climate variability, ENSO, and the
potential predictability of tropical SST anomalies is, on average, greater in the Pacific than in the
two remaining basins due to the ENSO quasiperiodicity. The analysis suggests that in the 6000
years considered, ENSO-related predictability in the IPSL model is on average larger in the central
Pacific, east of 180◦E, in two symmetric bands north and south of the Equator.

In the extra-tropics, the SST variability displays relatively low mean complexity outside the
western boundary current pathways and the eastern boundary upwelling systems. The strongest
shifts in complexity in both simulations, however, are found at high latitudes, as we will show next.

4.2 Exploring climate regime shifts in SST

To investigate the variability in the information entropy field SSST (t), we reduce its dimensionality
using δ−MAPS. The identified domains are shown in Figure 2 for both simulations and are similar
in terms of their spatial characteristics and mean complexity. Following from Figure 1, domains
with large mean complexity are found in the Indian Ocean, Equatorial Atlantic basins, the Southern
branch of the Horse Shoe pattern extending from the South Pacific Convergence Zone through
Indonesia, and along the path of major boundary currents.
We report here on two domains that undergo major shifts in local dynamics in both simulations,
to exemplify how the proposed strategy allows to quantify regime transitions in terms of timing
and spatial characteristic. The two domains have been chosen because they exhibit considerable
jumps in entropy (∆S ∼ 0.1) in periods as short as 200 to 300 years. For each domain we show the
time series of SST anomalies in centuries of highest and lowest complexity. A more comprehensive
investigation of all regime shifts, their interrelationships and causes is beyond the scope of this work,
that focuses on the methodology, and is left for future studies.

First, we focus on the domain in the Vlr01 simulation with the largest regime shift (Figure 3).
It connects the Indian and South Atlantic Oceans (Figure 3a) and embeds the Agulhas retroflection
current. Its mean complexity is 0.68 (Figure 3b), a value similar to that in the higher resolution
simulation in which, however, shifts occur at different times (Figure 3 and Appendix C).
Therefore, for this domain, we can conclude that regime shifts are likely due to the internal variability
of the system rather than variations in the orbital parameters or gas concentrations. Every point in
the complexity signals is computed based on the detrended SST anomalies over 100 years. Panels
c and d in Figure 3 show the monthly SST anomalies relative to the century with the lowest
and largest complexity, respectively. In roughly 400 years, from year 5120 to 5520, the domain
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a b

Figure 2: (a, b) Domains in the SST entropy field for the lower (Vlr01) and higher (Sr02)
resolution simulations, respectively. Colors quantify the averaged complexity values inside
each domain.

undergoes a sudden, rapid transition from high to low and back to high-frequency SST variability.
Specifically, from year 5281 to 5380, we observe the least complex SST variability with a clear
multidecadal oscillation (Figure 3c). This multidecadal oscillation has a periodicity of 33.3 years,
which is significant at the 95% level according to a red noise test [43, 44]. The system then jumps
to its highest complexity state in the 6000-year record between year 5421 and 5520 (Figure 3d).

Figure 4 presents the complexity signal for a domain crossing the Drake Passage in the Sr02
simulation. The mean complexity of this region is 0.73, higher than the majority of domains
identified south of 30◦S (see Figure 2b). Again, the SST anomalies relative to the centuries with
lowest and largest complexity are also shown (Figure 4c,d). Low-frequency oscillations in SST
anomalies are observed from year 3361 to 3460 when the lowest complexity state and significant,
energetic spectral peaks of 20 years are found. The century between simulation year 1981 and 2080,
on the other hand, displays high-frequency variability and corresponds to the highest complexity
state. For this domain, the largest jump in complexity appears over a period of about 300 years,
from 3200 to 3500 (Figure 4b).

We note that results are constrained by the choices of time windows for the entropy computation
(i.e., W = 100 years windows every ∆W = 20 years) and that new insights could be obtained using
shorter sliding windows (i.e., ∆W << 20) or longer periods (i.e. W > 100 years). However, regime
transitions are also reflected in changes in the topology of the networks between domains, and here,
climate networks are inferred every 3 years, allowing for the investigation of regime shifts at very
high temporal resolution (see next section).

4.3 Exploring variability in SST climate networks

In our approach, the domains in Figure 2 emerge as the true semi-autonomous components of
monthly SST variability. They are considered as true components since they are spatiotemporal
patterns of the system under study and largely independent of the spatial resolution of the grid and
as semi-autonomous since they can interact via coupled atmospheric-ocean dynamics.

10



a

b

c

d

0 1000 2000 3000 4000 5000 6000
0.60

0.62

0.64

0.66

0.68

0.70

0.72

0.74

t (simulation time, years)

S

5281 5291 5301 5311 5321 5331 5341 5351 5361 5371 5380
-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

t (simulation time, years)

S
S
Ta

5421 5431 5441 5451 5461 5471 5481 5491 5501 5511 5520
-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

t (simulation time, years)

S
S
Ta

Figure 3: (a) Domain with the largest regime shift in the low resolution (Vlr01) simulation.
(b) Mean complexity signal for the domain in (a) over time (x-axis: time in years; 6000 =
year 1950; the year reported indicates the first year of the period considered i.e., year = 1 for
the period going from year 1 to 100). (c, d) Associated monthly SST anomalies corresponding
to centuries of minimum and maximum complexity, respectively; x-axis: time in years. The
black lines indicate a 10-years moving average.
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Figure 4: (a) a domain in the high resolution (Sr02) simulation with a large regime shift. (b)
Mean complexity signal over time for the domain shown in (a) (x-axis: time in years; 6000
= year 1950; the year reported indicates the first year of the period considered i.e., year =
1 for the period going from year 1 to 100). (c, d): Monthly SST anomalies corresponding
to centuries of minimum and maximum complexity, respectively; x-axis: time in years. The
black lines indicate a 10-years moving average.
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Figure 5: Evolution of the network density (ρN = 1 implies a complete weighted graph,
ρN = 0 implies that the network has no links) in the (a) Vlr01 and (b) Sr02 simulations.
x-axis: time in years; 6000 = year 1950; the year reported indicates the first year of the
period considered i.e., year = 1 for the period going from year 1 to 100).

Here we investigate their time-dependent connectivity patterns using the network density metric ρN
proposed in Eq. 4. Changes in the network density allow for the quantification of transitions in the
degree of connectivity on a global scale. We focus on abrupt regime transitions.

We draw attention to two points: (a) a system with no regime transitions would imply constant
values of the network density over time and (b) high correlations between the two densities would
be obtained if the external forcings (i.e., orbital parameters and trace gases) were the dominant
mechanisms for global regime transitions In the 6000 years explored here, the climate system
undergoes relatively large dynamical changes in its network density from minima of 0.10 (0.07) to
maxima of 0.19 (0.18) for the low (high) resolution simulations, respectively, and the correlation
between the two densities is not significant (c.c. = 0.05) (Figure 5). Therefore, both simulations
display regime transitions driven mostly by internal variability. The mean network densities are very
similar across simulations (i.e., 0.14 and 0.13 respectively for Vlr01 and Sr02). The variability in
density, quantified by its standard deviation σ, on the other hand, is greater in the higher resolution

13



0 1000 2000 3000 4000 5000 6000
0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

t (simulation time, years)

σ
2
0
0
y
rs

2
(ρ
N
)

Vlr01 Sr02

Figure 6: Network density variance in moving windows of 200 years every 3 years (minimum
time step) respectively in the Vlr01 (red) and Sr02 (blue). x-axis: time in years; 6000 = year
1950; the year reported indicates the first year of the period considered i.e., year = 1 for the
period going from year 1 to 100). Dashed lines indicate periods with qualitative similar shifts
at the same time in both simulations.

run (σ = 0.014 and σ = 0.021 respectively for Vlr01 and Sr02).
Positive outliers in network densities (i.e., values greater than 〈ρN 〉+ 2.5σ) are indicative of large,
sudden transitions to periods of high connectivity and are found in both simulations at different
timings.
To quantitatively detect large abrupt shifts in connectivity, we consider values of the network density
inside moving windows of 200 years every 3 years (3 years being time step used to compute the
networks) and compute their variance for each window. Jumps in variance in periods as short as
200 years indicate robust, abrupt transitions in the climate connectivity of the system. Results are
shown in Figure 6.

Abrupt changes in the variability of the network density are, on average, smaller in the Vlr01
than in the Sr02 simulation, with the maximum from year 1171 to 1270.
The density in the Sr02 undergoes frequent, abrupt changes approximatively from year ∼ 2000 to
∼ 4000 and exhibit fewer transitions in the first and last 2000 years of the simulation. The curves
are not correlated (correlation r = 0.04), and major transitions in the two climate networks can be
considered as an emergent [45], unpredictable phenomena, arising from the internal variability of
the system rather than from the (common) external forcing.
There are some exceptions to this view, such as the shifts identified approximately around the years
∼ 1800, ∼ 3200 and ∼ 5800. Around these periods, both simulations display large transitions in
global connectivity. Nonetheless, the shifts around year ∼ 3200 is of a different type in the two
simulations: around this year, Vlr01 exhibits a large, abrupt increase in connectivity, while Sr02 the
opposite (Figure 5).
Interestingly, around the year ∼ 1800 (∼ 4200 BP) both simulations undergo a rapid, strong increase
in connectivity of the network. The timing of this event agrees with the transition between the
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so-called Northgrippian and Meghalayan ages in the Holocene [46], that was characterized by severe
aridification and cooling that extended from North America to the Mediterranean basin and North
Africa, all the way to India and China [10, 47, 48].
This suggests a possible dominant role of the external forcing in causing this specific transition.
However, more ensemble members are needed to assess the significance of this result. Furthermore,
the investigation of multiple fields including air-temperature and precipitation may shed light on
the evolution, connectivity and wide-spread impacts of this regime shift. This is left for future work.

5 SST complexity in the “real” world

The model simulations analyzed in this study allow to explore SST variability at spatial and temporal
resolution unavailable in the observational records. However, climate models are far from perfect,
and results are compromised by structural model errors [49]. Conclusions may be more informative
when presented together with model biases [50] and, therefore, we present a brief, qualitative
comparison of the global SST complexity in the IPSL model and in an observational data set. For a
first assessment of SST climate networks in the IPSL model we refer the reader to Fountalis et al.
[51].
We consider the last 50 years of simulation, from 1900 to 1950, and compare the SST complexity
reproduced by the IPSL model in the higher resolution configuration (Sr02) with the COBEv2
reanalysis [52] saved at 1◦ degree spatial resolution and as monthly averages (Figure 7). COBEv2 is
also a model product and data availability in the first 50 years of the 20th century is rather poor
[52]. Nonetheless, we expect the SST variability in COBEv2 to be more realistic than IPSL.

The complexity field shown in Figure 7 for the Sr02 simulation is qualitatively similar to the
mean complexity fields shown in Figure 1. This highlights that SST complexity is quasi-stationary
and trends are small in the mid- to late Holocene transient simulations.
The average latitudinal dependence of complexity in the observational data (Figure 7b,d) suggests
larger predictability in the tropics (from ∼ 25◦S to ∼ 25◦N) and lower at higher latitudes (from
∼ 60◦S to ∼ 25◦S and ∼ 25◦N to ∼ 60◦N).This is due to the low entropy values in the equatorial
Atlantic and Pacific basins. Therefore, the complexity of the simulated SST in the tropical Atlantic
is largely overestimated by the model. Large complexity characterizes the Indian Ocean in both
data sets, but is less uniform and weaker in COBEv2 than in the model.
The complexity of the ENSO region emerges in the reanalysis as confined to the central and eastern
Pacific and is more uniform than in the model. Interestingly, two hemispheric-symmetric stripes
marked with low complexity can be identified also in COBEv2 for the ENSO area, suggesting larger
predictability potential for the El Niño events just South of the equator and East of 180◦E.

6 Discussion

This work presents a new framework stemming from dynamical system theory and complex network
analysis to investigate regime transitions in spatiotemporal climate fields in a comprehensive way.
The approach couples a complexity quantifier [21] to a dimensionality reduction methodology [22] in
order to (a) identify spatial regions (i.e., domains) of grid cells with highly correlated evolution of
their complexity and (b) study the time-dependent, weighted, direct network between these regions.
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Figure 7: (a,b) Complexity field for the Sr02 simulation and the COBEv2 reanalysis for the
1900-1950 period. (c,d) Average latitudinal dependence of complexity in both fields.
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The approach is applied to two 6000-years long simulations of the IPSL Earth system model. Both
simulations develop highly non-trivial spatiotemporal variability, which may stem at time from
common forcing (changes in Earth’s orbit and trace gases) but more often from intrinsic, internal
variability. We tested the proposed strategy focusing on decadal to multidecadal SST variability in
the last 6000 years, providing an analysis of regime transitions and time-dependent networks that
simultaneously embraces spatial and temporal scales.

The results of our analysis can be summarized as follows:

• SST variability in the IPSL model is characterized by relatively low mean complexity (i.e., high
predictability) in high latitudes and high complexity (i.e., low predictability) in the equatorial
Indian and Atlantic Oceans, and along major eastern and western boundary currents. The
ENSO region displays a non-trivial spatial configuration of mean complexity, with high values
in the cold tongue and low values and higher predictability in two hemispheric-symmetric
bands in the central Pacific.

• The dimensionality reduction of the entropy field allows for the identification of its underlying
domains. Each domain is a set of points with highly correlated variability in information
entropy. A domain’s complexity signal, in turn, allows for exploring regime shifts in time. We
provided evidence for transitions in local system dynamics in the two simulations that are
identified as abrupt jumps of large amplitude from low to high-frequency SST variability and
vice versa in periods as short as 200 to 300 years. Our results suggest that, at least in the
modeled climate, multidecadal oscillations can rapidly emerge and fade due to the system’s
internal dynamics (i.e., independent of the external forcings). More theoretical and data
driven work is needed to better understand the physical underlying mechanisms behind these
shifts and their expression and impacts on the overall system and not limited to SSTs.

• The identified domains can be considered as the true semi-autonomous components of the
system in the 6000-years long simulation. Domains can interact via coupled atmospheric-
ocean dynamics, giving rise to complex connectivity patterns. These connections, and their
variability, can be studied as a time-dependent, weighted and direct network between domains.
The time evolution of the network density reveals that the whole system underwent large
shifts in the degree of connectivity during the last 6000 years. These shifts occur, in most
cases, at different times in the two simulations, implying that most transitions in connectivity
may be unpredictable, emergent phenomena [45]. This suggests that changes in connectivity
patterns in timescales as long as 1000 years are dominated by the internal variability of the
system rather than by external forcings, at least in the last 6000 years. Finally, we identified
a common (among the two simulations) large shift around year 1800 (i.e., 4200 years BP)
consistent with previous findings in paleoclimate proxies [48]. A larger ensemble is required
to confirm if this shift in connectivity is a response to external forcing. Exploring large
regime shifts in different variables and quantifying their underlying causal associations using
state-of-the-art methodologies [53] is left for future work.

• In comparing the SST complexity of the IPSL model with that of a reanalysis product over
the first half of the 20th century, differences were mainly found in the tropical Atlantic and
Pacific basins. The modeled complexity in the Atlantic around the Equator and in the cold
tongue is largely overestimated, while the ENSO domain extends too far west covering most
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of the equatorial Pacific. We note that evaluating a climate model’s ability in reproducing
the observed complexity is a very stringent (but useful) test: high similarity could only be
obtained if models and observations shared the same underlying dynamics. Such evaluation
allows for testing directly the dynamics of the model rather than comparing signal amplitudes
or mean states and opens interesting research avenues.
Additionally, while dynamical transitions in SST emerge at relatively long-time scales (i.e.,
hundreds of years), future work could focus on variables expected to show regime shifts at
shorter timespans. This would include precipitation or cloud fraction fields in high temporal
resolution datasets and/or model integrations.

Transitions or shifts in local and, more importantly, global system dynamics are expected in
complex, nonlinear spatiotemporal climate fields. While climate models are more often used for
future projections and projected climate shifts cannot be validated, long simulations covering past
millennia allow for exploring profound changes in the system dynamics that may have already taken
place and for which we have sparse records. In this work we investigated the relationships between
these transitions, external forcing and internal climate variability. Our results suggest that shifts
in local dynamics and global connectivity patterns in sea surface temperature may often appear
as emergent and abrupt phenomena, independently of the external forcing fields because of the
internal chaotic dynamics of the system.
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A δ-MAPS

Core identification. The domain identification algorithm starts from epicenters or cores. Given
a K-neighborhood ΓK(i) of a cell i, we compute its local homogeneity as:

rK(i) =

∑
m 6=n∈ΓK(i) rm,n

K(K + 1)
. (A.1)

A similar notation is used for the homogeneity of a set of grid cells:

r(A) =

∑
m 6=n∈A rm,n

|A|(|A| − 1)
, (A.2)

|A| being the cardinality of the set and and rm,n the correlation (at lag τ = 0) between the time
series embedded in grid cells m and n. A grid cell is marked as a core if its local homogeneity is a
local maximum and greater than a threshold δ. More formally, a grid cell i is a core if rK(i) > δ
and rK(i) > rK(j), i 6= j, ∀j ∈ ΓK(i). Cores are then iteratively expanded and merged to identify
domains [22].

Domain identification. Given one or more identified cores c, a spatial grid G and a threshold
δ, a domain A is the maximal set of grid cells satisfying three constraint: (a) c ∈ A, (b) IG(A) = 1
and (c) r(A) > δ. IG(A) = 1 denotes that the set A is spatially contiguous. Fountalis et. al [22]
proved that this problem is NP-Hard and relied on a heuristic to solve it. The heuristic algorithm
iteratively expands and merges cores to find the full extent of domains. The process starts from
the domain with largest homogeneity, let it be A. The expansion algorithm considers all adjacent
grid cells of A, and then adds the grid cell i which maximizes the homogeneity r(A ∪ i) and for
which r(A ∪ i) > δ. If two domains A and B are adjacent, the merging algorithm determines that
the two domains should be merged whenever IG(A ∪B) = 1 and r(A ∪B) > δ. This process stops
when no more merging and expansions are possible. Two heuristics to infer the δ threshold and the
K parameter has been proposed in [22] and [38]. Given a significance level α, the threshold δ is
computed as a sample average of the statistically significant cross-correlations between randomly
chosen grid cells in the dataset considered.
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B Heuristic for the vicinity threshold ε

A crucial step in the computation of a recurrence plot (RP) is the definition of the vicinity threshold
ε. The ε parameter defines the neighborhood of each state xi in a trajectory of a dynamical system.
It must be carefully chosen since a value that is too small may include noisy fluctuations in the RP,
and one that is too large could hide the recurrence structure of the time series [30]. Several “rules
of thumb” for the choice of the ε threshold have been proposed: ∼ 5% of the maximal state space
diameter [54], no more than ∼ 10% of the mean (or maximum) state space diameter [55, 56] or a
value ensuring a recurrence point density of ∼ 1% [57]. Moreover, choosing ε strongly depends on
the system under study [30].
Here we present a new simple heuristic tailored for the selection of a different εi for each (not-
embedded) time series xi(t) of a spatiotemporal field X(t).

The proposed strategy relies on the following steps:

1. we consider a monthly spatiotemporal climate field X(t) embedded in a two-dimensional grid
at each time step t. For every grid cell i we have a linearly detrended, anomaly time series
xi(t) with T data points. We define an εi as a percentage ρ of the standard deviation σi of
xi(t). This step defines a new spatial field E(ρ), referred to as ε-map.

2. For a given ε-map E(ρ), we compute the RP and its information entropy for every xi(t) in
X(t) to get a spatial entropy field S = S(ρ). Since the entropy field depends on ρ, we assess its
sensitivity to ρ as follows: first, we compute S(ρ) for ρ ranging from ρmin = 0.01 to ρmax = 1.50
every ∆ρ = 0.01; second, we define a pairwise distance matrix between all S(ρ). Given two
fields, S(ρ1) and S(ρ2), we compute their distance as D(S(ρ1),S(ρ2)) =

∑
i |si(ρ1)− si(ρ2)|,

where si(ρ) denotes the entropy at grid cell i.

3. Finally, we select an optimal ρ = ρ∗ such that the computed entropy field does not depend
on perturbations around ρ∗. This assures that, for every si(εi) at grid cell i, si(εi) ∼
si(εi ± δi), δi << εi.

In case of results presented in section 5, we obtain a value of ρ∗ = 0.75 both for COBEv2 and
for the Sr02 simulation. We then assign to each grid cell i a value εi = ρ∗ · σi, with ρ∗ = 0.75.

For results in section 4, we face an additional problem: we have to compute a spatiotemporal
entropy field and not just one time-instant. Therefore, for this step we compute E(ρ) using the
complete simulation length. We consider a time series x̂i(t) of monthly SST defined at grid cell i
(with length T = 72000 months) and compute a new time series xi(t) representing the evolution
of detrended anomalies at all times t. SST anomalies xi(t) are computed by removing both the
seasonal cycle and a linear trend. This is done for each 100-yr non-overlapping window instead of
the 6000-yr timeseries to account, at first order, for changes in SST seasonality and (small) trends
induced by orbital changes from mid- to late Holocene [29]. The parameter εi is thus constant
in time. Given a xi(t), this implies a notion of neighborhood as a function of all possible states
explored in the 6000-yr long simulation (i.e., the closeness between two states is conditioned on
distances between all states in the 6000-yr simulation).
The heuristic is then tested for the first W = 100 years of the simulation. This analysis is found to
be independent of resolution. A global minimum in the pairwise distance matrix is identified around
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Figure B.1: Pairwise distance matrix between the spatial complexity fields computed for
the first 100 years as a function of the percentage of standard deviation of the 6000 years
detrended anomalies time series defined at each grid cell. Similar results are obtained for the
COBEv2 dataset and for other centuries in the simulations.

the values of ρ∗ = 75% (see Figure B.1). We then assign to each grid cell i a value εi = ρ∗ · σi, with
ρ∗ = 0.75.
It should be noted that in the analyzed simulations the standard deviations of time series in each
grid cell i do not undergo profound changes: the ε-map E obtained using the 6000 years of the
simulations is qualitative similar to the one obtained using a randomly chosen period of 100 years.
Therefore, the optimization problem should not depend on the century analyzed. We verified
this assumption by re-computing the heuristic for three, randomly picked centuries. Results were
indistinguishable from those shown in Figure B.1.
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C Shifts for a domain in the South Atlantic ocean in

the Sr02 simulation

Here we present a domain in the Sr02 simulation similar to the one shown in Figure 3 for the Vlr01
simulation. The two complexity signals shown in Figure C.1 and Figure 3 have same mean (0.68)
but shifts are found at different times.
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Figure C.1: (a) Domain in the high resolution (Sr02) simulation. (b) Mean complexity signals
for the domain in (a) over time (x-axis: time in years; 6000 = year 1950; the year reported
indicates the first year of the period considered i.e., year = 1 for the period going from year 1
to 100). (c, d) Associated monthly SST anomalies corresponding to centuries of minimum
and maximum complexity, respectively; x-axis: time in months. The black lines indicate a
10-years moving average.
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