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The sterile insect technique used as a barrier control against reinfestation

The sterile insect technique consists in massive release of sterilized males in the aim to reduce the size of mosquitoes population or even eradicate it. In this work, we investigate the feasability of using the sterile insect technique as a barrier against reinvasion. More precisely, we provide some numerical simulations and mathematical results showing that performing the sterile insect technique on a band large enough may stop reinvasion.

Introduction

Due to the number of diseases that they transmit, mosquitoes are considered as one of the most dangerous animal species for humans. According to the World Health Organization [1], vectorborne diseases account for more than 17% of all infectious diseases, causing more than 700 000 deaths annually. More than 3.9 billion people in over 128 countries are at risk of contracting dengue, with 96 millions cases estimated per year.

Several of the most prominent mosquito-transmitted diseases do not have a widely available vaccine; dengue, for instance, has only one licensed vaccine, Dengvaxia, with limited application [START_REF] Redoni | Dengue: Status of current and under-development vaccines[END_REF]. Zika and chikungunya do not have licensed vaccines, although several candidates are on diverse stages of development [23] [START_REF] Shan | Recent Progress in Vaccine Development Against Chikungunya Virus[END_REF]. Hence, at this stage, a natural strategy to control them is to act directly on the mosquito population. For this purpose, several strategies have been developed and experimented. Some techniques aim at replacing the existing population of mosquitoes by a population unable to propagate the pathogens, using the Wolbachia bacteria [START_REF] Hoffmann | Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission[END_REF]. Other techniques aim at reducing the size of the mosquito population : The Sterile Insect Technique (SIT) [START_REF] Dyck | Sterile Insect Technique Principles and Practice in Area-Wide Integrated Pest Management[END_REF][START_REF] Alphey | Sterileinsect methods for control of mosquito-borne diseases: an analysis[END_REF], the release of insects carrying a dominant lethal (RIDL) [START_REF] Thomas | Insect population control using adominant, repressible, lethal genetic system[END_REF][START_REF] Heinrich | A repressible female-specific lethal genetic system for making trans-genic insect strains suitable for a sterile-release program[END_REF][START_REF] Fu | Female-specific flightless phenotype for mosquito control[END_REF], the driving of anti-pathogen genes into natural populations [START_REF] Gould | A Killer Rescue system for self-limiting gene drive of anti-pathogen constructs[END_REF][START_REF] Marshall | Semele: a killer-male, rescuefemale system for suppression and replacement of insect disease vector populations[END_REF][START_REF] Ward | Medea selfish genetic elements as tools for altering traits of wild populations: a theoretical analysis[END_REF]. Finally, other strategies combine both reduce and replace strategies [START_REF] Robert | A reduce and replace strategy forsuppressing vector-borne diseases: insights from a deterministic model[END_REF].

In this article, we focus on the SIT. This strategy has been introduced in the 50's by Raymond C. Bushland and Edward F. Knipling. It consists in using area-wide releases of sterile insects to 1 reduce reproduction in a field population of the same species. Indeed wild female insects of the pest population do not reproduce when they are inseminated by released, radiation-sterilized males. For mosquito populations, this technique and the closely related incompatible insect technique (IIT) has been successfully used to drastically reduce their size in some isolated regions (see e.g. [START_REF] Stoll | Suppression of an isolated popu-lation of the mosquito vector Aedes polynesiensis on the atoll of Tetiaroa, French Polynesia, by sustained release of Wolbachia-incompatible male mosquitoes[END_REF][START_REF] Zheng | Incompatible and sterile insect techniques combined eliminate mosquitoes[END_REF]). In order to predict the dynamics of mosquito populations, mathematical modeling is an important tool. In particular, there is a growing interest in the study of control strategies (see e.g. [START_REF] Anguelov | Mathematical modeling of sterile insect technology for control of anopheles mosquito[END_REF][START_REF] Li | Modelling releases of sterile mosquitoes with different strategies[END_REF][START_REF] Bliman | Implementation of Control Strategies for Sterile Insect Techniques[END_REF][START_REF] Almeida | Control strategies on mosquitos population for the fight against arboviruses[END_REF] and references therein). in order to conduct rigorous studies, these works usually neglect spatial dependency.

In fact, only few articles propose to incorporate the spatial variable in their study of SIT. In [START_REF] Lewis | Wave-block in excitable media due to regions of depressed excitability[END_REF] the authors propose a simple scalar model to study the influence of the sterile insects density on the velocity of the spatial wave of spread of mosquitoes. The work [START_REF] Oléron Evans | A spatial model with pulsed releases to compare strategies for the sterile insect technique applied to the mosquito Aedes aegypti[END_REF] focuses on the influence of the release sites and the frequency of releases in the effectiveness of the sterile insect technique. In [START_REF] Seirin Lee | Optimal barrier zones for stopping the invasion of Aedes aegypti mosquitoes via transgenic or sterile insect techniques[END_REF][START_REF] Seirin Lee | Modelling Aedes aegypti mosquito control via transgenic and sterile insect techniques: Endemics and emerging outbreaks[END_REF], the authors conduct a numerical study on some mathematical models with spatial dependency to investigate the use of a barrier zone to prevent invasion of mosquitoes. However, up to our knowledge, there are no rigorous mathematical results on the existence of such barrier zone. In this paper, we conduct a similar study as in [START_REF] Seirin Lee | Optimal barrier zones for stopping the invasion of Aedes aegypti mosquitoes via transgenic or sterile insect techniques[END_REF] for another mathematical model which has been recently introduced in [START_REF] Strugarek | On the use of the sterile insect technique or the incompatible insect technique to reduce or eliminate mosquito populations[END_REF]. Moreover, we propose a strategy to rigorously prove the existence of a barrier zone under some conditions on the parameters.

The outline of the paper is the following: In subsection 2.1 we introduce our dynamical system model and describe the variables and biological parameters, and also a simplified model that results from additional assumptions. We analyze the existence of positive equilibria and the stability of the mosquito-free equilibrium. In subsection 2.2 we introduce spatial models including diffusion. In section 3 we perform numerical simulations for the spatial models to observe the existence of wave-blocking for a large enough release of sterile males. In section 4 we prove the existence of a blocking phenomenon (some useful technical results are postponed to the appendix). We end this paper with a conclusion.

Mathematical model

Dynamical system

In the recent paper [START_REF] Strugarek | On the use of the sterile insect technique or the incompatible insect technique to reduce or eliminate mosquito populations[END_REF], the following mathematical model governing the dynamics of mosquitoes has been proposed:

dE dt = b(1 - E K )F -(ν E + µ E )E, dM dt = (1 -r)ν E E -µ M M, dF dt = rν E E(1 -e -β(M +γMs) ) M M + γM s -µ F F, dM s dt = u -µ s M s .
(2.1)

In this system, the mosquito population is divided into several compartments. The number of mosquitoes in the aquatic phase is denoted E; M and F denote respectively the number of adult wild males and adult females which have been fertilized; M s is the number of sterile mosquitoes which are released, the release function being denoted u. The fraction M M +γMs corresponds to the probability that a female mates with a wild male. Moreover, the term (1 -e -β(M +γMs) ) has been introduced to model a strong Allee effect, that is, the fact that when the number of males is close to zero, it will be very difficult for a female find a wild male to mate with.

Finally, we have the following parameters :

• b > 0 is the oviposition rate;

• µ E > 0, µ M > 0, µ F > 0, and µ s > 0 denote the death rates for the mosquitoes in the aquatic phase, for wild adult males, for adult females, and for sterile males, respectively;

• K is an environmental capacity for the aquatic phase, taking also into account the intraspecific competition;

• ν E > 0 is the rate of emergence;

• r ∈ (0, 1) is the probability that a female emerges and (1 -r) is the probability that a male emerges;

• u is a control function, corresponding to the number of sterile males which are released into the field.

Before introducing the spatial dependance in this system, we will first investigate the equilibria of (2.1) and their stability. For future use, we introduce the notation

g(F, M s ) = rν E bF b K F + µ E + ν E 1 -exp -β (1 -r)ν E bF µ M ( b K F + µ E + ν E ) + γM s (2.2) × (1 -r)ν E bF (1 -r)ν E bF + γµ M M s ( b K F + µ E + ν E ) -µ F F.
Then, we may use Lemma 3 in [START_REF] Strugarek | On the use of the sterile insect technique or the incompatible insect technique to reduce or eliminate mosquito populations[END_REF] to prove the following result:

Proposition 2.1 Let N = brν E µ F (ν E +µ E ) and ψ = µ M
(1-r)ν E Kβ . Let us assume that N > max{1, 4ψ}. Let θ 0 ∈ (0, 1) be the unique solution of 1 -θ 0 = -4ψ N ln θ 0 and assume that max

θ∈[θ 0 ,1] -ln θ - 1 2ψ 1 -1 + 4ψ N ln(θ) 1 -θ > 0. (2.3)
Then, we have :

1. When u = 0. There exist two positive equilibria for system (2.1). They are given by

(E 1 , M 1 , F 1 , 0) and (E 2 , M 2 , F 2 , 0), with F 1 < F 2 and E i = bF i b K F i +ν E +µ E , M i = (1-r)ν E µ M E i , for i = 1, 2.
2. There exists a positive constant Ũ large enough, such that if u = U is a constant such that U > Ũ , then the unique equilibrium for system (2.1) is the mosquito-free equilibrium (0, 0, 0, U /µ s ), which is globally stable.

Proof. At equilibrium, we have

E = bF b K F + ν E + µ E , M = (1 -r)ν E µ M E.
Injecting into the equilibrium equation for F , we deduce that any equilibrium should satisfy g(F, M s ) = 0.

(2.4)

For u = 0, the only equilibrium of

dMs dt = u -µ s M s is M s = 0. Substituting M s = 0 in (2.
2), we obtain for 2.4

g(F, 0) = rν E bF b K F + µ E + ν E 1 -exp -β (1 -r)ν E bF µ M ( b K F + µ E + ν E ) -µ F F = 0.
F = 0 is always a solution. When F > 0 the equation g(F, 0) = 0 may be rewritten

g 1 (F ) := rν E b 1 -exp -β (1 -r)ν E bF µ M ( b K F + µ E + ν E ) = µ F ( b K F + µ E + ν E ).
The right hand side is an affine function. It is straightforward to verify that g 1 is an increasing concave function on (0, +∞) such that g 1 (0) = 0 and lim

F →+∞ g 1 (F ) = rν E b 1 -exp - β(1 -r)ν E K µ M .
Then, this concave function may intersect the affine function in 0,1 or 2 points. Notice that a necessary (but not sufficient) condition for intersection is that lim

F →+∞ g 1 (F ) > µ F (µ E + ν E ). The fact that condition (2.
3) guarantees existence of two positive roots is proved in [30, Lemma 3].

For the second part, for a given constant u = U , the only equilibrium of dMs dt = u -µ s M s is M s = U /µ s . Then, injecting this relation into the expression for g in (2.2), we deduce that for any F ≥ 0, we have lim U →+∞ g(F, U µs ) = -µ F F . For any α ∈ (0, µ F ), we may find U large enough such that for any F ≥ 0, g(F, U µs ) ≤ -αF . Hence, the only solution of the equation g(F, U µs ) = 0 is F = 0, which implies that the only equilibrium for system (2.1) is the mosquito-free equilibrium (0, 0, 0, U /µ s ).

Moreover, the Jacobian at the mosquito-free equilibrium is given by the following matrix

J(0, 0, 0, U /µ s ) =     -(ν E + µ E ) 0 b 0 (1 -r)ν E -µ M 0 0 0 0 -µ F 0 0 0 0 -µ s     .
We compute easily its eigenvalues which are given by {-ν E -µ E , -µ M , -µ F , -µ s }; they are all negative. Therefore the mosquito-free equilibrium is globally stable.

Remark 2.2 Although the proof does not give us an analytic formula for the equilibria, remark 3.2 in [START_REF] Strugarek | On the use of the sterile insect technique or the incompatible insect technique to reduce or eliminate mosquito populations[END_REF] gives us a useful approximation of M 2 when β is not too small, as

M 2 ≈ 1 ψβ (1 -1 N ).

Spatial model

In order to model the spatial dynamics, we consider that adult mosquitoes diffuse according to a random walk. It is classical to model this active motion by adding a diffusion operator in the compartment of females and males. We denote by x the spatial variable. In order to simplify the approach, we only consider the one dimensional case, x ∈ R. Then, all unknown functions depend now on time t > 0 and position x ∈ R. In this setting, model (2.1) becomes

∂ t E = b(1 - E K )F -(ν E + µ E )E, (2.5a) 
∂ t M -D u ∂ xx M = (1 -r)ν E E -µ M M, (2.5b) 
∂ t F -D u ∂ xx F = rν E E(1 -e -β(M +γMs) ) M M + γM s -µ F F, (2.5c 
)

∂ t M s -D u ∂ xx M s = u -µ s M s . (2.5d)
In this model D u is a given diffusion coefficient, which is assumed to be the same for both male and female mosquitoes. This system is complemented with some nonnegative initial data denoted E 0 , M 0 , F 0 , and M 0 s = 0. Then, there exists a nonnegative solution of (2.5). From now on, we will always assume that the parameters of the model are such that there are two positive equilibria for system (2.1) (see Proposition 2.1).

In the case when no control technique is implemented, i.e. M s = 0, we expect that this model to predict the invasion of the whole domain by the wild mosquitoes. In order to illustrate this phenomenon, we perform some numerical simulations of system (2.5). This system is discretized thanks to a semi-implicit finite difference scheme on an uniform mesh. We use the numerical values in Table (1), which are taken from [START_REF] Strugarek | On the use of the sterile insect technique or the incompatible insect technique to reduce or eliminate mosquito populations[END_REF]. When M s = 0, the numerical results are shown in Figure 1. We observe that there is a wave of mosquitoes that invades the whole domain. Hence, in the absence of control and in a homogeneous environment, it is expected that the solutions to (2.5) invade freely the spatial domain.

If we fix a constant value of the number of sterile males in the whole domain, then the invasion is expected to slow down. This observation has already been studied in [START_REF] Lewis | Waves of extinction from sterile insect release[END_REF]. Numerical illustrations of this phenomenon are provided in Figure 2. In this simulation, the number of sterile males is fixed to be M s = 5000 on the whole domain. This figure should be compared to Figure 1 where M s = 0 : we observe that the invasion is slowed down.

In this paper, we want to investigate the possibility of blocking the propagation of the spreading of mosquitoes by releasing sterile mosquitoes on a band of width L. Can the sterile insect technique be used to act as a barrier to avoid re-invasion of wild mosquitoes in a mosquito-free region ? In order to answer this question, we first perform some numerical simulations in the next section.

Numerical simulations

We choose u(t, x) = U 1 [0,L] (x), where U is a given positive constant. We propose some numerical simulations. As above, we implement a finite difference scheme on an uniform mesh. The values of the numerical parameters are taken from [START_REF] Strugarek | On the use of the sterile insect technique or the incompatible insect technique to reduce or eliminate mosquito populations[END_REF] and are given in Table 1.

Parameter β b r µ E ν E µ F µ M γ µ s D u Value
10 -2 10 0.49 0.03 0.05 0.04 0.1 1 0.12 0.0125

Table 1: Table of the numerical values used for the numerical simulations. These values are taken from [START_REF] Strugarek | On the use of the sterile insect technique or the incompatible insect technique to reduce or eliminate mosquito populations[END_REF] We show in Figures 3 the dynamics in time and space of the fertilized female population F for model (2.5). The domain where the release of sterile males is performed is of width L = 5 km. The release intensity is U = 10 000 km -1 day -1 (left), U = 20 000 km -1 day -1 (center), U = 30 000 km -1 day -1 (right). These results illustrate the influence of the intensity of the release U and of the width of the band on the efficiency of the blocking. We first notice that it seems that for U or L large enough, the mosquito wave is not able to pass through the release zone. On the contrary, if U and L are not large enough, the wave is only delayed by the release in the barrier zone.

It is also interesting to observe that when β → +∞, there is no blocking as it is illustrated in Figure 4 for model (2.5). In order to justify this observation, we observe that, when β → +∞ the mosquito steady state equilibrium is unstable for model (2.1). Indeed, when M s = 0 in system (2.1), after passing to the limit when β → +∞, the Jacobian matrix of the resulting system at the point Figure 3: Numerical simulations of system (2.5) with L = 5 km and U = 10 000 km -1 day -1 (left), U = 20 000 km -1 day -1 (center), and U = 30 000 km -1 day -1 (right). 1, while on the right we have the solution of the limit equation when β → +∞.

(0, 0, 0) is given by 

 -ν E -µ E 0 b (1 -r)ν E -µ M 0 rν E 0 -µ F  
Clearly -µ M is one of the eigenvalues. For brν E > µ F (ν E + µ E ), there is a positive real eigenvalue and therefore, the steady state would be unstable.

Mathematical approach

These numerical simulations seem to show that it is possible to block the spreading by releasing enough sterile males on a sufficiently wide domain. However, to be sure that it is not a numerical artifact and that the propagation is really blocked, we have to prove rigorous mathematical results.

The study of blocking by local action has been done by several authors with applications for instance in biology or criminal studies [START_REF] Pauwelussen | One way traffic of pulses in a neuron[END_REF][START_REF] Lewis | Wave-block in excitable media due to regions of depressed excitability[END_REF][START_REF] Chapuisat | Asymptotic profiles for a traveling front solution of a biological equation[END_REF][START_REF] Berestycki | Traveling wave solutions in a reaction-diffusion model for criminal activity[END_REF][START_REF] Nadin | Hindrances to bistable front propagation: application to Wolbachia invasion[END_REF][START_REF] Eberle | Front blocking versus propagation in the presence of a drift term in the direction of propagation[END_REF]. In this section, we will always consider that

u(t, x) = U 1 [0,L] (x),
and we assume that (2.3) is satisfied such that when u = 0 there are two stable steady states. We justify rigorously that for L > 0 and U large enough, we may block the propagation. We first provide some useful bounds and comparisons on the variables of our system. Then, we construct a stationary supersolution for (2.5) that vanishes at +∞. When it exists, we shall call this stationary supersolution a barrier for (2.5), since such a solution acts as a barrier to block the propagation.

Estimates

We first recall that, since initial data is nonnegative, the solution (E, F, M, M s ) of (2.5) is also nonnegative. Moreover, we have the following estimates : Lemma 4.1 Let us assume that E 0 ≤ K. Then, for any t ≥ 0, we have E ≤ K. Moreover, M and F are uniformly bounded.

Proof. The inequality is assumed to be true for t = 0. If there exists some t 0 > 0 and x ∈ R such that E(t 0 , x) ≥ K, then we deduce from the first equation in (2.5) that d dt E(t 0 , x) < 0, hence E(•, x) is decreasing in the vicinity of t 0 . Therefore, if this inequality is true initially, it should be true for any larger time. It follows then from a standard application of the maximum principle that M and F are also uniformly bounded.

Lemma 4.2 Let u(t, x) = U 1 [0,L] (x).
Then, the solution M s (t, x) to (2.5d) with initial data M s (t = 0) = 0 converges uniformly on x, when t → +∞, to the solution M s of the stationary equation

-D u ∂ xx M s = U 1 [0,L] -µ s M s , on R. (4.6)
Proof. We have

∂ t (M s -M s ) -∂ xx (M s -M s ) = -µ s (M s -M s ), M s (t = 0) = 0.
Then, using the heat kernel, we deduce

M s (t, x) = M s (x) - R 1 √ 4πt e -y 2 4t -µst M s (x -y) dy.
The stationary solution M s has the expression

M s (x) = U 2 √ D u µ s L 0 e -µs
Du |x-y| dy.

We can see from (4.1) that M s is symmetric with respect to x = L 2 and decreasing on ( L 2 , +∞). Therefore M s has a global maximum at x = L 2 , which we compute to be

M s ( L 2 ) = U µs 1 -e -µs Du L 2
, and we have

0 ≤ M s (x) -M s (t, x) = R 1 √ 4πt e -y 2 4t -µst M s (x -y) dy ≤ e -µst M s ( L 2 )
where we use the fact that the integral of the heat kernel equals 1. Therefore, M s (t, x) converges to M s exponentially in t and uniformly in x. Proof.

Using the symmetry of M s ,w e have that for any x ∈ [0,

L * ] M s (x) ≥ M s (0) = M s (L) if L > L * , and M s (x) ≥ M s (L * ) if L ≤ L * . If L > L * , we see that M s (0) = U 2µ s (1 -e -µs Du L ),
and, if L ≤ L * , we have that

M s (L * ) = U 2µ s e -µs Du L * (e µs Du L -1).
An immediate consequence of this result is the following :

Corollary 4.4 Let ε > 0 and L * > 0. Then, there exists U large enough such that, for any bounded nonnegative function M and for any x ∈ [0, L * ], we have

(1 -e -β(M (x)+γM s(x)) ) M (x) M (x) + γM s (x) ≤ ε,
where M s is the solution of (4.6).

Comparison principle

Let M s ≥ 0 be a given nonnegative function. Let us consider the stationary problem associated to (2.5) :

0 = b(1 - E K )F -(ν E + µ E )E (4.7a) -D u M = (1 -r)ν E E -µ M M (4.7b) -D u F = rν E E(1 -e -β(M +γM s) ) M M + γM s -µ F F . (4.7c)
We are particularly interested by stationary solutions which link the two stable equilibria (0, 0, 0) and (E 2 , M 2 , F 2 ) defined in Proposition 2.1. Therefore, we complement this system with conditions at infinity :

(E, M , F )(-∞) = (E 2 , M 2 , F 2 )
and (E, M , F )(+∞) = (0, 0, 0).

Definition 4.5

We call barrier any super-solution of (4.7) such that

(E, M , F )(-∞) = (E 2 , M 2 , F 2 )
and (E, M , F )(+∞) = (0, 0, 0).

We recall that super-solutions are obtained by replacing the equality signs in (4.7) by the inequalities ≥.

The following result explains why we call barrier such a solution : If the initial data is below this barrier, the solution stays below the barrier and hence the propagation (invasion of the whole domain by the wild population) will be blocked. Let us assume that there exists a barrier (E, M , F ) in the sense of definition 4.5.

If we assume that E 0 ≤ E, M 0 ≤ M , F 0 ≤ F . Then, the solution (E, M, F ) of (2.5a)-(2.5c) is such that for any t ≥ 0 and any x ∈ R, we have E(t, x) ≤ E, M (t, x) ≤ M and F (t, x) ≤ F .

Proof. From Lemma 4.1, we may consider the system (2.5a)-(2.5c) on the set [0

, K] × R + × R + . Let us denote g(M, M s ) := M M + γM s (1 -e -β(M +γMs) ).
We verify easily that, on this set, the map g is nonincreasing with respect to M s and nondecreasing with respect to M . Therefore, the system is monotonous and we deduce directly the result from standard arguments.

For the sake of completeness, we explain briefly these arguments. Let us denote δE = E -E, δM = M -M , and δF = F -F . Subtracting and (4.7) from (2.5), we deduce

∂ t δE ≤ b(1 - E K )δF -( bF K + ν E + µ E )δE ∂ t δM -D u ∂ xx δM ≤ (1 -r)ν E δE -µ M δM ∂ t δF -D u ∂ xx δF ≤ rν E δEg(M, M s ) + rν E E(g(M, M s ) -g(M , M s )) -µ F δF,
where we use the fact that g(M , M s ) ≤ g(M , M s ). Denoting by v + := max{v, 0} the positive part of any real v, we multiply the first equation by (δE) + , the second by (δM ) + , and the third by (δF ) + .

Integrating over R, we get 1 2

d dt R (δE) 2 + dx ≤ R b 1 - E K (δF ) + (δE) + dx - R bF K + ν E + µ E (δE) 2 + dx 1 2 d dt R (δM ) 2 + dx + D u R |∂ x (δM ) + | 2 dx ≤ R (1 -r)ν E (δE) + (δM ) + dx - R µ M (δM ) 2 + dx 1 2 d dt R (δF ) 2 + dx + D u R |∂ x (δF ) + | 2 dx ≤ R rν E (δE) + (δF ) + dx - R µ F (δF ) 2 + dx + R rν E E g(M, M s ) -g(M , M s ) (δF ) + dx,
where we use also the fact that g(M, M s ) ≤ 1. Since M → g(M, M s ) is increasing and uniformly Lipschitz-continuous, we have for some nonnegative constant

C g(M, M s ) -g(M , M s ) ≤ C(δM ) + .
Hence, adding these latter inequalities, we deduce that for some nonnegative constant C, we have

d dt R (δE) 2 + + (δF ) 2 + + (δM ) 2 + dx ≤ C R (δE) 2 + + (δF ) 2 + + (δM ) 2 + dx.
We conclude by using a Gronwall lemma, noticing that from our assumption on the initial data we have that at time t = 0, δE(t = 0) = 0, δM (t = 0) = 0, δF (t = 0) = 0.

Existence of a barrier

Let L * > 0 and α ∈ (0, µ F ), we deduce from Corollary 4.4 that for any L > 0, there exists U large enough such that for all x ∈ [0, L * ] the solution M s of (4.6) verifies, for any nonnegative and bounded functions M and F ,

rν E F (x) b K F (x) + µ E + ν E (1 -e -β(M (x)+γM s(x)) ) M (x) M (x) + γM s (x) ≤ (µ F -α)F (x).
It invites us to introduce the stationary problem

E = bF b K F + µ E + ν E (4.9a) -D u M = (1 -r)ν E E -µ M M (4.9b) -D u F = -αF 1 [0,L * ] + rν E E(1 -e -βM ) -µ F F 1 [0,L * ] c . (4.9c)
Any super-solution of (4.9) which satisfies the boundary conditions

(E, M , F )(-∞) = (E 2 , M 2 , F 2 )
and (E, M , F )(+∞) = (0, 0, 0) is a barrier, as defined in Definition 4.5. Then, in order to prove existence of a barrier, it suffices to prove that there exist super-solutions of (4.9), i.e. (M , F ) such that

-D u M ≥ (1 -r)ν E bF b K F + µ E + ν E -µ M M , on R \ {0, L}, (4.10a) 
-D u F ≥ -αF 1 [0,L] + rν E bF b K F + µ E + ν E (1 -e -βM ) -µ F F 1 [0,L] c , on R \ {0, L}, (4.10b) M (ξ -) ≥ M (ξ + ), F (ξ -) ≥ F (ξ + ), for ξ ∈ {0, L}, (4.10c) 
(M , F )(-∞) = (M 2 , F 2 ), (M , F )(+∞) = (0, 0). (4.10d)

We recall that (M 2 , F 2 ) is the larger mosquito equilibrium defined in (2.1). The main result of this work is the following :

Theorem 4.7 Under the same assumptions as in Proposition 2.1, for any L * > 0, there exists U large enough, such that there exists a solution (M , F ) of (4.10).

Hence, there exists a barrier for system (2.5).

Proof. Let α ∈ (0, µ F ) be fixed. We take U and L large enough such that Lemma 4.6 holds. The last point of the Theorem is a consequence of the comparison principle. Therefore, we just have to construct a super-solution of (4.9) which verifies the boundary conditions. We construct this solution piecewise.

First, on (-∞, 0), we notice that system (4.9) is the stationary system for (2.5) when M s = 0. From Proposition 2.1, we deduce that we may take M , F on (-∞, 0) as the larger values of the equilibria in 2.1, that is, M = M 2 and F = F 2 .

On (0, L), we introduce the notation τ := ν E b µ E +ν E and take (M (L), F (L)) such that

0 < M (L) < - 1 β ln 1 - µ F 2rτ , 0 < F (L) < µ M (1 -r)τ M (L). (4.11) 
Theorem 4.7 establishes that it is possible to block a propagating front of invading mosquitoes by performing a sterile insect technique on a domain wide enough with releases of a sufficiently large amount of sterile males. However, the mathematical proof presented above provides only a sufficient condition to block the front and it is difficult to quantify the width of the domain and the number of sterile males. This is due to the fact that here we have to deal with a system of differential equations, whereas for a scalar equation it is possible to obtain a better characterization of the barrier.

Conclusion

In this work we have proved that mosquito invasion may be blocked by releasing a sufficient amount of sterile males over a sufficiently wide band. The main motivation of this result is to use the sterile insect technique to build a sanitary cordon to protect a certain region (e.g. an urban area) from wild mosquitoes living in an exterior region (a reservoir area where they are abundant like, for instance, a forest) and which are vectors of a disease (like dengue, zika or any other mosquito borne disease). We remark that the mathematical result is not exclusive to mosquitoes. This technique of building a barrier to avoid invasion may be applied to other invading insect species (for instance, other disease vectors or agricultural pests). It is however important that the population dynamics be characterized by an Allee effect such that the extinction steady state is stable.

Since we are looking for a solution v which is decreasing, we may invert it into a function x(v). Let us denote w(v) = -v (x(v)). Then, we have

w (v) = (µ -ψ(x(v)))v w(v) , w(v 0 ) = -v 0 .
The question is to know whether there exists v 0 < 0 such that the solution of this equation is defined on (0, v 0 ) and such that w(0) = 0. There are two possibilities: either w vanishes on v c ∈ (0, v 0 ) and then the solution is defined only on (v c , v 0 ) and we say that this solution is type I, or w does not vanish on (0, v 0 ) and then we set v c = 0 and we say that this solution is type II. We are looking for a solution which is between type I and type II.

Clearly, if v 0 < v 0 , then, from the Cauchy-Lipschitz theorem the corresponding solutions verify w < w. Therefore, the map v 0 → v c is nonincreasing and continuous. Moreover, we have seen at the beginning of this proof that if v 0 > -µ 2 v 0 the solution is type I and if v 0 < -√ µv 0 the solution is type II. Thus, by continuity there exists v 0 such that v c = 0 and w(0) = 0. Moreover, we have also v 0 ∈ [-√ µv 0 , -µ 2 v 0 ] and with (A.5) we deduce the estimate v(x) ≤ 1 2 (v 0 + v 0 √ µ )e -√ µx .

In the same spirit we have the following result:

Lemma A.3 Let v be a nonincreasing and nonnegative function on [0, ∞). Let u 0 > 0. We assume that αv(0) < βu 0 . We consider the Cauchy problem on (0, +∞) where we use the fact that v is nonnegative. Hence the solution is type I if u 0 < -√ βu 0 . Moreover, using the fact that v(x) ≤ v(0), we have u(x) ≥ u 0 cosh( βx) + Therefore, the solution is type II if u 0 > 1 √ β (αv(0) -βu 0 ). By a continuity and monotonicity argument, as in the proof of Lemma A.2, there exists u 0 ∈ [-√ βu 0 , 1 √ β (αv(0) -βu 0 )] such that the solution of (A.6) is such that lim x→+∞ u(x) = 0. Moreover, we have from the first estimate in this proof that u(x) ≤ 1 2 (u 0 +

-u = αv -βu, u (0) 
u 0 √ β )e √ βx .

Figure 1 :

 1 Figure 1: Numerical simulation of the time and space dynamics of (F, M ) solving (2.5) when M s = 0. Left : Profiles of solutions at three different times with same initial data; solutions are plotted at time t = 100, t = 200, t = 300. Right : Dynamics in time and space of the fertilized female density for system (2.5).

Figure 2 :

 2 Figure 2: Numerical simulation of the time and space dynamics of (F, M ) solving (2.5) when M s = 5000. Left : Profiles of solutions at three different times with same initial data; solutions are plotted at time t = 100, t = 200, t = 300. Right : Dynamics in time and space of the females density for system (2.5). Comparing this figure with Fig. 1, we observe that the invasion is slowing down.

Figure 4 :

 4 Figure 4: Numerical simulations for the model (2.5) with β → +∞, L = 10 km and U = 40 000 km -1 day -1 . In the figure on the left β = 10 -2 as in Table1, while on the right we have the solution of the limit equation when β → +∞.

Lemma 4 . 3

 43 Let L > 0. Then, for any L * > 0, the solution M s of (4.6) verifies, for any x ∈ [0, L * ]

Lemma 4 . 6

 46 Let M s ≥ M s . Let us assume that the initial data are nonnegative and such that E 0 ≤ K.(4.8)

  = u 0 , u (0) = u 0 . (A.6)Then, there exists u 0 ∈ [-√ βu 0 , 1 √ β (αv(0) -βu 0 )] such that the solution of (A.6) is decreasing and tends to 0 at +∞. Moreover, u(x) ≤ Ce - √ βx for some nonnegative constant C.Proof. Following the idea of the proof of Lemma A.2, we are left to prove that there exist type I and type II solutions. From the Duhamel formula, we haveu(x) = u 0 cosh( βx) + u 0 √ β sinh( βx) -α √ β x 0 v(z) sinh( β(x -z)) dz ≤ u 0 cosh( βx) + u 0 √ β sinh( βx),

√ µ M Du ((1 -r)τ F (L) -µ M M (L)).It concludes the construction of (M , F ).
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Then, we solve (4.9) on (0, L) with boundary conditions (M (0), F (0)) = (M 2 , F 2 ) and (M (L), F (L)). From (4.9c), we deduce that

which is positive on (0, L). From (4.9b), we deduce using the comparison principle that M ≥ M > 0, where M is the solution of -D u M + µ M M = 0 with M (0) = M 2 and M (L) = M (L).

On (L, +∞), we first observe that for F ≥ 0, we have

prove that there exists a nonnegative solution on (L, +∞), that tends to 0 at +∞, of the system

with (M (L), F (L)) as in (4.11). Notice that from (4.11), we have that (A.3) holds with φ(u) = rτ (1 -e -βu ) (which is clearly increasing and Lipschitz continuous). Then, we may apply the result in Proposition A.1 in the Appendix : For F (L) small enough, there exists (M (L + ), F (L + )) such that the solution of the above Cauchy problem is nonincreasing, nonnegative and goes exponentially fast to 0 as x tends to +∞. Thus, our solution so far satisfies (4.10a) and (4.10b), and it only remains to prove that (4.10c) holds in order to conclude our proof.

From the expression of F on (0, L), we compute

We already know that F (0 -) = 0, and from Lemma A.2, we have

In the same manner M (0 -) = 0, and we have from Lemma A.

. By the comparison principle, M is bounded from above by the solution on (0, L) of

Then, we have M (0 + ) ≤ y (0) and M (L -) ≥ y (L) where, after some straightforward computations,

We can always find L large enough and (M (L), F (L)), with F (L) small, such that (4.11) holds true,

0) ≤ 0, and y (L) ≥

Appendix Existence of nonincreasing solution vanishing at infinity

In this appendix, we consider the second order differential system on (0, +∞)

We assume φ nonnegative, nondecreasing, and Lipschitz continuous , (A.2)

Our main result is the following Proposition A.1 Under assumptions (A.2) and (A.3), for v 0 small enough, there exist (u 0 , v 0 ) such that the solution (u, v) to (A.1) is such that u and v are nonincreasing and go exponentially fast to 0 as x → +∞.

Before proving this result, we will prove two technical lemmas which concern (A.1a) and (A.1b) independently.

Lemma A.2 Let µ > 0 and ψ be a nonincreasing and nonnegative function such that ψ(0) ≤ µ 2 , and let v 0 > 0. Let us consider the Cauchy problem on (0, +∞)

Then, there exists v 0 ∈ [-√ µv 0 , -µ 2 v 0 ] such that the solution of (A.4) is decreasing and tends to 0 at +∞. Moreover, v(x) ≤ Ce -√ µx for some nonnegative constant C.

Proof. From the Duhamel formula, we have that

as long as v ≥ 0. Hence, we deduce that if v 0 < -√ µv 0 , the right hand side vanishes which implies that v vanishes. From the assumptions on ψ, we also have that

Then, if v 0 > -µ 2 v 0 , we have v > 0 and v(x) goes to +∞ as x → +∞.

Proof of Proposition A.1 Let us consider a nonincreasing and nonnegative function u on [0, +∞) such that u(0) = u 0 . Then, from Lemma A.2, there exists v 0 such that the solution of

is nonincreasing, nonnegative, and decays exponentially fast to 0 at +∞. With such a function v, from Lemma A.3, there exists u 0 such that the solution of (A.6) is nonincreasing, nonnegative, and decays exponentially fast to 0 at +∞. We denote by F(u) this solution, which allows to define the map F. Let us denote A the closed subset of functions in H 1 (0, +∞) which are nonnegative and nonincreasing and take the value u 0 at 0. Clearly F maps A into itself. Let us prove that F is a contraction on A for v 0 small enough.

Let u 1 and u 2 be in A. Then, by definition of F, we have

On the one hand, multiplying (A.7) by (F(u 1 ) -F(u 2 )) and integrating, we obtain, after an integration by parts

We deduce from a Cauchy-Schwarz inequality

On the other hand, multiplying (A.8) by (v 1 -v 2 ) and integrating we get, in a similar way,

where we use (A.3), the Lipschitz continuity of φ (see (A.2)), and the fact that v 2 is decreasing. Applying again a Cauchy-Schwarz inequality, we obtain

With (A.9), we conclude that

Hence, F is a contraction for v 0 small enough. Thus, there exists a unique fixed point, which is a solution of our problem.