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The sterile insect technique used as a barrier control against

reinfestation

Luis Almeida ∗ Jorge Estrada † Nicolas Vauchelet‡

May 25, 2020

Abstract

The sterile insect technique consists in massive release of sterilized males in the aim to reduce
the size of mosquitoes population or even eradicate it. In this work, we investigate the feasability
of using the sterile insect technique as a barrier against reinvasion. More precisely, we provide
some numerical simulations and mathematical results showing that performing the sterile insect
technique on a band large enough may stop reinvasion.

Keywords: Sterile insect technique, wave-blocking, reaction-diffusion equations.

1 Introduction

Due to the number of diseases that they transmit, mosquitoes are considered as one of the most
dangerous animal species for humans. According to the World Health Organization [1], vector-
borne diseases account for more than 17% of all infectious diseases, causing more than 700 000
deaths annually. More than 3.9 billion people in over 128 countries are at risk of contracting dengue,
with 96 million cases estimated per year. Malaria causes more than 400 000 deaths annually.

Since there is no vaccine against these diseases yet, the best strategy to control them is to act
directly on the mosquito population. Several strategies are developed and experimented to achieve
this goal. Some techniques aim at replacing the existing population of mosquitoes by a population
unable to propagate the pathogens. This has triggered a growing interest in the use of the bacteria
Wolbachia [15]. Other techniques aim at reducing the size of the mosquito population like the sterile
insect technique [10, 4], the release of insects carrying a dominant lethal (RIDL) [29, 14, 12] and
the driving of anti-pathogen genes into natural populations [13, 19, 30]. Finally, other approaches
combine both reduce and replace strategies [24].

In this article, we focus on the sterile insect technique. This strategy was introduced in the 50’s
by Raymond C. Bushland and Edward F. Knipling. It consists in using area-wide releases of sterile
insects to reduce reproduction in a field population of the same species. Indeed wild female insects
of the local population do not reproduce when they are inseminated by released sterilized males. For
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mosquitoes, this technique has been successfully used to drastically reduce mosquito populations in
some isolated regions (see e.g. [27, 31]). In order to predict the dynamics of mosquito populations,
mathematical modeling is an important tool. In particular, there is a growing interest in the study
of control strategies (see e.g. [5, 18, 8, 2] and references therein).

In order to obtain rigorous results, these works usually neglect spatial dependency and only few
articles propose to incorporate spatial variables in their study of the sterile insect technique. In
[16] the authors propose a simple scalar model to study the influence of the sterile insects density
on the velocity of the spatial wave of spread of mosquitoes. The work [21] focuses on the influence
of the release sites and the frequency of releases in the effectiveness of the sterile insect technique
and in [26, 25], the authors conduct a numerical study on some mathematical models with spatial
dependency to investigate the use of a barrier zone to prevent invasion by mosquitoes. However,
to the best of our knowledge, there are no rigorous mathematical results on the existence of such
barrier zones. In this paper, we conduct a study similar to [26] for another mathematical model
which has recently been introduced in [28]. Moreover, we propose a strategy to rigorously prove the
existence of barrier zones under appropriate conditions on the parameters.

The outline of the paper is the following: In the subsection 2.1 we introduce our dynamical
system model and describe the variables and biological parameters, and also present a simplified
model that results from additional assumptions. We analyze the existence of positive equilibria
and the stability of the mosquito-free equilibrium. In subsection 2.2 we introduce spatial models
including diffusion. In section 3 we perform numerical simulations for the spatial models (both the
full and the simplified ones) to observe the existence of wave-blocking for a sufficiently large release
of sterile males. In section 4 we give a sketch of a rigorous proof of the previous phenomenon, that
will be presented in a forthcoming paper [3], and we offer our conclusions.

2 Mathematical model

2.1 Dynamical system

Inspired by the recent paper [28], we propose the following mathematical model governing the
dynamics of mosquitoes:

dE

dt
= b(1− E

K
)F (1− e−β(M+γMs))

M

M + γMs
− (νE + µE)E,

dM

dt
= (1− r)νEE − µMM,

dF

dt
= rνEE − µFF,

dMs

dt
= u− µsMs.

(2.1)

In this system, the population mosquitoes is divided into several compartments. The number of
mosquitoes in the aquatic phase is denoted E; M and F denote respectively the number of adult
males and adult females; Ms is the number of sterile male mosquitoes present, the release function
being denoted by u. The fraction M

M+γsMs
corresponds to the probability that a female mates with

a wild mosquito. Moreover, the term (1− e−β(M+γsMs)) has been introduced to model the fact that
some male mosquitoes may not be fertile. It introduces a so-called Allee effect. Finally, we have the
following parameters :

• b > 0 is the oviposition rate;
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• µE > 0, µM > 0, µF > 0 and µs > 0 denote the death rates for the mosquitoes in the aquatic
phase, for adults males, for adults females, and for sterile males, respectively;

• K is an environmental capacity for the aquatic phase, taking also into account the intraspecific
competition;

• νE > 0 is the rate of emergence;

• r ∈ (0, 1) is the probability that a female emerges, then (1− r) is the probability that a male
emerges;

• u is a control function corresponding to the number of sterile males which are released into
the field.

Since this system involves 4 equations and since we are interested in introducing the spatial
dependency, it will be useful to simplify this model in order to be able to perform some rigorous
mathematical analysis. We first introduce the notations

τ =
(1− r)µF
rµM

,

and

g(F,Ms) =
rνEKbτF

2(1− e−β(τF+γsMs))

bτF 2(1− e−β(τF+γsMs)) +K(νE + µE)(τF + γsMs)
− µFF. (2.2)

Our first assumption concerns the male dynamics. Since males and females satisfy similar equa-
tions, it is reasonable to assume that the number of males is equal to a proportion of the number of
females. Then, in order to keep the same equilibria, we assume that

M = τF. (2.3)

Moreover, we consider the situation in which we are in a favorable environment for mosquitos to
spread. Then, we consider that the dynamics for the aquatic compartment is fast compared to the
adult stage. It boils down to assume that the equation for E in (2.1) is at equilibrium, that is

0 = b(1− E

K
)F (1− e−β(M+γMs))

M

M + γMs
− (νE + µE)E

It is equivalent to the following relation:

E =
bF (1− e−β(M+γMs)) M

M+γMs

b
KF (1− e−β(M+γMs)) M

M+γMs
+ νE + µE

. (2.4)

Injecting (2.3) and (2.4) into the equation for F in (2.1), we deduce a simplified model

dF

dt
= g(F,Ms),

dMs

dt
= u− µsMs, (2.5)

where g is defined in (2.2).

Proposition 2.1 Let us assume that brνE > µF (νE + µE).

1. When u = 0. There exist at most two positive equilibria for systems (2.1) and (2.5). They are
denoted (E1,M1, F 1, 0) and (E2,M2, F 2, 0) for (2.1), and (F 1, 0) and (F 2, 0) for (2.5), with
0 < F 1 < F 2 <

KrνE
µF

.

3



2. There exists a positive constant Ũ large enough, such that if u = U , where U is a constant such
that U > Ũ , then the unique equilibrium for both systems (2.1) and (2.5) is the mosquito-free
equilibrium (0, 0, 0, U/µs), which is globally stable.

Proof. For u = 0, the only equilibrium of dMs
dt = u − µsMs is Ms = 0. Substituting Ms = 0 in

(2.2), we get

g(F, 0) = F
b(KrνE − µFF )(1− e−βτF )−KµF (µE + νE)

bF (1− e−βτF ) +K(µE + νE)

We prove that g(F, 0) has at most two positive roots. Its denominator is always positive, and
its numerator can be expressed as F ((a − cF )(1 − e−βτF ) − d), where a = KbrνE , c = bµF , d =
KµF (µE + νE). Therefore, if F > 0, then g(F, 0) = 0 ⇐⇒ a − d − cF = (a − cF )e−βτF . Let
g1(F ) = a− d− cF, g2(F ) = (a− cF )e−βτF .

Note that a − d = K(brνE − µF (µE + νE)) > 0 by hypothesis, and g1(0) = a − d, g2(0) = a.
Hence, 0 < g1(0) < g2(0). Moreover, we have that g′2(F ) = e−βτF (βτcF − aβτ − c) and

g′′2(F ) = βτe−βτF (aβτ + 2c− βτcF ).

Therefore g2 has a global minimum at F = a
c + 1

βτ . Note that for F = a/c, we have g1(a/c) = −d <
0 = g2(a/c), 0 > g′2(a/c) = −ce−aβ/c > g′1(a/c) = −c. The tangent line to g2(F ) at F = a/c is
g3(F ) = −ce−aβτ/c(F − a/c). Since g2(F ) is convex on (ac ,

a
c + 1

βτ ), it follows that g2(F ) lies above

g3(F ) on this interval. Therefore, this will also be the case for F ≥ a
c + 1

βτ , because for F ≥ a
c + 1

βτ ,
g2(F ) is increasing and g3(F ) is decreasing.

Furthermore, g3(F ) > g1(F ), for all F ≥ a
c . Hence, g1(F ) < g2(F ), for all F ≥ a

c . Therefore, any
positive intersections of g1 and g2 must lie on (0, a/c). Since g1 is a straight line and g2 is convex
on (0, a/c), they can have at most two intersections, so F 7→ g(F, 0) has at most two positive roots
0 < F 1 < F 2 <

a
c .

Therefore, (2.5) has at most two equilibria (F 1, 0) and (F 2, 0) and substituting F 1, F 2 into (2.3)
and (2.4) gives us the associated equilibria (E1,M1, F 1, 0) and (E2,M2, F 2, 0) for (2.1), which con-
cludes the proof of the first part.

For the second part, for a given constant u = U , the only equilibrium of dMs
dt = u − µsMs is

Ms = U/µs. On the other hand, since its denominator is always positive, the sign of g(F,Ms)
depends on the sign of the factor on the numerator

bτF (KrνE − µFF )(1− e−β(τF+γsMs))−KµF (νE + µE)(τF + γsMs).

This numerator is negative for all Ms ≥ 0, F > KrνE
µF

. For 0 ≤ F < KrνE
µF

, using the obvious

inequality 0 < 1 − e−β(τF+γsMs) ≤ 1, we can bound from above this latter factor by a downward
parabola in F ,

bτF (KrνE − µFF )−KµF (νE + µE)(τF + γsMs),

This parabola reaches its maximum at F = K(brνE−µF (νE+µE))
2bµF

∈ (0, KrνEµF
) by assumption, and the

maximum value equals τK2(brνE−µF (νE+µE))2

4bµF
−KµF (νE + µE)γMs. It is negative for all Ms large

enough, that is, for all

U > Ũ =
τµsK(brνE − µF (νE + µE))2

4bµ2F (νE + µE)γ
.

(Note that if brνE ≤ µF (νE+µE) then this parabola, and by extension g(F, 0), would be negative for
all F > 0, so that brνE > µF (νE+µE) is a necessary condition for g(F, 0) to have three non-negative
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equilibria.)

Therefore, for U large enough, so that g(F,Ms) < 0 for all F > 0, the only equilibrium for (2.5)
is the mosquito-free equilibrium. Evaluating the Jacobian at (0, U/µs) we get a diagonal matrix(−µF 0
0 −µs

)
and thus the mosquito-free equilibrium is globally stable. Likewise, the Jacobian at the

mosquito-free equilibrium for (2.1) is a triangular matrix and its eigenvalues, that is, the diagonal
elements, are all negative:

J(0, 0, 0, U/µs) =


−(νE + µE) 0 0 0
(1− r)νE −µM 0 0
rνE 0 −µF 0

0 0 0 −µs


Therefore, the mosquito-free equilibrium is globally stable for (2.1) as well.

Remark 2.2 Actually, the model proposed in [28] is different from (2.1), since it does not consider
adult females but adult females that have been fertilized Fm. Then the model in [28] reads

dE

dt
= b(1− E

K
)Fm − (νE + µE)E,

dM

dt
= (1− r)νEE − µMM,

dFm
dt

= rνEE(1− e−β(M+γMs))
M

M + γMs
− µFFm,

dMs

dt
= u− µsMs.

(2.6)

It is not difficult to show that the same results as the ones in Proposition 2.1 holds also for this
system. It is interesting to compare the numerical results between the different models.

2.2 Spatial model

In order to model the spatial dynamics, we consider that adult mosquitoes diffuse according to a
random walk. It is classical to model this active motion by adding a diffusion operator in the adult
compartments. We denote by x the spatial variable. In order to simplify the approach, we only
consider the one-dimensional case (x ∈ R). Then, all unknown functions depend now on time t > 0
and position x ∈ R. The resulting model from (2.1) reads

dE

dt
= b(1− E

K
)F (1− e−β(M+γMs))

M

M + γMs
− (νE + µE)E,

∂tM −Du∂xxM = (1− r)νEE − µMM,

∂tF −Du∂xxF = rνEE − µFF,

∂tMs −Du∂xxMs = u− µsMs.

(2.7)

In this model Du is a given diffusion coefficient (which, for simplicity, in this work is assumed to be
the same for the three adult populations, but we can also consider more general cases).

Since it is hard to obtain analytical results for this system, we consider the simplified model
deduced from (2.5)

∂tF −Du∂xxF = g(F,Ms),

∂tMs −Du∂xxMs = u− µsMs.
(2.8)
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Figure 1: Comparison of the dynamics of (F,M) solving (2.7) and (F1,M1) solving the simplified
model (2.8). Left : Profiles of solutions at time T = 140 with same initial data. Center : Dynamics
in time and space of the females density for system (2.7). Right : Dynamics in time and space of
the females density for system (2.8).

An important observation in the case when Ms is a non-negative constant, is that system (2.8)
simplifies into a scalar reaction-diffusion equation with a bistable right hand side:

∂tF −Du∂xxF = g(F,Ms).

Indeed, we have seen in Proposition 2.1 that there exists M s such that for any 0 ≤ Ms < M s, the
function F 7→ g(F,Ms) admits two positive roots F 1 and F 2 and for any Ms ∈ [0,M s), we have
g(F,Ms) < 0 for F ∈ (0, F 1), and g(F,Ms) > 0 for F ∈ (F 1, F 2).
It is now well-established (see e.g. [23]) that there exists an unique traveling wave with a speed

which has the same sign as the quantity
∫ F 2

0 g(F,Ms) dF . Then, one possibility to avoid spreading

of mosquitoes is to investigate the possibility to find a constant Ms such that
∫ F 2

0 g(F,Ms) dF < 0.
Such problem has been investigated in [17].

In order to illustrate this observation, we perform some numerical computations of models (2.7)
and (2.8). These models are discretized thanks to a finite difference scheme on an uniform grid mesh.
We use the numerical values in Table (1). We display in Figure 1 a comparison between numerical
solutions for the two models (2.7) and (2.8).

Remark 2.3 The spatial model for (2.6) reads (in the case where the diffusion of all adult types is
the same, as before)

dE

dt
= b(1− E

K
)Fm − (νE + µE)E,

∂tM −Du∂xxM = (1− r)νEE − µMM,

∂tFm −Du∂xxFm = rνEE(1− e−β(M+γMs))
M

M + γMs
− µFFm,

∂tMs −Du∂xxMs = u− µsMs.

(2.9)

In this paper, we want to investigate the possibility of blocking the propagation of the spreading
of mosquitoes by releasing sterile mosquitoes on a band of width L. May the sterile insect technique
be used to act as a barrier to avoid re-invasion of mosquitoes in a free-mosquito region ? In order
to answer this question, we first perform some numerical simulations in the next section.
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3 Numerical simulations

We choose u(t, x) = U1[0,L](x), where U is a given positive constant. We propose some numerical
simulations. As above we implement a finite difference scheme on an uniform grid. The values of
the numerical parameters are taken from [28] and are given in Table 1.

Parameter β b r µE νE µF µM γs µs Du

Value 10−2 10 0.49 0.03 0.05 0.04 0.1 1 0.12 0.0125

Table 1: Table of the numerical values used for the numerical simulations. These values are taken
from [28]

We present in Figures 2 and 3 the dynamics in time and space of the female density F for
models (2.7) and (2.8), respectively. In both figures, we assume that the domain where the release
of sterile males is perform is of width L = 5 km. The release intensity is U = 10 000 km−2 (left),
U = 15 000 km−2 (center), U = 20 000 km−2 (right). We first notice that it seems that for sufficiently
large U , the mosquito wave is not able to pass through the release zone. On the contrary, if U is
not large enough, the wave is only delayed by the release zone. Comparing Figures 2 and 3, we
notice that the delay is more important for the solution of model (2.7) than for the solution of the
simplified model (2.8). This is not surprising since we have already observed in Figure 1 that the
wave propagation is faster for the simplified model.

Figure 2: Numerical simulations of system (2.7) with L = 5 km and U = 10 000 km−2 (left),
U = 15 000 km−2 (center), and U = 20 000 km−2 (right).

Figure 3: Numerical simulations of the simplified model with L = 5 km and U = 10 000 km−2 (left),
U = 15 000 km−2 (center), and U = 20 000 km−2 (right). To be compared with Fig. 2

It is also interesting to observe that when β → +∞, there is no blocking as illustrated in Figure
4 for model (2.7). This observation may be easily explained for the simplified model. Indeed, when
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Figure 4: Numerical simulations for the model (2.7) with β → +∞ and L = 10 km : U = 20 000 km−2

(left); U = 30 000 km−2 (right).

β → +∞, the expression (2.2) simplifies into

g(F, 0) =
rνEKbF

bF +K(νE + µE)
− µFF.

Then, F 7→ g(F, 0) admits only two roots F = 0 and F = K(rνEb−µF (νE+µE))
bµF

. Therefore, it is a
monostable function, for which the mosquito-free steady state is unstable. As a consequence, if an
exponentially small number of mosquitoes cross the region of blocking, it is enough for them to
reproduce and to converge to the positive steady state. We can also verify that when β → +∞ the
mosquito-free steady state equilibrium is unstable for model (2.1). Indeed, putting Ms = 0 in the
system (2.1) and letting β → +∞, the Jacobian matrix of the resulting system at the point (0, 0, 0)
is given by −νE − µE 0 b

(1− r)νE −µM 0
rνE 0 −µF


Thus, when b > µF this steady state is unstable.

Finally, we perform some numerical simulations for the system (2.9) in order to compare the
behaviour of solutions for this system with system (2.7). The time and space dynamics of Fm is
displayed in Figures 5 and 6. In Figure 5, the width of the domain L is fixed and we change the
intensity of the release U . As in Figure 2, we observe that by increasing the intensity of the release
U , we may block the propagation. In Figure 5, we make the same observation that when β → +∞,
the wave is able to cross the active domain, even for U and L much larger than what is needed to
stop the propagation. These numerical results are in accordance with what we saw for the previous
model.

4 Mathematical approach

These numerical simulations indicate that it should be possible to block the spreading by releasing
enough sterile males on a sufficiently wide domain. However, to be sure that it is not an numerical
artefact and that the propagation is really blocked, we have to prove rigorous mathematical results.
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Figure 5: Numerical simulations for model (2.9) with L = 5 km and U = 10 000 km−2 (left),
U = 20 000 km−2 (center), and U = 30 000 km−2 (right).

Figure 6: Numerical simulations for model (2.9). Left : L = 10 km, U = 20 000 km−2 and β = 10−2.
Center : L = 10 km, U = 30 000 km−2 and β → +∞. Right : L = 10 km, U = 40 000 km−2 and
β → +∞.

The study of wave blocking by local action has been done by several authors with applications for
instance in biology or in criminal studies [22, 16, 9, 7, 20, 11].

In [3], we apply the theory developed e.g. in [16] to prove existence of a blocking for the simplified
model. Let us consider the simpified model (2.8) with u = U1[0,L]. We call barrier for (2.8), any

stationnary solution, i.e. any solution (F̃ , M̃s) to

−DuF̃
′′ = g(F̃ , M̃s),

−DuM̃s
′′

+ µsM̃s = U1[0,L].
(4.10)

The main result in [3] is the existence of a barrier for L and U large enough:

Theorem 4.1 There exists L∗ > 0 such that

• For L < L∗ there is no barrier for (2.8).

• For L > L∗, there exists U
∗
(L) such that for all U > U

∗
(L) there exists a barrier for (2.8).

Moreover, we have limL→L∗ U
∗
(L) = +∞, U

∗
is decreasing with respect to L, and U

∗
(L) =

O( 1
(L−L∗)2 ) as L →

>
L∗. Furthermore, limL→+∞ U

∗
(L) exists and is bounded from below by

M∞ such that
∫ F 2

0 g(F,M∞) dF = 0.

Sketch of the proof: The proof in [3] is based on the geometric method presented in [16]. The
existence of a barrier is linked to the intersection of two associated curves in the phase portrait of
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−DuF̃
′′ = g(F̃ , 0): the stable manifold of the stable equilibrium F+ and a mapping of the homoclinic

orbit that represents the stationary states that tend to zero at infinity. The intersection of these
curves allows us to construct a piecewise stationary solution that acts as a barrier for traveling waves
potentially arriving from beyond the release zone.

Studying the asymptotic behavior of g(F,Ms) when Ms → +∞, a lower bound L∗ is found for
the intersection of the curves. The monotony of the mapping with respect to L and the monotony
of g(F,Ms) with respect to Ms then imply that U

∗
is decreasing with respect to L. The speed of

convergence when L→ L∗ is derived from a first order Taylor approximation.
Finally, using the comparison principle with the parabolic equation ∂tF̃ −Du∂xxF̃ = g(F̃ , U), for

which existence of a traveling wave solution with positive velocity when U ≤ M∞ is known [6], we
deduce that there is no wave-blocking for U ≤ M∞, and therefore M∞ is a lower bound for U

∗
(L)

and limL→+∞ U
∗
(L) exists.
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