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1. Introduction and Scope

Among the additive layer manufacturing techniques for metals, those involving metal deposition,
including laser cladding/Direct Energy Deposition (DED, with powder feeding) or Wire and Arc
Additive Manufacturing (WAAM, with wire feeding), exhibit several attractive features. For instance,
one can mention high mass efficiency (50–80% for LMD, 100% for WAAM), large build rates (more
than 100 cm3/h), sound microstructures with a limited amount of porosities, and the ability to build
graded or multimaterials. Even though corresponding processes have been developed a rather long
time ago, there is still an important demand for research work in various topics such as deposition of
novel or graded materials, postprocessing, and wear behavior of deposited materials.

The current Special Issue, including six contributions, aims at presenting recent and original work
dedicated to all these aspects, with a more specific focus on coatings than on 3D structures.

2. Contributions

Six papers have been published in this Special Issue of Metals on ALM using metal deposition.
They can be roughly separated in three distinct topics, presented here below.

2.1. In-Situ Manufacturing of Innovative Materials

Novel materials can easily be manufactured in-situ by metal deposition techniques, either from
alloying parent materials or from in-situ chemical reactions.

An interesting example is the DED manufacturing of γ-TiAl coatings on Ti-6Al-4V substrates,
starting from pure Al and Ti elemental powders [1] instead of prealloyed powders. The paper
demonstrates the feasibility of obtaining satisfactory and low-cost Ti-Al deposits under normal
atmospheric conditions, versus more usual EBM conditions involving a stronger limitation of O2

content. This was made possible by an optimization of the Ti and Al powder feeding, through a control
of two separate powder hoppers. One major conclusion is the dominant role played by Al at % versus
heat-treatment conditions in determining hardness and the mechanical properties. Metallurgically,
twinning was also considered as an important contributor to elevated hardness values.

The WAAM process was investigated as a promising technique to generate Fe/Al walls by fusing
simulateously an AISI304 stainless steel wire and a A4043 Al-Si alloy wire on a low carbon steel
substrate. The optimization of the process, and especially of the inter-layer dwell time to limit cold
cracking, was carried out through a thermal camera control of the surface temperature (less than 400 ◦C)
between subsequent deposits. An interesting point to notice is that a +50% hardness increase can be
obtained with an optimization of the continuous current regime (at higher scan speed), attributed
by the authors to a grain refinement effect. Future investigations, focused on the influence of Al,
Cr, and Ni contents in the welds, and especially solid-solution strengthening of the steel matrix by
increased Al fraction, or an estimation of the Al1.1Ni0.9 intermetallic volume fraction, should add a
more precise understanding of observed results.
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2.2. Wear Resistance of Deposited Materials

Laser metal deposition is a well known efficient method for improving wear resistance, and more
widely the lifetime, of metalic materials. The main novelty of Liu et al.’s work [2,3] is to use nonspherical
powders coming from industrial Fe-Si-Al ribbons leftovers, thus reducing the cost of raw materials and
of the global process. Through the deposition of a 2 mm thick coating on a 1045 carbon steel, significant
improvements of the wear resistance (factor 10 reduction of mass loss) are demonstrated, coming from
the high hardness deposit, and surprisingly with a rather low influence of (P,V) process parameters.

In nearly the same topic, high-wear resistance steel (HWS) coatings are obtained by Baek et al. [4]
on carbon steel substrates. In this work, a specific focus is put on the influence of a postdeposition
quenching/tempering heat treatment. Through a detailed microstructural and mechanical investigation
of laser coatings, a satisfactory compromise between toughness and tensile resistance was demonstrated
for heat-treated HWS, mostly attributed to an increase of martensite volume fraction and the formation
of fine and uniformly distributed carbides.

The preservation of the amorphous nature during laser deposition is partly confirmed in the
innovative paper of Hou et al. [5]. Considering a Fe-Cr-Mo-Co-C-B alloy powder, and rather classical
DED conditions, sound laser deposits were obtained, which were subsequently analyzed by X-ray
Diffraction (XRD). XRD indicated a 53% volume fraction of amorphous phase, compared with 85%
volume fraction in the starting powder, with the difference beeing attributed to dilution effects.
Due to a six-times-higher hardness in the clad, significant improvements of the wear resistance were
then obtained.

2.3. Hybrided Processes

Postprocessing heat or mechanical treatments applied on as-built ALM materials are mandatory to
obtain desired metallurgical–mechanical properties. However, hybrid processes, involving sequences
of manufacturing/post-treatments all along the building process, are not that common. On a similar
topic, one can mention Kalentics’s work involving SLM and laser shock peening [6]. In the paper by
Yang et al. [7], a combined ultrasonic impact treatment (UIT) + WAAM process was used to modify
microstructures and mechanical properties of a Ti-6Al-4V alloy. The beneficial effect of this hybrid
process was as follows: a reduction of Von Mises equivalent stresses, the formation of a refined and
more equiaxed grain structure, and an improvement of yield and ultimate tensile strengths. The only
detrimental effect was found to be a severe reduction of elongation to failures.

3. Conclusions

In the six original research papers presented in this Special Issue on ALM using metal deposition,
the reader will benefit from an overview of current research works, which mainly highlight the wide
spectrum of possible materials’ developments.
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