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I. INTRODUCTION

In order to support future traffic requirements (highspeed mobile data services and better coverage), next generation cellular networks are expected to deploy denser mobile access networks with different Base Station (BS) sizes (large and small cells). Although this improves the capacity and coverage of these networks, it also brings new challenges such as pushing the limits of energy consumption and problems related to interference management. In order to meet these challenges, there is a growing interest to steer research efforts towards energyefficient solutions, with particular emphasis on BS Sleep Mode (SM) techniques.

BS sleep scheme is considered among the best methods to save energy, since it does not require changes to current network architecture, and it is easy to implement [START_REF] Wu | Energy-efficient base-stations sleep-mode techniques in green cellular networks: A survey[END_REF]. We distinguish between two types of sleep schemes: binary SM level (ON and OFF) and multi-level SM. In binary SM, the BS shuts down completely when the traffic is low to save energy. The literature is rich and many surveys exist on binary SM [START_REF] Wu | Energy-efficient base-stations sleep-mode techniques in green cellular networks: A survey[END_REF]- [START_REF] Feng | Base station on-off switching in 5G wireless networks: Approaches and challenges[END_REF]. On the other hand, multi-level SM splits the sleep states into several levels with different characteristics on the activation/deactivation period and the power consumption [START_REF] Debaillie | A flexible and futureproof power model for cellular base stations[END_REF]- [START_REF] Lähdekorpi | Energy efficiency of 5G mobile networks with base station sleep modes[END_REF]. The latter adds flexibility to cope with the traffic requirements to further enhance the system performance by reducing the energy consumption of future networks while minimizing the impact on the Quality of Service (QoS). In this regard, there exist several studies that consider the problem of Energy-Delay Tradeoff (EDT) using multi-level SM scheme [START_REF] Ezzahra | Reinforcement learning approach for advanced sleep modes management in 5G networks[END_REF]- [START_REF] El-Amine | Location-Aware sleep strategy for Energy-Delay tradeoffs in 5G with reinforcement learning[END_REF]. By applying tools from machine learning, and in particular reinforcement learning, these works study the multi-objective function of the EDT problem for different SM policies depending on the service use case, allowing the operator to tune the network parameters towards more energy savings or less service delay.

Coupled with the problem of energy consumption in dense Heterogenious Networks (HetNets) is the cochannel interference, where the unplanned deployment of small cells makes the interference management more complex. In [START_REF] De Domenico | Reinforcement learning for interference-aware cell dtx in heterogeneous networks[END_REF], the authors designed a centralized Fuzzy Q-Learning (FQL) algorithm controller for small cells to minimize the energy consumption while respecting the users' QoS. The proposed solution manages the interference between the small cells in order to limit its effect and to maximize the energy efficiency of the network.

In this paper, we study the problem of EDT in a Het-Net where small cells can switch to different SM levels in order to save energy. We propose a distributed Qlearning algorithm controller for small cells that adapts their activity based on the level of interference, the traffic load and the size of the buffered data in the cell. Different from the works in [START_REF] Ezzahra | Reinforcement learning approach for advanced sleep modes management in 5G networks[END_REF]- [START_REF] El-Amine | Location-Aware sleep strategy for Energy-Delay tradeoffs in 5G with reinforcement learning[END_REF], in this paper we take into account the co-channel interference between the cells to minimize its effect to enhance the network's performance. Different from [START_REF] De Domenico | Reinforcement learning for interference-aware cell dtx in heterogeneous networks[END_REF], we propose a distributed Qlearning algorithm where each cell makes autonomous decisions according to the Decentralized SON (D-SON) paradigm. Furthermore, we extend the model of [START_REF] De Domenico | Reinforcement learning for interference-aware cell dtx in heterogeneous networks[END_REF] to multi-SM scheme. Our numerical analysis shows that multi-level SM scheme outperforms binary sleep scheme in terms of energy savings and added delay. We also focus on the convergence analysis, and the impact of The remainder of the paper is organized as follows. Section II details the system model understudy with the 5G multi-level SM scheme. In Section III, we present our distributed Q-learning algorithm for multi-level SM scheme. We discuss some performance results in Section IV. In Section V, we draw our conclusions and discuss future research directions.

II. SYSTEM MODEL

We consider a two-tier heterogeneous multi-cell network composed of a Macro Base Station (MBS) and Small Base Stations (SBSs). Together, these BSs serve a total of K users. The SBSs are densely deployed in the coverage area of the macrocell and operate in a dedicated carrier to create a local hotspot that will increase the system capacity in the designated area, where needed. In order to enhance the system energy efficiency, these SBSs can dynamically switch to different SM levels. This will not only save energy and limit the CO 2 footprint, but it will also enhance the system capacity by limiting the interference between neighboring cells. A distributed local network controller (e.g., SDN) is in charge of managing the activity of these cells (see Fig. 1). We note that for binary SM levels (ON and OFF), finding the optimal set of active SBSs is a combinatorial problem with high computational complexity. In this work, we further add another layer of complexity by considering multi-level SMs. In order to solve this problem, the local controller manages a given SBS by means of interacting with the environment in order to map what to do (action) when faced with a current situation (state). This method is known as Q-Learning. In particular, each SBS at each iteration, measures the expected average interference from neighboring cells and the SBS state in the previous iteration. The local controller uses this information along with the SBS buffer and traffic load states to control its activity, as we detail later in this section.

A. Multi-Level Sleep Modes

In [START_REF] Debaillie | A flexible and futureproof power model for cellular base stations[END_REF], GreenTouch identified four distinct SM levels by grouping sub-components with similar transition latency when being activated or deactivated. The presented model enables to quantify the power consumption of the BS in each of the four SMs. These are:

-SM 1: It considers the shortest time unit of one OFDM symbol (i.e., 71µs) comprising both deactivation and reactivation times. In this mode only the power amplifier and some processing components are deactivated. -SM 2: It corresponds to the case of sub-frame or Transmission Time Interval (TTI) (i.e., 1 ms). In this SM, more components enter the sleep state. -SM 3: It corresponds to the frame unit of 10 ms.

Most of the components are deactivated in this mode. -SM 4: This is the deepest sleep level. Its unit corresponds to the whole radio frame of 1s. It is the standby mode where the BS is out of operation but retains wake-up functionality. Higher energy savings can be achieved when switching BSs to a deeper SM, since more components will be deactivated. However, this will be associated with longer transition latency which may impact the QoS of the system. In Table I, we present the SM levels characteristics.

Along with SM and users' dynamics, the BS has to wake up periodically to send signalling bursts. In contrast to Long Term Evolution (LTE) systems where each antenna must transmit every 0.2 ms a unique Cell Reference Signals (CRS) for channel quality estimates and mobility measurements among other Synchronization Signaling (SS), no CRS is required for 5G [START_REF] Gpp | On requirements and design of ss burst set and ss block index indication[END_REF]. Instead, SS and Physical Broadcast CHannel (PBCH) are transmitted in SS/PBCH block periodically. It has been agreed in Third Generation Partnership Project (3GPP) [START_REF] Gpp | On requirements and design of ss burst set and ss block index indication[END_REF] that this periodicity can be set to any value among [5, 10, 20, 40, 80, 160 ms]. With these values, SM 4 cannot be used. Hence, we limit our work to the first three SM levels. 

B. Network Operation

In our model, we consider connected users continuously requesting packets during a fixed period of time. We use the term block of data to describe the overall packets requested by users during a time slot t (ms) and contained in one block. In this work, we do not focus on the inter-packet dynamics. We rather consider a continuous flow of data with an average size (kbits) that is first buffered in the SBS buffer before transmitted to the designated users.

At each time slot t, a block of data (composed of several packets) is buffered and stacked in the designated cell buffer. The size of this block n depends on the number of users being served in the cell and users' requirement based on the service. Furthermore, this block of data is characterized by a Time-To-Live (TTL) l (ms), which is the latency constraint above which the remaining data are lost. Here, we consider that the block of data can be partially served in case the serving time was not enough to deliver it all, due to high interference and/or inactivity of the cell (i.e., in sleep mode). Furthermore, the cell buffer operates in FIFO (First Input First Output) fashion. One can relate such service to a current or future 5G delay-tolerant application where the order of the packets does not matter.

If a user requests a packet from a SBS in a SM state, e.g., SM 1, SM 2, or SM 3, it will be buffered until the SBS activates in a future time step. Thereafter, the SBS manages the available radio resources to serve the users during the transmission time slot. The state of the SBS has an impact on the latency added to the system. The deeper the SM level is, the more time the user will have to wait until the SBS reactivates.

C. Problem formulation

Following the above system description, we can model the problem as a discrete-state Markov Decision Process (MDP), where a SBS m in a state s m (t) takes an action a m (t) and transitions to another state s m (t + 1). We denote by S = {R, B, I l } the state space of the SBS, where R, B and I l are the sets related to the cell throughput, buffer state, and the estimated spectral efficiency loss (bit/s/Hz) due to the interference from nearby active SBSs, per SBS, respectively. In this work, we assume that the users request a Near Real Time Service (NRTS) traffic with an average packet size [kbits]. The time needed to complete this service depends on two factors: The buffering time until the SBS re-activates, and the capacity of the serving SBS that is highly affected by the co-channel interference from neighboring cells.

At each time slot, the local controller decides an action a m (t) ∈ A = {Active, SM 1, SM 2, SM 3} for a SBS after observing its state. In order to evaluate the cost associated with each action-pair, we use the function that takes into account the power consumption of the SBS, and the users' QoS:

c(s, a) = (1 -w) • p(s, a) + w • d(s, a) (1) 
where p(s, a) is the power consumption of the SBS, w is a weighting factor that prioritizes between the power consumption and the QoS, and d(s, a) indicates the data lost due to exceeding the delay constraint either from the operational state of the cell (i.e., in sleep) or the high interference level limiting the cell throughput.

In order to solve the above MDP, we first need to derive the transition probabilities and cost from one state to another. Then, a backward dynamic programming needs to be performed to evaluate the optimal value function, in order to derive the optimal policy. However, this requires a complete knowledge of the system information. To alleviate the non-causal system information, we rely on QL to find the optimal policy by only exploring and interacting with the current state of the system.

III. DISTRIBUTED Q-LEARNING A. Preliminaries on Reinforcement Learning

Distributed Q-learning is an online optimization technique that aims at controlling multi-agent systems, i.e., a system featuring M BSs which take decisions (select the appropriate SM level) in an uncoordinated fashion. Each BS has to learn independently a policy (SM 1, SM 2 or SM 3) through real-time interactions with the environment. Q-learning finds the optimal policy in the sense that it maximizes the expected value of the total reward (Q-value) over all successive episodes. The agents (i.e., BSs) have a partial view of the overall system, and their actions may differ since the users are unevenly distributed over the network. In particular, the decision of a BS to choose a SM level is affected by how many users it has to serve, and on how delay-tolerant these users are.

In Q-learning, each agent takes an action a t m from an action set A, then moves to a new state s t+1 m while receiving a reward r t m . This reward is then used to update the Q-value locally, Q(s t m , a t m ), indicating the level of convenience of selecting action a t m when in state s t m . The Q-value is updated following the update rule:

Q(s t m , a t m ) ← Q(s t m , a t m )+ α[r t m + γ max a∈A Q(s t+1 m , a t+1 m ) -Q(s t m , a t m )] ( 2 
)
where α is the learning rate that represents the speed of convergence, and γ ∈ [0, 1] is the discount factor that determines the current value of the future state costs.

During the learning phase, each agent selects the corresponding action based on the -greedy policy, i.e., it selects with probability 1the action associated with the maximum Q-value, and with probability selects a random action (here, y ∈ [0, 1] is a random variable):

a t m =    argmax a∈A Q(s t m , a t m ), if y > rand(A), otherwise m = 1, . . . , M.
(3) By implementing the -greedy policy, the BS would have explored all possible actions and avoided local minima. For more details on Reinforcement Learning (RL) and Q-learning the reader is referred to, e.g., [START_REF] Sutton | Introduction to Reinforcement Learning[END_REF].

B. Q-Learning Algorithm

At time slot t, the local state of the small cell m is s m (t) = {r m (t), b m (t), i m l (t)}. The states have been quantized each into 3 levels. We chose these levels of quantization to balance between performance and complexity. Due to the limited number of state-action pairs, Q-learning is able to pave the way towards optimality, thus there is no need for Deep Q-learning. In order to explore different combinations of states, we make the users move inside their serving cell at each time slot. We define an episode as a fixed simulation run where the users in motion request data continuously with a given minimum rate requirement. During this episode, the users move in a predefined and deterministic pattern, and the algorithm explores different states to find the optimal policy that minimizes the cost function in [START_REF] Wu | Energy-efficient base-stations sleep-mode techniques in green cellular networks: A survey[END_REF]. After the training phase is complete, the system goes online and operates in real-time. The Q-Learning algorithm is described in Algorithm 1.

Algorithm 1 : Q-Learning Algorithm 1: procedure Training (Q m T (s, a)) 2:
Initialize the positions of the users, their trajectory and q m (s, a) = 0, ∀m ∈ M, ∀s ∈ S and ∀a ∈ A. Visit state s m .

7:

Select an action a m using -greedy rule in (3). Update the Q-value q m (s, a) from (2).

11:

end for 12: end while 13: end procedure

1: procedure Online 2: for m ∈ M do 3: Q m (s, a) = Q m T (s, a) 4:
Run Q-Learning. 5: end for 6: end procedure

IV. NUMERICAL ANALYSIS

A. Convergence analysis

We analyze the convergence of the proposed Qlearning algorithm for different values of w during the training phase in figures 2 and 3. During this phase, the system is fed with a training episode that describes the dynamics of the network: the users are moving in the designated area, they are requesting service packets, and the small cells are reacting (i.e., taking action to switch to different modes) based on their partial view of the environment that defines their local states (cell throughput, cell buffer size and estimated spectral efficiency loss). By repeating this episode a number of epoch of times, each cell should have learned how to map its observable states to actions. In order to maximize the efficiency of the algorithm to choose the appropriate action when facing a given state, the training episode should cover as much states as possible so that when the system goes online, the probability of visiting an unvisited state is minimized. The design of the training episode is important so that the agent gathers enough experience from the environment, which is critical in stabilizing the Q functions, thus forging the best policy.

In Fig. 2, we observe that the system converges after few iterations (around 10 iterations for most values of w). When w = 0 and w = 1, the equation in (1) simplifies to minimizing energy consumption and service delay only, respectively. In this special case, the agent (i.e., small cell) is able to find the optimal policy relatively fast compared to other values of w. When w ∈ ]0, 1[, the agent needs more time to capture the tradeoff between energy and delay, thus requiring more epochs to finally converge.

In Fig. 3, we illustrate an example of the convergence behavior of the system, where we plot the evolution of the average network cost function in (1) and the average cells states, on a per epoch basis. The later corresponds to the average cells states distribution over each epoch. We take the example where w = 0. During the first iterations of the training, the system explores different policies. This can be observed by almost having a uniform cells states distribution. With the evolution of epochs, each cell learns the best policy, which is in this example biased to switching to the deepest SM level in order to save the highest amount of energy.

Since the convergence time of the training phase is small as previously shown in Fig. 2, it is possible to skip the independent training phase and merge it with the online one. In this case, the system starts online with no previous knowledge about the environment and learns to adapt on the spot. The main advantage of this approach is that it does not require the prerequisite training step. However, it extends the time until the system converges. This can be observed in Fig. 4 where we notice an increase in the number of iterations required for the Qfunctions to stabilize. Nevertheless, this increase is of couple of iterations, and thus insignificant. The major reason behind this increase is that with the online mode, the episode is changing in each iteration in contrast to the training phase where the training episode is fixed. This dynamic nature of the iteration makes it harder for the agent to learn as opposed to static episode. 

B. Policy analysis

In Fig. 5, we report the different policies of the SBSs for different values of the tuning parameter w. We observe that the system tends to save more energy when w approaches zero by switching to the deepest SM most of the times, while a gradual shift to active mode is observed when increasing w. However, it is interesting to highlight the behavior for w = 1. For this case, the cells are required to be active for a minimum period of time to minimize the delay (around 37% of the time). During the remaining time and after satisfying the agent's goal, the cell switches randomly to any of its states. This can be observed by the uniformly distributed state modes for SM 1, SM 2 and SM 3, while the active mode has a higher probability in order to satisfy the delay constraint of 100 ms. In Fig. 6, we illustrate the average percentage cell energy consumption normalized to the case where the cell is always on (i.e., without sleep mode) and the average small cell delay as a function of w with packet delay constraint of 100 ms. We compare our proposed Q-learning algorithm (QL) with another QL algorithm that considers two states only (active and SM 3). This algorithm is referred to as binary SM-QL algorithm. We observe that our multi-SM-QL algorithm outperforms the binary QL algorithms for the different values of w. This is due to the added flexibility with multi SM levels on saving energy. By tuning the value of w, the operator can shift the performance of his network towards either energy saving or QoS.

In order to analyze the performance of the policies, we report in Fig. 7 the average data lost due to the sleep scheme policy. Even though the average delay of the requested data falls under the delay constraint limit of 100 ms (as shown in Fig. 6), around half of these requested data are dropped for small values of w. This is because the Q-learning algorithm optimizes the data dropped that is indirectly related to the served delay. Hence, it is important to link served data delay with their drop rate.

V. CONCLUSIONS

Network densification with small cells is a key enabler in future 5G networks to support high data rate demands. However, it is critical to manage the activity of these cells in order to limit the network energy consumption. This paper has investigated an approach based on reinforcement learning to manage the activity of small cells to reduce the energy consumption while maintaining a good QoS. In this regard, we proposed a Q-learning algorithm that controls the states of these cells over different sleep mode levels that are compliant with 5G requirements with respect to the synchronization signals periodicity. The proposed algorithm allowed the operator to freely manage the tradeoff between energy saving and delay. Our simulations showed that given a delay constraint, the network is capable of saving at least 50% energy. Future work will focus on extending the model to include users offloading between cells including the macro cell.
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TABLE I :

 I BS Sleep Modes Characteristics[START_REF] Debaillie | A flexible and futureproof power model for cellular base stations[END_REF].

	Sleep	Deactivation	Minimum	Activation
	level	duration	sleep duration	duration
	SM 1	35.5 µs	71 µs	35.5 µs
	SM 2	0.5 ms	1 ms	0.5 ms
	SM 3	5 ms	10 ms	5 ms
	SM 4	0.5 s	1 s	0.5 s