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In this work, the concept of high-frequency homogenisation is extended to the case of onedimensional periodic media with imperfect interfaces of the spring-mass type. In other words, when considering the propagation of elastic waves in such media, displacement and stress discontinuities are allowed across the borders of the periodic cell. As is customary in high-frequency homogenisation, the homogenisation is carried out about the periodic and antiperiodic solutions corresponding to the edges of the Brillouin zone. Asymptotic approximations are provided for both the higher branches of the dispersion diagram (second-order) and the resulting wave field (leading-order). The special case of two branches of the dispersion diagram intersecting with a non-zero slope at an edge of the Brillouin zone (occurrence of a so-called Dirac point) is also considered in detail, resulting in an approximation of the dispersion diagram (first-order) and the wave field (zeroth-order) near these points. Finally, a uniform approximation valid for both Dirac and non-Dirac points is provided. Numerical comparisons are made with the exact solutions obtained by the Bloch-Floquet approach for the particular examples of monolayered and bilayered materials. In these two cases, convergence measurements are carried out to validate the approach, and we show that the uniform approximation remains a very good approximation even far from the edges of the Brillouin zone.

Introduction

Classically, dynamic homogenisation is understood as a low-frequency approximation to wave propagation in heterogeneous media such as laminates, composites, or more generally any microstructured media. It consists in approximating such media by effective homogeneous media with specific properties. Homogenisation is the mathematical process that allows one to find such properties. Much work on this topic has been carried out since the 1970s and it is not the aim of this introduction to be exhaustive in that regard. A particularly successful approach is the two-scale asymptotic expansion method and the notion of slow or fast variables (see e.g. [START_REF] Bensoussan | Asymptotic analysis for periodic structures[END_REF], [START_REF] Bakhvalov | Homogenisation: averaging process in periodic media[END_REF], [START_REF] Cioranescu | An Introduction to Homogenization[END_REF]). Periodic media, with which we are concerned in this paper, are dealt with very efficiently by such method.

In periodic media, waves can propagate at angular frequencies ω that are not necessarily small. The set of wavenumbers k (also known as Bloch wavenumbers) at which waves propagate depends on the angular frequency through dispersion relations. In particular it can be shown that these dispersion relations can be entirely understood using diagrams restricting the Bloch wavenumbers to lie within the Brillouin zone. In one dimension, when the periodicity of the structure is h say, such Brillouin zone is given by k ∈ [0, π/h]. Typically in such problems, the dispersion diagram displays band-gaps, i.e. regions in the angular frequency space where waves cannot propagate. There tends to be infinitely many branches of the dispersion diagram, i.e. for a given Bloch wavenumber, one can find an infinite (countable) set of angular frequencies leading to propagating waves. Again, a lot has been written about this, and we do not aim to give an exhaustive literature review on this point, though we can refer the interested reader to [START_REF] Laude | Phononic Crystals: Artificial Crystals for Sonic, Acoustic, and Elastic Waves[END_REF] for example. See also [START_REF] Gorishnyy | Sound ideas[END_REF] for a discussion of the band gaps in periodic materials from a physics point of view.

The idea of high-frequency homogenisation is to approximate how the dispersion relation (and hence the media) will behave for angular frequencies ω that are close to the angular frequencies ω 0 corresponding to an edge of the Brillouin zone on the dispersion diagram. In [START_REF] Craster | High-frequency homogenization for periodic media[END_REF], a work that has largely inspired the present paper, Craster et. al. applied a two-scale asymptotic expansion method in order to achieve this for perfect interfaces. Adopting the terminology of [START_REF] Guzina | A rational framework for dynamic homogenization at finite wavelengths and frequencies[END_REF], we will refer to the homogenisation near the left edge of the Brillouin zone k ≈ 0 as Finite Frequency Low Wavenumber (FFLW), while the homogenisation near the right edge (k ≈ π/h) will be referred to as Finite Frequency Finite Wavenumber (FFFW). Upon introducing k as

(FFLW) : k = k and (FFFW) : k = π/h -k, (1) 
the end result of the high-frequency homogenisation technique is an approximation of the type

ω 2 = ω 2 0 + T ( kh) 2 + o h 2 k2 L 2 , ( 2 
)
where L is a macroscopic characteristic length of the material and the parameter T ∈ R can be determined explicitly. This angular frequency approximation comes together with an associated leading-order approximation to the wave field U h (X) of the form

U h (X) = U (0) h (X) + O h k L . (3) 
One should note that in [START_REF] Guzina | A rational framework for dynamic homogenization at finite wavelengths and frequencies[END_REF], the authors generalised the technique to work in any dimension, and also pushed the asymptotic work one order further than [START_REF] Craster | High-frequency homogenization for periodic media[END_REF]. It is also worth mentioning the more recent work [START_REF] Meng | A convergent low-wavenumber, high-frequency homogenization of the wave equation in periodic media with a source term[END_REF], in which the technique was developed while including a source term in the initial evolution equation. As shown in [START_REF] Harutyunyan | High-frequency homogenization for travelling waves in periodic media[END_REF], high-frequency homogenisation of wave equations in the time domain can also be carried out, and the methodology has also been applied in a discrete setting to structural mechanics [START_REF] Nolde | High frequency homogenization for structural mechanics[END_REF] and elastic lattices [START_REF] Colquitt | High frequency homogenisation for elastic lattices[END_REF].

In the present work, following the approach of [START_REF] Craster | High-frequency homogenization for periodic media[END_REF], we wish to focus on extending this highfrequency homogenisation technique to one-dimensional periodic media that have an imperfect interface at the edges of the periodic cell, which, to our knowledge, has not been considered before.

Indeed, because of defects like air and cracks or thin layers of glue for example, the contacts between solids are often not perfect, and a jump of the elastic stress and of the elastic displacement can occur across the contact area (the interface). There are different approaches when it comes to modelling such imperfect contact, and we refer to [START_REF] Sevostianov | Connections between different models describing imperfect interfaces in periodic fiber-reinforced composites[END_REF] for a comparison between different models. In particular, authors from various disciplines (e.g. non-destructive evaluation of materials or geophysics), have modelled such situations using the so-called spring-mass conditions that we will use in the present work. These conditions, satisfied by wave fields across an interface, are analogous to the mechanical laws of springs [START_REF] Angel | Reflection of ultrasonic waves by an array of microcracks[END_REF][START_REF] Pilarski | A transverse-wave ultrasonic oblique-incidence technique for interfacial weakness detection in adhesive bonds[END_REF][START_REF] Pilarski | The angular and frequency characteristics of reflectivity from a solid layer embedded between two solids with imperfect boundary conditions[END_REF][START_REF] Schoenberg | Elastic wave behavior across linear slip interfaces[END_REF] or springs and masses [START_REF] Baik | Ultrasonic scattering from imperfect interfaces: A quasi-static model[END_REF][START_REF] Rokhlin | Analysis of boundary conditions for elastic wave interaction with an interface between two solids[END_REF]. Stiffness and mass values are expected to be connected, although not necessarily in a trivial way, to the contact quality [START_REF] Delsanto | A spring model for the simulation of the propagation of ultrasonic pulses through imperfect contact interfaces[END_REF][START_REF] Tattersall | The ultrasonic pulse-echo technique as applied to adhesion testing[END_REF]. More recently, rational derivations based on asymptotic expansion have been proposed, yielding similar spring-mass models of imperfect interface [START_REF] Licht | Dynamics of elastic bodies connected by a thin adhesive layer[END_REF]. These imperfect conditions arise from a homogenisation process of a thin interphase. The results presented in the paper are hence relevant for wavelength comparable to the periodicity, but much larger than the thin interphase approximated by the imperfect contact laws. Here, we restrict ourselves to linear imperfect contact, though we kindly refer the reader to our work [START_REF] Bellis | Effective dynamics for low-amplitude transient elastic waves in a 1d periodic array of non-linear interfaces[END_REF] on low-frequency homogenisation in the time-domain, where both linear and nonlinear imperfect contacts are considered. There exists a significant amount of work considering the homogenisation of such materials in the static regime (see for example [START_REF] Hashin | Thermoelastic properties of fiber composites with imperfect interface[END_REF], [START_REF] Hashin | Thin interphase/imperfect interface in elasticity with application to coated fiber composites[END_REF] and the more recent work [START_REF] López-Realpozo | Effective properties of non-linear elastic laminated composites with perfect and imperfect contact conditions[END_REF]) but it seems that dynamic homogenisation has seldom been treated.

The rest of the paper is organised as follows. In §2.1 we formulate the one-dimensional physical problem at hand, namely that of linear elastic wave propagation through a layered material with periodic, possibly space dependent, material properties. The non-dimensionalisation of the problem is performed in §2.2, leading to the introduction of our small parameter δ, which is fully exploited via the two-scale asymptotic expansion method in §2.3. §3.1, §3.2 and §3.3 are respectively dedicated to the asymptotic expansion at order δ 0 , δ 1 and δ 2 , before combining these results in §3.4 to explicitly obtain the zeroth-order approximated wave-field and the associated formula for the parameter T introduced in (2). Effectively, §3 provides approximations of both the dispersion diagram (second-order) and the wave-field (zeroth-order) at the edges of the band gaps. In the limiting case of a point on the edge of the Brillouin zone where two branches of the dispersion diagrams intersect with non-zero slope (such intersections are also known in the literature (see e.g. [START_REF] Lee-Thorp | Elliptic operators with honeycomb symmetry: Dirac points, edge states and applications to photonic graphene[END_REF], [START_REF] Ochiai | Photonic analog of graphene model and its extension: Dirac cone, symmetry, and edge states[END_REF] and [START_REF] Guzina | A rational framework for dynamic homogenization at finite wavelengths and frequencies[END_REF]) as Dirac points or Dirac cones), the method developed in §3 needs to be adapted. This is what is done in §4, resulting in a linear approximation to the dispersion diagram. In order to provide a smooth transition between the asymptotics of §3 and §4, we consider the intermediate case of narrow band gaps in §5 and obtain a uniform approximation that remains valid in the Dirac point limit.

We then illustrate the method on two concrete examples, a homogeneous material ( §6.1) and a bilayered material ( §6.2) with periodically distributed imperfect interfaces. Such examples are also treated by the Bloch-Floquet analysis (see Appendix B), which allows us to illustrate and quantify the validity of our method. In particular, we discuss the occurrence of Dirac points, for which the approach of §4 should be taken. It is shown that the asymptotic expansion of §3 is a good local approximation near the edges of the band gaps, and that, even for not so narrow band gaps, the uniform approximation of §5 performs extremely well for almost the entirety of a given branch of the dispersion diagram. Perspectives and conclusions are given in §7.

Problem formulation

The physical problem

We consider linear elastic waves propagation at a given angular frequency ω through a periodic medium of periodicity h > 0 and with a macroscopic characteristic length L > 0. We denote the physical space variable X; the density ρ h (X) and the Young's modulus E h (X) of the elastic medium are assumed to be h-periodic piecewise smooth, L ∞ and strictly positive. We may assume without loss of generalities that the edges of the periodic cell are located at X n = nh for n ∈ Z, as illustrated in Figure 1 (left). We further assume that the interfaces across the edges of the periodic cells are imperfect, and of the linear spring-mass type, characterised by some mass and stiffness parameters denoted respectively M and K that are both strictly positive. This results in the following governing equation and jump conditions for the displacement field U h (X):

d dX E h (X) dU h dX + ρ h (X)ω 2 U h = 0, with        U h X n = 1 K ⟪E h dU h dX ⟫ X n , E h dU h dX X n = -Mω 2 ⟪U h ⟫ X n , (4) 
where • X n and ⟪•⟫ X n are respectively called the jump and mean brackets at the interface X n , and are defined for any function g(X) by

g X n = g(X + n ) -g(X - n ) and ⟪g⟫ X n = 1 2 (g(X + n ) + g(X - n )). ( 5 
)
Due to the h-periodicity of ρ h and E h , it is possible to write them as ρ h (X) = ρ X h and E h (X) = E X h for some 1-periodic functions ρ and E. Note 2.1. Throughout this work, we assume that any discontinuity of ρ and E on (0, 1) are of a perfect contact nature. This means that apart from at the interfaces X = X n , we will assume that the displacement U h (X) and the stress E h (X) dU h dX are continuous. Classically, such wave propagation problem in periodic media can be understood by using the so-called Bloch-Floquet analysis that consists in seeking solutions of the form

U h (X) = U h (X)e ikX ,
that propagate at the Bloch wavenumber k, and where U h (X) is h-periodic, that is, U h (X + h) = U h (X). In certain simple cases (see e.g. §6.1 and §6.2), this leads to an explicit dispersion relation relating ω to k, the graphical representation of which is the so-called dispersion diagram.

One should note that for k = 0, we have U h (X) = U h (X + h), i.e. the solution is periodic, while for k = π h , we have U h (X) = -U h (X + h), i.e. the solution is antiperiodic. Such values of k correspond to the edges of the so-called Brillouin zone. The aim of the present work is to approximate the Bloch-Floquet solutions propagating at wavenumbers that are close to k = 0 (FFLW) or k = π h (FFFW) with finite angular frequency ω = O(1).

Non-dimensionalisation

In order to simplify the mathematical notations, we start by non-dimensionalising the physical problem [START_REF] Laude | Phononic Crystals: Artificial Crystals for Sonic, Acoustic, and Elastic Waves[END_REF]. In order to do so, we define the characteristic dimensional density ρ = ρ , Young's modulus E = 1/E -1 and wavespeed c = E /ρ , where the average operator • is defined for any function g as

g = 1 0 g(y)dy. (6) 
These can be used in order to define the following non-dimensional quantities

x = X L , δ = h L , µ = ωh c , κ = Lk, α = ρ ρ , β = E E , k = Kh E , m = M hρ , u δ (x) = U h (X) L . (7) 
The starred quantities ρ and E are chosen for convenience to be the effective properties of the medium obtained by low-frequency homogenisation, implying that α = 1/β = 1, but this choice is somewhat arbitrary. Moreover, we can also show that

ρ h (X) = ρ X h = ρ x δ and E h (X) = E X h = E x δ .
Using these quantities, (4) can be rewritten as the non-dimensional governing equation

δ 2 d dx β x δ du δ dx (x) + µ 2 α x δ u δ (x) = 0, (8) 
subject to the jump conditions

u δ x n = δ k ⟪β x δ du δ dx ⟫ x n and δ β x δ du δ dx x n = -mµ 2 ⟪u δ ⟫ x n , (9) 
in the geometry setting of Figure 1 (centre). The equations ( 8)-( 9) constitute our non-dimensional problem. Note that in this non-dimensional setting, the Bloch-Floquet analysis is still valid, and consists in looking for solutions of the form

u δ (x) = u δ (x)e iκx , ( 10 
)
where κ is the non-dimensional Bloch wavenumber and u δ is δ-periodic. Note that this implies that u δ and its derivative u δ satisfy

u δ (x + δ) = u δ (x)e iκδ and u δ (x + δ) = u δ (x)e iκδ . (11) 
Remark 2.1. The FFLW case corresponds to κδ ≈ 0 and the FFFW case corresponds to κδ ≈ π.

When κδ is exactly 0 (resp. π), then the solution u δ (x) is δ-periodic (resp. δ-antiperiodic).

Two-scale asymptotic expansion

We will now make the assumption that the macroscopic characteristic length L is much bigger than the periodicity h, implying that δ 1. The material parameters α and β will hence vary on a fine scale associated with the rescaled coordinate y = x/δ (see Figure 1 (right) for the associated geometrical configuration). Following the two-scale expansion technique, we further assume that the displacement field will have small scale features described by y, and slow continuous variations described by x. We hence pose the following ansatz for the wave field u δ and the reduced frequency µ:

u δ (x) = j 0 δ j u j (x, y) and µ 2 = 0 δ µ 2 , (12) 
and treat x and y as two independent variables (scale separation), implying that d dx ↔ ∂ ∂x + 1 δ ∂ ∂y . In the FFLW case we will assume that u j is 1-periodic in y, that is u j (x, y) = u j (x, y + 1), while in the FFFW case, we will assume that u j is 1-antiperiodic, that is u j (x, y) = -u j (x, y + 1), see Remark 2. 1. In what follows, we will treat both cases simultaneously.

The non-dimensional problem ( 8)-( 9) can hence be rewritten as the governing equation

j 0         δ j ∂ ∂y β ∂u j ∂y + δ j+1 β ∂ 2 u j ∂x∂y + ∂ ∂y β ∂u j ∂x + δ j+2 β ∂ 2 u j ∂x 2 + 0 δ + j µ 2 αu j         = 0, ( 13 
)
subject to the jump conditions at y n = n:

j 0 δ j u j (x, y) y n = δ k j 0 δ j ⟪β(y) ∂u j ∂x + 1 δ ∂u j ∂y ⟫ y n , (14) 
and

δ j 0 δ j β(y) ∂u j ∂x + 1 δ ∂u j ∂y y n = -m         0 δ µ 2                  j 0 δ j ⟪u j ⟫ y n          , (15) 
where for any function g(x, y), the jump and mean brackets are naturally defined for n ∈ Z as g(x, y) y n = g(x, n + )g(x, n -) and ⟪g⟫

y n = 1 2 (g(x, n + ) + g(x, n -)). ( 16 
)
Note 2.2. In order for our expansion to be compatible with the assumption regarding potential discontinuities of ρ and E within the unit cell made in Note 2.1, we seek the fields such that u 0 , β ∂u 0 ∂y , u j and β ∂u j ∂y + ∂u j-1 ∂x for j 1 are continuous functions of y on (0, 1).

Before pushing the asymptotic analysis further, we need to discuss some important properties of the jump and mean brackets. We will start with a very useful property (that can be proved directly), namely that for any two functions f (x, y) and g(x, y), and any n ∈ Z, the following relation is valid:

f g y n = f y n ⟪g⟫ y n + ⟪ f ⟫ y n g y n . (17) 
It is equally important to note that if the function subjected to the brackets is either periodic or antiperiodic, the following result holds.

Lemma 2.1. Let n ∈ Z. If a function g per (x, y) is 1-periodic in y, then we can write g per y n = g per (x, 0 + )g per (x, 1 -) and ⟪g per ⟫ y n = 1 2 (g per (x, 0 + ) + g per (x, 1 -)), while for a function g anti (x, y) that is 1-antiperiodic in y, we have g anti y n = g anti (x, 0 + ) + g anti (x, 1 -) and ⟪g anti ⟫ y n = 1 2 (g anti (x, 0 + )g anti (x, 1 -)).

The Lemma 2.1 means that as long as the function subjected to either the jump or the mean bracket is 1-periodic or 1-antiperiodic in y, then the mean and jump brackets values are independent of n, and the y n subscript can be dropped. Since β(y) is 1-periodic and u j (x, y) is either 1-periodic or 1-antiperiodic in y, this is the case for all the brackets in the conditions ( 14) and ( 15), we will hence drop the subscript from now on and just use • and ⟪•⟫. We will make sure that whenever this notation is used, the function inside the brackets is either periodic or antiperiodic. In particular, from Lemma 2.1 and (17), we obtain directly the following lemma that will prove very important in what follows.

Lemma 2.2. For any two functions f (x, y) and g(x, y) that are either 1-periodic or 1-antiperiodic in y, we have f g

= f ⟪g⟫ + ⟪ f ⟫ g .
Finally, in order to link the average operator and the jump bracket, the following result will be very useful.

Lemma 2.3. For any function g per (x, y) that is 1-periodic and continuous for y ∈ (0, 1), we have

∂g per ∂y = -g per Notation 2.1.
From now on, in order to efficiently deal with the FFLW (Finite Frequency Low Wavenumber, κδ ≈ 0) and the FFFW (Finite Frequency Finite Wavenumber, κδ ≈ π) cases simultaneously, we will assume that whenever the symbols ± or ∓ are used, the top sign corresponds to FFLW while the bottom sign corresponds to FFFW.

We are now well equipped to start developing the core theoretical part of the paper.

The case of simple eigenvalues

We will now deploy the two-scale asymptotic procedure in order to derive the approximation (2). In order to do so we will need to consider the contributions of ( 13)-( 15) at the orders δ 0 , δ 1 and δ 2 .

Zeroth-order field

Upon collecting the terms of order δ 0 in ( 13)-( 15), we obtain the system

(18a) ∂ ∂y β ∂u 0 ∂y + µ 2 0 αu 0 = 0 with (18b)        u 0 = 1 k ⟪β ∂u 0 ∂y ⟫ , β ∂u 0 ∂y = -mµ 2 0 ⟪u 0 ⟫. (18) 
Upon considering the (Sturm-Liouville) differential operator L := -1 α d dy β d dy , one can see that the system (18) constitutes an eigenvalue problem for L. It is a bit unusual since the eigenvalue also appears in the boundary conditions, but one can show, using the tailored inner product •,• defined for some functions f (y) and g(y) (either both FFLW or both FFFW) by

f, g = α f ḡ + m⟪ f ⟫⟪ḡ⟫, (19) 
that this operator is symmetric (i.e. self-adjoint) and non-negative in both the FFLW and FFFW cases, the proof being deferred to Appendix A. Therefore it has a discrete set of (possibly repeated) real positive eigenvalues associated to real eigenfunctions. We denote the square root of such eigenvalues by µ 0 , and we note that eigenfunctions associated to different FFLW (resp. FFFW) eigenvalues are orthogonal for the inner product [START_REF] Delsanto | A spring model for the simulation of the propagation of ultrasonic pulses through imperfect contact interfaces[END_REF]. These reduced frequencies µ 0 correspond to the intersection of the dispersion diagram with the left (FFLW) or the right (FFFW) border of the Brillouin zone.

From now on we will choose one of these eigenvalues, denote it by µ 0 , and endeavour to approximate the solutions for some parameters (µ, κ) close to (µ 0 , 0), where we define κ to be

(FFLW) : κ = κ and (FFFW) : κ = π/δ -κ, (20) 
allowing us to treat the FFLW and FFFW cases simultaneously. We will also assume that µ 0 is a simple eigenvalue (multiplicity 1). The case of a double eigenvalue will be dealt with in §4.

Hence, there is only one eigenfunction that we denote û0 (y) and that is either periodic (FFLW) or antiperiodic (FFFW). The associated solution u 0 to [START_REF] Rokhlin | Analysis of boundary conditions for elastic wave interaction with an interface between two solids[END_REF] can therefore be rewritten

u 0 (x, y) = U 0 (x)û 0 (y), (21) 
for some function U 0 (x). It is worth mentioning at this stage that when inputting ( 21) into ( 18), we find that û0 (y) satisfies both the equation (18a) and the jump conditions (18b), a fact that will be used throughout the paper.

The main aim of what follows is to derive a differential equation with constant coefficients satisfied by U 0 (x). Note that in the case of low-frequency homogenisation, the zeroth-order field u 0 (x, y) can be shown to be independent of y; this is one of the main differences between lowand high-frequency homogenisation.

First-order field

Let us now set µ 0 to be one of the reduced frequencies found in the previous section, we can collect the terms of order δ 1 in ( 13)-( 15) to obtain the following system governing the first-order field u 1 :

∂ ∂y β ∂u 1 ∂y + ∂u 0 ∂x + β ∂ 2 u 0 ∂x∂y + α(µ 2 0 u 1 + µ 2 1 u 0 ) = 0, (22) 
subject to the jump conditions

u 1 = 1 k ⟪β ∂u 0 ∂x + ∂u 1 ∂y ⟫ and β ∂u 0 ∂x + ∂u 1 ∂y = -m(µ 2 0 ⟪u 1 ⟫ + µ 2 1 ⟪u 0 ⟫). (23) 
We will show below that there is only one possible value of µ 1 , and that it has to be zero. [START_REF] Bellis | Effective dynamics for low-amplitude transient elastic waves in a 1d periodic array of non-linear interfaces[END_REF] . The terms in αµ 2 0 u 0 u 1 cancel out, and using the fact that

Proving that

µ 1 = 0 Following [6], we consider u 1 × (18a) -u 0 × ( 
u 1 ∂ ∂y β ∂u 0 ∂y -u 0 ∂ ∂y β ∂u 1 ∂y + ∂u 0 ∂x = ∂ ∂y u 1 β ∂u 0 ∂y -u 0 β ∂u 1 ∂y + ∂u 0 ∂x + β ∂u 0 ∂y ∂u 0 ∂x , we obtain ∂ ∂y u 1 β ∂u 0 ∂y -u 0 β ∂u 1 ∂y + ∂u 0 ∂x = β u 0 ∂ 2 u 0 ∂x∂y - ∂u 0 ∂x ∂u 0 ∂y =0 +µ 2 1 αu 2 0 . (24) 
Note that due to the form (21) of u 0 , we have u 0

∂ 2 u 0
∂x∂y -∂u 0 ∂x ∂u 0 ∂y = 0, so the first bracket in the righthand side (RHS) of the equation above is actually zero. Now, using Note 2.2 and Lemma 2.3, (24) becomes

-u 1 β ∂u 0 ∂y -u 0 β ∂u 1 ∂y + ∂u 0 ∂x = µ 2 1 αu 2 0 . (25) 
When perfect interfaces are considered, the jump bracket term in ( 25) is automatically zero, a fact that is used in [START_REF] Craster | High-frequency homogenization for periodic media[END_REF] to conclude that µ 1 = 0. Such reasoning cannot be used directly in our case. Instead, make use of Lemma 2.2 to rewrite (25) as

µ 2 1 αu 2 0 = -u 1 ⟪β ∂u 0 ∂y ⟫ -⟪u 1 ⟫ β ∂u 0 ∂y + u 0 ⟪β ∂u 1 ∂y + ∂u 0 ∂x ⟫ + ⟪u 0 ⟫ β ∂u 1 ∂y + ∂u 0 ∂x = -k u 0 u 1 + mµ 2 0 ⟪u 1 ⟫ ⟪u 0 ⟫ + k u 0 u 1 -m ⟪u 0 ⟫ (µ 2 0 ⟪u 1 ⟫ + µ 2 1 ⟪u 0 ⟫), (26) 
where the jump conditions (18a) and ( 23) have been used. Many terms cancel out and we get

µ 2 1 ( αu 2 0 + m⟪u 0 ⟫ 2 ) = 0, implying that µ 1 = 0, (27) 
because m and α are strictly positive, and, in the representation ( 21), U 0 cannot be identically zero and û0 is a real function. This result is very important and lies at the heart of the success of the high-frequency homogenisation method.

An expression for u 1 (x, y)

We can now simplify the equation ( 22) governing u 1 to

∂ ∂y β ∂u 1 ∂y + αµ 2 0 u 1 = -U 0 (x)(2β(y)û 0 (y) + β (y)û 0 (y)). ( 28 
)
Upon noting that, because û0 is solution to (18a), the field -yU 0 (x)û 0 (y) is a particular solution to [START_REF] Moukhomodiarov | The transition between neumann and dirichlet boundary conditions in isotropic elastic plates[END_REF], and that the differential operator applied to u 1 is exactly the same as that of (18a), we can conclude that u 1 can be written as

u 1 (x, y) = U 1 (x)û 0 (y) + U 0 (x) (v 1 (y) -yû 0 (y)) , (29) 
for some function U 1 (x) that will be shown not to play any role in what follows, and a function v 1 (y), that is another solution to (18a), independent of û0 (y), and that is chosen to ensure that the jump conditions

u 1 = 1 k ⟪β ∂u 0 ∂x + ∂u 1 ∂y ⟫ and β ∂u 0 ∂x + ∂u 1 ∂y = -mµ 2 0 ⟪u 1 ⟫ (30) 
are satisfied. These jump conditions come from [START_REF] Hashin | Thermoelastic properties of fiber composites with imperfect interface[END_REF], where we have used that µ 1 = 0. Note that because of (29), and the periodicity properties of u 1 and û0 , the function v 1 (y)yû 0 (y) has to be periodic (FFLW) or antiperiodic (FFFW). Because this function will appear many times in what follows, it is worth giving it a name. Hence, we define

f 1 (y) def = v 1 (y) -yû 0 (y). ( 31 
)
Inputting the form ( 29) into (30), leads to two conditions on f 1 :

f 1 = 1 k ⟪β f 1 ⟫ + 1 k ⟪βû 0 ⟫, (32) 
-mµ 2 0 ⟪ f 1 ⟫ = β f 1 + βû 0 . ( 33 
)
One should notice, in particular, that no terms involving U 1 (x) appear in these conditions.

Remark 3.1. For practical computations of the function v 1 (y), which are required when dealing with specific examples, we can use Lemma 2.1 to rewrite the two jump conditions (32) and ( 33) as

L 1 [v 1 ] = K 1 [û 0 ] and L 2 [v 1 ] = K 2 [û 0 ],
where

L 1 [v 1 ] = v 1 (0 + ) ∓ v 1 (1 -) - 1 2k β(0 + )v 1 (0 + ) ± β(1 -)v 1 (1 -) , K 1 [û 0 ] = ∓û 0 (1 -) ∓ 1 2k β(1 -)û 0 (1 -), L 2 [v 1 ] = - mµ 2 0 2 v 1 (0 + ) ± v 1 (1 -) -β(0 + )v 1 (0 + ) ∓ β(1 -)v 1 (1 -) , K 2 [û 0 ] = ∓ mµ 2 0 2 û0 (1 -) ± β(1 -)û 0 (1 -),
where Notation 2.1 has been used. Note that L 1,2 are the same operators as those applied to û0 when determining µ 0 , though in this case the right-hand side was 0. Here we have these non-zero K 1,2 terms.

Second-order field

We can now collect the terms of order δ 2 in ( 13)-( 15) to obtain the following equation governing the second-order field u 2 :

∂ ∂y β ∂u 2 ∂y + ∂u 1 ∂x + µ 2 0 αu 2 + β ∂ 2 u 1 ∂x∂y + β ∂ 2 u 0 ∂x 2 + µ 2 2 αu 0 = 0, (34) 
subject to the jump conditions

u 2 = 1 k ⟪β ∂u 2 ∂y + ∂u 1 ∂x ⟫ and β ∂u 2 ∂y + ∂u 1 ∂x = -m(µ 2 0 ⟪u 2 ⟫ + µ 2 2 ⟪u 0 ⟫). (35) 
Similarly to §3(b)3.2.1, we consider the quantity u 2 × (18a)u 0 × (34) . The terms in αµ 2 0 u 0 u 2 cancel out, and, using the fact that

u 2 ∂ ∂y β ∂u 0 ∂y -u 0 ∂ ∂y β ∂u 2 ∂y + ∂u 1 ∂x = ∂ ∂y u 2 β ∂u 0 ∂y -u 0 β ∂u 2 ∂y + ∂u 1 ∂x + β ∂u 0 ∂y ∂u 1 ∂x , we obtain ∂ ∂y u 2 β ∂u 0 ∂y -u 0 β ∂u 2 ∂y + ∂u 1 ∂x = β u 0 ∂ 2 u 1 ∂x∂y - ∂u 0 ∂y ∂u 1 ∂x + u 0 ∂ 2 u 0 ∂x 2 + µ 2 2 αu 2 0 . (36)
Now, note that, by directly using ( 21), ( 29) and (31) we can show that

u 0 ∂ 2 u 1 ∂x∂y - ∂u 0 ∂y ∂u 1 ∂x + u 0 ∂ 2 u 0 ∂x 2 = U 0 (x)U 0 (x)w 1 (y), (37) 
where we define

w 1 def = û0 f 1 -û 0 f 1 + (û 0 ) 2 . ( 38 
)
Moreover, the first bracket of (36) can be simplified using using Note 2.2 and Lemma 2.3 and, therefore, using (37), (36) becomes

-u 2 β ∂u 0 ∂y -u 0 β ∂u 2 ∂y + ∂u 1 ∂x = U 0 (x)U 0 (x) βw 1 + µ 2 2 αu 2 0 . ( 39 
)
Remark 3.2. Inputting (31) into (38), one shows that w 1 = û0 v 1û 0 v 1 , which is the Wronskian associated to the second-order ODE (βg ) + µ 2 0 αg = 0, and hence satisfies the first-order ODE (βw 1 ) = 0. Moreover, the hypothesis made in Note 2.2 regarding potential material properties discontinuities within the interior of the unit cell implies that û0 , βû 0 , u 1 and β ∂u 1 ∂y + U 0 (x)û 0 are continuous in y on (0, 1). Using the form (29) of u 1 , this implies that both v 1 and βv 1 should be continuous on (0, 1), and hence that βw 1 is continuous on (0, 1), which, using the fact that (βw 1 ) = 0, implies that βw 1 is constant on (0, 1). Therefore βw 1 = β(0 + )w 1 (0 + ) say, and its computation does not require any integration. Moreover, since û0 and v 1 are independent, it is clear that βw 1 0.

As in §3.2.1, we can now make use of Lemma 2.2 to simplify the left-hand side (LHS) of (39):

-u 2 β ∂u 0 ∂y -u 0 β ∂u 2 ∂y + ∂u 1 ∂x = -u 2 ⟪β ∂u 0 ∂y ⟫ -⟪u 2 ⟫ β ∂u 0 ∂y + u 0 ⟪β ∂u 2 ∂y + ∂u 1 ∂x ⟫ + ⟪u 0 ⟫ β ∂u 2 ∂y + ∂u 1 ∂x = -k u 2 u 0 + mµ 2 0 ⟪u 2 ⟫ ⟪u 0 ⟫ + k u 0 u 2 -m ⟪u 0 ⟫ (µ 2 0 ⟪u 2 ⟫ + µ 2 2 ⟪u 0 ⟫) = -mµ 2 2 ⟪u 0 ⟫ 2 , (40) 
where the jump conditions (18b) and ( 35) have been used. Finally, using (40) and dividing through by U 0 (x), (39) can be rewritten as

T U 0 (x) + µ 2 2 U 0 (x) = 0, where T = βw 1 α(û 0 ) 2 + m⟪û 0 ⟫ 2 , ( 41 
)
which is the effective equation for U 0 .

Approximation of the dispersion branches

Note that in (41) T 0, but it can be either negative or positive. Since we are looking for standing waves, we seek µ 2 2 such that µ 2 2 /T 0. Remember that µ 2 is a correction term to the reduced frequency µ, such that

µ 2 = µ 2 0 + δ 2 µ 2 2 + o(δ 2 )
. This means that for each branch of the dispersion diagram (determined by our initial choice of eigenvalue µ 0 ), we look for a function µ 2 (κ) that will lead to an approximation of µ(κ) at the second order in δ, where κ is the reduced Bloch wavenumber. In particular, by definition of the FFLW and FFFW cases, we should have

(FFLW) µ 2 (κ) → κ→0 0 and (FFFW) µ 2 (κ) → κ→ π δ 0. ( 42 
)
In order for our asymptotic representation [START_REF] Sevostianov | Connections between different models describing imperfect interfaces in periodic fiber-reinforced composites[END_REF] to be compatible with the fact that u δ should satisfy the Bloch-Floquet conditions [START_REF] Colquitt | High frequency homogenisation for elastic lattices[END_REF], it is enough to impose that all the u j x, x δ should also satisfy these conditions. For j = 0, this means that

U 0 (x + δ)û 0 x δ + 1 = U 0 (x)û 0 x δ e iκδ . (43) 
Hence, due to fact that û0 is periodic (FFLW) or antiperiodic (FFFW), we can cancel out the terms in û0 in (43) to get

U 0 (x + δ) = ±U 0 (x)e iκδ , (44) 
where, in (44) and below, Notation 2.1 is being used. The second Bloch-Floquet condition in [START_REF] Colquitt | High frequency homogenisation for elastic lattices[END_REF], combined with (44), implies that

U 0 (x + δ) = ±U 0 (x)e iκδ . (45) 
Because U 0 is solution to (41), it can be written

U 0 (x) = Ae i √ µ 2 2 /T x + Be -i √ µ 2 
2 /T x for some constants A and B. The Bloch-Floquet conditions (44) and (45) lead to

A 1 ∓ e iδ √ µ 2 2 /T -κ = 0 and B 1 ∓ e -iδ √ µ 2 2 /T +κ = 0. ( 46 
)
Since κ is restricted to 0, π δ , i.e. to the first Brillouin zone in the dispersion diagram, and since it is assumed that µ 2 2 /T 0, (46) implies that, using (20) , we have

µ 2 2 /T = κ and U 0 (x) = e ±iκx , (47) 
which gives the following approximation for the reduced frequency µ(κ)

µ 2 = µ 2 0 + T (κδ) 2 + o(κ 2 δ 2 ) or equivalently µ = µ 0 + T 2µ 0 (κδ) 2 + o(κ 2 δ 2 ). ( 48 
)
The non-dimensional wave field is approximated by

u δ (x) = U 0 (x)û 0 (x/δ) u 0 (x,x/δ) +O(κδ) (49) 
Note that in §6, we will find it more convenient to test the validity of (49) when it is written in terms of the variable y as follows u δ (δy) = U 0 (δy)û 0 (y)

u 0 (δy,y) +O(κδ) (50) 
Hence, as anticipated, using [START_REF] Guzina | A rational framework for dynamic homogenization at finite wavelengths and frequencies[END_REF], our results can be summarised in dimensional form by ( 2) and (3), where the parameter T and the leading-order wave field U (0) h are given by

T = (c ) 2 h 2 T, ω 0 = c µ 0 h and U (0) h (X) = e ±i kX û0 (X/h).
4. The case of a double eigenvalue µ 0 4.1. A new form for u 0 In order to write [START_REF] Licht | Dynamics of elastic bodies connected by a thin adhesive layer[END_REF], we assumed that µ 0 was a simple eigenvalue. If instead we assume that µ 0 has multiplicity 2 say, then we write u 0 (x, y) = U (1) 0 (x)û (1) 0 (y)

u (1) 0 (x,y)

+ U (2) 0 (x)û (2) 0 (y)

u (2) 0 (x,y) , (51) 
where û(1) 0 (y) and û(2) 0 (y) are two independent eigenfunctions associated to the double eigenvalue µ 0 and U (1) 0 (x) and U (2) 0 (x) are some functions of x to be determined. Note that both û(1) 0 (y) and û [START_REF] Bakhvalov | Homogenisation: averaging process in periodic media[END_REF] 0 (y) satisfy (18a)-(18b). In what follows, for any j ∈ {1, 2}, we will use the notation (18a) ( j) and (18b) ( j) , to specify that we consider (18a)-(18b) as applied to û( j) 0 (y).

4.2.

In this case, we cannot conclude that µ 1 = 0 We will now apply the same methodology as in §3.2.1 and consider the quantity u 1 × (18a) (1) u (1) 0 × [START_REF] Bellis | Effective dynamics for low-amplitude transient elastic waves in a 1d periodic array of non-linear interfaces[END_REF] . The exact same reasoning leads to the counterpart to (24): ∂ ∂y

       u 1 β ∂u (1) 0 ∂y -u (1) 0 β ∂u 1 ∂y + ∂u 0 ∂x        = β        u (1) 0 ∂ 2 u 0 ∂x∂y - ∂u 0 ∂x ∂u (1) 0 ∂y        + µ 2 1 αu (1) 0 u 0 . (52) 
The only difference being that this time, the first bracket in the RHS of ( 52) is not zero. Instead, it can be shown directly using (51) that

u (1) 0 ∂ 2 u 0 ∂x∂y - ∂u 0 ∂x ∂u (1) 0 ∂y = U (1) 0 (x)U (2) 0 (x)w 0 (y), (53) 
where w 0 is the Wronskian defined by w 0 (y) = û(1) 0 (y)û (2) 0 (y)û(1) 0 (y)û (2) 0 (y).

(54)

The same methodology to simplify the LHS bracket in (52) as that used in §3.2.1 can be used: first use Lemma 2.3 to reduce the average bracket to a jump bracket, then use Lemma 2.2 to decompose the jump bracket into four simpler jump/mean brackets that can be computed using the jump conditions (18b) (1) and ( 23) to obtain

-mµ 2 1 ⟪u (1) 0 ⟫⟪u 0 ⟫ = U (1) 0 (x)U (2) 0 (x) βw 0 + µ 2 1 αu (1) 0 u 0 , (55) 
which, upon regrouping the terms, dividing through by U (1) 0 (x) and using (51), can be rewritten

βw 0 U (2) 0 (x) = -µ 2 1 {mB 2 1 + C 1 }U (1) 0 (x) + {mB 1 B 2 + D}U (2) 0 (x) , (56) 
where we have defined

B 1 = ⟪û (1) 0 ⟫, B 2 = ⟪û (2) 0 ⟫, C 1 = α(û (1) 0 ) 2 , C 2 = α(û (2) 0 ) 2 , D = αû (1) 0 û(2) 0 . (57) 
In the exact same way, we consider the quantity u 1 × (18a) (2) u (2) 0 × (22) to obtain βw 0 U (1) 0

(x) = µ 2 1 {mB 1 B 2 + D}U (1) 0 (x) + {mB 2 2 + C 2 }U (2) 0 (x) . ( 58 
)
Note that w 0 is the Wronskian determinant associated to (18a), and βw 0 can be shown to be continuous on the unit cell, hence we conclude that βw 0 is actually constant, and hence we can see that βw 0 = β(0 + )w 0 (0 + ). Since û(1) 0 and û(2) 0 are linearly independent, w 0 (being the associated Wronskian) is also non-zero and in this case, we cannot conclude that µ 1 = 0. 4.3. Solving a first-order ODE system to obtain µ 1 Upon introducing the function vector U = (U (1) 0 , U (2) 0 ) T , the two equations ( 56) and (58) can be recast as the first-order ODE system

U (x) = µ 2 1 βw 0 NU(x), where N = mB 1 B 2 + D mB 2 2 + C 2 -(mB 2 1 + C 1 ) -(mB 1 B 2 + D) . ( 59 
)
The two eigenvalues λ 1,2 of N are given by

λ j = i(-1) j (mB 2 1 + C 1 )(mB 2 2 + C 2 ) -(mB 1 B 2 + D) 2 , ( 60 
)
where, by the Cauchy-Schwarz inequality associated to the inner product [START_REF] Delsanto | A spring model for the simulation of the propagation of ultrasonic pulses through imperfect contact interfaces[END_REF], the quantity inside the square root is positive. The associated eigenvectors are given by

U λ 1 =       -(mB 1 B 2 + D) + λ 2 mB 2 1 + C 1 , 1       T and U λ 2 =       -(mB 1 B 2 + D) + λ 1 mB 2 1 + C 1 , 1       T (61)
and hence, upon introducing T d to be

T d = βw 0 / (mB 2 1 + C 1 )(mB 2 2 + C 2 ) -(mB 1 B 2 + D) 2 , (62) 
the solution to (59) can be written as

U(x) = c 1 U λ 1 e µ 2 1 βw 0 λ 1 x + c 2 U λ 2 e µ 2 1 βw 0 λ 2 x = c 1 U λ 1 e -i µ 2 1 T d x + c 2 U λ 2 e i µ 2 1 T d x , (63) 
for some constants c 1,2 . At this stage, we need to remember the Bloch-Floquet conditions [START_REF] Colquitt | High frequency homogenisation for elastic lattices[END_REF], which, when applied to u 0 , imply that û(1) 0 (y){±U (1) 0 (x + δ)e iκδ U (1) 0 (x)} + û(2) 0 (y){±U (2) 0 (x + δ)e iκδ U (2) 0 (x)} = 0, where Notation 2.1 has been used. Since û(1) 0 and û(2) 0 are linearly independent, this implies that ±U(x + δ) = e iκδ U(x). Applying this condition to (63), leads to the value of µ 2 1 as follows

δµ 2 1 = +T d κδ or δµ 2 1 = -T d κδ. (64) 
Hence, since µ 2 = µ 2 0 + δµ 2 1 + o(δ), we obtain the linear approximations

µ = µ 0 ± T d 2µ 0 (κδ) + o(κδ). (65) 
Here, the symbol ± should not be understood as per Notation 2.1, but as two different slopes, so that, near each double eigenvalue µ 0 of the dispersion diagram, we have two linear approximations with opposite slopes emerging from µ 0 . Such behaviour of the dispersion diagram, is that of so-called Dirac points.

The case of two nearby eigenvalues

In what has been done above, there is no uniform transition from the simple eigenvalue case to the double eigenvalue case. As will be seen in the examples of §6, when two simple eigenvalues are close to each other, the agreement between the dispersion diagram and the asymptotic of §3 is somewhat short-lived. In order to remedy to this issue, following some ideas developed in [START_REF] Guzina | A rational framework for dynamic homogenization at finite wavelengths and frequencies[END_REF][START_REF] Moukhomodiarov | The transition between neumann and dirichlet boundary conditions in isotropic elastic plates[END_REF], we will derive an asymptotic expansion for two nearby eigenvalues.

Let us assume that we have two nearby eigenvalues µ (1) 0 and µ (2) 0 with their associated eigenfunctions û(1) 0 (y) and û(2) 0 (y) that solve (18a)-(18b) and such that µ (1) 0 < µ (2) 0 . Since we are seeking an approximation that remains valid when two eigenvalues merge into one, we assume that µ (1,2) 0 both belong to the same side of the dispersion diagram, i.e. they are either both FFLW or both FFFW. Their proximity is characterised by a positive parameter γ = O(1) defined by

δγ = µ (2) 0 2 -µ (1) 0 2 . ( 66 
)
In the vicinity of these eigenvalues we seek expansions of the form [START_REF] Sevostianov | Connections between different models describing imperfect interfaces in periodic fiber-reinforced composites[END_REF], in which we choose µ 0 = µ (1) 0 . In order to consider the competing nature of the two eigenvalues, we seek u 0 in the form (51), introducing the functions U (1,2) 0 (x) and u (1,2) 0 (x, y) accordingly. With such choice of u 0 , one can show directly that we have

∂ ∂y β ∂u 0 ∂y + (µ (1) 0 ) 2 αu 0 = -δγαu (2) 0 with        u 0 = 1 k ⟪β ∂u 0 ∂y ⟫ β ∂u 0 ∂y = -m(µ (1) 0 ) 2 ⟪u 0 ⟫ -mδγ⟪u (2) 0 ⟫ (67) 
The terms involving δ in the right-hand sides of (67) should be considered when collecting the terms of order δ in ( 13)-( 15) to obtain the equation governing u 1 :

∂ ∂y β ∂u 1 ∂y + ∂u 0 ∂x + β ∂ 2 u 0 ∂x∂y + α µ (1) 0 2 u 1 + µ 2 1 u 0 -γu (2) 0 = 0, (68) 
and the associated jump conditions

u 1 = 1 k ⟪β ∂u 0 ∂x + ∂u 1 ∂y ⟫ and β ∂u 0 ∂x + ∂u 1 ∂y = -m((µ (1) 0 ) 2 ⟪u 1 ⟫ + µ 2 1 ⟪u 0 ⟫ -γ⟪u (2) 0 ⟫). (69) 
After following the exact same strategy as in §4, consider first the term u 1 × (3.1a) (1) u (1) 0 × (68) , and then the term u 1 × (3.1a) (2) u (2) 0 × (68) , to obtain two equations that can be recast in the first-order ODE system

U (x) = µ 2 1 βw 0 N γ U(x). (70) 
Here we used U = (U (1) 0 , U (2) 0 ) T , the function w 0 is defined as in (54) and N γ is given by

N γ =            mB 1 B 2 + D 1 -γ µ 2 1 (mB 2 2 + C 2 ) -(mB 2 1 + C 1 ) -1 -γ µ 2 1 (mB 1 B 2 + D)            = N + γ µ 2 1 0 -mB 2 2 -C 2 0 mB 1 B 2 + D , (71) 
the parameters B 1,2 , C 1,2 and D being defined as in (57). Note that when taking γ → 0 in (70), we recover exactly (59), showing the consistency of our approach. Note that when deriving the second line of (70), we neglect the term δγ u 1 , û(2) 0 that occurs in the process since it is of order δ. The eigenvalues λ (γ) 1,2 of N γ can be found to be given by

λ (γ) j = (mB 1 B 2 + D)γ + (-1) j (mB 1 B 2 + D) 2 (γ -2µ 2 1 ) 2 + 4(mB 2 1 + C 1 )(mB 2 2 + C 2 )µ 2 1 (γ -µ 2 1 ) 2µ 2 1 ,
while the associated eigenvectors are

U λ (γ) 1 =        -(mB 1 B 2 + D) + λ (γ) 2 (mB 2 1 + C 1 ) , 1        T and U λ (γ) 2 =        -(mB 1 B 2 + D) + λ (γ) 1 (mB 2 1 + C 1 ) , 1        T . (72) 
We can hence follow what we have done in §4.3, and use the Bloch-Floquet conditions to obtain (FFLW) :

µ 2 1 λ (γ)
j βw 0 = iκ and (FFFW) :

µ 2 1 λ (γ) j βw 0 = -i π δ -κ ,
which are implicit relationships between µ 2 1 and κ. Fortunately, these can be inverted exactly to obtain

µ 2 1 = 1 2         γ ∓ 4T 2 d κ2 + 4iT 2 d (mB 1 B 2 + D) βw 0 κγ + γ 2         , (73) 
where [START_REF] Tattersall | The ultrasonic pulse-echo technique as applied to adhesion testing[END_REF] has been used, and where T d is defined as in (62). Here ∓ should not be understood as per Notation 2.1, but as two different branches. One issue with (73) is that, in its current form, it implies that µ 2 1 is actually complex. However, this issue is settled by realising that upon using the inner product defined in [START_REF] Delsanto | A spring model for the simulation of the propagation of ultrasonic pulses through imperfect contact interfaces[END_REF], we can write

mB 1 B 2 + D = û(1) 0 , û(2) 0 .
Hence, since û(1,2) 0 correspond to two different eigenvalues, they are orthogonal and we get mB 1 B 2 + D = 0. Therefore, the complex part of (73) disappears and it simplifies to

δµ 2 1 = 1 2 δγ ∓ 4T 2 d (κδ) 2 + (δγ) 2 and µ 2 = (µ (1) 0 ) 2 + δµ 2 1 + o(δ). ( 74 
)
In the limit γ → ∞ or κ → 0, µ 2 1 behaves like µ 2 1 → 0 or µ 2 1 ∼ γ, depending on the sign chosen in (73). This allows us to conclude that thesign corresponds to the branch emanating from µ (1) 0 , while the + sign corresponds to the branch emanating from µ (2) 0 . There are two other interesting limits to consider.

The first is to see what happens when two eigenvalues are merging, i.e., we fix κδ and let δγ → 0. In this case (74) simplifies to µ 2 ≈ (µ (1) 0 ) 2 + δγ 2 ∓ T d κδ, which, when plotted against κδ are two straight lines with opposite slopes emanating from a point between the two nearby eigenvalues. When the two eigenvalues merge (i.e. δγ = 0), we recover exactly the double eigenvalue approximation (64).

The second is to see how well (74) approximates the dispersion diagram at the edges of the Brillouin zone for a given δγ 0. So we fix δγ and let κδ → 0. In this case, (74) simplifies to

µ 2 ≈ (µ (1) 0 ) 2 + 1 2 (δγ ∓ δγ) ∓ T 2 d δγ (κδ) 2 .
Hence, for the lower branch it becomes 2 , while for the upper branch, it reads µ 2 ≈ (µ (2) 0 ) 2 + T 2 d δγ (κδ) 2 . This approximation resembles (48), but with an incorrect quadratic coefficient (since in general ∓

µ 2 ≈ (µ (1) 0 ) 2 - T 2 d δγ (κδ)
T 2 d δγ
T ), so it is only a first-order approximation, slightly less precise than the simple eigenvalue approximation.

Hence, ( 74) is a uniform approximation, in the sense that it is valid for both simple and double eigenvalues. Moreover, we will see in the next section that using (74) leads to a much longer-lived fit to the exact dispersion diagram than the simple eigenvalue method.

Examples and numerical experiments

The theory developed above has the advantage to be valid for any spatially varying periodic material properties, even in cases when the dispersion diagram cannot be obtained analytically or is computationally intricate to obtain. However, in order to validate the method, we now consider two simpler examples, for which the dispersion diagram can be obtained directly by the Bloch-Floquet analysis.

Monolayer

The simplest example that can be considered is the case of a monolayer material with imperfect interface. By this we mean that the density and Young's modulus are constant, so that ρ h (X) = ρ and E h (X) = E . This implies that α = β = 1. The geometry of the physical problem is represented in Figure 2. The Bloch-Floquet analysis (see Appendix B) gives the following dispersion relation

cos(κδ) = 1 1 + mµ 2 4k 1 - mµ 2 4k cos(µ) - 1 2 µ k + mµ sin(µ) . ( 75 
)
The dispersion diagram classically displays band gaps as can be seen in Figure 3. We will now apply the high-frequency homogenisation technique to derive an analytical approximation to the higher branches of the diagram and to the associated wave fields.

In the case of a single eigenvalue, using [START_REF] Rokhlin | Analysis of boundary conditions for elastic wave interaction with an interface between two solids[END_REF], we find that û0 can be written as û0 = A cos(µ 0 y)+ B sin(µ 0 y) for some constants A and B, and, using Lemma 2.1, it is subject to the jump conditions

       û0 (0 + ) ∓ û0 (1 -) = 1 2k (û 0 (0 + ) ± û 0 (1 -)) û 0 (0 + ) ∓ û 0 (1 -) = -mµ 2 0 2 (û 0 (0 + ) ± û0 (1 -)) , ( 76 
)
where here and throughout the section, Notation 2.1 is being used. This leads to the relation

M mo (A, B) T = (0, 0) T , ( 77 
)
where the 2 × 2 matrix M mo = (M mo i j ) is given by

M mo =       1 ∓ cos(µ 0 ) ± 1 2k µ 0 sin(µ 0 ) ∓ sin(µ 0 ) -µ 0 2k (1 ± cos(µ 0 )) ∓µ 0 sin(µ 0 ) - mµ 2 0 2 (1 ± cos(µ 0 )) -µ 0 (1 ∓ cos(µ 0 )) ∓ mµ 2 0 2 sin(µ 0 )       .
The only way for non-trivial solutions to (77) to exist is for its determinant to be zero, which after some algebraic manipulations, leads to a dispersion relation of the form

D mo (µ 0 ; m, k) = 2(1 ∓ cos(µ 0 )) + m 2k µ 2 0 (1 ± cos(µ 0 )) ± µ 0 sin(µ 0 ) m + 1 k = 0, (78) 
where the fact that µ 0 0 has been used (we are not here interested in the low frequency limit).

In practice, when calculating µ 0 and reconstructing û0 , it can be useful to note that

M mo 22 = ± sin(µ 0 ) 1 ± cos(µ 0 ) M mo 21 , M mo 12 = 1 ± cos(µ 0 ) ∓ sin(µ 0 ) M mo 11 , M mo 11 M mo 21 = ∓ sin(µ 0 ) 2 D mo (µ 0 ; m, k), (79) 
so that µ 0 is either a zero of M mo 11 or M mo 21 , and in the former (resp. latter) case, the top (resp bottom) line of M mo is zero (it can be shown that sin(µ 0 ) 0). The computed eigenvalues coincide with the edges of the Brillouin zone of the dispersion diagram of Figure 3. To obtain û0 , we set A = 1, so that û0 (0 + ) = 1, and compute B using the first (resp. second) line in (77) if M mo 11 0 (resp. M mo 21 0). Because we are ultimately interested in the value of T in (48), we need to calculate βw 1 in (41), and hence v 1 on the interval (0, 1). We do this using the fact that it satisfies the same second-order equation (18a) as û0 and can hence be written v 1 (y) = C cos(µ 0 y) + D sin(µ 0 y), for some constants C and D, which, using Remark 3.1, can be found by solving M mo (C, D) T = b mo , where

b mo =       ∓û 0 (1 -) ∓ 1 2k û 0 (1 -) ∓ mµ 2 0 2 û0 (1 -) ± û 0 (1 -)       . (80) 
Since M mo is singular, (80) does not have a unique solution so we set C = 1 say and use the non-trivial line of the system to determine D. This works well since it can be shown that b mo is such that b mo j = 0 whenever M j,1 = 0. Once v 1 is found, the resulting value of T is directly obtained using (41). Note that, in this simple case, no numerical integration is required and calculations can be performed analytically. The resulting second-order approximations µ ≈ µ 0 + T 2µ 0 (κδ) 2 are superposed to the dispersion diagram in Figure 3 (left), and one can see that they approximate the branches well in the vicinity of the edges of the Brillouin zone. One should also note that, as seen in Figure 4 (left), this approximation remains valid within the band gaps, where κδ is complex and is such that Re(κδ) = 0. This is expected since in these cases, (κδ) 2 remain real. Having computed all the eigenvalues and eigenfunctions, it is now straightforward to compute T d as per (62) and δγ as per (66), where the pairs of eigenvalues are chosen naturally according to the dispersion diagram (firstsecond) and (third-fourth) in both the FFLW and FFFW cases. Hence we can evaluate the nearby eigenvalue approximation (74) derived in §5. It is displayed in Figure 3 (right), and as can clearly be seen, even if this approximation is only first-order in the vicinity of the edges of the Brillouin zone, its agreement with the dispersion diagram is much longer lived than that of the simple eigenvalue approximation. Similar observations are true within the band gaps as can be seen in Figure 4 (right) We will now investigate the accuracy of the zeroth-order field approximation obtained in the simple eigenvalue case. Using the Bloch-Floquet analysis (see Appendix B), we can have access to the exact standing wave field u δ (x) = u δ (δy), and, to be compatible with the asymptotic expansion [START_REF] Sevostianov | Connections between different models describing imperfect interfaces in periodic fiber-reinforced composites[END_REF], we normalise it such that u δ (0 + ) = u 0 (0, 0 + ). Note that because of ( 10) and (50), the difference between the exact and approximated field can be written as u δ (x)u 0 x, x δ = u δ (δy)u 0 (δy, y) = e iκδy (u δ (δy) -û0 (y)) (FFLW), e iκδy (u δ (δy)e -iπy û0 (y)) (FFFW).

(81)

To illustrate the validity of our approximation, we hence compare u δ (δy) and û0 (y) for various values of κδ in Figure 5, showing, as expected, that as κδ gets smaller the zeroth-order field is a good approximation to the exact field. A similar investigation can be carried out for the nearby eigenvalue approximation of the field. As can be seen in Figure 6, the approximation is good even for a value of κδ = 0.5 that is not particularly small, and for which the agreement of the simple eigenvalue zeroth-order field is poor.

In Figure 7, we plot the error between the exact field and the homogenised fields obtained using both the simple and nearby eigenvalue approximations. Due to the periodicity properties of u δ and û0 and (81), the error is relatively easy to compute in the simple eigenvalue case and is defined as follows:

(FFLW):

E FFLW simple = max R |u δ (δy) -u 0 (δy, y)| = max (0,1) |u δ (δy) -û0 (y)|, (82) 
(FFFW):

E FFFW simple = max R |u δ (δy) -u 0 (δy, y)| = max (0,1) |u δ (δy) -e -iπy û0 (y)|. (83) 
In the nearby eigenvalue approximation, using (51), ( 72) and (63), the errors can be written as (FFLW):

E FFLW nearby = max (0,1) u δ (δy) -       -βw 0 (mB 2 1 + C 1 ) iκδ δµ 2 1 û(1) 0 (y) + û(2) 0 (y)       , (84) 
(FFFW): so that the eigenvalues λ 1,2 and eigenvectors U λ 1,2 of the matrix of the ODE system are simply λ j = i(-1) j (mB 2 1 + C 1 ) and U λ j = (-i(-1) j , 1) T , and T d = µ 0 /(mB 2 1 + C 1 ). We can hence superpose the resulting linear approximation (65) onto the dispersion diagram, revealing an excellent fit, as can be seen in Figure 9 (right). It is quite remarkable that in this case, every eigenvalues µ 0 correspond to Dirac points. In fact this can be understood by considering a homogeneous material with only one spring-mass interface. Upon sending a wave onto this interface, one can naturally derive a coefficient of reflection Ref(µ) and a coefficient of transmission Trans(µ). It turns out that

E FFFW nearby = max (0,1) u δ (δy) -e -iπy       -βw 0 (mB 2 1 + C 1 ) iκδ δµ 2 1 û(1) 0 (y) + û(2) 0 (y)       . (85) 
Ref(µ) = -iµ 1 k -m 2 1 -mµ 2 4k -iµ 1 k + m and Trans(µ) = 2 1 + mµ 2 4k 2 1 -mµ 2 4k -iµ 1 k + m
, and therefore the reflection coefficient is zero if and only if the condition k = 1/m is satisfied. Hence, in the periodic medium considered, no internal reflection can be present, no destructive/constructive interference can take place and no band gaps occur. In red (resp. blue) dashed lines are the periodic (resp. antiperiodic) eigenvalues µ 0 calculated by finding the roots of (78).

(Right) In red (resp. blue) dashed lines are the periodic (resp. antiperiodic) resulting first-order approximations (65).

Bilayer

We now consider the case of a bilayer material characterised by the phase fraction r ∈ (0, 1), and hence provide the imperfect interface extension to the example given in [START_REF] Craster | High-frequency homogenization for periodic media[END_REF]. The unit cell is made up of two homogeneous materials. The first one has a length rh, density ρ 1 and Young's modulus E 1 , while the second has length (1r)h, density ρ 2 and Young's Modulus E 2 . The two respective wave speeds are c 1 = E 1 /ρ 1 and c 2 = E 2 /ρ 2 . The important non dimensional functions α and β are hence defined by α(y) = α (1) = ρ 1 /ρ for y ∈ (0, r), α (2) = ρ 2 /ρ for y ∈ (r, 1), and β(y) = β (1) = E 1 /E for y ∈ (0, r), where

β (2) = E 2 /E for y ∈ (r, 1), (86) 
ρ = rρ 1 + (1 -r)ρ 2 and E = (r/E 1 + (1 -r)/E 2 ) -1
. The interface at y = r is assumed perfect, and the geometry of this physical problem is summarised in Figure 10.

The classic Bloch-Floquet analysis will, in this case, give the following dispersion relation

cos(κδ) = 1 1 + mµ 2 4k 1 - mµ 2 4k C 1 C 2 - 1 2 
Z 1 Z 2 + Z 2 Z 1 S 1 S 2 - mµ 2 
S 1 C 2 Z Z 1 + S 2 C 1 Z Z 2 - µ 2k Z 1 S 1 C 2 Z + Z 2 S 2 C 1 Z , (87) 
where Z = ρ c , and

C i = cos(µH i ), S i = sin(µH i ), H 1 = rc /c 1 , H 2 = (1 -r)c /c 2 and
, naturally, c = E /ρ . As per the monolayer case, the dispersion diagram displays band gaps as can be seen in Figure 11. We will now apply the high-frequency homogenisation technique to derive an analytical approximation to the higher branches of the diagram and to the associated wave fields. Using (18a) and [START_REF] Licht | Dynamics of elastic bodies connected by a thin adhesive layer[END_REF], we find that û0 should satisfy û 0 + (Ω (1) ) 2 û0 = 0 on (0, r), û 0 + (Ω (2) ) 2 û0 = 0 on (r, 1), so that û0 (y) = A (1) cos(Ω (1) y) + B (1) sin(Ω (1) y) on (0, r), û0 (y) = A (2) cos(Ω (2) y) + B (2) sin(Ω (2) y) on (r, 1),

where A (1,2) and B (1,2) are some constants to be determined, and Ω (1,2) = µ 0 α (1,2) β (1,2) = µ 0 c c 1,2 . The interface at y = r is assumed perfect, and hence, û0 is also subject to the interface conditions û0 (r -) = û0 (r + ), β (1) û 0 (r -) = β (2) û 0 (r + ), and (1) û 0 (0 + ) ± β (2) û 0 (1 -)), β (1) 

       û0 (0 + ) ∓ û0 (1 -) = 1 2k (β
û 0 (0 + ) ∓ β (2) û 0 (1 -) = - mµ 2 0 2 (û 0 (0 + ) ± û0 (1 -)),
where here and throughout this section, Notation 2.1 is being used. This results in a system of the form M bi (A (1) , B (1) , A (2) , B (2) ) T = (0, 0, 0, 0) T ,

where the 4 × 4 matrix M bi is given by

M bi =                  1 -β (1) Ω (1) 2k ∓ cos(Ω (2) ) ± β (2) Ω (2) sin(Ω (2) ) 2k ∓ sin(Ω (2) ) ∓ β (2) Ω (2) cos(Ω (2) ) 2k - mµ 2 0 2 -β (1) Ω (1)
∓β ( 2) Ω (2) sin(Ω (2) ) ∓ mµ 2 0 2 cos(Ω (2) ) ±β (2) Ω (2) cos(Ω (2) ) ∓ mµ 2 0 2 sin(Ω (2) ) cos(Ω (1) r)

sin(Ω (1) r) cos(Ω (2) r) sin(Ω (2) r) β (1) Ω (1) sin(Ω (1) r) -β (1) Ω (1) cos(Ω (1) r) -β (2) Ω (2) sin(Ω (2) r)

β (2) Ω (2) cos(Ω (2) r)                  .
The equation (89) can only have non-trivial solutions if det(M bi ) = 0, which gives a relation of the form D bi (µ 0 ; m, k, β (1) , β (2) , Ω (1) , Ω (2) , r) = 0, (

the roots of which correspond to the eigenvalues µ 0 . The numerically computed eigenvalues coincide with the edges of the Brillouin zone on the dispersion diagram in Figure 11. To obtain û0 , we find a vector in ker(M bi ) using the null function in Matlab, and use it as the coefficients (A (1) , B (1) , A (2) , B (2) ).

We now need to find v 1 to obtain a second-order approximation. Since it is solution to the same equation (18a), we can write v 1 (y) = C (1) cos(Ω (1) y) + D (1) sin(Ω (1) y) on (0, r), C (2) cos(Ω (2) y) + D (2) sin(Ω (2) y) on (r, 1).

(91)

Using Remark 3.1 for the conditions at the unit cell interfaces, and remembering that, according to Remark 3.2, both v 1 and βv 1 should be continuous at y = r, one obtains a system of the form M bi (C (1) , D (1) , C (2) , D (2) ) T = b bi , where

b bi =       ∓û 0 (1 -) ∓ 1 2k β (2) û 0 (1 -), ∓ mµ 2 0 2 û0 (1 -) ± β (2) û 0 (1 -), 0, 0       T .
Because the matrix M bi is singular, we compute (C (1) , D (1) , C (2) , D (2) ) T via the Moore-Penrose Pseudo-inverse [START_REF] Penrose | A generalized inverse for matrices[END_REF]. Once v 1 is found, the resulting value of T is directly obtained using (41). The resulting approximations µ ≈ µ 0 + T 2µ 0 (κδ) 2 are superposed to the Bloch-Floquet diagram in Figure 11 (left), and one can see that they approximate the branches well in the vicinity of the edges of the band gaps of the dispersion diagram. It is apparent from Figure 11 that the highest antiperiodic eigenvalue displayed seems to be a double eigenvalue (in fact we will see further that it is not exactly a double eigenvalue), and that the approximation is particularly short-lived in this neighbourhood. Having computed all the eigenvalues and eigenfunctions, we can once again evaluate the nearby eigenvalue approximation (74). It is displayed in Figure 11 (right), and as can clearly be seen, its agreement with the dispersion diagram is much longer-lived that of the simple eigenvalue approximation, even more so for the near-double eigenvalue.

Using the Bloch-Floquet analysis, in a very similar way to the monolayer case, we can have access to the exact standing wave field u δ (x) = u δ (δy), and we normalise it such that u δ (0 + ) = u 0 (0, 0 + ). As per the monolayer case, and because of (81), we illustrate the convergence of the simple eigenvalue method by comparing u δ (δy) and û0 (y) for various values of κδ in Figure 12.

A similar investigation can be carried out for the nearby eigenvalue approximation. As can be seen in Figure 13, the approximation is good even for a value of κδ = 0.5 that is not particularly small, and for which the agreement of the simple eigenvalue zeroth-order field is poor.

In Figure 14, we plot the error between the exact field and the homogenised fields obtained using both the simple and nearby eigenvalue approximations. The errors can be expressed as in (82)-(85). Again, one can see that we recover the expected behaviour u δ (δy) = u 0 (δy, y) + O(κδ) , but that the nearby eigenvalue approximation performs better for the whole range of values of κδ used in Figure 14. As for the monolayer example displayed in Figure 9, it is possible to find physical parameters such that all the eigenvalues become simultaneously double eigenvalues (Dirac points). In order to do so one needs to ensure that k = 1/m, and that ρ 1 c 1 = ρ 2 c 2 . The first conditions imposes that the reflection coefficient due to the imperfect interface is zero, and the second imposes that the two homogeneous materials are "impedance matched" so that no reflection occurs from their perfect interface either. However, for the bilayer, it appears that certain parameters lead to only two of the eigenvalues merging into a double eigenvalue, as appears to be the case in Figure 11. In order to visualise this phenomena, one could look at the evolution of the eigenvalues µ 0 for fixed physical parameter, but for varying r within (0, 1). The results are displayed in Figure 15, and it seems that double eigenvalues or near-double eigenvalues may occur for some specific values of r, though, in this case, all the eigenvalues do not become double simultaneously. In fact, as illustrated in Figure 15, if one zooms on the areas of the graphs where eigenvalues seem to coincide, it appears that the curves do not actually touch each other. We will call these points almost-Dirac points. As highlighted above, the nearby eigenvalue approximation to the dispersion diagram is excellent for such almost-Dirac points, while the simple eigenvalue method leads to a very short-lived approximation, see Figure 11. To explore the parameter space further, we will keep the values of r, α (1,2) and β (1,2) used in Figure 11 and study the variation of the fifth and sixth antiperiodic eigenvalues µ 0 that correspond to an almost-Dirac point according to Figure 15. As can be seen in Figure 16, in this case, we observe a similar behaviour as that of Figure 8, where two distinct regions seem to be separated by a smooth curve, on which the values of m and k chosen in Figure 11 (represented by a black star) seem to lie.

All in all, it seems to be the case, that for a given integer j, the j th eigenvalue is double on some manifold given by F j (ρ 1 , ρ 2 , E 1 , E 2 , M, K, r) = 0 for some function F j , though finding an analytical expression for F j is beyond the scope of the present work.

Conclusion

In this work, we have extended the technique of high-frequency homogenisation to onedimensional periodic media with linear imperfect interfaces of the spring-mass type. The extension was not direct, and many of the proofs for the classic case needed to be extended in order to deal with the extra technical difficulties arising from imperfect interface. We have also described Figure 16: Filled Contour Plot of the variations of the fifth (left) and sixth (right) antiperiodic eigenvalues in the bilayer case for the same values of r, α (1,2) and β (1,2) used in Figure 11. The black star corresponds to the values of m and k used in Figure 11.

how the technique should be modified in the specific case of Dirac points within the dispersion diagram, and also proposed a uniform approximation taking into consideration competing nearby eigenvalues.

We have illustrated the validity of our theoretical development with the two examples of monolayered and bilayered materials. In the case of the monolayered material, we quantified the error between the exact and the homogenised fields, and we found a simple condition on the nondimensional stiffness and mass values k and m for all the points at the edges of the Brillouin zone to become Dirac points. Similar conditions were given in the bilayered case. Moreover, in the bilayered case, almost-Dirac points have been identified while exploring the parameter space (much larger than that of the monolayered material). For both examples considered, we found that the nearby eigenvalue approximation led to a much-longer-lived approximation to both the dispersion diagram and the wave fields. This formulation is also convenient because it does not breakdown when two eigenvalues merge, unlike the simple eigenvalue approximation. As mentioned previously, one of the advantages of high-frequency homogenisation is that it works even when the dispersion diagrams cannot be obtained analytically or are computationally intricate to obtain. In such cases, this high-frequency homogenisation approach may, for example, provide a way of back-engineering the values of m and k describing imperfect interface, or pick specific material properties and contact in order to ensure the presence of Dirac points, which are known to display very interesting physical properties.

In the future, we hope to be able to push the asymptotics presented in this paper to higher order, i.e. to propose first-and maybe second-order corrections to the leading-order wave fields exhibited in the present work. and non-negative for the inner product [START_REF] Delsanto | A spring model for the simulation of the propagation of ultrasonic pulses through imperfect contact interfaces[END_REF], that is L[ f ], g = f, L[g] and L[ f ], f 0 for any functions f and g satisfying both jump conditions and both periodic (FFLW) or antiperiodic (FFFW). To prove symmetry, we will show that the quantity Sym( f, g) = L[ f ], gf, L[g] is zero. First by definition of the inner product [START_REF] Delsanto | A spring model for the simulation of the propagation of ultrasonic pulses through imperfect contact interfaces[END_REF] 

k f ḡ -k f ḡ = 0,
and hence the problem is symmetric. Now, by definition of the inner product [START_REF] Delsanto | A spring model for the simulation of the propagation of ultrasonic pulses through imperfect contact interfaces[END_REF], we have hence the problem is non-negative. Therefore, in conclusion, the operator L, together with the jump and periodicity conditions, is self-adjoint and non-negative.

L[ f ], f = αL[ f ] f + m⟪L[ f ]⟫⟪ f ⟫

Figure 1 :

 1 Figure 1: Geometry settings in the X, x and y variables, a periodic cell is highlighted with a dashed line.

Figure 2 :

 2 Figure 2: Geometry of the monolayer problem in the physical (left) and nondimensional (right) settings.

Figure 3 :

 3 Figure 3: Dispersion diagram for the monolayer with k = 1 and m = 0.5. In red (resp. blue) dashed line are the periodic (resp. antiperiodic) second-order approximations (48) using the computed values of T (left) and nearby eigenvalue approximations (74) using the computed values of T d and δγ (right).

Figure 4 :

 4 Figure 4: Imaginary part of κδ in the band gaps of the monolayer dispersion diagram for k = 1 and m = 0.5. In red (resp. blue) dashed lines are the periodic (resp. antiperiodic) second-order approximations (48) using the computed values of T (left) and nearby eigenvalue approximations (74) using the computed values of T d and δγ (right).

Figure 5 :

 5 Figure 5: Illustration of the convergence of the method by comparing û0 and u δ (δy) in the FFLW (left) and the FFFW (right) cases. We plotted u δ for 20 values of κδ equidistributed in the log scale between 10 -5 and 1. The red arrows indicate how u δ (δy) is changing as κδ → 0.

Figure 6 :Figure 7 :

 67 Figure 6: Superposition of real parts of the exact (u δ ), simple eigenvalue zeroth-order (û 0 ) and nearby eigenvalue approximation normalised wave fields in the FFLW (left) and FFFW (right) for κδ = 0.5

Figure 9 :

 9 Figure 9: Dispersion diagram for the monolayer with k = 2 and m = 0.5 corresponding to double eigenvalues. (Left)In red (resp. blue) dashed lines are the periodic (resp. antiperiodic) eigenvalues µ 0 calculated by finding the roots of (78). (Right) In red (resp. blue) dashed lines are the periodic (resp. antiperiodic) resulting first-order approximations (65).

Figure 10 :

 10 Figure 10: Geometry of the bilayer problem (left) and non-dimensional (right) settings.

Figure 11 :

 11 Figure 11: Non-dimensional dispersion diagram for the bilayer with ρ 1 = 1200 kg.m -3 , ρ 2 = 1800 kg.m -3 , c 1= 2800m.s -1 , c 2 = 3500 m.s -1 , E 1 = ρ 1 c 2 1 , E 2 = ρ 2 c 2 2 , M = 2 ×10 4 kg.m 2 , K = 2.45 × 10 9 Pa.m -1 , r = 0.202 and h = 10 m, corresponding to k ≈ 1.41 and m ≈ 1.19, α (1) ≈ 0.71, α (2) ≈ 1.071, β (1) ≈ 0.54 and β (2) ≈ 1.27. The red (resp. blue) dashed lines are the periodic (resp. antiperiodic) second-order approximations (48) using the computed values of T (left) and nearby eigenvalue approximations (74) using the computed values of T d and δγ (right).

Figure 12 :

 12 Figure12: Illustration of the convergence of the method by comparing û0 and u δ (δy) in the FFLW (left) and the FFFW (right) cases. We plotted u δ for 20 values of κδ equidistributed in the log scale between 10 -5 and 1. The red arrows indicate how u δ (δy) is changing as κδ → 0, while the vertical dashed blue line indicates the position of the perfect interface between the two homogeneous materials.

Figure 13 :

 13 Figure 13: Superposition of real parts of the exact (u δ ), simple eigenvalue zeroth-order (û 0 ) and nearby eigenvalue approximation normalised wave fields in the FFLW (left) and FFFW (right) for κδ = 0.5 and for the same parameters used in Figure 11.

  Figure 13: Superposition of real parts of the exact (u δ ), simple eigenvalue zeroth-order (û 0 ) and nearby eigenvalue approximation normalised wave fields in the FFLW (left) and FFFW (right) for κδ = 0.5 and for the same parameters used in Figure 11.

Figure 14 :

 14 Figure 14: Loglog plot of the error between the exact (Bloch Floquet) and the homogenised fields for various values of κδ and for the same parameters used in Figure 11. (Left) FFLW. (Right) FFFW. The slope depicted by a black triangle denotes a O(κδ) . Dotted (resp. plain) lines correspond to the simple (resp. nearby) eigenvalue approximation.

Figure 15 :

 15 Figure 15: Evolution of the first six FFLW (left) and FFFW (right) eigenvalues µ 0 for the exact same parameters as those used in Figure 11, but for r ∈ (0.05, 0.95). A vertical dashed line represents the value of r used in Figure 11. Zoom boxes are provided to show that near the almost-Dirac points, the eigenvalues remain simple.

Now, using the fact that d dy β d f dy f = d dy β d f dy f -β d f dy 2 , 2 +

 22 k| f | 2 0,

  we have Sym( f, g) = αL[ f ]ḡ + m⟪L[ f ]⟫⟪ḡ⟫ -α f L[g] -m⟪ f ⟫⟪L[g]⟫

		2nd jump = def of L	f	d dy	β	dḡ dy	-	d dy	β	d f dy	ḡ + ⟪ f ⟫ β	dḡ dy	-β	d f dy	⟪ḡ⟫.	(A.1)
	Now, using the fact that f d dy β dḡ dy -d dy β d f dy ḡ = d dy f β dḡ dy -β d f dy ḡ , (A.1) becomes
	Sym( f, g)	=		d dy	f β	dḡ dy	-β	d f dy	ḡ + ⟪ f ⟫ β	dḡ dy	-β	d f dy	⟪ḡ⟫
		= Lemma 2.3	-f β	dḡ dy	-β	d f dy	ḡ + ⟪ f ⟫ β	dḡ dy	-β	d f dy	⟪ḡ⟫
		= Lemma 2.2	⟪β	d f dy	⟫ ḡ -f ⟪β	dḡ dy	⟫ = 1st jump

One can see that we recover the expected behaviour u δ (δy) = u 0 (δy, y) + O(κδ), but that the nearby eigenvalue approximation performs much better for the whole range of values of κδ used in Figure 7.

We now endeavour to study how the eigenvalues µ 0 depend on m and k. In order to visualise this we display a heat map of the first and second FFLW (periodic) µ 0 (m, k) in Figure 8. One can clearly see two distinct regions, on the left and on the right of the curve k = 1/m. On each side of these curves, the eigenvalue depend solely on one of the two parameters (m, k), which correspond to either the top or the bottom line of M mo being zero. On the curve k = 1/m, both lines of M mo are zero, and hence, the eigenvalue µ 0 is a double eigenvalue. The other eigenvalues in the the FFLW (periodic) and FFFW (antiperiodic) case have very similar heatmaps, in particular they are all double eigenvalues when k = 1/m, as displayed on the dispersion diagram in Figure 9 (left).

In the case of a double eigenvalue, we have to follow the procedure of §4 by representing u 0 as in (51). We hence need to find two independent solutions û(1,2) 0 of [START_REF] Rokhlin | Analysis of boundary conditions for elastic wave interaction with an interface between two solids[END_REF], which can both be written û [START_REF] Bensoussan | Asymptotic analysis for periodic structures[END_REF][START_REF] Bakhvalov | Homogenisation: averaging process in periodic media[END_REF] 0 (y) = A (1,2) cos(µ 0 y) + B (1,2) sin(µ 0 y). Because of the dimension of the system, any two independent vectors (A (1) , B (1) ) T and (A (2) , B (2) ) T would work, and we can hence choose (A (1) , B (1) ) T = (1, 0) T and (A (2) , B (2) ) T = (0, 1) T . As seen in §4, the two functions U (1,2) 0 (x) appearing in (51) satisfy the first-order ODE system (59), where in our case we have

Using these, one can easily compute the associated eigenvalues λ 1,2 and eigenvectors U λ 1,2 via (60) and (61). Note that in this case, one can show that

Appendix A. On the self-adjointness of (18

The system [START_REF] Rokhlin | Analysis of boundary conditions for elastic wave interaction with an interface between two solids[END_REF] is the eigenvalue problem that can be formulated as follows. Find λ such that L[ f ] = λ f with f = 1 k ⟪β d f dy ⟫ (1st jump) and β d f dy = -mλ⟪ f ⟫ (2nd jump), for some function f that is periodic (FFLW) or antiperiodic (FFFW). It is somewhat inconvenient for λ to appear in the second jump, so we rewrite it as β d f dy = -m⟪L[ f ]⟫ (2nd jump). We will now show that the operator L, together with the jump and periodicity conditions is both symmetric

Appendix B. Bloch-Floquet analysis of the monolayer case

In this case, u δ satisfies (8) with α ≡ β ≡ 1, hence, on (0, δ), we have

subject to the two jump conditions u δ 0 = δ k ⟪u δ ⟫ 0 and δ u δ 0 = -mµ 2 ⟪u δ ⟫ 0 , relating the value of u δ and u δ at 0 + and 0 -. Moreover, according to Bloch-Floquet theory, we know that 30 we can write u δ (x) = u δ (x)e iκx , for a δ-periodic function u δ , implying that, in particular, we have u δ (δ -) = u δ (0 -)e iκδ and u δ (δ -) = u δ (0 -)e iκδ . This, combined with the jump conditions, relates the values of u δ and u δ at 0 + and δ -, and hence it gives two equations on A BF and B BF . These equations can be summarised by a matrix equation of the form M mo BF (µ, κδ, m, k)(A BF , B BF ) T = (0, 0) T , where

1e -iκδ cos(µ) + µ 2k sin(µ)e -iκδ sin(µ)e -iκδµ 2k (1 + cos(µ)e -iκδ ) -µ sin(µ)e -iκδmµ 2 2 (1 + cos(µ)e -iκδ ) -µ(1cos(µ)e -iκδ ) -mµ 2 2 sin(µ)e -iκδ .

One notes that, as expected, for κδ = 0 or κδ = π we have M mo BF = M mo with the relevant sign. Of course, this system has only non-trivial solutions if det(M mo BF ) = 0. A little bit of algebra shows that

where B = 1 + mµ 2 4k and C = 1 -mµ 2 4k . Equating it to zero and multiplying by e iκδ /(Bµ), this leads to the dispersion relation (75). For a value of µ satisfying the dispersion relation, we have infinitely many possible (A BF , B BF ) T . To find one, just fix A BF = 1, and use either the first or second line of M mo BF to get B BF as follows:

1 + e -iκδcos(µ) + µ 2k sin(µ)