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In this paper we construct a family of ternary interpolatory Hermite subdivision schemes of order 1 with small support and HC 2 -smoothness. Indeed, leaving the binary domain, it is possible to derive interpolatory Hermite subdivision schemes with higher regularity than their binary counterparts. The family of schemes we construct is a two-parameter family whose HC 2 -smoothness is guaranteed whenever the parameters are chosen from a certain polygonal region. The construction of this new family is inspired by the geometric insight into the ternary interpolatory scalar three-point subdivision scheme by Hassan and Dodgson. The smoothness of our new family of Hermite schemes is proven by means of joint spectral radius techniques.

Introduction

This paper focuses on Hermite subdivision schemes which are iterative algorithms for approximation or interpolation of given vector-valued discrete data consisting of function values and associated consecutive derivatives. Our main goal is to show, by applying the joint spectral radius techniques, that even in the Hermite case ternary subdivision schemes achieve higher smoothness than their binary counterparts. Furthermore we show that this can be done without a significant increase of the support of the mask. It is well known that such a phenomenon occurs in the scalar case, see e.g. [START_REF] Hassan | An interpolating 4-point C2 ternary stationary subdivision scheme[END_REF]. However, the Hermite ternary case is more challenging.

Motivation and novel contributions

As well known, it is a difficult task to keep the support size of a subdivision scheme small while increasing its smoothness. These two notions are mutually conflicting because high smoothness generally requires masks of large support. This leads to an undesired more global influence of each initial data value on the limit function. Increasing the a-rity of the subdivision scheme is one of the possible ways to overcome this problem.

In this paper, we propose a new two-parameter family of ternary three-point Hermite schemes for vector-valued data consisting of function values and associated first derivatives. These parameters are used to control the convergence and the regularity of the corresponding Hermite scheme. We show that, if the parameters are chosen from a certain polygonal domain of the parameter plane, the associated Hermite scheme is HC 2 -convergent instead of HC 1 -convergent as usually expected for a scheme of order 1. In section 2.1, to derive our family of Hermite schemes we provide a new geometric interpretation of the family of ternary interpolatory scalar three-point subdivision schemes in [START_REF] Hassan | Ternary and three-point univariate subdivision schemes, Curve and Surface Fitting: Saint-Malo[END_REF]. This family is a one-parameter family which is C 1 -smooth for a certain parameter range. In Section 2.2, we extend this scalar scheme to the Hermite case. The analysis of the convergence and regularity of the Hermite family is given in Section 3 where we present two different approaches: The classical approach for regularity analysis of vector subdivision schemes combined with the HC 0 convergence analysis of H A and the classical approach for regularity analysis of Hermite subdivision schemes. These approaches involve the so-called joint spectral radius methods, difference operator technique and the corresponding extended scheme, respectively. The combination of these different methods, allows us to identify the convergence and regularity regions of the parameter plane and to identify the optimal parameters. Thus, we identify a whole class of Hermite interpolatory schemes whose regularity is higher than that of their binary counterparts of the same order in [START_REF] Merrien | A family of Hermite interpolants by bisection algorithms[END_REF].

Background on vector and Hermite subdivision schemes

Let d ∈ N 0 be an integer number. Vector subdivision schemes of dimension d + 1 are iterative algorithms based on subdivision operators that generate denser and denser sequences g n , n ∈ N, of vector-valued data from some initial vector-valued sequence g 0 = {g 0 (α) ∈ R d+1 , α ∈ Z} in d+1 (Z), the set of d + 1-dimensional vector sequences indexed by Z. Loosely speaking, the ratio between the number of elements in g n+1 to the number of elements in g n , assumed to be independent of n, is called the a-rity of the corresponding scheme.

In this paper we study ternary (3-arity) vector subdivision schemes. The associated level-dependent linear subdivision operators S An : d+1 (Z) → d+1 (Z), for any n ∈ N 0 , map the sequences g n = {g n (α), α ∈ Z} into g n+1 = {g n+1 (α), α ∈ Z} and are defined by

g n+1 (α) := (S An g n ) (α) g n (β), α ∈ Z, n ∈ N 0 . (1) 
(S An g n ) (α) := β∈Z An (α -3β) g n (β), α ∈ Z, n ∈ N 0 . (2) 
At each level n of the subdivision recursion, the matrix coefficients in (2) are taken from the matrix-valued sequence An := {An(α) ∈ R (d+1)×(d+1) , α ∈ Z}, called the level n subdivision mask. In our case, the sequence {An, n ∈ N 0 } contains masks An of the same finite support, i.e. supp An := {α ∈ Z :

An(α) = 0} ⊆ [-N, N ] for some N ∈ N. The (d + 1) × (d + 1) matrix-valued Laurent polynomials A * n (z) := α∈Z Anz α , z ∈ C \ {0}, n ∈ N 0 ,
are the associated mask symbols.

The vector subdivision scheme is the repeated application of the subdivision operators in (2) to the starting vector-valued sequence g 0 ∈ d+1 (Z), i.e.

  

Input {An, n ∈ N 0 } and g 0 For n = 0, 1, . . .

g n+1 := S An g n (3) 
This paper deals with two kinds of vector schemes of dimension d + 1. The first one is a stationary vector subdivision scheme S A with the level-independent masks An = A = {A(α) ∈ R (d+1)×(d+1) , α ∈ Z}, n ∈ N 0 , and with the level-independent subdivision operators S An = S A , n ∈ N 0 . For simplicity, we call this stationary subdivision scheme S A as it is fully determined by the corresponding subdivision operator S A . Such vector subdivision schemes have been studied by many authors e.g. [START_REF] Cabrelli | Self-similarity and multiwavelets in higher dimensions[END_REF], [START_REF] Cavaretta | Stationary subdivision[END_REF] , [START_REF] Charina | Vector multivariate subdivision schemes: Comparison of spectral methods for their regularity analysis[END_REF] , [START_REF] Charina | Regularity of multivariate vector subdivision schemes[END_REF], [START_REF] Chen | Convergence of vector subdivision schemes in Sobolev spaces[END_REF] , [START_REF] Conti | Interpolatory Rank-1 vector subdivision schemes[END_REF], [START_REF] Han | Computing the smoothness exponent of a symmetric multivariate refinable function[END_REF], [START_REF] Jia | Vector subdivision schemes and multiple wavelets[END_REF] and reference therein.

The second type of vector subdivision schemes that we consider are Hermite subdivision schemes H A of dimension d + 1 and order d. For a given mask A = {A(α) ∈ R (d+1)×(d+1) , α ∈ Z} with finite support, the associated level-dependent (non-stationary) linear Hermite subdivision operators H An : d+1 (Z) → d+1 (Z) are given by d+1) . Note that the masks

f n+1 (α) := (H An f n ) (α) = β∈Z D -n-1 A(α -3β)D n f n (β), α ∈ Z, n ∈ N 0 , (4) with the diagonal matrix D = diag(1, 1/3, . . . , 1/3 d ) ∈ R (d+1)×(
D -n-1 AD n = {D -n-1 A(α)D n , α ∈ Z}, n ∈ N 0 , in (4 
) have a very special type of level-dependence. For simplicity, we call this Hermite subdivision scheme H A to emphasize this special type of the dependency on the mask A. Moreover, if H A is convergent, in the sense of Definition 2, the vector-valued elements f n (α) are to be interpreted, for large n, as approximations to the function values and the successive derivatives of the corresponding limit function

Φ f 0 = lim n→∞ H An . . . H A0 f 0 evaluated at 3 -n α, i.e. bf fn(α) =      fn(α) f n (α) . . . f (d) n (α)      ≈ Φ f 0 (3 -n α) =      φ(3 -n α) φ (3 -n α) . . . φ (d) (3 -n α)      , α ∈ Z.
Hermite schemes, introduced [START_REF] Merrien | A family of Hermite interpolants by bisection algorithms[END_REF] in have been studied by several authors [START_REF] Conti | An algebraic approach to polynomial reproduction of Hermite subdivision schemes[END_REF], [START_REF] Conti | Dual Hermite subdivision schemes of de Rham-type[END_REF], [START_REF] Dubuc | Hermite subdivision schemes and Taylor polynomials[END_REF], [START_REF] Dyn | Analysis of Hermite-interpolatory subdivision schemes[END_REF], [START_REF] Deslauriers | Increasing the smoothness of vector and Hermite subdivision schemes[END_REF], [START_REF] Han | Design of Hermite subdivision schemes aided by spectral radius optimization[END_REF], [START_REF] Jeong | Analysis of non-stationary Hermite subdivision schemes reproducing exponential polynomials[END_REF].

We observe that, since (4) can be rewritten as

D n+1 f n+1 (α) = β∈Z A(α -3β)D n f n (β), α ∈ Z, n ∈ N 0 , (5) 
each Hermite subdivision operator H An of order d and the stationary vector operator S A of dimension d + 1 are related by

D n+1 (H An f n ) (α) = (S A D n f n ) (α), α ∈ Z, n ∈ N 0 . (6) 
Thus, the (stationary) vector subdivision scheme S A is called the stationary counterpart of H A .

We continue by defining the convergence and the regularity of S A and H A .

Definition 1 A ternary vector subdivision scheme S A is called i) convergent, if for every initial vector sequence g 0 ∈ d+1 (Z) and the corresponding sequence of refinements in (2), g n = S n A g 0 , n ∈ N 0 , there exists a continuous vector function Φg 0 : R → R d+1 , such that for every compact subset

K ⊂ R lim n→∞ max α∈Z∩3 n K Φg 0 (3 -n α) -g n (α) ∞ = 0; ii) C -convergent, ∈ N, if Φg 0 ∈ C (R) for every initial vector sequence g 0 in d+1 ∞ (Z); iii) contractive, if Φg 0 = 0 for every initial sequence g 0 in d+1 (Z).
We also make use of the following notion of convergence that better captures the intrinsic structure of Hermite subdivision schemes.

Definition 2 A ternary Hermite subdivision scheme H A of order d, is HC -convergent with ≥ d, if for any initial vector sequence f 0 ∈ d+1 (Z) and the corresponding sequence of refinements

f n = H An • • • H A0 f 0 , n ∈ N 0 , in (4), there exists a vector-valued function Φ f 0 : R → R d+1 , Φ f 0 = [φ (i) ] i=0,...,d ∈ C -d (R) with φ = φ (0) ∈ C (R) and φ (i) = d i φ (0) dx i , i = 1, . . . , d such that for every compact subset K ⊂ R lim n→∞ max α∈Z∩3 n K Φ f 0 3 -n α -f n (α) ∞ = 0 .
Note that the notions of C -convergence for a vector scheme S A and HCconvergence for a Hermite scheme H A are intrinsically different. The first notion in Definition 1 refers to the minimal smoothness of the entries in Φg 0 while the second one in Definition 2 to the maximal one of the entries in Φ f 0 . In other words, due to (6), if we look at a HC -convergent Hermite scheme simply as a vector scheme it is only C -d -convergent. Moreover, again due to [START_REF] Charina | Multiple multivariate subdivision schemes: Matrix and operator approaches[END_REF], convergence and regularity S A does not imply convergence and regularity H A . In this paper we make use of the following concept of ternary interpolatory subdivision scheme.

Definition 3 A ternary Hermite subdivision scheme H A is called interpolatory, if

A(0) = D and A(3α) = 0, α ∈ Z, α = 0.
Note that a Hermite interpolatory scheme in (4) generates vector sequences satisfying

f n+1 (3α) = f n (α), for α ∈ Z, n ∈ N 0 .

Construction of ternary Hermite subdivision schemes

In this section, we construct a two-parameter family of interpolatory ternary Hermite subdivision schemes of order d = 1, i.e. of dimension 2. By construction, each scheme from this family reproduces quadratic polynomials. The suitable range of the parameters is given in Section 3. To derive this new family of Hermite scheme, we first present, see Subsection 2.1, an alternative way for defining the ternary interpolatory scalar 3-point subdivision scheme in [START_REF] Hassan | Ternary and three-point univariate subdivision schemes, Curve and Surface Fitting: Saint-Malo[END_REF]. This new interpretation of the scheme is generalized to the Hermite case in Subsection 2.2.

Scalar case

Lagrange interpolants

We start by determining two special cubic interpolants P and Pr to the data (α, pα) with pα ∈ R, α ∈ {-1, 0, 1}. The corresponding interpolation problems are underdetermined and we choose

P (t) := p 0 + 1 t + 2 t 2 + λ(p -1 -2p 0 +p 1 )t 3 , t ∈ R, Pr(t) := p 0 + r 1 t + r 2 t 2 -λ(p -1 -2p 0 +p 1 )t 3 , t ∈ R, (7) 
to ensure P (0) = Pr(0) = p 0 and to introduce a free parameter λ ∈ R. Note that λ controls the second difference p -1 -2p 0 +p 1 and will be useful for controlling the regularity of the scalar ternary scheme in Subsection 2.1.2. The coefficients

1 = -λ(p -1 -2p 0 + p 1 ) + 1 2 (p 1 -p -1 ), 2 = 1 2 (p -1 -2p 0 + p 1 ), r 1 = λ(p -1 -2p 0 + p 1 ) + 1 2 (p 1 -p -1 ), r 2 = 1 2 (p -1 -2p 0 + p 1 ), (8) 
are determined from two linear systems of equations derived from the interpolation conditions P (α) = Pr(α) = pα for α ∈ {-1, 1}.

Remark 1 If π ∈ P 1 and pα = π(α), α ∈ {-1, 0, 1}, then, by construction,

P = Pr = π. (9) 
Moreover, for λ = 0, Equation ( 9) holds for π ∈ P 2 , see Figure 1.

Fig. 1 Interpolants P (dashed) and Pr (dotted) for λ = 0, 0.5, -1, respectively, with the corresponding evaluation points.

Ternary scalar subdivision scheme

To define the corresponding ternary scalar subdivision operator Sa : (Z) → (Z),

f n+1 := Safn = β∈Z a(• -3β)fn(β), fn = {fn(α), α ∈ Z}, n ∈ N 0 ,
we choose the initial sequence

f 0 = {f 0 (α), α ∈ Z} with f 0 (α) = pα, α ∈ {-1, 0, 1} and f 0 (α) = 0, α = -1, 0, 1,
and set

f 1 (-1) = P (-1/3), f 1 (0) = Pr(0) = P (0) = p 0 , f 1 (1) = Pr(1/3).
Therefore, the following linear system of equations

β∈{-1,0,1} a(-1 -3β)p β = P (-1/3) = 1 27 (6 + 8λ)p -1 + (24 -16λ)p 0 + (-3 + 8λ)p 1 , β∈{-1,0,1} a(-3β)p β = p 0 , β∈{-1,0,1} a(1 -3β)p β = Pr(1/3) = 1 27 (-3 + 8λ)p -1 + (24 -16λ)p 0 + (6 + 8λ)p 1
uniquely identifies the mask

a = {. . . , 0, u, 0, v, 1 -u -v, 1, 1 -u -v, v, 0, u, 0, . . .}, (10) 
where u := -3 + 8λ 27 , v := 6 + 8λ 27 and where 1 is at the position α = 0. For every λ ∈ R, the mask a is symmetric and is supported on [-4, 4].

Note that u = v-1/3 and that (10) defines the one-parameter family of subdivision schemes in [START_REF] Hassan | Ternary and three-point univariate subdivision schemes, Curve and Surface Fitting: Saint-Malo[END_REF] whose convergence and C 1 smoothness is proved for 2/9 < v < 3/9.

2.2 A family of Hermite subdivision schemes of order 1

Hermite interpolants

We generalize the idea described in Subsection 2.1 to the Hermite case. We start by solving the Hermite interpolation problem for the given data (α, pα, p α ), α ∈ {-1, 0, 1}, and for two sextic Hermite interpolants of the form

P H, (t) := p 0 + p 0 t + 4 i=1 i t i+1 + (λδ + µδ)t 6 , P H,r (t) := p 0 + p 0 t + 4 i=1 r i t i+1 -(λδ + µδ)t 6 , (11) 
with

δ = p -1 -2p 0 + p 1 and δ = p 1 -p -1 2 -p 0 .
Note that the polynomials in [START_REF] Conti | Interpolatory Rank-1 vector subdivision schemes[END_REF] automatically satisfy the Hermite-type interpolation conditions P H, (0) = P H,r (0) = p 0 and P H, (0) = P H,r (0) = p 0 .

Note also that the parameters λ, µ ∈ R in [START_REF] Conti | Interpolatory Rank-1 vector subdivision schemes[END_REF] are introduced to control the differences p -1 -2p 0 + p 1 and

p 1 -p -1

2

-p 0 and influence the regularity of the corresponding Hermite subdivision scheme in Subsection 2.2.2. In fact, for every function

ϕ ∈ C 3 ([-1, 1]), both differences ϕ (-1) -2ϕ (0) + ϕ (1) and 6 ϕ(1) -ϕ(-1)

2

-ϕ (0) are approximations of ϕ (3) (0).

The remaining coefficients in (11)

1 = A -B + λδ + µδ, r 1 = A -B -λδ -µδ, 2 = r 2 = 5δ/2 -δ /4, 3 = B -A/2 -2λδ -2µδ, r 3 = B -A/2 + 2λδ + 2µδ, 4 = r 4 = δ /4 -3δ/2, A = p -1 -2p 0 + p 1 , B = (p 1 -p -1 )/4, (12) 
are determined by solving two linear systems of equations derived from the remaining Hermite interpolating conditions P H, (α) = P H,r (α) = pα and P H, (α) = P H,r (α) = p α for α = -1, 1.

Remark 2 If π ∈ P 2 and pα = π(α), p α = π (α), α ∈ {-1, 0, 1}, then, by construction, the polynomial reproduction property of the Hermite interpolants is guaranteed and

P H, = P H,r = π. (13) 
Moreover, for λ = µ = 0, Equation ( 13) holds for every π ∈ P 5 , see Figure 2. Hermite interpolants P H, (dashed) and P H,r (dotted) for (µ, λ) = (0, 0), [START_REF] Cavaretta | Stationary subdivision[END_REF][START_REF] Charina | Multiple multivariate subdivision schemes: Matrix and operator approaches[END_REF], (-6, -2), respectively, with corresponding evaluation points and derivatives.

Ternary Hermite subdivision scheme

Similarly to Subsection 2.1.2, for D = 1 0 0 1/3 , to define the corresponding ternary Hermite subdivision scheme in (4), we choose the initial vector-valued sequence

f 0 = { f 0 (α), f 0 (α) T , α ∈ Z} with f 0 (α) = pα, f 0 (α) = p α , α ∈ {-1, 0, 1} and f 0 (α) = f 0 (α) = 0, α = -1, 0, 1,
and choose the sequence

f 1 = { f 1 (α), f 1 (α) T , α ∈ Z} with f 1 (-1) = P H, (-1/3), f 1 (0) = p 0 , f 1 (1) = P H,r (1/3), f 1 (-1) = P H, (-1/3), f 1 (0) = p 0 , f 1 (1) = P H,r (1/3).
Due to interpolation, we immediately deduce that

A(3α) = δ 0α D, α ∈ Z.
To compute the other components of the mask A = {A(α), α ∈ Z}, we express the polynomials in [START_REF] Conti | Interpolatory Rank-1 vector subdivision schemes[END_REF] as

P H,s (t) = α∈{-1,0,1} pαH α,s,0 (t)+ ( 14 
)
where the polynomials H α,s,k for α ∈ {-1, 0, 1} and k ∈ {0, 1} are obtained from [START_REF] Conti | Interpolatory Rank-1 vector subdivision schemes[END_REF] imposing the cardinal Hermite interpolation conditions

H α,s,0 (β) = δ αβ , H α,s,0 (β) = 0, β = -1, 0, 1, s ∈ { , r}, H α,s,1 (β) = 0, H α,s,1 (β) = δ αβ , β = -1, 0, 1, s ∈ { , r}.
Then, for s ∈ { , r}, the matrix form of the conditions on f 1 at α = -1 and αr = 1 read as follows

f 1 (αs) f 1 (αs) = H -1,s,0 (αs/3) H -1,s,1 (αs/3) H -1,s,0 (αs/3) H -1,s,1 (αs/3) f 0 (-1) f 0 (-1)
+ H 0,s,0 (αs/3) H 0,s,1 (αs/3) H 0,s,0 (αs/3) H 0,s,1 (αs/3)

f 0 (0) f 0 (0) + H 1,s,0 (αs/3) H 1,s,1 (αs/3) H 1,s,0 (αs/3) H 1,s,1 (αs/3) f 0 (1) f 0 (1)
.

The linear system corresponding to

Df 1 (α) = β∈{-1,0,1} A(α -3β)f 0 (β), α = -1, 1,
for the chosen f 0 and f 1 , uniquely identifies the remaining entries of the matrix mask A supported on [-4, 4] by taking into account that the grid spacing reduces at each subdivision step by 1/3 (so that the factor 1/3 appears when computing derivatives of ( 14))

A(-4) = D • 1 729 32µ + 45 64λ -12 -144µ -162 -288λ + 45 , A(-3) = 0 0 0 0 , A(-2) = D • 1 729 -32µ + 108 -64λ -24 -144µ + 702 -288λ -144 , A(-1) = D • 1 729 576 -128λ -64µ -192 864 576λ + 288µ + 288 , A(0) = D, A(1) = D • 1 729 576 128λ + 64µ + 192 -864 576λ + 288µ + 288 , A(2) = D • 1 729 -32µ + 108 64λ + 24 144µ -702 -288λ -144 , A(3) = 0 0 0 0 , A(4) = D • 1 729 32µ + 45 -64λ + 12 144µ + 162 -288λ + 45 . ( 15 
)
Note that, by the support estimates in [START_REF] Cohen | Nonstationary subdivision schemes and multiresolution analysis[END_REF] which are also valid for Hermite schemes, the support of the basic limit function of the scheme defined in ( 15) is [-2, 2].

Regularity analysis of the Hermite family

We recall that our motivation for the construction in Section 2 is a derivation of a class of ternary Hermite schemes of order d = 1 which for specific parameter values of λ and µ are at least HC 2 -smooth.

To this purpose, several regularity analysis approaches are available based on joint spectral radius, difference (Taylor) operators or their combination. We observe that while the joint spectral radius approach is fully developed for general dilation factors and therefore applicable in the ternary case (see [START_REF] Charina | Limits of level and parameter dependent subdivision schemes: a matrix approach[END_REF], [START_REF] Charina | Multiple multivariate subdivision schemes: Matrix and operator approaches[END_REF], [START_REF] Chen | Convergence of vector subdivision schemes in Sobolev spaces[END_REF] for more details), the approaches based on Taylor operators are stated for the binary case only. In any case, the generalization of the Taylor theory to the case of general a-rity is believed to be straightforward.

The analysis of our Hermite family of subdivision schemes H A via joint spectral radius techniques could be done in three different ways (detailed below): firstly, by the analysis of C 2 -regularity of the stationary counterpart S A combined with convergence analysis of the Taylor subdivision scheme S B associated with S A ; secondly, by the analysis of C 1 -regularity of S B ; lastly, by the analysis of contractivity of the complete Taylor subdivision scheme S B+ associated with the extended scheme S A+ derived from S A .

Using the first approach, we observe that the domain of C 2 -convergence of S A intersected with the convergence domain of S B provides the parameter range for HC 2 -convergence of H A . This parameter range coincides with the parameter range obtained by C 1 -regularity analysis of S B corresponding to the second approach. Therefore, we decided not to present the related details. The third approach, based on the contractivity analysis of S B+ is used for checking the correctness of our computations.

In particular, in Subsection 3.1 we define and construct the Taylor operator S B associated with S A while in Subsection 3.2, we shortly recall the basic facts about the joint spectral radius techniques and apply them to S A and to S B to identify a polygonal parameter region of HC 2 -convergence, see Figure 3. In Subsection 3.3, we follow the approach based on the construction of the complete Taylor subdivision scheme S B+ associated with the extended scheme S A+ derived from S A and identify what we call optimal parameter values which ensure better visual quality of the limit curves.

Taylor subdivision operator S B

In this section, we construct the Taylor operator S B which is used for the regularity analysis of H A in subsection 3.2.2. The Taylor operator was proposed in [START_REF] Merrien | From Hermite to stationary subdivision schemes in one or several variables[END_REF], and its symbol satisfies the following identity

z -1 -1 0 1 A * (z) = 1 3 B * (z) z 3 -1 -1 0 1 , z ∈ C \ {0},
where A * (z) is the symbol associated with the subdivision operator S A and B * (z) the symbol associated with the Taylor operator S B . In our specific situation, computation of the symbol B * (z) gives the mask B (to be divided by the integer 243) 

B(-5) = -16µ -
= 0 64λ + 24 0 0

, B(3) = 0 160λ -27 0 15 -96λ , B(4) = 0 12 -64λ 0 0 . ( 16 
)

HC 2 regularity via joint spectral radius

The joint spectral radius approach for regularity analysis of scalar binary refinable functions was introduced in [START_REF] Daubechies | Two-scale difference equations. II. Local regularity, infinite products of matrices and fractals[END_REF] and has been generalized to various different situations ever since. We recall that the joint spectral radius of a finite matrix set T = {T j ∈ R n×n : j = 1, . . . , J}, J ∈ N, was introduced in [START_REF] Rota | A note on the joint spectral radius[END_REF] and is defined by

ρ(T ) = lim n→∞ max T k ∈T n k=1 T k 1/n . (17) 
The limit in [START_REF] Deslauriers | Increasing the smoothness of vector and Hermite subdivision schemes[END_REF] exists and is independent of the matrix norm. It is well known that the joint spectral radius measures the joint contractivity of the matrices in T .

The study of HC 2 -regularity of H A consists of several steps. Firstly, the algorithm in [6, Lemma 3.8] allows to determines the transition matrices for S A and S B derived from the parameter dependent subdivision masks in [START_REF] Dyn | Subdivision schemes in Computer-Aided Geometric Design[END_REF] and [START_REF] Dyn | Analysis of Hermite-interpolatory subdivision schemes[END_REF]. The invariant common subspaces of these matrices, crucial for our regularity analysis, are determined from the polynomial reproduction properties of the Hermite schemes. Then, the recent advances in numerical linear algebra allow for exact computations of the joint spectral radius of finite sets of transition matrices restricted to common difference subspaces [START_REF] Guglielmi | Exact computation of joint spectral characteristics of matrices[END_REF], [START_REF] Guglielmi | Invariant polytopes of sets of matrices with applications to regularity of wavelets and subdivisions[END_REF], [START_REF] Mejstrik | Improved invariant polytope algorithm and applications[END_REF]. Moreover, to treat the parameter dependency of the transition matrices, we use the techniques presented in [4, Theorem 3.2, Remark 3.5 (iii)].

Transition matrices for S A and S B

We start by constructing the transition matrices used for the regularity analysis of the vector subdivision scheme S A associated with the matrix mask A in [START_REF] Dyn | Subdivision schemes in Computer-Aided Geometric Design[END_REF]. These transition matrices

T A ε ∈ R 8×8 are 4 × 4 block matrices consisting of 2 × 2 matrix blocks A T (ε + 3α -β) T A ε = A T (ε + 3α -β) α,β∈Ω A ε ∈ {0, 1, 2}, Ω A = {-2, -1, 0, 1}.
The polynomial reproduction properties of H A guarantee that the polynomial sequences

u 0 = 1 0 : α ∈ Z , u 1 = α 1 : α ∈ Z and u 2 = α 2 2α : α ∈ Z , ( 18 
)
are polynomial eigensequences of the subdivision operator S A , i.e.

S A um = 1 3 m um, m = 0, 1, 2.
The structure of u 0 indicates [START_REF] Dahmen | Biorthogonal wavelet expansions[END_REF] that the basic limit function of the scheme S A has the form

Φ G0 = lim n→∞ S n A G 0 = φ 1 φ 2 0 0 , G 0 = δI 2 ,
with φ 1 and φ 2 being first components of the corresponding Hermite limits of H A . Therefore, to show that the Hermite scheme H A is HC 2 -smooth, we need to show that φ 1 , φ 2 belong to C 2 (R).

By [START_REF] Cabrelli | Self-similarity and multiwavelets in higher dimensions[END_REF]Theorem 3.1], the subspaces of R 8 spanned by

1 0 α∈Ω A =             1 0 1 0 1 0 1 0             , α 1 α∈Ω A =             -2 1 -1 1 0 1 1 1             , α 2 
2α α∈Ω A =             4 -4 1 -2 0 0 1 2             , are right-invariant under all T A ε , ε ∈ {0, 1, 2}
, and the difference subspaces

V A 0 , V A 1 and V A 2 V A 0 =            
1 0 0 0 0 0 0 0 0 0 1 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 1

            , V A 1 =             1 0 0 0 0 1 0 0 1 0 0 -1 -2 1 0 0 0 -1 0 0 -1 1 0 0 1 -2 0 0 0 0 0 0 0 -1 1 0 0 1 0 0 0 0 0 0 0 0 -1 0            
, and 

V A 2 =             1 0 0 -2 0 0 1 0 1 -1 -3 0 0 2 -2 0 -2 1 1 3 3 0 0 0 2 0 1 -2 0 0 -1 0 0 0 0 0 0 1 0 0             , satisfying α∈Z v(α)u j (-α) = 0, v ∈ V A k , 0 ≤ j ≤ k, k ∈ {0, 1, 2}, are left-invariant under T A ε , ε ∈ {0,
     , 1 729      32µ + 45 0 -48µ -54 0 0 128λ -64µ -132 -192λ -33 192λ + 96µ + 222 32λ -9 224λ + 33 64λ -12 0 15 -96λ 0 0 -16µ -99 48µ -90 -72µ -81 -8µ -9 72 -56µ -80µ -171 48µ -90 24µ + 171 -8µ -18 81 -56µ      . ( 19 
)
We continue by defining the transition matrices of S B . These transition matrices

T B ε ∈ R 10×10 are 5 × 5 block matrices consisting of 2 × 2 matrix blocks B T (ε + 3α -β) T B ε = B T (ε + 3α -β) α,β∈Ω B ε ∈ {0, 1, 2}, Ω B = {-3, -2, -1, 0, 1}.
The polynomial reproduction property of H A that we use further on guarantees that the polynomial sequence

u 0 = -2 1 : α ∈ Z (20) 
is a polynomial eigensequence of the subdivision operator S B , i.e. S B u 0 = u 0 . The size of the corresponding difference subspace can be reduced by removing further common invariant subspaces of the transition matrices and we get V B 0 identified by the column vectors

V B 0 =                 1 0 0 0 0 0 0 0 1 0 0 0 0 0 -2 0 1 0 0 0 0 0 -2 0 1 0 -1 1 1 0 -2 0 0 -1 3 0 1 0 -2 1 0 3 0 0 1 0 0 1 -1 0 0 0 1 -2 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0                 V B 0 is left-invariant under all transition matrices T B ε , ε ∈ {0, 1, 2}.
Since we are interested in the C 0 regularity of S B , in Proposition 2 below, we analyze the joint spectral properties of the matrix set {T B ε | V B 0 : ε ∈ {0, 1, 2}} respectively given by (to be divided by the integer number 243) Proof To stress the parameter dependence, we set

         0 0 0 0 0 0 0 0 0 0 0 0 0 0 423 -32µ 96µ -
         ,          -16µ -9 48µ + 54 0 0 0 0 0 32λ -16µ
T A ε,µ,λ | V A 2 = T A ε | V A 2
for ε ∈ {0, 1, 2}. Define U = span{u 1 , u 2 , u 3 } with u j , j = 1, 2, 3, in [START_REF] Guglielmi | Exact computation of joint spectral characteristics of matrices[END_REF]. Note that the columns of V A 2 in section 3.2.1 can be identified with sequences in 2×1 (Ω) with

Ω A = {-2, -1, 0, 1}. Then, straightforward computations show that α∈Z v(α)u(-α) = 0, v ∈ V A 2 , u ∈ U.
Therefore, due to the minimality of Ω A and by [START_REF] Jia | Vector subdivision schemes and multiple wavelets[END_REF]Theorem 4.1], it suffices to show that

ρ(T A ) < 1 9 for T A = {T A ε,µ,λ | V A 2 : ε ∈ {0, 1, 2}, (µ, λ) ∈ K 2 }.
To do that we compute the Delauney triangulation

∆ of K 2 ∆ = ∆ j = co{k 1 j , k 2 j , k 3 j } : k m j ∈ K 2 , j = 1, . . . , J , J ∈ N,
with vertices k m j ∈ K 2 . Next, for each triangle ∆ j ∈ ∆, we define the following set of nine matrices

T A j = {T A ε,µ,λ | V A 2 : ε ∈ {0, 1, 2}, (µ, λ) = k m j , m = 1, 2, 3}.
By [4, Theorem 3.2, Remark 3.5 (iii)], if

ρ(T A j ) < 1 9 , (22) 
then

ρ(T A ∆j ) < 1 9 for T ∆j = {T A ε,µ,λ | V A 2 : ε ∈ {0, 1, 2}, (µ, λ) ∈ ∆ j }.
To prove [START_REF] Han | Face-based Hermite subdivision schemes[END_REF], we use the results in [START_REF] Guglielmi | Exact computation of joint spectral characteristics of matrices[END_REF], [START_REF] Guglielmi | Invariant polytopes of sets of matrices with applications to regularity of wavelets and subdivisions[END_REF], [START_REF] Mejstrik | Improved invariant polytope algorithm and applications[END_REF] and the modified Gripenberg and modified invariant polytope algorithms in [START_REF] Mejstrik | Improved invariant polytope algorithm and applications[END_REF]. For each triangle ∆ j in the triangulation ∆ of K 2 , or for its dyadically refined version, the algorithms terminate successfully determining the spectrum maximizing matrix product from T j . This proves [START_REF] Han | Face-based Hermite subdivision schemes[END_REF] for all j = 1, . . . , J and, thus, the claim follows.

The regularity analysis if S A is not sufficient to conclude HC 2 -regularity of H A . Therefore, we proceed with the analysis of the Taylor operator S B constructed in [START_REF] Dyn | Analysis of Hermite-interpolatory subdivision schemes[END_REF]. For this scheme we can prove the following convergence result, again based on a JSR approach.

Proposition 2 The scheme S B in [START_REF] Dyn | Analysis of Hermite-interpolatory subdivision schemes[END_REF] is convergent for (λ, µ) ∈ K 0 .

Proof The proof mimics the proof of Proposition 1 where we replace the transition matrices by the one in [START_REF] Han | Design of Hermite subdivision schemes aided by spectral radius optimization[END_REF].

Combining Propositions 1 and 2 and we are finally ready to prove our main result.

Theorem 1 The scheme H

A in (15) is HC 2 -smooth for (λ, µ) ∈ K 2 .
Proof Since, by Proposition 2, H A is convergent its vector-valued limit function

Φ : R → R 2 , has structure Φ = φ φ with φ ∈ C 0 . On the other hand, since, by Proposition 1, S A is C 2 -convergent it follows that φ ∈ C 2 . Hence φ ∈ C 1 , which implies the HC 2 -convergence of H A .
Remark 3 Note that the use of the triangulation ∆ of K 2 in the proof of Proposition 1 is unavoidable. In fact, if we compute the joint spectral radius of a matrix set defined by the vertices of the whole domain K 2 the sufficient conditions in [4, Theorem 3.2, Remark 3.5 (iii)] are not satisfied. 

C 0 and C 1 -regularity of S A

For completeness, we also describe the parameter domain K 0 and K 1 for C 0 and C 1 -convergence of S A , respectively. They are depicted in Figure 4. The domains K 0 , K 1 are obtained using the argument similar to the one in Proposition 1. The set K 0 is a closed convex hull

K 0 = co{(µ 0,m , λ 0,m ) ∈ R 2 : m = 1, . . . , 7}
of the points (µ 0,1 , λ 0,1 ) = ( -513/50, 231/50 ), (µ 0,2 , λ 0,2 ) = ( 357/125, 216/125 ), (µ 0,3 , λ 0,3 ) = ( 230/50, 310/250 ), (µ 0,4 , λ 0,4 ) = ( 520/129, -748/217 ), (µ 0,5 , λ 0,5 ) = ( -230/50, -301/200 ), (µ 0,6 , λ 0,6 ) = ( -950/80, 403/100 ), (µ 0,7 , λ 0,7 ) = ( -627/53, 211/50 ).

The domain K 1 is a closed convex hull

K 1 = co{(µ 1,m , λ 1,m ) ∈ R 2 : m = 1, . . . , 7}
of the points (µ 1,1 , λ To define the scheme H A+ we use the results from [START_REF] Merrien | From Hermite to stationary subdivision schemes in one or several variables[END_REF] and [START_REF] Merrien | Extended Hermite Subdivision Schemes[END_REF] and start by completing the sequences f n ∈ 2 (Z) generated by H A by one additional component determined from the following approximations of the second derivative. In particular, for ϕ ∈ C 3 (R) and for small h ∈ R, we use the following approximations

ϕ (x) ≈ 1 2h ϕ (x + h) -ϕ (x -h) , ϕ (x + h/3) ≈ 1 6h 5ϕ (x + h) -4ϕ (x) -ϕ (x -h) , ϕ (x -h/3) ≈ 1 6h -5ϕ (x -h) + 4ϕ (x) + ϕ (x + h) , x ∈ R.
Note that for an arbitrary initial sequence {f 0

(α) = f 0 (α) f 0 (α) T , α ∈ Z} ∈ 2 ( 
Z), at the n-th step of the subdivision recursion, the above approximations suggest the construction of a new sequence in 3 (Z) with additional component The complete Taylor factorization of A * + (z) defines the operator S B+ : 3 (Z) → 3 (Z) whose symbol B * + (z) satisfies

f n+1 (α) for α ∈ Z defined by 3 -2(n+1) f n+1 (3α) = 3 -2 2 3 -n f n (α + 1) -3 -n f n (α -1) , 3 -2(n+1) f n+1 (3α + 1) = 3
  z -1 -1 -1 -1/2 0 z -1 -1 -1 0 0 z -1 -1   A * + (z) = 1 9 B * + (z)   z -3 -1 -1 -1/2 0 z -3 -1 -1 0 0 z -3 -1   .
(24) Computation of the entries of B * + (z) provides b00 (z) = 80µ z 6 +99z 6 -32µ z 5 -45z 5 +16µ z 4 -126z 4 +112µ z 3 +279z 3 -32µ z 2 +108z 2 +16µz+9z+32µ+45 81z 2 b01 (z) = -320µ z 6 +640λ z 6 +315z 6 -128µ z 5 -256λ z 5 -51z 5 +64µ z 4 +128λ z 4 -273z 4 324z 2

-128µ z 3 -384l z 3 +483z 3 +256λ z 2 +177z 2 -128λz+39z-256λ+48 324z 2 b02 (z) = z (160µ z 3 +640λ z 3 +117z 3 -64µ z 2 -256λ z 2 +39z 2 +32µz+128λz-21z+64µ+256λ+42) 324 b10 (z) = 2(z-1) (z+1) (8µ z 4 +9z 4 -8µ z 3 -9z 3 +16µ z 2 -30z 2 -8µz-9z+8µ+9)

27z 2
b11 (z) = -(z-1) (32µ z 5 +64λ z 5 +35z 5 +36z 4 +32µ z 3 +64λ z 3 -43z 3 -64λ z 2 -68z 2 -9z-64λ+10) 54z 2 b12 (z) = z (16µ z 3 +64λ z 3 +17z 3 -16µ z 2 -64λ z 2 +19z 2 +16µz+64λz-z-16µ-64λ-8) 54 b20 (z) = 0 b21 (z) = -(z-1) (z+1) (z 2 +z+1) 2 6z 2

, b22 (z) = z (z+1) (z 2 +z+1) 6 .

By [START_REF] Merrien | From Hermite to stationary subdivision schemes in one or several variables[END_REF], the scheme H A is HC 2 -smooth, if the stationary vector subdivision scheme S B+ is contractive, i.e there exists R ∈ N such that S R B+ ∞ < 1. By [START_REF] Dyn | Subdivision schemes in Computer-Aided Geometric Design[END_REF], the latter is equivalent to show that max

   β∈Z | B[R] + (ε -3β)| ∞ , ε ∈ {0, 1, 2}    < 1
with the R-iterated mask B 

yield the results presented in the following table where R is the smallest integer such that S R S B+ ∞ < 1; The real value α φ ≥ -log 3 (ρ(T )) is the Hölder exponent of φ, the first component of the vector limit function, while s.m.p. is the spectrum maximizing product of length n that attains the joint spectral radius, i.e. the joint spectral radius ρ(T ) = ρ( ) Fig. 5 Basic limit functions φ 1 and φ 2 for (µ, λ) as in [START_REF] Jia | Vector subdivision schemes and multiple wavelets[END_REF] 

Fig. 2

 2 Fig. 2Hermite interpolants P H, (dashed) and P H,r (dotted) for (µ, λ) = (0, 0),[START_REF] Cavaretta | Stationary subdivision[END_REF][START_REF] Charina | Multiple multivariate subdivision schemes: Matrix and operator approaches[END_REF], (-6, -2), respectively, with corresponding evaluation points and derivatives.

Fig. 3

 3 Fig. 3 Domain K 2 .

Fig. 4

 4 Fig. 4 Parameter domains K 2 ⊂ K 1 ⊂ K 0 .

-3 2 5 • 3 3 2- 5 • 3

 23353 -n f n (α + 1) -4 • 3 -n f n (α) -3 -n f n (α -1) , 3 -2(n+1) f n+1 (3α -1) = 3 --n f n (α -1) + 4 • 3 -n f n (α) + 3 -n f n (α + 1) ,These identities define additional subdivision rules for the scheme of type (4) with the corresponding subdivision mask A + ∈ 3×3 (Z) given by its symbolA * + (z) = α∈Z A + (α)z α =   a 11 (z) a 12 (z) 0 a 21 (z) a 22 (z) 0 0 q 2 (z) 0   , z ∈ C \ {0},(23)witha 11 (z) a 12 (z) a 21 (z) a 22 (z) = α∈Z A(α)z αdefined by using (15) and withq 2 (z) = -z -4 -z 4 + 3(z -3 -z 3 ) + 5(z -2 -z 2 ) + 4(z -1 -z) 54 , z ∈ C \ {0}.

  , r = 1, . . . , R.Matlab computations forµ = -1.90660580626993, λ = 0.333939685329603, µ * = -1.86303965004445, λ * = 0.328737778603242,

  1, 2}. Since we are interested in the C 2 regularity of S A , in Proposition 1 below, we analyze the joint spectral properties of the

	matrix set {T A ε | V A 2	: ε ∈ {0, 1, 2}} respectively given by
			64µ + 243	96µ + 108	180 -96µ	-112µ -144	-80µ -72	
	1 729	   	64λ -128µ -480 -96λ -192µ -57 192µ -360 224µ -224λ + 462 96λ + 160µ -6 128λ -60 192λ -30 -192λ -33 39 -224λ 21 -160λ 16µ + 99 72µ + 81 90 -48µ 0 -64µ -63	   	,
				-112µ -369	9 -120µ	144µ -270	224µ + 423	96µ -54
				-96µ -135	-48µ -54	96µ + 108		0	-64µ -90
	1 729	   	192µ -192λ + 576 192λ + 96µ + 222 -96λ -192µ -57 36 -192λ 15 -96λ 192λ -30 0 -72µ -81 72µ + 81	32λ 0 -8µ -18	128µ -416λ + 240 24 -128λ 72µ + 81
				192µ + 540	24µ + 171	9 -120µ		-8µ -9	200µ + 252

  Parameter domain for HC 2 -regularity of H AThe main result of this section, Theorem 1, shows that the Hermite schemeH A in (15) is HC 2 -smooth for (µ, λ) ∈ K 2 , where K 2 ⊂ R 2 is a closed convex hull K 2 = co{(µ 2,m , λ 2,m ) ∈ R 2 : m = 1, . . . , 6}The proof of Theorem 1 is based on Proposition 1 and Proposition 2 whose combination guarantee HC 2 -regularity of H A . The scheme S A in (15) is C 2 -smooth for (λ, µ) ∈ K 2 .

									
		-12 -320λ -32µ -90 192λ + 96µ + 222 64λ + 32µ + 138 -192λ -33 192λ + 48µ + 24 32µ -32λ + 117 64λ -32µ -126 48µ -96λ + 69 0 0 0 0 0 112µ 48µ + 342 423 -32µ 96µ -180 -96µ -108 16µ + 324 -32µ -360 0 0 12 -64λ 0 15 -96λ 12 -64λ 64λ -12 32µ + 180 -96µ -252 64µ + 72 0 96µ + 252 64µ + 81 -64µ -72	       	,
		144µ + 180	90 -48µ	450	96µ -180	90 -48µ	48µ + 360	-64µ -387	
		-27	-96µ -108	-16µ -9	48µ + 54	0	-48µ -54	48µ + 54		
	       	-33 -144µ -1098 288λ -519 -96λ -192µ -57 -320λ -32µ -90 192λ + 96µ + 222 -192λ -33 -96λ -96µ -210 128λ + 96µ + 210 192λ -96µ -138 32λ -16µ -12 48µ -96λ + 69 0 96λ -48µ -69 48µ -96λ + 69 18 -240µ 112µ 48µ + 342 96µ -180 -96µ -261 80µ + 243 0 0 0 0 0 0 0 468 192µ + 72 32µ + 180 -96µ -252 0 96µ + 261 -96µ -270	       	.
		-144µ -630	90 -48µ	144µ + 180	90 -48µ	96µ -180	0	-16µ -27	
								(21)	
	3.2.2 of the points							
	(µ 2,1 , λ 2,1 ) = ( -271/100,	519/971 ), (µ 2,2 , λ 2,2 ) = ( -159/73,	78/175 ),	
	(µ 2,3 , λ 2,3 ) = ( -2417/2062, 509/2217 ), (µ 2,4 , λ 2,4 ) = ( -185/91,	92/293 ),	
	(µ 2,5 , λ 2,5 ) = ( -271/100,	311/661 ), (µ 2,6 , λ 2,6 ) = ( -277/100, 113/222 ),	
	shown on Figure 3.						

Proposition 1

  Complete Taylor operator approach for the extended scheme In this subsection, we derive the complete Taylor factorization[START_REF] Merrien | From Hermite to stationary subdivision schemes in one or several variables[END_REF] of the extended Hermite scheme H A+ in (23) of order 2 and study its contractivity for different parameter values (µ, λ) ∈ K 2 . We determine what we call optimal parameters from K 2 such that the corresponding Hermite scheme H A yields visually smoother curves in fewer iterations, see Figure5.

	1,1 ) = ( -51/10, 31/22 ), (µ 1,2 , λ 1,2 ) = ( -159/73,	9/7 ),
	(µ 1,3 , λ 1,3 ) = ( 4/5,	3/8 ), (µ 1,4 , λ 1,4 ) = ( 13/14,	6/25 ),
	(µ 1,5 , λ 1,5 ) = ( -13/8,	-7/20 ), (µ 1,6 , λ 1,6 ) = ( -19/8,	-2/13 ),
	(µ 1,7 , λ 1,7 ) = ( -59/11,	9/7 ).	
	3.3		

  1/n .

		R	S R B ∞	α φ	s.m.p.
	(µ, λ) (µ * , λ * )	10 0.682990725 2.40722. . . T 6 0 T 1 T 0 T 3 1 T 6 2 T 1 T 2 T 3 1 | V2 9 0.722679251 2.40289. . . T 4 0 T 1 T 0 T 3 1 T 4 2 T 1 T 2 T 3 1 | V2
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