
HAL Id: hal-02615107
https://hal.science/hal-02615107v1

Submitted on 22 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A framework to classify heterogeneous Internet traffic
with Machine Learning and Deep Learning techniques

for satellite communications
Fannia Pacheco, Ernesto Expósito, Mathieu Gineste

To cite this version:
Fannia Pacheco, Ernesto Expósito, Mathieu Gineste. A framework to classify heterogeneous Internet
traffic with Machine Learning and Deep Learning techniques for satellite communications. Computer
Networks, 2020, 173, pp.107213. �10.1016/j.comnet.2020.107213�. �hal-02615107�

https://hal.science/hal-02615107v1
https://hal.archives-ouvertes.fr

A framework to classify heterogeneous Internet traffic with Machine Learning
and Deep Learning techniques for Satellite Communications

Fannia Pachecoa, Ernesto Expositoa, Mathieu Ginesteb

{f.pacheco,ernesto.exposito-garcia}@univ-pau.fr, mathieu.gineste@thalesaleniaspace.com

aUniv Pau & Pays Adour, E2S UPPA, LIUPPA, EA3000, Anglet, 64600, France
bDépartement : Business Line Telecommunication, R&D department, Thales Alenia Space, TOULOUSE, 31100, France.

Abstract

Nowadays, the Internet network system serves as a platform for communication, transaction, and entertainment,
among others. This communication system is characterized by terrestrial and Satellite components that interact be-
tween themselves to provide transmission paths of information between endpoints. Particularly, Satellite Communi-
cation providers’ interest is to improve customer satisfaction by optimally exploiting on demand available resources
and offering Quality of Service (QoS). Improving the QoS implies to reduce errors linked to information loss and
delays of Internet packets in Satellite Communications. In this sense, according to Internet traffic (Streaming, VoIP,
Browsing, etc.) and those error conditions, the Internet flows can be classified into different sensitive and non-sensitive
classes. Following this idea, this work aims at finding new Internet traffic classification approaches to improving the
QoS. Machine Learning (ML) and Deep Learning (DL) techniques will be studied and deployed to classify Internet
traffic. All the necessary elements to couple an ML or DL solution over a well-known Satellite Communication and
QoS management architecture will be evaluated. To develop this solution, a rich and complete set of Internet traffic is
required. In this context, an emulated Satellite Communication platform will serve as a data generation environment
in which different Internet communications will be launched and captured. The proposed classification system will
deal with different Internet communications (encrypted, unencrypted, and tunneled). This system will process the
incoming traffic hierarchically to achieve a high classification performance. Finally, some experiments on a cloud
emulated platform validates our proposal and set guidelines for its deployment over a Satellite architecture.

Keywords:
Internet traffic classification, Machine Learning, Satellite Communications, QoS management, Encrypted traffic.

1. Introduction

The Internet is an intricate network system where all its elements are organized and synchronized to work in
harmony. This network system is characterized by terrestrial and Satellite components that interact between them-
selves to provide transmission paths of information between endpoints. The main goal of this configuration is to offer
communication services. This work will refer to this network system as Satellite Communications all along with this
document. Satellite Communications are conceived by architectural configurations that are continually evolving to
offer better services. Satellite communication services are in constant search for: a) optimizing their infrastructure
and network resources, and b) improving the customer satisfaction by exploding optimally available resources so that
offering a wide range of services such as bandwidth and Quality of Service (QoS) on-demand [1].

This work aims at finding new approaches to improving the QoS, but what is the idea behind improving the QoS?
The primary purpose is to provide an adequate Quality of Experience (QoE) from the user’s point of view. The QoE
is a very subjective value that can be quantitatively and qualitatively measured [2]. The metrics to measure the QoE
range from cost, reliability, efficiency, privacy, security, interface user-friendliness, and user confidence. However,
different fields of computer science define these metrics differently [3]. For Satellite Communications, the QoE might
be translated to the delay and information loss perceived by the customer in real-time communications. Based on this,
improving the QoS is highly correlated with avoiding information loss and delays; hence, the QoE can be indirectly
improved.

Preprint submitted to Elsevier February 13, 2020

To improve the QoS, one of the most common and accepted actions is to fulfill a set of requirements that can be
executed by profiling Internet traffic [4, 5]. The former idea considers that some Internet traffic can be more sensitive
to information loss and delay such as Internet calling (commonly called Voice over IP) or video conferences. In
contrast, Internet browsing or file downloads are less pruned to be affected by these error conditions. Following this
idea, a new field emerges in this area called traffic analysis.

Traffic analysis is the complete process that starts from intercepting traffic data to find relationships, patterns,
anomalies, and misconfigurations, among other things, in the Internet network. Mainly, traffic classification is a
subgroup of strategies in this field that aims at classifying the Internet traffic into predefined categories, such as
normal or abnormal traffic, the type of application (streaming, web browsing, VoIP, etc.) or the name of the application
(YouTube, Netflix, Facebook, etc.). Network traffic classification has become a crucial task for QoS management.

In the past, traffic classification relied on a port-based approach where its registered and known port identified each
application, defined by the Internet Assigned Numbers Authority (IANA) [6]. This approach became unreliable and
inaccurate due to, among other factors, the proliferation of new applications with unregistered or random generated
ports. Another method that gained a lot of popularity in this field is called Deep Packet Inspection (DPI) [7]. DPI per-
forms matchings between the packet payload and a set of stored signatures to classify network traffic. However, DPI
fails when privacy policies and laws prevent accessing the packet content, as well as the case of protocol obfuscation
or encapsulation. To overcome the previous issues, Machine Learning (ML) has emerged as a suitable solution, not
only for the traffic classification task but also for prediction and new knowledge discovery, among other things [8].
In this context, the statistical features of IP flows are commonly extracted and stored from network traces to generate
historical data. In this way, different ML models can be trained with this historical data, and new incoming flows can
be analyzed with such models.

To summarize, this work will be focused on improving the QoS over Satellite Communications through Internet
classification based on ML. Along with this document, we will study all the elements needed to achieve this objective
and propose an ML-based Internet traffic classification solution. Before continuing, we will briefly review some works
related to this subject.

1.1. Related works
With the exponential growth of Internet communications, more and more efforts to adequately optimize and man-

age Satellite resources have been accomplished. Traffic classification helps resource managers to state some guidelines
for the administration of their assets. In this matter, the widely deployed classification approach is DPI. Even though,
DPI tools have particular deficiencies, they are still widely used for traffic classification thanks to their accuracy for
non-encrypted traffic [9, 7]. However, the increase of encrypted communications is unstoppable, impulsing the use of
ML as one potential alternative. Some works already proposed the implementation of ML-based solutions in different
network components or structures such as in cellular networks, WiFi networks, and Satellite networks.

In cellular networks, the mobile IP traffic classification can be performed at different levels either using the port, the
packet payload [10, 11], or the statistical flow distribution [12]. For instance, [13] collected IP traffic extracted from
mobile networks in fixed time windows. Statistical based features from normal and abnormal traffic are computed,
and a classifier is trained for the analysis of the massive network users’ traffic behaviors. The work in [14] presents an
approach to collect and label mobile IP network traces correctly. The work in [15] exposed a generic architecture of
a cellular network, and the possible positions where traffic monitoring can be deployed, such as in a Packet Switched
(PS) Core. Finally, [16] presents a complete study of how to use Deep Learning (DL) models for Mobile encrypted
traffic. This work shows that DL approaches present some drawbacks regarding to the classical, mainly due to its
novelty in this field.

Similarly, in WiFi networks, IP-data can be extracted to apply ML approaches for the traffic classification. For
instance, the work in [17] collected network traces from Wi-Fi controllers at a large university campus. These con-
trollers connected access points to the campus backbone network, allowing wireless devices to access the Internet.
The traces come from network traffic to/from malicious and benign domains, and statistical-based features were com-
puted over these traces. A binary ML classifier was trained for detecting malicious domains. Similar approaches can
be found in [18, 19, 20]. The difference between cellular/mobile networks and WiFi network resides in the technology
used for the data exchange that might affect the speed, cost, and security.

Finally, in Satellite networks for improving the QoS, traffic data is captured from Satellite Internet Service
Providers (ISPs). The works in this area aim to classify and to analyze Internet traffic in large networks [21, 22, 23, 24].

2

Network structure Work Data Classification technique Features Advantages & Disadvantages
ground truth encryption evolution implementation

ISP

[29] CAIDA a Statistical Statistical X
[30] WIDE b and ISP Statistical/ML Statistical
[21] Private ML Statistical X X
[24] Private ML Statistical X X X

Enterprise [31] Private ML Statistical
Satellite [23] Private ML Statistical X

Mobile [14] Private ML Statistical X X
[13] WIDE, CAIDA ML Statistical

Wifi/Mobile [17] Private ML bag-of-words/ Statistical X
SDN [25] Private Statistical/ Payload Statistical

Table 1: Related works.

ahttp://www.caida.org/data/
bhttp://mawi.wide.ad.jp/mawi/

The principle is the same as the previous cases, Internet traffic monitoring is deployed to perform traffic classification.
These monitoring points can be at routers [21, 22] or point of presence (PoP) [23] of large ISP networks. Another
emerging approach is the use of Software-defined networks(SDNs) in Satellite-terrestrial networks. In SDNs, traffic
classification can be easily deployed in the SDN’ master controllers as it is exposed in [25, 26].

The principal challenge of this research work is to find a well-suited classification system that can be implemented
over a Satellite Architecture. As a consequence, we will carry the problems that imply using ML for traffic classifica-
tion. In our survey paper [8], we identify several of these challenges summarized as follows: i) the data available with
their ground truth is limited and hard to collect, ii) the scalability of traffic classification solutions is a challenge, iii)
adaptive solutions are required due to the dynamism and evolution of the network, and iv) the solution applied require
a correct validation. Furthermore, the ML approaches require to fulfill different challenges, such as a provided perfor-
mance, the management of the increasing amount of traffic and transmission rates, and the reconfiguration capabilities,
as it is exposed in [27], and similarly in [28].

In general, procedures such as Feature extraction and construction of ML solutions on Internet traffic classification
are equivalent in different network conditions (either in WiFi, cellular and Satellite networks), what differs is the
data collected that serves as knowledge to build such solution. The previous implies that for each case, a dedicated
classification solution must respond to particular demands. For instance, in Table 1, we show some of the most
important attributes of selected works such as the network structure, data, classification technique, and features used.
In addition to this, four additional attributes act as advantages when filled with an “X”, and as disadvantages when
they do not. Those attributes are selected from the main challenges found previously, e.g., ground truth and encryption
of the Internet flows, evolution, and implementation of the ML models. From the table, we can notice that private data
is standard in this application, with some of them correctly labeled with their ground truth. Statistical based features
stand as the most used along with ML models. We can notice that most of the approaches do not treat encrypted data
and the evolution of the Internet network.

To conclude this section, we remark the need for counting with labeled historical data with a diversity of Internet
communication protocols (encrypted or not encrypted). Moreover, evolving approaches are necessaries; otherwise,
ML model implementation efforts are diminished. In the following section, we outline the scope of this investigation.

1.2. Contributions
The challenges in this field have guided the contributions of this work. Therefore, we will list each of them that

fall in the area of Internet traffic classification for Satellite communications.

i The first contribution presents an architectural proposal that couples a classification solution within a Satellite
Architecture for QoS management. This proposal will treat some communication protocols, such as tunneled
communications differently.

ii Regarding the Internet classification solution, the contributions within this task are listed below,

• Hierarchical classification: a set of classifiers is organized into classification levels, where the traffic will
pass through. These levels are characterized by discriminator classifiers that will divide Internet protocols
technologies, such as tunneled vs. not tunneled.

3

• Encrypted traffic classification: we use the multi-label classification approach for treating tunneled con-
nections. Traditional ML models will classify Internet streams with only one application within the tunnel.
Finally, we propose a classification per packet in tunneled connections.

iii The historical data produced on a Satellite emulated platform will be correctly treated, and statistical-based
features will represent the Internet data streams. In this context, we propose new features that might improve
the performance of the classifiers. Besides, a particular feature extraction process for tunneled connections will
be designed.

iv Finally, we study the reliability of implementing our ML solution on an emulated Internet network placed on
a cloud platform. Its implementation and tests will serve as a guide for future works on the emulated and real
Satellite platforms.

In the next section, we show the organization of this paper.

1.3. Organization

The remainder of this paper is organized as follows. Section 2 briefly presents the problem and techniques of
traffic classification. Section 3 presents the general framework proposed. In this section, we also describe all the
theoretical steps to achieve monitoring, feature extraction, labeling, and QoS management of Internet flows in a
Satellite Architecture. The data used by this investigation is presented in Section 4.2. The evaluations of our solution
will be presented in two parts: i) evaluation of the hierarchical classification system in Section 5, and ii) the evaluation
of the implementation in Section 6. Some perspectives and conclusions will be outlined in Section 7.

2. Background

To better understand the Internet traffic classification process, we present as follows how to monitor Internet traffic
in network appliances in Section 2.1. The monitored traffic can be encrypted or unencrypted; the difference between
these types of traffic will be set in Section 2.2. Classical Internet classification approaches will be described in Section
2.3. Finally, in Section 2.4, we formally define two ML classification paradigms that will be used by our framework.

2.1. Internet traffic monitoring

The standard approach in network traffic monitoring is based on the extraction of a set of packets within a time
window. The work in [32] presents a comprehensive procedure for Internet flow extraction using NetFlow and IP-
FIX. More precisely, the work defines the steps for data measurement as i) packet capturing, ii) flow metering and
exportation, and iii) data collection. The packet capturing action refers to the procedure of extracting the binary data
from monitoring points; in this step, each packet is considered as a single independent entity. Following, the flow
metering process aims at aggregating the packets into Internet flows or streams. The exportation process occurs when
it is considered that a flow is culminated, meaning that a communication was finished. The metering and exportation
processes are related and can be merged. Finally, the data collection is in charge of storing the flows exported.

Regarding the data measurement steps, several research works try to improve each of their deficiencies separately.
For instance, [33] presents a taxonomy to categorize the packet sampling techniques; this work aims at giving guide-
lines to select an adequate method according to the objectives to achieve. The works in [34, 35, 36] present packet
capture engines running on commodity hardware, which are useful for reducing the response time in traffic classifi-
cation. The work in [37] reports the most common implementations of widespread network monitoring approaches
for packet capture (Tcpdumb, Wireshark, etc.), flow metering (nProbe, YAF, QoF, etc.), and data collecting (nProbe,
flowd, nfdumb, etc.).

Against that background, a correct monitoring system has to be provided for Internet traffic classification. How-
ever, suffice to say that there already exist well-defined traffic monitoring tools that cover this matter. To conclude
this section, what it is essential to retain is the information captured into Internet flows. As complementary informa-
tion, we introduce how these flows are represented for different protocols and encrypted technologies in the following
section.

4

2.2. Encrypted vs Non-encrypted traffic

Monitored packets create data streams between client-server exchanges (also denoted as source-to-destination,
backward-to-forward exchanges). These exchanges are defined by communication protocols, where the Transport
Control Protocol (TCP) and the User Datagram Protocol (UDP) are the most popular worldwide. However, the
packet content is accessible after monitoring points due to these protocols only define a way to send and to receive
information in the transport layer. We refer non-encrypted data to the Internet flows where their packet content can
be inspected. In other words, we can access to the packet header and payload transmitted. Usually, these fields are
examined to offer services such as traffic classification for QoS management, anomaly, and cyber-attack detection,
among others. However, more and more protocols offer header and payload encryption to provide confidentiality of
the packets navigating in the Internet network.

The encryption comes along with a structured authentication between peers, data integrity, and replay protection.
Most of the encryption protocols follow two steps, i.e., initialization and transport [38]. Even though these steps are
classic when using connection-oriented services, they vary in the way they are performed. Normally, for encryption
protocols, the initialization is divided into an initial handshake, authentication, and a shared secret establishment. In
the first phase, when the authentication is confirmed between peers, secret keys are established, and the transferred
data is encrypted with such keys. Some classic encryption protocols are IPsec [38], TCPcryp [39], and TLS/SSL
[40, 41]. These encryption protocols encode the packets’ content to assure data integrity. In addition to this, they also
provide an attractive feature that modifies the packet’s IP header allowing the navigation over a virtual tunnel. In this
context, it is impossible to avoid mentioning Virtual Private Networks (VPNs), which tunnel multiple flows into only
one flow by using encryption protocols such as IPsec [42]. VPNs are deployed to allow securing communications on
the Internet and accessing services with geographical constraints, among others. Enterprises all over the world, secure
their Internet communications by using VPNs. However, this technology is also accessible to end-users.

For the objectives of this investigation, it suffices to show the difference that the non-encrypted, encrypted, and tun-
neled communications will carry for the data processing steps. In Figure 1, we can graphically place these differences
in a general way. In summary, we observe:

• Non-encrypted data: Header and payload are available. Packet streams are identifiable meaning that we can
differentiate and separate the flows sent by the client and those sent by the server. Figure 1(a) denotes the non-
encrypted packets streams as white blocks: the blue ones coming from the client (also called source or forward
traffic), and the red ones coming from the server (also called destination or backward traffic).

• Encrypted data: A layer of encryption is added, making the packet payload inaccessible. In addition to this, the
packet’s header is changed by the encryption protocol hiding the original source and destination IP addresses.
In Figure 1(b), the packets with payload encryption are filled with gray color. Even though the header is
transformed, we can still separate the flows between the client and the server as seen in the figure.

• Tunneled data: Stream content is encrypted, and also, another layer hides the IP directions of clients and
servers. In this particular case, the data streams are not separable. In Figure 1(c), we can notice that several
clients/servers can be using the same tunnel, mixing in this way the Internet traffic.

We will notice that the description above will be a crucial factor for discriminating and classifying Internet traffic.

2.3. Traffic classification approaches

Several trends can be found to classify, comprehend, diagnose, or observe the status of the network such as
Payload inspection, ML-based, Statistical-based, and behavioral techniques. Payload inspection commonly denoted
Deep Packet Inspection (DPI) is found as the typical approach to perform traffic analysis [9, 7]. This technique
analyzes the content of the Internet packets, i.e., the IP header and payload. DPI compares the information extracted
from the packets with a set of signatures (previously defined and known) to identify different application protocols.
Some of the DPI tools are nDPI, Libprotoident, PACE, L7-filter, and NBAR, among others. Recently, DPI tools have
shown several drawbacks due to the growing number of new applications and protocols. Particularly, when a new
protocol is created, the DPI tools must be updated. Otherwise, they will fail in their prediction getting, as a result, an
unknown or an erroneous signature. As a consequence, the list of the tools’ signatures has to be continuously updated.

5

(a) Non-encrypted Internet streams

(b) Encrypted Internet streams

(c) Tunneled Internet streams

Figure 1: Illustrative example of the difference between non-encrypted, encrypted and tunneled data

On the other hand, DPI is not adequate when a) packet encryption is used to protect the content in communication
sessions, b) HTTP2 is deployed for multiplexing the packet content, c) NAT networks are utilized because they unable
to differentiate between communication sessions, and d) Virtual private networks (VPNs) are deployed for data privacy
and integrity, among others.

The statistical-based techniques try to find statistical differences between flows, communicating end systems and
network configurations, among others. Such differences can be the result of two or more different applications or
behaviors, characterized by statistical properties. In some contexts, statistical distributions can be used to model the
network traffic patterns [43, 44, 45]. On the other hand, behavioral techniques aim at finding patterns among end-to-
end communications in a network. It also studies community patterns where the communities are conformed of hosts
at different points [46, 47, 48, 49]. The most common representation of behavioral patterns in the network is through
graph modeling. Graph theory is used to find highly connected nodes (hosts), number of connections, and opened
ports, among others [46].

Finally, ML-based techniques try to classify traffic based on the status of the Internet network. For such a case,
IP flows are reported as the most common representation of Internet communications, where representative features
(e.g. packet length and Inter-arrival time) can be extracted and used for traffic classification [50]. One of the main
strengths of the ML approach is that the feature extraction can be performed without inspecting the packets’ content
of IP flows. Hence, these features are suitable for creating classification models for encrypted communications.

In the next section, we cover two main ML strategies that will be deployed for our solution.

2.4. Multi-class and multi-label classification
This section will explain two paradigms used by this investigation: multi-class and multi-label classification. If we

take a standard classification approach, we know that the problem is to assign a sample to a single class (multi-class
classification). In contrast, the multi-label classification problem states that a sample belongs to more than one class
at the same time [51]. This new way to see the classification problem has become very useful in different domains;
for instance, the more representative cases are found in image and text classification. For example, a text can belong
to different categories at the same time. Whereas, an image can be classified into different classes and can have
embedded different sub-images at the same time.

To formalize the classical multi-class classification problem, we present the description below.

• Training data {X,Y} with X ∈ Rn×m and Y =∈ Rn

6

• The label of a sample xi ∈ X is yi ∈ Y = {1, 2, ..., L}.

• Learn a relation: f : X → Y

• Each sample xi is associated with a single label yi

A simple and effective multi-class classification approach is the Random Forest (RF), which is a method derived
from decision trees. This algorithm is based on a bagging strategy where the results of several classifiers are combined
to get a better precision. In RF, k decision trees are built and trained with bootstrap samples versions of the original
training data. Then, the final result is given by a combination of each tree output [52].

On the other hand, for the multi-label classification problem, we have transformed the labels Y using a binary
alphabet {0, 1}L. This means that each sample will be related to a vector class where the columns with a value equal
to one represent the membership to the class of the column that they represent.

• Training data {X,Y} with X ∈ Rn×m and Y =∈ Rn×L

• The label of a sample xi ∈ X is yi ∈ {0, 1}L

• Learn a relation: g : X → {0, 1}L

• Each sample xi is associated with more than one label by the vector yi

The simplest way to approach a multi-label problem is to divide it into multiple independent binary classification
problems (one per class). Nonetheless, relationships between the labels are not considered, which can cause incon-
sistencies [53]. To overcome those issues, several ML algorithms include the multi-label learning task. For instance,
an RF acting as a multi-label classifier changes in the way that the node splitting cost function handles multi-label
problems. The label entropy or the Gini index of the child nodes suffer some modifications that lead to consider the
node as a bag of positive labels with a certain probability [54].

At this stage, we can conclude that the flows in figures 1(a) and 1(b) can be treated by multi-class classifiers;
whereas, the tunneled flows as in Figure 1(c) might be treated by a multi-label classifier. In the following section,
we show how an ML-based solution based on multi-class and multi-label classifiers can be placed in a Satellite
architecture.

3. Framework

In Figure 2, a general framework to treat Internet traffic is presented. In this figure, an abstraction of a Satellite
communication is displayed. This configuration is a simplification of an operational architecture already studied in
one of our works [55]. This architecture takes the concerned network functions of a Satellite Architecture and the
Policy-Based Network (PBN) architecture integrated with a classification system. In the figure, we have added three
levels to provide Internet traffic classification. Level 0 (L0) performs Data Collection and Feature extraction tasks.
Level 1 (L1) and Level 2 (L2) is conformed by a Hierarchical Classification that marks the Internet traffic. Level
3 (L3) contains incremental learning approaches for updating the classification solution. Finally, Level 4 (L4) is in
charge of performing QoS management.

In the proposed framework, the flow of activities of interest are:

1. Intercept Internet traffic either in the Gateway (GW) or the Satellite Terminal (ST) through passive monitoring
points in the Data Collection block.

2. Perform feature extraction over the Internet flows.

3. Send the extracted features to the Hierarchical classification block and mark the flows with their QoS classes.

4. Finally, the classification is signaled to the Policy Decision Point (PDP) of the GW that will make decisions to
improve the QoS.

7

Figure 2: Hierarchical classification system.

In Figure 2, the Internet traffic will be captured from both the GW and ST components, and decentralized classi-
fication could be performed. However, another option will be to capture and to treat the traffic only in the GW. These
modifications depend on the architecture choices, and they will not affect the functional operations of our ML-based
classification solution. The authors recently presented more details about the Satellite architecture, coupled with this
framework in [55]. In that work, more formal implementation guidelines were established. Therefore, in this paper,
we will focus only on the theoretical basement of the levels 0-3 of the framework as follows.

3.1. Data Collection
Internet packets are captured to be organized into traffic objects, corresponding to traffic aggregates sharing some

peculiarities. This action comprises steps such as packet capture, flow metering, and exportation. Passive monitoring
points will be in charge of collecting packets of a communication session from the beginning of the connection until
the end (for example, when the timeout is reached). In traffic classification, it is commonly used the term “flow” to
describe communications between peers. An aggregated flow, according to [56], is a set of packets or frames in the
network intercepted in a monitoring point during a time interval. The packets belonging to the same flow share several
common properties. That is a) transport or application header fields (e.g., the destination IP address and the destination
port number, among others), b) characteristics of the packets such as the number of MPLS labels, c) additional fields,
such as the next-hop IP address, the output interface, etc.

Therefore, we can outline the following classical definition for an unidirectional flow Fi:

Definition 1. A flow Fi is described by the set,

Fi = {Hi, Pi} (1)

where Hi is the header of the flow, and Pi = {pi1, ..., pin} is a set of packets belonging to the flow.

Definition 2. A flow header Hi is described by the tuple,

Hi = (IPsrc, IPdest, portsrc, portdest, proto) (2)

where IPsrc and IPdest are the IP source and destination addresses. portsrc and portdest are the source and destination
transport port, respectively; and proto is the transport protocol.

8

A bidirectional flow F = Fscr ∪ Fdst is composed of a source flow Fsrc and a destination flow Fdst, both normally
identified when some elements of the headers Hsrc and Hdst match.

In the next section, we show how the feature extraction is performed over the Internet flows.

3.2. Feature Extraction
The feature extraction can be divided into two main branches called in this work handcrafted and automatic. The

handcrafted feature extraction consists of manual computation of statistical features performed over Internet packets,
as it will be described in Section 3.2.1. On the other hand, the automatic branch only needs the binary information of
the packets that will be fed to DL architectures to perform automatic feature extraction (refers to Section 3.2.2).

3.2.1. Handcrafted
Statistical based features are computed for each flow to describe the communications. The feature extraction

process is applied over the packets that are captured in the monitoring step for each flow. However, when a tunneled
connection is detected, the flow is broken into chunks of flows within a time interval, as seen in Figure 3. Then,
statistical-based features are computed for each chunk of flows to describe the communications.

Figure 3: Flow reconstruction.

We will describe as follows the feature extraction procedures for both the aggregate and the tunneled flows.

• Feature extraction for aggregate flows

The features extracted from packet flows are mainly statistical-based features, which are defined under the
assumption that traffic at the network layer has statistical properties (such as the distribution of the flow duration,
flow idle time, packet inter-arrival times and packet lengths). These properties are unique for certain types of
applications and enable their identification. Under this assumption, the work in [50] proposes 249 statistical
features, which can be extracted from flow network traffic. Properties such as inter-arrival time (IAT) and packet
lengths are the most important characteristics considered, with their metrics, such as maximum, minimum,
mean, and standard deviation, among others.

• Feature extraction for tunneled flows

Intuitively, the Internet traffic over a Virtual Private Network (VPN) session changes the definition of an aggre-
gate flow, in the sense that all the client flows are embedded in only one flow as it is shown in Figure 3.

Definition 3. Formally speaking, given a set of flows F, each of their packets is tunneled after passing through
the VPN client by adding a new header. This new header will transform the set of flows into only one flow T F
defined as,

T F = {T H, F} (3)

where F = { fi, ..., fn} is a set of flows, which in turn are conformed by an ordered sequence of packets, and T H
is the shared tunneled header.

9

It is important to remark that within the tunnel, the flows are multiplexed, and in consequence, the order of the
packets is unknown. The server takes this tunneled flow and demultiplexes them to reconstruct the same flow
F̂ with the difference that the IP addresses are changed. The main objective of our investigation is describing
what types of applications are within the tunneled flow of T F.

It is worth noting that a T F can be an endless flow with no recollection of the opened or closed sessions and
the number of clients within the tunnel, among others. For ML-based solutions, modeling this behavior might
be complicated due to the statistical properties might be different from tunnel to tunnel, which might decrease
the classification performance and generalization. What we propose is to continually cut this T F in chunks of
sub-flows that will be partly “independent” of the global behavior of the tunnel, as it is illustrated in Figure 4.

We proposed to compute a set of statistical-based features over two flows: a small sub-flow S F and a bigger
sub-flow BF. Taking into account that: i) the classification is performed over S F, and ii) BF serves as a memory
to register past behaviors in the tunneled connection. Figure 4 illustrates the creation of such sub-flows, which
are defined utilizing a time window. In the figure, we can notice that ∆t1 defines S F1, while ∆t2 gathers the
statistical information about BF . In further experiments, we will determine the adequate values for ∆t1 and
∆t2. It is important to mention that in an online manner, the construction of these flows is performed by sliding
the time windows.

Figure 4: Flow construction for a VPN communication

Once the flow construction is finished, we used the same statistical based features than the aggregated flows for
the S F and BF in F,Fsrc and Fdst.

The results of the handcrafted feature extraction process are presented as follows. In Table 2, the features computed
for aggregated flows are listed along with their description and the flow direction used. Whereas in Table 3 shows the
features for the tunneled connections. In addition, to compute these features, the most important parameters to gather
per-flow in the monitoring process are:

• ID of the flow f represented by a tuple t(f)

• Packet flow p in both directions f , in the source and destination fsrc and fdst

10

• Arrival of the last seen packet for f , fsrc and fdst

• Statistical features for f , fsrc and fdst

• ML classification value c(f)

• Type of flow t f flag, tunneled or not

Feature Metric Additional Information Total of flows Total

pktlen [m] [m] of the packet
lengths

“m” refers to the metric
Mean, Std, Min and Max

3 12

iat [m] [m] of the inter-
arrival time(iat)

- 3 12

bytes [∆t] bytes per [∆t] “∆t” is the time windows 3 3

pkt [∆t] packets counts
per [∆t]

- 3 3

Total 38

Table 2: Result of the feature extraction process for aggregated flows

Feature Metric Additional Information Total of flows Total

pktlen [m] [m] of the packet
lengths

“m” refers to the metric
Mean, Std, Min and Max

6 24

iat [m] [m] of the inter-
arrival time(iat)

- 6 24

pktlen [cat] [m] [m] of the packet
lengths per [cat]

“cat” refers to the type of
packeta

6 144

iat [cat] [m] [m] of the iat per
[cat]

6 144

Total 336
a A: pktlen <= 170, B: pktlen > 170 and pktlen <= 902, C: pktlen > 902 and pktlen <= 1314,D: pktlen > 1314 and pktlen <= 1426,E: pktlen > 1426 and pktlen <=

1500, F: pktlen > 1500

Table 3: Result of the feature extraction process for tunneled flows

3.2.2. Automatic
The automatic feature extraction is inspired by the works in [57, 16, 58]. In particular, the work in [57] proposes

the use of Convolutional Neural Networks (CNN) for Internet traffic classification. An automatic feature extraction
process is achieved by capturing the n bytes of the binary packets. These bytes are directly fed to a CNN to perform
automatic feature extraction and classification. The work used 784 bytes of Internet sessions and flows; besides
different layers of the OSI model were considered for the study. The resulting samples were reshaped into 28x28
images to make an analogy to the MINIST dataset. After this process, the results demonstrated that good classification
performance is achieved and that the use of all layers/session contributes to this result. In a more extensive work, the
authors in [16] tested the same approach under different DL architectures.

At this stage, the framework could be adapted to offer an automatic feature extraction process. Therefore, we took
the packet processing steps presented in [57] and adapt it to our needs. For this process, we take into account the
following aspects:

• The Internet communications will be divided by sessions (or bidirectional flows as in Section 4.2.3).

• All the layers are considered for this approach due to it was demonstrated by the previous works that they
offered the best results.

• The bytes of the first 20 packets are considered for aggregated and multiplexed flows. The flows will be split as
in Figure 3 for the handcrafted approach.

11

• The hexadecimal string of the first 20 packets is retained. This string is then converted to a vector of decimal
values. This vector is resized to the desired input to the DL approach.

• For the size of the CNN’s input, we selected the same dimension as the MINIST dataset (n = 28); but we also
compute a new dimension resulting from the average bytes from the first 20 packets.

• Finally, the vector might be completed with zeros if it does not reach the size n ∗ n. The result will be reshaped
into an image format and normalized.

• For the classification, we evaluate the 20 first packet of the session over a CNN model. Each packet will
provide a classification for the session until the threshold is reached. Different strategies can be adapted to
define the final classification of the session, such as a voting process regarding the class of the first 20 packets
or a classification per packet that considers all the incoming packets of a session.

To culminate this section, Table 4 shows the procedure to achieve the first level of Data Collection and Feature
extraction. In short, the header of sniffed packets p allows getting the tuple t that serves as the flow’s identifier. If
the packet belongs to an existing flow, the statistical features of such flow are updated, and the hexadecimal stream
is retained. The tunneled flows have the peculiarity that once the elapsed time te(f) is upper than ∆t, the flow’s
parameters are reset. Ending flows are always notified to the GW to keep track of the closed sessions. The handcrafted
or automatic features will be fed to a classification system that is detailed as follows.

Macro algorithm

Input: Network interface N
Procedure:
For p sniffed in N,

1. Get the tuple t(p) = (IPsrc, IPdst, proto) from p

2. If p belongs to an existing flow f ∈ F|t(p) = t(f)

2.1. If t f is False (f is not tunneled),

2.1.1. Compute statistical features S F over f % HANDCRAFTED
2.1.2. Retain the hexadecimal stream of p % AUTOMATIC
2.1.3. Update t − 1 parameters of the flow

2.2. Else,

2.2.1. if te(f) ¡ ∆t, do the steps from 2.1.1. to 2.1.3.
2.2.2. Else, do the steps from 3.1. to 3.2.

3. Else,

3.1. Create a new flow with t(p)

3.2. Update t − 1 parameters of the flow

4. Check for flows in idle timeout

end for
Output: S F, t(p)

Table 4: Macro algorithm for passive monitoring and feature extraction

3.3. Hierarchical classification
We propose a classification per level as it is depicted in Figure 5. In summary, after inline traffic is processed,

Internet traffic features are evaluated by several classifiers disposed hierarchically. That is to say, that the flow of
information is bifurcated depending on its properties. The levels of this system are detailed as follows.

• In L1, session discriminators are disposed. Discriminator 1 separates tunneled from not tunneled sessions.
Whereas, Discriminator 2 detects if a tunneled session has unitary or multiple sessions.

12

• In the second level L2, a standard classification is performed. Classifier 1 (Cl1) marks the not tunneled/aggregated
flows, and Classifier 2 (Cl2) marks the unitary tunneled connections. A Multi-Label Classifier (MLC) and
Packet Classifier (PC) treat tunneled traffic with multiple sessions.

• Finally, in the third level L3, class evolution might be detected by an Incremental Learning Model (ILM) that
will induce reconfigurations over the Classi f iers.

Figure 5: Hierarchical classification system.

It is important to mention that there are already works that aim at hierarchically treating Internet traffic. For
instance, the work in [59] proposes to classify the traffic into main classes such as P2P, HTTPS, MSN, SSL/TLS,
etc. Afterward, the categories are organized into Internet applications. This approach gets good granularity results;
however, tunneled applications are not studied. A similar work is presented by [60], where the objective is to know
at first what Anonymity Tools (ATs) are used in the Internet communication, and then to get the name of the Internet
application. The first work differs to our approach in the sense that the class/application granularity is not our interest;
instead, we are looking for dividing Internet communication protocols (e.g., tunneled, encrypted and non-encrypted).
The second work shares similar aspects to our approach and demonstrates that traffic using different ATs can be
separated; however, tunneled traffic with multiple sessions is not treated.

We provide more details about the main elements of the framework in the next sections.

3.3.1. Discriminators and Classifiers
The discriminators are in charge of separating different types of traffic, as it is illustrated in Figure 5. We will

evaluate different classical ML classifiers to perform this task with handcrafted features. In principle, based on our
experience with this application [55], we found out that the most accurate ML approach is the tree-based one. Partic-
ularity, Random Forest (RF) highlights thanks to its capabilities for dealing with class imbalance; this ML model is
also suitable for multi-label tasks. We will test other ML algorithms such as the K-nearest neighbors (KNN), Decision
tree (DT), Extra Trees, Voting, and AdaBoost to build the discriminators.

For the automatic feature extraction, we will deploy two Convolution Neural Networks (CNNs) architectures: 1
dimensional (1D-CNN) and 2 dimensional (2D-CNN). The DL architecture is the same as defined by [16, 57]. In
summary, a convolution layer with 32 kernels of size 5 transforms the data at first. A max pooling operation with size

13

2 is performed. The result is passed through another convolution operation with 64 channels and size 5. Another max
pooling layer is added with the same size as the first one. Following flatten and dropout operations are added to the
architecture to transmit the features to a fully connected layer with size 1024. A final fully connected layer uses a
softmax function to obtain the probability of each class.

Finally, the classifiers belong to the second level of our hierarchical classification, as in Figure 5. They are in
charge of defining the class of the traffic. This case will be handled similarly as the Discriminators.

3.3.2. Tunneled traffic treatment
This branch aims at detecting the classes within a tunnel with multiple sessions. Given the characteristics of the

problem, the multi-label classification task seems to be a suitable path. The work in [61] already demonstrated that
multi-label classification could be achieved by a Neural Network-based approach to detect Streaming connections in
tunnels. Therefore, this approach will allow us to determine the QoS classes in the multiplexed sessions; however,
another interest is to detect explicitly to which class belongs to each packet. In Figure 6, we propose two approaches
to deal with multiple applications within a session:

• Flow classification: a multi-label classifier defines the classes of the flow S F. In this case, with a multi-label
classifier, we expect to have a set of positive labels with a certain probability. In Figure 6, we define the positive
class those with a probability higher than 0.6, for example, the VoIP and Browsing classes.

• Packet classification: an incoming packet p from the flow S F is classified into only one class by using its length
and the statistical-based features of S F and BF. The packet classification task will be treated as a multi-class
classification problem.

Figure 6: Classification process for multiplexed flows.

These two strategies will be leveraged to find the most adequate for QoS management, given specific protocols.

3.3.3. Online Configuration
Regarding the evolution of the Internet, the main objective behind is to offer a self-learning and self-configuration

approach to i) detect new traffic behaviors (new Internet applications), ii) learn or complete the knowledge of minority
classes, iii) improve the classification performance, and iv) cope with the evolution of Internet network. The objective
will be to have a Online configuration block that continuously interacts with the Model Repository to induce config-
urations when required. This idea is not developed in this paper; however, it is considered for the modeling of our
framework.

In the next section, the data used by this investigation is described.

4. Internet traffic data

We present Internet traffic data to test and validate our framework. In Section 4.1, a common public dataset is
described. Whereas, in Section 4.2, we present a dataset developed in an emulated Satellite architecture.

14

4.1. VPN-NonVPN
The authors in [62] launched the most common applications in the Internet network and reproduced the same

experiments encrypting the data under a VPN connection. The data counts with six QoS classes: Chat, Streaming,
VoIP, Browsing, P2P, File Transfer, and Email. The authors captured the complete set of flows for each class, and the
sessions were saved in binary files with their respective file names.

The labeling was done using the file identifier. A summary of this dataset is presented in Table 5. For this dataset,
the tunneled connections were broken into windows of ∆t = 300ms. Some flow sessions were discarded; for instance,
short sessions with less than ten packets and Tor applications.

Applications Class Flows

Skype, Facebook, Hangouts, ICQ, AIM, Chat 612
VPN-Chat 13580

Skype, FTPS, SFTP FT 899
VPN-FT 23832

Bittorrent, uTorrent P2P 48
VPN-P2P 1859

Hangouts, Facebook, Skype, Voipbuster VoIP 1933
VPN-VoIP 87792

Youtube, Netflix, Spotify, Vimeo Streaming 448
VPN-Streaming 12395

Email, Gmail (SMPT, POP3, IMAP) Mail 286
VPN-Mail 3141

Table 5: Flow and class distribution of the public dataset VPN-NonVPN.

4.2. Emulated Satellite Internet Traffic
The SAT dataset was created in a collaborative project where the authors actively participated, and this dataset is

publicly available 1. The model of a multi-gateway Satellite network with one ST and one GW was set over a virtual
environment, as in Figure 7. In Section 4.2.1, we will explain the network environment set in this platform. Section
4.2.2 lists the applications launched, and Section 4.2.3 details the data collection process performed.

4.2.1. Internet Network construction
Figure 7 shows the emulated environment to capture Internet data. We can notice that different workstations are

available in the ST and GW subnet. The satellite segment was emulated by OpenSAND 2, which is a platform to
emulate Satellite Communications. In addition to this, a VPN configuration is disposed between the ST and the GW
to emulate tunneled communications. The Internet access is done via the GW, and all the traffic from or to the Internet
passes over the satellite link through the VPN tunnel. The same is valid for traffic between the two subnets. Finally,
two network conditions are proposed:

• SAT ethernet (SAT eth): an Ethernet connection is disposed between the GW and ST. A delay of 50ms is
imposed on all the communications.

• SAT OpenSAND (SAT os): a satellite connection is disposed between the GW and the ST with OpenSAND.
The emulated satellite configurations are a constant delay of 250ms, emission of Digital Video Broadcasting
Satellite (DVB-S) from the GW to the ST 40Mbps, and from the ST to the GW 5Mbps.

Finally, the VPN technology selected to create the tunnel was OpenVPN 3. To configure the VPN, four protocols
were used: tcp and udp use TCP and UDP as transport protocols; in this case, the packets are only tunneled. This
configuration is commonly used to accelerate the response time. Whereas, tcp sec and udp sec use TCP and UDP as
transport protocols with the packets encrypted and tunneled.

1http://eexposit.perso.univ-pau.fr/content/SAT dataset/
2http://opensand.org/
3https://openvpn.net/

15

Figure 7: Traffic emulation platform proposed in a Satellite Architecture.

4.2.2. Emulation of Human Behavior
Several applications were launched and captured by OpenBACH 4. The user behavior was mimicked by using

Selenium 5, which is a tool to test web applications. It is important to mention that different scripts using selenium were
customized to open/close/remain in Internet websites as similar as possible as the human behavior. The applications
were launched differently to get a heterogeneous dataset; for instance, different codecs and websites were used for
the VoIP and browsing applications, respectively. In Table 6, we show the applications launched with their variations;
their duration varies from 5min up to 15min. In addition to those applications, the service mail with “smtp” was
launched only for the SAT os.

QoS class Application Parameter Value

VoIP- Voice
Skype Audio track 3 tracks randomly launched

Facebook Audio track 3 tracks randomly launched
Twinkle codecs G.711, G.726 and GSM randomly

launched

VoIP- Video Skype Video track 3 tracks randomly launched
Facebook Video track 3 tracks randomly launched

Video Streaming YouTube Content Random list of videos

Browsing HTTP/HTTPS sites Duration From 10s to 60s randomly selected
Website
launched

Randomly selected

Table 6: Description of the applications launched for the SAT data.

This launching process was performed in three main scenarios on the platform: i) Internet traffic without the
tunnel ii) Unitary scenarios with the VPN: only one application at a time is launched, and ii) Multiple scenarios with
the VPN: several applications are launched at the same time.

4https://www.openbach.org/
5https://www.seleniumhq.org/

16

4.2.3. Data collection
For each scenario, the data collection process was performed in the GW, ST, and within the tunnel. In this sense,

all the possible transformation that the data perceived is recorded. The labeling process is performed per file and
packet. However, for the VPN tunnel, special treatment was performed. For each packet getting into the VPN tunnel,
a flag was used to denote the application launched. Therefore, the multiplexed connections are correctly labeled.

Figure 9 shows the structure of the resulting SAT data. The applications were launched without a VPN (denoted
in Figure 9 as None) and with a VPN. In the VPN branch, four protocols were used: tcp, udp, tcp sec and udp sec.
Following, for each protocol, the unitary and multiplexed scenarios were launched, and traffic was captured at the
same time in the ST and the GW. This dataset is still in development. In Table 7, we show the flows captured per
application and the number of packets with and without the VPN.

Figure 8: Illustration of the experiment launched in the emulated SAT plaform.

SAT eth SAT os
without VPN with VPN without VPN with VPN

QoS class Application Flows Packets Packets: Unitary Packets: Multiple Flows Packets Packets: Unitary Packets: Multiple

VoIP
facebook 302 227997 74904 522275 895 392383 35624 1046296

skype 565 315281 60764 673780 2258 1701348 52895 3718250
twinkle 69 141663 26144 276995 432 179855 16465 673556

Video skype 579 925391 318335 2235781 1972 828860 176840 3718250
facebook 357 558880 162822 1000071 895 74883 2156023

Streaming youtube 760 158177 19619 486141 2370 392598 25977 1207393
Browsing web browsing 6852 749979 91705 1824852 10550 800853 58265 2597338
Unknown unknown 58 2860 1080 2334 356 1219 51 778516

smtp smtp - - - - 134 18672 3391 59066

Table 7: Class, packet and flow distribution of the SAT data in the GW.

17

5. Hierarchical classification evaluation

In this section, we present the results after evaluating each component of our hierarchical classification system. To
start, we show the features that will be used for each of our proposed classifiers. Table 8 shows the flows needed for
each classifier, depending on the feature extraction process chosen. For instance, for an unencrypted communication,
the handcrafted feature extraction will use the bidirectional flows of a session F, Fdst and Fsrc. Whereas, the automatic
feature extraction does not take into account the direction of the flow, only the packets of the session (e.g., only the
packets of F no matter if it comes from the source of the destination).

To obtain early Internet traffic classification, we considered only the first 20 packets of the sessions. For the
automatic feature extraction, the flows are targeted with the class of the first seen packets. The scope of this work will
not treat the MLC with the automatic feature extraction; these tasks will be envisaged for future works.

Handcrafted statistical features Automatic feature extraction
Aggregate flows Tunneled flow Tunneled sub-flow Packet length Aggregate flows Tunneled flow Packet bytes

Classifier Description F,Fsrc and Fdst S F,S Fsrc and S Fdst BF,BFsrc and BFdst - F S F -
D1 Flow discriminator
Cl1 Classifier of unen-

crypted traffic
D2 Flow discriminator
Cl2 Classifier of unitary

tunneled traffic
MLC1 Multilabel classifier

of tunneled traffic
N\A N\A N\A

PC1 Packet classifier of
tunneled traffic

Table 8: Flows used for each classifier and feature extraction process.

The handcrafted approach will be used to train a Random Forest (RF), a Decision tree (DT), an Extra Trees
(ET), a Voting (V), and an AdaBoost (AB) model. The classifiers’ settings were modified to obtain their overall best
performance. On the other hand, the automatic feature extraction will be performed by 1-Dimensional Convolutional
Neural Networks (1D CNN) and 2-Dimensional Convolutional Neural Network (2D CNN) with matrix dimensions
of 28× 28 = 784 and µ× µ. µ is the average bytes of the 20 first packets of the session, and this value is computed for
each classifier.

In the following sections, we present the performance of the discriminators, classifiers, multi-label classifiers, and
packet classifiers in the same order.

5.1. Discriminators

We need adequate classifiers Discriminator 1 (D1) and Discriminator 2 (D2) that will perform session separation
tasks. For this experiment, we trained several ML-based classifiers and compared their performance. The performance
will be evaluated in terms of accuracy and G-mean over 5-folds.

For D1, we need to know if the input flows are multiplexed or not. To do so, we partition the tunneled flows
into windows of ∆t = 300ms and labeled as “multiplexed”, while the rest of flows are “non-multiplexed”. From this
data, 66% of the samples were used for the training process, and the rest for the test. We train several classifiers and
evaluate the test set. Table 9 shows that discrimination capabilities are achieved by using statistical-based techniques.
However, we notice that the CNNs are also adequate for this task.

We selected DT as the most suitable discriminator due to its simplicity, low-cost construction, evaluation, and time
response. The confusion matrices of the best DT classifier for each dataset are shown in Figure 9. We can notice from
the figures that the class identification is appropriately made, with zero misclassifications.

18

SAT eth-GW SAT os-GW VPN-NonVPN
Features Classifier Acc G-mean Acc G-mean Acc G-mean

Hand

DT 100 100 100 100 100 100
RF 100 100 100 100 (± 0.01) 100 100

KNN 99.98 (± 0.04) 99.96 (± 0.09) 99.98 (± 0.01) 99.95 (± 0.05) 99.91 (± 0.05) 99.07 (± 0.49)
ET 100 100 100 100 100 100
V 100 (± 0.01) 100 100 100 (± 0.01) 100 100

AB 100 100 100 100 100 100

Automatic

1D CNN-28 99.99 99.99 100 100 (± 0.01) 99.76 (± 0.29) 99.41 (± 0.66)
1D CNN-µ 99.99 99.99 100 100 (± 0.01) 99.61 (± 0.86) 99.46 (± 0.32)
2D CNN-28 99.99 99.99 100 100 (± 0.01) 98.44 (± 0.97) 96.69 (± 2.38)
2D CNN-µ 99.99 99.99 100 100 (± 0.01) 99.11 (± 0.44) 98.29 (± 1.30)

Table 9: Accuracy (Acc) and G-mean results in percentage after testing the D1 classifiers. These results are in avg(±std) format obtained over
5-folds.

(a) SAT eth-GW (b) SAT os-GW (c) VPN-NonVPN

Figure 9: Confusion matrix with the best DT classifier acting as D1.

For D2, we want to separate the unitary tunneled connections from the multiple ones. We took all the multiplexed
connections and divided them into windows of 300ms, labeling each window with its respective class (Unitary = 1
or Multiple = 2). The VPN-NonVPN dataset is excluded from this study due to it only contains unitary tunneled
connections. The results in Table 10 are similar to those for D1, allowing us to conclude that a simple DT is also
suitable for this task.

SAT eth-GW SAT os-GW
Features Classifier acc G-mean acc G-mean

Hand

DT 99.92 (± 0.06) 99.73 (± 0.27) 99.95 (± 0.01) 99.72 (± 0.11)
RF 99.94 (± 0.02) 99.71 (± 0.21) 99.96 (± 0.01) 99.63 (± 0.08)

KNN 99.46 (± 0.04) 97.78 (± 0.32) 99.55 (± 0.04) 96.68 (± 0.52)
ET 99.92 (± 0.02) 99.67 (± 0.20)) 99.94 (± 0.02) 99.49 (± 0.14)
V 99.91 (± 0.03) 99.53 (± 0.20) 99.94 (± 0.02) 99.42 (± 0.11)

AB 99.96 (± 0.01) 99.85 (± 0.06) 99.96 (± 0.01) 99.76 (± 0.16)

Automatic

1D CNN-28 99.97(± 0.03) 99.60 (± 0.30) 99.75 (± 0.10) 99.86 (± 0.45)
1D CNN-µ 99.99 (± 0.01) 99.92 (± 0.22) 99.60 (± 0.03) 99.32 (± 0.52)
2D CNN-28 99.75(± 0.05) 99.30 (± 0.45) 99.62 (± 0.01) 98.86 (± 0.15)
2D CNN-µ 99.99 (± 0.01) 99.92 (± 0.22) 99.60 (± 0.30) 97.92 (± 0.32)

Table 10: Accuracy (Acc) and G-mean results in percentage after testing the D2 classifiers. These results are in avg(±std) format obtained over
5-folds.

Finally, the confusion matrices of D2 with DT are given in Figure 10. We can notice that some of the multiple
tunneled connections can be classified as unitary , while fewer flows are misclassified as multiple.

19

(a) SAT eth-GW (b) SAT os-GW

Figure 10: Confusion matrix with the best classifier of DT acting as D2.

The flow discrimination tasks allow us to divide the problem into several sub-classification problems. Therefore,
once the traffic types are differentiated, we can apply a different classification technique for each type, as it is detailed
as follows.

5.2. Classifiers

The discriminator tests were repeated in this section, with the difference that the multi-class classification objective
is to obtain the QoS classes from Internet sessions. In Table 11, the results are depicted for Cl1 using non tunneled
traffic. From the table, we can notice that good classifiers are built for the SAT datasets. However, for the VPN-
NonVPN, we encounter lower performances.

SAT eth-GW SAT os-GW VPN-NonVPN
Features Classifier acc G-mean acc G-mean acc G-mean

Hand

DT 98.03 (± 0.38) 97.57 (± 0.48) 94.24 (± 0.95) 82.74 (± 0.84) 71.04 (± 3.72) 60.31 (± 13.53)
RF 99.00 (± 0.31) 98.64 (± 0.58) 96.77 (± 0.22) 86.72 (± 0.36) 77.61 (± 2.24) 65.00 (± 10.95)

KNN 95.98 (± 0.47) 94.28 (± 2.16) 91.34 (± 0.80) 80.42 (± 1.03) 65.10 (± 3.45) 9.24 (± 36.97)
ET 98.98 (± 0.29) 98.51 (± 0.44) 96.69 (± 0.32) 86.66 (± 0.39) 76.62 (± 1.68) 62.67 (± 16.79)
V 98.73 (± 0.12) 98.23 (± 0.43) 96.03 (± 0.64) 85.86 (± 0.48) 75.04 (± 1.62) 49.71 (± 50.84)

AB 63.76 (± 13.69) 49.40 (± 19.33) 50.13 (± 22.89) 46.49 (± 13.89) 38.38 (± 6.17) 17.06 (± 28.25)

Automatic

1D CNN-28 97.74 (± 0.69) 95.78 (± 3.28) 95.41 (± 0.37) 84.41 (± 1.26) 46.07 (± 0.61) 19.14 (± 27.60)
1D CNN-µ 97.86 (± 0.41) 92.62 (± 4.16) 95.08 (± 0.28) 81.07 (± 2.41) 43.99 (± 2.94) 0.00 (± 0.00)
2D CNN-28 96.89 (± 0.45) 91.99 (± 3.32) 96.15 (± 0.26) 89.79 (± 4.01) 44.99 (± 2.42) 18.63 (± 31.01)
2D CNN-µ 96.23 (+/- 0.46) 84.45 (+/- 3.07) 96.15 (± 0.26) 89.79 (± 4.01) 49.70 (± 4.60) 0.00 (± 0.00)

Table 11: Accuracy (Acc), G-mean and F-score results in percentage after testing the Cl1 classifiers. These results are in avg(±std) format obtained
over 5-folds.

The confusion matrices of the best RF classifiers are depicted in Figure 11. In this figure, we remark the class-
imbalance presented by the VPN-nonVPN dataset that might deteriorate the performance of the classifiers. Whereas,
for the SAT dataset, there are lower misclassifications even though there is a class-imbalance. Another point that can
contribute to the performance in both datasets is the labeling process. The SAT dataset was built labeling each packet
and marking the unknown packets generated in Internet sessions, while, in the VPN-NonVPN, the labeling process is
given by file.

20

(a) SAT eth-GW (b) SAT os-GW

(c) VPN-NonVPN

Figure 11: Confusion matrix with the best classifier of RF acting as Cl1.

For the classifier Cl2, the results are shown in Table 12. In this particular case, class discrimination can be
achieved with high performance for all the datasets either with handcrafted or automatic feature extraction. The
misclassifications are lower even in the presence of class-imbalance, as seen in the confusion matrices in Figure 12.
Regarding the performance of the CNNs, the 1D-CNNs with images of size 28× 28 perform better than using the size
µ and the 2D-CNNs.

SAT eth-GW SAT os-GW VPN-NonVPN
Features Classifier acc G-mean acc G-mean acc G-mean

Hand

DT 99.66 (± 0.19) 99.28 (± 0.87) 99.65 (± 0.16) 70.42 (± 71.98) 99.32 (± 0.20) 98.67 (± 0.32)
RF 99.65 (± 0.13) 99.30 (± 0.64) 99.80 (± 0.13) 70.26 (± 70.80) 99.60 (± 0.07) 99.02 (± 0.26)

KNN 96.81 (± 0.48) 96.38 (± 1.55) 97.78 (± 0.73) 0.00 97.36 (± 0.35) 94.81 (± 0.76)
ET 99.59 (± 0.21) 99.16 (± 0.79) 99.75 (± 0.16) 67.85 (± 68.43) 99.53 (± 0.10) 98.93 (± 0.34)
V 99.61 (± 0.26) 99.30 (± 0.89) 99.73 (± 0.18) 67.87 (± 68.45) 99.47 (± 0.08) 98.82 (± 0.33)

AB 85.94 (± 12.83) 81.60 (± 14.05) 90.31 (± 3.30) 81.14 (± 18.38) 76.54 (± 8.61) 62.90 (± 13.52)

Automatic

1D CNN-28 95.48 (± 0.73) 63.62 (± 9.46) 97.47 (± 1.70) 91.14 (± 9.02) 98.80 (± 0.17) 95.99 (± 1.09)
1D CNN-µ 92.18 (± 0.83) 23.83 (± 40.37) 87.37 (± 0.74) 41.19 (± 6.42) 90.71 (+/- 0.32) 88.79 (+/- 5.44)
2D CNN-28 71.60 (± 3.56) 51.00 (± 52.55) 88.50 (± 0.83) 48.30 (± 6.74) 97.03 (± 0.46) 91.26 (± 1.38)
2D CNN-µ 90.57 (± 1.00) 44.87 (± 6.69) 86.19 (± 0.32) 34.72 (± 7.62) 89.44 (± 0.52) 84.17 (± 8.26)

Table 12: Accuracy (Acc) and G-mean results in percentage after testing the Cl2 classifiers. These results are in avg(±std) format obtained over
5-folds.

21

(a) SAT eth-GW (b) SAT os-GW

(c) VPN-NonVPN

Figure 12: Confusion matrix with the best classifier of RF acting as Cl2.

We demonstrated that Cl1 and Cl2 could be built with adequate accuracy. In the next section, the tunneled
connections with multiple applications will be treated by a multi-label classifier and a packet classifier.

5.3. Multi-label classifier: Experimental results

For this experiment, we take the data under udp and udp sec as the transport protocol. First of all, we analyze the
effect caused by the feature extraction process (proposed in Section 3.2.1) to an RF multi-label classifier. Metrics such
as accuracy (Acc), Label ranking average precision score (LRPS), and F-score will allow us to interpret the results.
Following, we train several multi-label classifiers and evaluate their performance to select the most accurate. Finally,
we introduce the packet classifier results in tunneled flows.

5.3.1. Feature extraction window
The feature extraction over multiplexed connections is performed over two-time windows ∆t1 and ∆t2. Two flows

are derived from this construction: S F for ∆t1 and BF for ∆t2. The question that arises is how to define these
window values. One can consider the minimum amount of packets needed to perform an accurate classification as
classically done for aggregate flows [63]. However, in a tunneled connection, this assumption is not valid due to
the variety of scenarios found in a tunnel. For such a case, we opted to empirically propose three possible values
of ∆t1 = {5ms, 10ms, 50ms} to build S F that will represent the statistical behavior of a local stream zone where the
classification is performed. The values of ∆t1 are defined according to the maximum delivery delay (100ms) allowed
by classes such as VoIP, Interactive video, and Video streaming. On the other hand, ∆t2 does not have any time
constraints due to it builds a flow BF that serves as additional information. In this case, we vary ∆t2’s value from ∆t1
to 300ms. An RF was trained with all the time windows proposed, and the accuracy and LRPS were computed to
select the most suitable combination.

22

(a) Accuracy (b) LRPS

(c) F-score

Figure 13: (a)-(b)Accuracy and LRPS of a RF with ∆t1 = {5ms, 10ms, 50ms}, and ∆t2 varied from 0.01s to 300s.(c) F-score of a RF using: only
∆t1 = 10ms,only ∆t2 = 300ms and both {∆t1 = 10ms,∆t2 = 300ms}.

In the figures 13(a) and 13(b), it is noticeable that the most suitable values of ∆t2 are upper than 10s due to they
help to increase the accuracy and the LRPS. While for ∆t1, we can conclude that while the smaller its value is the
better. The reasoning of this is that a QoS management decision is performed over the local flow S F implemented
as a sliding window. This decision can be to prioritize the complete tunnel when some classes of interest are seen.
This decision might be updated every ∆t1. We found out that for ∆t1 = 5ms, the global accuracy was better than the
other cases. However, we have to be aware of the functional constraints such as response time when monitoring and
classifying time-constrained interactive applications. On the other hand, Figure 13(c) shows the F-scores of each class
using three variations of the windows to compute the handcrafted features. We can notice that if we only use S F with
∆t1 = 10ms, the capability to detect streaming applications is diminished. In the same manner, if we only take BF
with ∆t2 = 300ms, the unknown applications won’t be detected. Finally, with the combination of both flows S F and
BF, the performance is higher, and the F-score for all the classes is upper than 0.8. This last study gives us hints about
the benefits of using two time windows for classifying multiplexed applications.

5.3.2. Multi-label classifiers comparison
In this part, we study in more detail the multi-label classification performance. It is logical to find that the RF

multi-label classifier is accurate for this type of application. In Table 13, we validate the use of RF as the multi-label
classifier by comparing it with close related approaches.

For the tcp protocol the same experiments were launched getting similar results. For instance, the accuracy and
LRPS with ∆t1 = 10ms and ∆t2 = 60s is 0.9261 and 0.9703, respectively.

To conclude this section, we found that our approach to compute the statistical-based feature over two sub-flows
in the VPN tunnel allows us to improve the accuracy of the classifier. We also demonstrate that the RF multi-label

23

SAT eth-GW SAT os-GW
Features Classifier acc LRPS F-score acc LRPS F-score

Hand

DT 88.52 (± 0.22) 95.36 (± 0.12) 95.21 (± 0.07) 91.86 (± 0.04) 96.65 (± 0.05) 96.53 (± 0.03)
RF 91.51 (± 0.22) 96.82 (± 0.09) 96.51 (± 0.11) 94.11 (± 0.07) 97.69 (± 0.01) 97.51 (± 0.02)
ET 90.94 (± 0.26) 96.50 (± 0.10) 96.25 (± 0.10) 93.59 (± 0.29) 97.38 (± 0.10) 97.24 (± 0.12)
KNN 80.49 (± 0.15) 92.04 (± 0.02) 91.72 (± 0.08) 87.43 (± 0.23) 93.97 (± 0.07) 93.70 (± 0.04)
OnevsALL 32.85 (± 0.81) 61.21 (± 0.65) 60.50 (± 0.65) 27.81 (± 0.05) 56.62 (± 0.13) 51.16 (± 0.22)

Table 13: Accuracy (Acc), LRPS and F-score results in percentage after testing the MLC classifiers for the udp protocol. These results are in
avg(±std) format obtained over 5-folds.

classifier is the most adequate for this problem. In the next section, we show a small variation of this approach.

5.4. Packet classifier: Experimental results

The multi-label classification results allowed us to validate the construction and discrimination capabilities of our
statistical features for tunneled applications. By using those results, we envisage predicting the class of unitary packets
instead of flows.

To build this classifier, we consider:

• Only the packets that fall into a flow S F with more than one application at a time are considered. In conse-
quence, we are going to filter all the packets where only one class is predicted for a flow S F.

• The statistical features are created with ∆t1 = 10ms and ∆t2 = 60s and the current packet length for the
handcrafted approach while the automatic feature extraction uses the bytes of each packet.

• With the filtered data, we build a packet classifier modeled by an RF with the handcrafted features and a 1D-
CNN for the automatic features.

The dataset characteristics are depicted in Table 14. In this table, we can notice that the total number of samples
is equivalent to the total number of packets in a tunneled communication. Whereas, the filtered samples represent the
packets that fall into a window ∆t1 with more than one class within the tunnel.

Dataset Protocol # samples # filtered samples (%
total)

SAT eth udp 3527278 196778 (5.58%)
udp sec 3425113 216210 (6.31%)

SAT os udp 4637915 326839 (14.19%)
udp sec 5504400 414003 (13.30 %)

Table 14: Data description for the packet classifier

In Table 15, we show the results after building the packet classifiers for each protocol. We notice than the RF
models are adequate for this problem; however, the CNNs present competitive results.

SAT eth-GW SAT os-GW
Data Classifier Acc G-mean Acc G-mean

udp
RF 95.32 (± 0.31) 92.76 (± 1.05) 95.35 (± 0.23) 87.22 (± 2.25)

1D CNN-28 99.66 (± 0.22) 98.65 (± 1.37) 99.18 (± 0.49) 93.04 (± 9.51)

udp sec
RF 95.60 (± 0.16) 92.38 (± 0.85) 94.65 (± 0.17) 92.79 (± 0.33)

1D CNN-28 82.62 (± 20.75) 62.63 (± 77.21) 94.22 (± 14.12) 96.61 (± 6.34)

Table 15: Accuracy (Acc) and G-mean results in percentage after testing the PC classifiers. These results are in avg(±std) format obtained over
5-folds.

In addition, we show the performance per class expressed by a Precision-Recall curve for SAT os-GW in Figure
14 for udp and udp sec, respectively. We observe that for all the cases, the AUC is upper than 0.95. On the other

24

hand, Precision-Recall tendencies indicate that the classifiers have good performance levels. However, we can notice
that a small decrease is presented for the class “streaming” and “smtp” in OpenSAND which in turn are minority
classes. The confusion matrices for the best classifiers using SAT os-GW are given in Figure 15.

(a) Precision-Recall for class using udp (b) Precision-Recall for class using udp sec

Figure 14: Precision-Recall curves for the data SAT os with udp and udp sec as transport protocols.

(a) Confusion matrix of 1D CNN-28 using udp (b) Confusion matrix of RF using udp sec

Figure 15: Confusion matrix with the best classifier acting as PC.

From these figures, we can notice that adequate performance per class is achieved. However, when developing
these experiments, we discover that there are few samples with more than two applications in parallel with our window
configuration (lower than 10 % as shown in Table 14). This characteristic can be attributed to the construction of the
data and the flows. For instance, how the applications were launched in parallel and for how long they are running,
among others. Therefore, more fine experiments should be addressed for other cases.

6. Implementation evaluation

We need to submit our system to different scenarios to evaluate its performance. It would be ideal to use the
emulated Satellite platform (found in Section 4.2) to execute performance tests; however, this will be done for future
works. In our case, we set the guidelines to test the classification system in a testbed environment placed on the
Proxmox Virtual Environment 6. We will establish a simple communication between peers acting as source (Internet

6https://www.proxmox.com/en/

25

client) and destination (Internet server) in Section 6.1. A router will be placed between source and destination to
intercept and to classify the Internet traffic. Finally, in Section 6.2, we compare the ML-based solution with nDPI in
terms of accuracy and response time.

6.1. Experimental setup

Using the Proxmox Virtual Environment, we create a testbed on the cloud (OVH cloud provider). We set the
components in Figure 16 with an User agent that will act as a real Internet client. This agent will be in charge of
emulating real Internet connections. All the traffic generated by this agent will pass through a router before going
to the Internet. In this router, we will place our monitoring and classification system. This router might represent
the GW server proposed in Figure 7. Connected to this router, we placed a management server that will hold offline
processes, such as the training process and the ILM. The configurations established for our router and management
server were Virtual Machines (VMs) with the following configuration 4*1.2Ghz CPU and 10Gb RAM. Indeed, these
values might vary according to real Satellite resources.

Figure 16: Implementation proposal on Proxmox.

6.2. nDPI vs hierarchical classification results

In this section, we measure the classification capabilities of our implemented prototype against its more close
competitor. The complete framework was implemented in C considering only the handcrafted feature extraction
process. We use libcap7 for the monitoring process, while the ML models (trained with scikit-learn8) were parsed
from Python to C. We measure the average accuracy of the classifiers (D1, Cl1, D2 and Cl2) for the SAT eth data. In
Table 16, we can notice that the C models maintain their accuracy. In the unencrypted case, ML outperforms nDPI;
while, for the encrypted example, nDPI is unable to detect the class of a unitary session as Cl2 does.

7https://www.tcpdump.org/pcap.html
8https://scikit-learn.org/stable/

26

Regarding the response time of the classifiers, in Table 17, we show the number of packets per second processed by
each approach. We can notice that fast Internet classifications are possible with an ML-based classifier. It is important
to mention that the model response time differs for each entry depending on how deep they go into the tree’s branches
until a leaf is reached.

ML nDPI

Unencrypted D1 0.9999 1
Cl1 0.9186 0.5830

Encrypted D2 0.9588 N/A
Cl2 0.9401 N/A

Table 16: Accuracy evaluating the test data

ML nDPI

Unencrypted D1 348796 1000000
Cl1 200000 150466

Encrypted D2 368053 N/A
Cl2 200000 N/A

Table 17: Accuracy evaluating the test data

On the other hand, we would like to show in Figure 17 the estimated time to perform the complete classification
process. For this experiment, we sniff in inline mode the traffic generated by the agent during 60s. We compute the
overall time that the packets stay in each activity. In this figure, we can notice that the sniffing process is the longest
by using libpcap. This might be caused by the packet processing time in the kernel space, but also by libpcap and
the threaded functions designed to deal with the packets. Regarding the classification process, we found out that the
average is lower than 15 µs; where the flow metering process is around 5µs and the feature extraction 1 µs.

Figure 17: Time analysis of the classification process.

The response time obtained is acceptable principally for the Hierarchical classification task implemented in C.
Regarding the packet processing task, the response time could be improved depending on the operational needs of
the Satellite architecture. Emerging technologies are dedicated to minimizing packet processing time. For instance,
a project called Data Plane Development Kit (DPDK) is a set of libraries devoted to enabling high-speed packet
processing 9. In our particular case, DPDK can be programmed as a kernel-bypass toolkit as it was already proposed
by nDPI in its architecture. In addition to this, we need to be sure that the QoS requirements are satisfied on time. For
instance, according to [4], VoIP, and Interactive video applications are susceptible to delivery delays. To be specific,

9https://www.ntop.org/ndpi/traffic-classification-using-ndpi-over-dpdk/

27

they can tolerate around 100ms of delay; whereas, another critical class such as Video streaming no more than 10s.
We notice that the classification task can be achieved in 15ms, giving sufficient time to treat those sensitive classes.

Regarding the RAM used by our system, we can make a greedy approximation by considering using double
variables (8 bytes), and compared with the memory used by nDPI. Therefore, with a total of 346 statistical features
and other 160 necessary historical features, we get the approximate result in Table 18. From the table, we can conclude
that the RAM consumption increases 4KB per-flow regarding nDPI.

Memory
nDPI 1KB*F

Hierarchical classifier (346+160)*8B*F + 1KB*F = (4KB+1KB)*F

Table 18: Memory consumed by our proposal and by nDPI

Future studies should be carried out to enhance the available resource usage (CPU and RAM consumption). It
is important to mention that the ML-based solution provokes a negligible overhead over the router; all its operations
are reduced to if-then evaluations with few loops involved. Following this line of ideas, future works would instance
more tests to perform a more extensive assessment of the system. In the next section, we present the perspectives of
our work.

7. Conclusion and Pespectives

Machine Learning has become a valuable tool for knowledge extraction in different domains of science. In our
particular case, we intended to design Internet traffic classification techniques for QoS management in Satellite Com-
munications. The structure of Satellite Communications presents a high complexity that yields us to study an abstrac-
tion of its components and interactions. We theoretically propose a Satellite communication architecture, as well as,
all the necessary elements needed to perform QoS management and to integrate an ML or DL based classification
system.

We built and validated all the components of our Hierarchical classification system, getting accurate results. It
is important to remark that Internet traffic communications are carried out using different communication protocols.
At the same time, Internet applications can change the way these protocols interact with the actors in the network to
offer various services such as security and data integrity, among others. In light of this, the description of the Internet
stream becomes challenging. Nonetheless, we found out that each combination of application-protocol has some
indistinctively statistical properties that allow us to differentiate them. We offer a new way to compute the statistical-
based features for tunneled connections to maximize the knowledge extracted from multiplexed flows. The special
care and enrichment of the statistical features allow us to assure good discrimination in our classification system. In
addition to this, the automatic feature extraction with DL provided promising results.

The theoretical and experimental analysis above-mentioned provides a system that can classify Internet traffic.
However, the nature of Internet traffic leads us to deduce that our proposal needs to be extended. Other types of
communications should be considered for the Classification System; for instance, different types of tunneled proto-
cols such as IPsec and HTTP2, among others. In this sense, the hierarchical classification could grow in depth and
shallowness as it is depicted in Figure 18. New historical behaviors captured from the Internet network might lead to
design new Discriminators either by using ML, DL, or classical approaches (such as port and protocol identification).
Following, a dedicated classifier might correctly analyze each type of communication.

28

Figure 18: Graphical perspective of the Classification System

Moreover, the class evolution is prevalent for any communication technology. Therefore, it will be necessary to
set evolving models to update the classifiers designed. In Figure 18, we integrate an Incremental Learning Model
(ILM) for each classifier. This component should be able to deal with the evolution of Internet traffic. The main idea
is to have a component that can somehow modify the model repository to update the ML-based classifiers.

To validate our implementation, we submitted our solution to several conditions in which the response was satis-
factory regarding its close competitor, nDPI. We set the guidelines to perform the same experiments in an emulated
Satellite architecture. Finally, we give access to the emulated Satellite dataset. It is important to mention that more
complex interactions between actors in Satellite communications should be integrated into the data created; however,
this data serves as a good start point to promote advancements on this field.

Acknowledgment

This work is sponsored by Thales Alenia Space, TOULOUSE, 31100, France. We want to thank the Département :
Business Line Telecommunication, R&D department, for their assistance. We also want to thank the Centre National
d’Études Spatiales (CNES), Toulouse, France for allowing us to use the SAT data, which is developed under the
project R&T CNES: Application du Machine Learning au Satcom.

References

[1] C. Niephaus, M. Kretschmer, G. Ghinea, QoS Provisioning in Converged Satellite and Terrestrial Networks: A Survey of the State-of-the-Art,
IEEE Communications Surveys Tutorials 18 (4) (2016) 2415–2441.

[2] B. Hestnes, P. Brooks, S. Heiestad, T. Ulseth, C. Aaby., Quality of Experience in real-time person-person communication - User based QoS
expressed in technical network QoS terms, in: Proceedings of the 19thInternational Symposium on Human Factors in Telecommunication,
3–10, 2003.

29

[3] B. Corrie, H. yee Wong, T. Zimmerman, V. K, Towards quality of experience in advanced collaborative environments, in: in Third Annual
Workshop on Advanced Collaborative Environments, 2003.

[4] ITU-T, End-user multimedia QoS categories, Tech. Rep., TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU, 2001.
[5] M. Siller, J. C. Woods, QoS arbitration for improving the QoE in multimedia transmission, in: 2003 International Conference on Visual

Information Engineering VIE 2003, 238–241, 2003.
[6] Internet Assigned Numbers Authority (IANA), https://www.iana.org/, accessed: 2019-09-27, ????
[7] T. Bujlow, V. Carela-Espanol, P. Barlet-Ros, Independent comparison of popular DPI tools for traffic classification, Computer Networks 76

(2015) 75 – 89.
[8] F. Pacheco, E. Exposito, M. Gineste, C. Baudoin, J. Aguilar, Towards the deployment of Machine Learning solutions in network traffic

classification: A systematic survey, IEEE Communications Surveys Tutorials (2018) 1–1.
[9] R. Antonello, S. Fernandes, C. Kamienski, D. Sadok, J. Kelner, I. Gdor, G. Szab, T. Westholm, Deep packet inspection tools and techniques

in commodity platforms: Challenges and trends, Journal of Network and Computer Applications 35 (6) (2012) 1863 – 1878.
[10] Z. Xu, L. Ma, J. Sun, Efficient tri-ary search tree based packet classification algorithm, IET Conference Proceedings (2007) 833–836(3).
[11] W. Pak, Y. Choi, High Performance and High Scalable Packet Classification Algorithm for Network Security Systems, IEEE Transactions on

Dependable and Secure Computing 14 (1) (2017) 37–49.
[12] G. Aceto, D. Ciuonzo, A. Montieri, A. Pescap, Multi-classification approaches for classifying mobile app traffic, Journal of Network and

Computer Applications 103 (2018) 131 – 145, ISSN 1084-8045.
[13] Y. Lai, Y. Chen, Z. Liu, Z. Yang, X. Li, On monitoring and predicting mobile network traffic abnormality, Simulation Modelling Practice and

Theory 50 (2015) 176 – 188.
[14] Z. Liu, R. Wang, D. Tang, Extending labeled mobile network traffic data by three levels traffic identification fusion, Future Generation

Computer Systems 88 (2018) 453 – 466, ISSN 0167-739X.
[15] D. Naboulsi, M. Fiore, S. Ribot, R. Stanica, Large-Scale Mobile Traffic Analysis: A Survey, IEEE Communications Surveys Tutorials 18 (1)

(2016) 124–161.
[16] G. Aceto, D. Ciuonzo, A. Montieri, A. Pescap, Mobile Encrypted Traffic Classification Using Deep Learning: Experimental Evaluation,

Lessons Learned, and Challenges, IEEE Transactions on Network and Service Management 16 (2) (2019) 445–458.
[17] A. Raghuramu, P. H. Pathak, H. Zang, J. Han, C. Liu, C.-N. Chuah, Uncovering the footprints of malicious traffic in wireless mobile networks,

Computer Communications 95 (2016) 95 – 107.
[18] J. Riihijarvi, P. Mahonen, Machine Learning for Performance Prediction in Mobile Cellular Networks, IEEE Computational Intelligence

Magazine 13 (1) (2018) 51–60.
[19] K. Lalitha, V. Josna, Traffic Verification for Network Anomaly Detection in Sensor Networks, Procedia Technology 24 (2016) 1400 – 1405,

international Conference on Emerging Trends in Engineering, Science and Technology (ICETEST - 2015).
[20] C. Zhang, P. Patras, H. Haddadi, Deep Learning in Mobile and Wireless Networking: A Survey, CoRR abs/1803.04311, URL http://

arxiv.org/abs/1803.04311.
[21] Y. Jin, N. Duffield, J. Erman, P. Haffner, S. Sen, Z.-L. Zhang, A Modular Machine Learning System for Flow-Level Traffic Classification in

Large Networks, ACM Trans. Knowl. Discov. Data 6 (1) (2012) 4:1–4:34, ISSN 1556-4681.
[22] I. Trestian, S. Ranjan, A. Kuzmanovic, A. Nucci, Googling the Internet: Profiling Internet Endpoints via the World Wide Web, IEEE/ACM

Transactions on Networking 18 (2) (2010) 666–679.
[23] M. Pietrzyk, J.-L. Costeux, G. Urvoy-Keller, T. En-Najjary, Challenging Statistical Classification for Operational Usage: The ADSL Case,

in: Proceedings of the 9th ACM SIGCOMM Conference on Internet Measurement, IMC ’09, ISBN 978-1-60558-771-4, 122–135, 2009.
[24] L. Grimaudo, M. Mellia, E. Baralis, R. Keralapura, SeLeCT: Self-Learning Classifier for Internet Traffic, IEEE Transactions on Network and

Service Management 11 (2) (2014) 144–157.
[25] B. Ng, M. Hayes, W. K. G. Seah, Developing a traffic classification platform for enterprise networks with SDN: Experiences amp;amp;

lessons learned, in: 2015 IFIP Networking Conference (IFIP Networking), 1–9, 2015.
[26] L. Bertaux, S. Medjiah, P. Berthou, S. Abdellatif, A. Hakiri, P. Gelard, F. Planchou, M. Bruyere, Software defined networking and virtualiza-

tion for broadband satellite networks, IEEE Communications Magazine 53 (3) (2015) 54–60.
[27] N. A. Khater, R. E. Overill, Network traffic classification techniques and challenges, in: 2015 Tenth International Conference on Digital

Information Management (ICDIM), 43–48, 2015.
[28] P. Foremski, On different ways to classify Internet traffic: a short review of selected publications, Theoretical and Applied Informatics 25 (2).
[29] P. M. Santiago del Rio, D. Rossi, F. Gringoli, L. Nava, L. Salgarelli, J. Aracil, Wire-speed Statistical Classification of Network Traffic on

Commodity Hardware, in: Proceedings of the 2012 Internet Measurement Conference, IMC ’12, ISBN 978-1-4503-1705-4, 65–72, 2012.
[30] J. Zhang, Y. Xiang, Y. Wang, W. Zhou, Y. Xiang, Y. Guan, Network Traffic Classification Using Correlation Information, IEEE Transactions

on Parallel and Distributed Systems 24 (1) (2013) 104–117.
[31] T. En Najjary, G. Urvoy Keller, A first look at traffic classification in enterprise networks, in: TRAC 2010, 1st ACM International Workshop

on Traffic Analysis and Classification, June 28th-July 2nd, 2010, Caen, France, Caen, FRANCE, 2010.
[32] R. Hofstede, P. Celeda, B. Trammell, I. Drago, R. Sadre, A. Sperotto, A. Pras, Flow Monitoring Explained: From Packet Capture to Data

Analysis With NetFlow and IPFIX, IEEE Communications Surveys Tutorials 16 (4) (2014) 2037–2064.
[33] S. J. M. C., P. Carvalho, L. Solange Rito, Inside packet sampling techniques: exploring modularity to enhance network measurements,

International Journal of Communication Systems 30 (6) (2017) e3135–n/a, ISSN 1099-1131.
[34] V. Moreno, J. Ramos, P. M. S. del Ro, J. L. Garca-Dorado, F. J. Gomez-Arribas, J. Aracil, Commodity Packet Capture Engines: Tutorial,

Cookbook and Applicability, IEEE Communications Surveys Tutorials 17 (3) (2015) 1364–1390.
[35] P. Velan, V. Pus, High-density network flow monitoring, in: 2015 IFIP/IEEE International Symposium on Integrated Network Management

(IM), 996–1001, 2015.
[36] T. Wellem, Y. K. Lai, C. Y. Huang, W. Y. Chung, A hardware-accelerated infrastructure for flexible sketch-based network traffic monitoring,

in: 2016 IEEE 17th International Conference on High Performance Switching and Routing (HPSR), 162–167, 2016.
[37] I. Ghafir, V. Prenosil, J. Svoboda, M. Hammoudeh, A Survey on Network Security Monitoring Systems, in: 2016 IEEE 4th International

30

https://www.iana.org/
http://arxiv.org/abs/1803.04311
http://arxiv.org/abs/1803.04311

Conference on Future Internet of Things and Cloud Workshops (FiCloudW), 77–82, 2016.
[38] J. F. Kurose, K. W. Ross, Computer Networking: A Top-Down Approach (6th Edition), Pearson, 6th edn., ISBN 0132856204,

9780132856201, 2012.
[39] A. Bittau, D. Boneh, M. Hamburg, M. Handley, D. Mazieres, Q. Slack, Cryptographic protection of TCP Streams (tcpcrypt), https:

//datatracker.ietf.org/doc/rfc8548/, internet Engineering Task Force (IETF), ????
[40] A. Freier, P. Karlton, P. Kocher, The Secure Sockets Layer (SSL) Protocol Version 3.0, https://tools.ietf.org/html/rfc6101, internet Engineering

Task Force (IETF), ????
[41] T. Dierks, E. Rescorla, The Transport Layer Security (TLS) Protocol, https://tools.ietf.org/html/rfc8446, internet Engineering Task Force

(IETF), ????
[42] R. Stanton, Securing VPNs: comparing SSL and IPsec, Computer Fraud & Security 2005 (9) (2005) 17 – 19.
[43] E. Bocchi, L. Grimaudo, M. Mellia, E. Baralis, S. Saha, S. Miskovic, G. Modelo-Howard, S.-J. Lee, MAGMA network behavior classifier

for malware traffic, Computer Networks 109, Part 2 (2016) 142 – 156.
[44] D. Muelas, M. Gordo, J. L. Garca-Dorado, J. E. L. de Vergara, Dictyogram: A statistical approach for the definition and visualization of

network flow categories, in: 2015 11th International Conference on Network and Service Management (CNSM), 219–227, 2015.
[45] A. Tongaonkar, R. Torres, M. Iliofotou, Ram, Towards self adaptive network traffic classification, Computer Communications 56 (2015) 35 –

46.
[46] G. Levchuk, Function and activity classification in network traffic data: existing methods, their weaknesses, and a path forward, vol. 9850,

9850 – 9850 – 13, 2016.
[47] M. Iliofotou, H. chul Kim, M. Faloutsos, M. Mitzenmacher, P. Pappu, G. Varghese, Graption: A graph-based P2P traffic classification

framework for the internet backbone, Computer Networks 55 (8) (2011) 1909 – 1920.
[48] J. Jusko, M. Rehak, Identifying peer-to-peer communities in the network by connection graph analysis, International Journal of Network

Management 24 (4) (2014) 235–252.
[49] L. Akoglu, H. Tong, D. Koutra, Graph based anomaly detection and description: a survey, Data Mining and Knowledge Discovery 29 (3)

(2015) 626–688.
[50] A. Moore, M. Crogan, A. W. Moore, Q. Mary, D. Zuev, D. Zuev, M. L. Crogan, Discriminators for use in flow-based classification, Tech.

Rep., University of London, 2005.
[51] J. Read, B. Pfahringer, G. Holmes, E. Frank, Classifier chains for multi-label classification, Machine Learning 85 (3) (2011) 333.
[52] L. Breiman, Random forests, Machine Learning 45 (1) (2001) 5–32.
[53] G. Tsoumakas, I. Katakis, Multi-label classification: An overview, Int J Data Warehousing and Mining 2007 (2007) 1–13.
[54] R. Agrawal, A. Gupta, Y. Prabhu, M. Varma, Multi-label Learning with Millions of Labels: Recommending Advertiser Bid Phrases for Web

Pages, in: Proceedings of the 22Nd International Conference on World Wide Web, WWW ’13, ISBN 978-1-4503-2035-1, 13–24, 2013.
[55] F. Pacheco, E. Exposito, M. Gineste, A wearable Machine Learning solution for Internet traffic classification in Satellite Communications,

in: The 17th International Conference on Service-Oriented Computing (ICSOC), –, 2019.
[56] B. Claise, B. Trammell, P. Aitken, Specification of the IP Flow Information Export (IPFIX) Protocol for the Exchange of Flow Information,

Tech. Rep., Internet Engineering Task Force (IETF), 2013.
[57] W. Wang, M. Zhu, J. Wang, X. Zeng, Z. Yang, End-to-end encrypted traffic classification with one-dimensional convolution neural networks,

in: 2017 IEEE International Conference on Intelligence and Security Informatics (ISI), 43–48, 2017.
[58] Wei Wang, Ming Zhu, Xuewen Zeng, Xiaozhou Ye, Yiqiang Sheng, Malware traffic classification using convolutional neural network for

representation learning, in: 2017 International Conference on Information Networking (ICOIN), 712–717, 2017.
[59] L. Grimaudo, M. Mellia, E. Baralis, Hierarchical learning for fine grained internet traffic classification, in: 2012 8th International Wireless

Communications and Mobile Computing Conference (IWCMC), 463–468, 2012.
[60] A. Montieri, D. Ciuonzo, G. Bovenzi, V. Persico, A. Pescap, A Dive into the Dark Web: Hierarchical Traffic Classification of Anonymity

Tools, IEEE Transactions on Network Science and Engineering (2019) 1–1.
[61] Y. Shi, D. Feng, S. Biswas, A Natural Language-Inspired Multi-label Video Streaming Traffic Classification Method Based on Deep Neural

Networks abs/1906.02679, URL https://arxiv.org/abs/1906.02679.
[62] G. Draper-Gil, A. H. Lashkari, M. S. I. Mamun, A. A. Ghorbani, Characterization of Encrypted and VPN Traffic using Time-related Features,

in: Proceedings of the 2nd International Conference on Information Systems Security and Privacy - Volume 1: ICISSP,, 407–414, 2016.
[63] L. Peng, B. Yang, Y. Chen, Z. Chen, Effectiveness of Statistical Features for Early Stage Internet Traffic Identification, International Journal

of Parallel Programming 44 (1) (2016) 181–197.

31

https://datatracker.ietf.org/doc/rfc8548/
https://datatracker.ietf.org/doc/rfc8548/
https://arxiv.org/abs/1906.02679

	Introduction
	Related works
	Contributions
	Organization

	Background
	Internet traffic monitoring
	Encrypted vs Non-encrypted traffic
	Traffic classification approaches
	Multi-class and multi-label classification

	Framework
	Data Collection
	Feature Extraction
	Handcrafted
	Automatic

	Hierarchical classification
	Discriminators and Classifiers
	Tunneled traffic treatment
	Online Configuration

	Internet traffic data
	VPN-NonVPN
	Emulated Satellite Internet Traffic
	Internet Network construction
	Emulation of Human Behavior
	Data collection

	Hierarchical classification evaluation
	Discriminators
	Classifiers
	Multi-label classifier: Experimental results
	Feature extraction window
	Multi-label classifiers comparison

	Packet classifier: Experimental results

	Implementation evaluation
	Experimental setup
	nDPI vs hierarchical classification results

	Conclusion and Pespectives

