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Abstract—In this paper, we propose a novel CGRA architecture
and associated compilation flow supporting both integer and
floating-point computations for energy efficient acceleration of
DSP applications. Experimental results show that the proposed
accelerator achieves a maximum of 4.61x speed-up compared
to a DSP optimized, ultra low power RISC-V based CPU while
executing seizure detection, a representative of wide range of
EEG signal processing applications with an area overhead of
1.9x. The proposed CGRA achieves a maximum of 6.5x energy
efficiency compared to the CPU.

I. INTRODUCTION

The simplicity of Coarse Grained Reconfigurable Architec-
tures (CGRA) with regular organization of Processing Ele-
ments (PE) helps to exploit the instruction level parallelism
making them serious candidate for energy efficient accelera-
tors [S]. Modern applications rely on many floating point oper-
ations, which are performed in several cycles to not penalize
the frequency of the whole architecture. Hence, supporting
only integer operations does not cover all the computational
needs of an advanced and subsequent applications.

Due to the area overhead induced by floating point capabil-
ity, typical CGRAs become less attractive if all the PEs contain
floating point computational units, which is stressed by the
results shown in this paper. The heterogeneity in the PEs often
fails to transport data synchronously to the PEs containing
floating point units, disturbing parallel float computations
resulting in a performance bottleneck. Transporting data syn-
chronously to the processing elements can be guaranteed by
decoupling address generation of the data structures from the
computation flow. In this context, the contributions of this
paper are: noitemsep

« anovel CGRA architecture employing IEEE 754 compli-
ant floating point operations units. The PEs of the CGRA
contain a Flexible Address Generation Unit (FAGU)
which decouples addresses generation from the computa-
tion flow for increasing effective parallelism between the
floating point operations at instruction level.

o the associated compilation flow to efficiently exploit
parallelism between the floating point operations at in-
struction level leveraging static scheduling.

o study on EEG application running in the proposed
CGRA. Results are compared with the execution in
DSP optimized, ultra low-power RISC-V CPU [6] for
performance and energy efficiency.

The rest of this paper is organized as follows. Section II
discusses the state of the art in the context of floating point
acceleration in CGRAs. It also motivates the need of new
architecture and compilation flow to support energy efficient
floating point application acceleration leveraging CGRA based
architecture. Section III presents the proposed architecture
and associated compilation flow. The experimental results are
presented in the Section IV. Finally, the paper is concluded in
Section V.

II. BACKGROUND AND MOTIVATION

Due to significant area overhead for the floating point com-
putations (= 25% of a PE area in our case), employing floating
point unit (FPU) in every PE of a CGRA loses its interest.
While employing dedicated floating point computational units,
CGRAs like [11] use heterogeneous PEs. However, hetero-
geneity in the PEs results increasing the minimum schedule
length where multi-cycle operations like FP computations are
involved. This limitation of floating point execution is incurred
by address generation in the computation flow. Inconsistency
in address generations penalizes the effective spatial paral-
lelism in multiple floating-point computations when temporal
parallelism (pipelining) cannot be exploited. Typical CGRAs
like ADRES [1], Morphosys [8], IMAGINE [7] which sup-
port integer-based applications only do not possess dedicated
address generation unit (AGU). In these cases, the addresses
are part of the instruction and they are stored into the in-
struction memory as look up tables. This scheme results in
increased number of instructions which adds to the energy
consumption. For better area and energy efficiency, CGRA like
IPA [4] performs address calculation in software (i.e. address
generation is a part of the computation flow). Operations for
address generation are mapped onto the PEs. For integer and
fixed point based compute and control intensive applications,
such approach has been proven to be quite efficient. However,
for applications with multi-cycle floating point operations, the
software based address calculation causes serious performance
bottleneck due to asynchronous data-arrival to the PEs with
FPU. Asynchronous data access increases the minimum sched-
ule length of a DFG resulting in longer execution time.

Fig. 1 elaborates the minimum schedule length problem
due to asynchronous data arrival. In the Data Flow Graphs
(DFG's) operations and data dependencies are represented by
nodes and edges respectively. Weights of the edges correspond
to the execution latency of source operation nodes. Two
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Fig. 1: (a) Sample DFG with software based address gener-
ation; (b) The same DFG with different schedule length; (c)
DFG with decoupled address generation reducing the schedule
length; (d), (e), (f) ASAP schedule of the DFGs (a), (b), (c)
respectively

different scenarios of software based address calculation are
presented in the first two sub-figures. As Soon As Possible
(ASAP) scheduling of the two DFGs in Fig. 1 (a) and (b)
reveals that the address calculations are fully part of the
critical path of the DFGs. Two different minimum schedule
length suggests that software based address generation may
take different numbers of cycles depending on the location of
the index variable. For instance, early scheduling of the node
load2 in the critical path helps to achieve better minimum
schedule length of 15 in Fig. 1 (e) compared to 17 in (d).
Scheduling of load nodes determines the data arrival to the
computational units. To assure synchronous data arrival to the
PEs, we propose to decouple address calculation from the
computation flow as shown in the Fig. 1 (c¢) & (f), which
achieves the best schedule length.

Hardware address generation is a well defined problem in
modern DSP processors. Shami et al [10] propose a versatile
address generation scheme for stream data processing in
CGRAs. In this paper, we propose to use a flexible address
generation unit to complement the decoupling of address
generation from the computation flow to increase effective
parallelism in FP computations.

III. PROPOSED ARCHITECTURE AND COMPILATION FLOW
A. Architecture

The proposed CGRA is loosely coupled with a host CPU
(see Fig. 2). The CGRA subsystem consists of a Heteroge-
neous Processing Element Array (HPEA), a context memory
and a DMA controller. The CGRA shares data with the CPU
through a tightly coupled data memory (TCDM) with multiple
banks and a logarithmic interconnect.

The Context Memory stores configuration data (instruction
and constants) for each PE in the PE Array which are broadcast
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Fig. 2: CGRA integrated System and PE architecture

by the DMA controller. The configuration data is stored in
the respective memory segments of the PE prior to starting
of the execution. The HPEA consists of heterogeneous PEs,
connected with a mesh torus network for data sharing and
a bus network for context broadcast. To support floating
point operations, we have employed floating point multiplier,
adder/subtractor and divider/square-root units inside the PEs
as shown in the Fig. 2. In addition to the 32-bit ALU and
a Load-Store Unit (LSU), each PE consists of a Constant
Register File (CRF) which stores the immediate values of
the instructions, a Regular Register File (RRF) and Output
Register (OPR) to store temporary variables. The Controller
in the PE fetches instructions from the Instruction Register
File (IRF). A Flexible Address Generation Unit (FAGU) is
implemented in each PE, which facilitates random access to
the tightly coupled data memory for the LSUs.

B. Compilation flow

In the compilation flow, the CGRA is modeled by a bipartite
directed graph with two types of nodes: operator and register,
in which temporal aspect is implicitly represented by connec-
tions from registers to operators. Applications are modeled as
CDFGs. CDFG is composed of a Control Flow Graph (CFG)
and a set of basic blocks (BB) represented by DFGs. The
compilation flow finds the mapping of DFGs onto the CGRA
graph. Steps involved in the proposed compilation flow are
discussed chronologically below.

1) BB selection and multi-cycle operation serialization:
This step selects one basic block from the CDFG using
forward traversal-Breadth First Search (BFS) [2], and identi-
fies multi-cycle operations (floating point computations). The
operation nodes are then transformed by adding dummy nodes
equal to the number of the total cycles needed to perform the
operation. As an example, in the sample DFG of the Fig. 3 (a)
node 4 is a float operation that takes 3 cycles to compute. This
step transforms the DFG according to the Fig. 3 (b) (adding
4" and 4" sequentially). The transformed DFG is then passed
to the scheduling and binding step.

2) Scheduling and binding: The proposed approach uses a
backward traversal list scheduling algorithm to schedule the
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Fig. 3: Graph transformations used in the compilation flow

DFG nodes of each basic block. It relies on a heuristic in
which the schedulable operations are listed by priority order.
Priority of the nodes depends on their weight followed by
mobility and number of fan-outs. The weight of any node is
the execution latency in number of cycles.

The binding algorithm follows an incremental version of
the Levi’s [9] subgraph matching algorithm. Since this step
is exact in nature, the algorithm we propose adds the newly
scheduled operation node except the float operations and its
associated data node to the sub-graph composed of already
scheduled and bound nodes. Only the previous set of solutions
that have been kept are used to find every possibility to add
this couple of nodes without considering the non-yet scheduled
nodes.

For the floating point operation binding, the algorithm finds
the binding solution only for the first operation node among
all the dummy nodes (i.e. node 4 in Fig. 3 (b)). The tool
assigns same solution to rest of the transformed nodes (node
4’, 4" in Fig. 3 (b)). This way, the binding of the floating point
operation satisfies multi-cycle operations onto the CGRA with
static scheduling.

3) Dynamic Transformation: If binding step does not find
any solution for the current node, the graph is transformed on
the fly. The transformation either reroutes the operation (Fig. 3
(c)) or distributes the fan-outs (Fig. 3 (d)) to satisfy available
connectivity constraints of the CGRA node.

4) Stochastic Pruning: Exactness of the placement ap-
proach leads to very large number of partial mappings. It
grows exponentially if not pruned. Hence, we use the stochas-
tic pruning approach described in [3].

After mapping all the nodes in the current basic block, the
flow selects another basic block for DFG transformation and
mapping, and apply the flow described in this section. Once,
all the basic blocks are mapped, the compiler generates an
assembly containing a single mapping for the entire CDFG.

IV. EXPERIMENTS AND RESULTS

This section analyzes the implementation results of the
proposed CGRA, providing an estimation of the performance,
area, and energy efficiency when running dimensionality re-
duction of seizure detection algorithm. The dimensionality
reduction is based on principal component analysis (PCA) and
composed of five kernels where Singular Value Decomposition

TABLE I: Area in pm?

CGRA | RISC-V CPU
DMA controller 593
interconnect 6,273
Context memory 9,345
TCDM 65,164
HPEA 122,692
Total Area 204,067 106,759

(SVD) is performed by three of these kernels. SVD is a well-
known algorithm that computes eigenvalues and eigenvectors
of a co-variance matrix. The method transforms the starting
matrix into a bi-diagonal form through successive Householder
matrices followed by diagonalizing the matrix through Givens
matrices [12]. The output of this procedure is the eigenvectors’
matrix, used to find the Principal Components (PCs).

A. Implementation Results

This section describes the implementation results of the
proposed CGRA accelerator, providing a comparison with a
low power RISC-V based processor [6]. This core is highly
optimized for DSP benchmarks and features SIMD extensions,
including dot-product and shuffle instructions, and misaligned
load support that greatly reduce the load-store traffic to data
memory while maximizing computational efficiency.

Both the CGRA and CPU RTL implementations were
synthesized with Synopsys design compiler 2014.09-SP4 in
STMicroelectronics 28nm UTBB FD-SOI technology. Synop-
sys PrimePower 2013.12-SP3 was used for timing and power
analysis at the supply voltage of 0.6V, 125°C temperature,
in typical process conditions. In this operating condition the
CGRA and the RISC-V CPU operates at 50 MHz. The
Context Memory of the CGRA was sized at 4 KB, to fit
both instructions and constants of the HPEA. The TCDM is
sized at 32 KB with 4 memory banks. The implementation
considers an HPEA consisting of a 4x2 PE array, each PE
including 20x64-bit IRF, a 32x8-bit RRF and 32x16-bit CRF.
The PE array is sized to support DSP and bio-signal processing
applications. We do not focus on design space exploration,
since this is out of the scope of this paper. Each of the
PEs in the top row consists of Floating point multiplier and
adder/subtractor. To perform the very few divide and square
root operations that are present in the targeted EEG kernels,
one floating point divider/square-root unit is employed in the
HPEA. For area comparison, the RISC-V CPU includes 32 KB
of data memory and 1 KB of instruction cache, which is
equivalent to the design parameters of the proposed CGRA.

Table I shows the area breakdown of the CGRA and compar-
ison with a RISC-V CPU. A complete area breakdown (Fig. 4)
of the PE containing floating point multiplier, adder/subtractor
depicts FPU almost acquires 25% area of the PE, whereas the
memory components RRF, CRF, IRF takes around 7%, 13%
and 28% respectively. ALU and FAGU together covers 21%
of the PE area. In this paper for fair comparison and to achieve
similar accuracy, we employed the same IEEE compliant FPU
that is used by the RISC-V core.
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TABLE II: Performance comparison in cycles

CGRA CGRA Gain in
Kernels without | with RISC-V | CGRA

FAGU | FAGU with FAGU
mean 734,934 | 300,050 | 732,377 2.44x
covariance
accumulate 94,018 48,877 66,334 1.36x
householder | 211,113 | 125,375 | 132,870 T.06x
diagonalize | 257,488 | 84,186 | 175,092 2.08x
PC 268,800 | 105,993 | 488,252 4.61x

B. Performance Results

This section provides performance comparison between
the proposed CGRA and the RISC-V running PCA kernels.
Additionally, we have presented performance results for the
CGRA version where address is computed in software. Table II
presents latency (in cycles) information executing the kernels
computing PCA in the EEG analysis. The CGRA execution
achieves a speed-up up to 4.64x with an average of 2.3x. It
is to be noted that the performance gain in the kernels like
accumulate, householder and diagonalize is less than the gain
in the kernels like PC computation and mean-covariance. Due
to heavy control intensive nature of these kernels (accumulate,
householder and diagonalize), the compiler is unable to exploit
instruction level parallelism efficiently. The table also indicates
that due to long schedule performance degradation for floating
point computations, CGRA without FAGU did not achieve any
performance gain.

C. Energy Consumption & Efficiency

Following the considerations of the Section 4.1, here we
present energy efficiency of the CGRA compared with the
RISC-V CPU. Table III compares the energy consumption in
pJoule while running different kernels in the CGRA and CPU.
The table shows that the CPU energy consumption surpasses
the CGRA by up to 3.3x with an average of 1.86x.

TABLE III: Energy consumption comparison in pJoule

Kernels CGRA | RISC-V | Energy gain
mean-covariance 3.24 5.71 1.8x
accumulate 0.38 0.52 1.4x
house_holder 1.02 1.04 1x
diagonalize 0.8 14 1.8x
PC 1.14 3.8 3.3x
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Fig. 5: Energy efficiency compared to the RISC-V CPU

For the execution in CGRA, Million Operations Per Second
(MOPS) only considers the active PEs during execution, since
a PE may be idle due to TCDM bank access conflicts,
consecutive NOPs or unused in the application execution.
Executions with high number of active PEs/cycle achieve large
MOPS. Fig. 5 shows due to highly control intensive nature of
the accumulate and diagonalize, the CGRA achieved efficiency
of 90 and 99 MOPS/mW respectively. CGRA achieves a
maximum of 156 MOPS/mW energy efficiency for the mean-
covariance which is 6.5x higher compared to the RISC-V
CPU which has the efficiency of 24 MOPS/mW. For the
householder and PC, CGRA achieves an efficiency of 115 and
138 MOPS/mW respectively.

V. CONCLUSION

This paper presents an energy efficient CGRA and associ-
ated compilation flow to perform floating point application ac-
celeration. Supporting floating point (or more generally multi-
cycle operations) must go along with hardware based address
generation unit which decouples the address generation from
the execution flow to leverage parallel arbitrary data accesses.
The novel architectural approach proposed in this paper re-
duces the complexity and size of the instruction memory in the
traditional CGRAs which do not possess a dedicated address
generation unit. Thanks to the efficient compilation flow, the
architecture exploits instruction level parallelism efficiently
while running floating-point computations compared to the
software based address calculation scheme. Case study on the
EEG application shows that the proposed CGRA achieves an
average of 120 MOPS/mW energy efficiency which is around
5x higher than the RISC-V CPU with an area overhead of
1.9 only.
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