
HAL Id: hal-02614865
https://hal.science/hal-02614865v1

Submitted on 21 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

LDSF: Low-latency Distributed Scheduling Function for
Industrial Internet of Things

Vasileios Kotsiou, Georgios Papadopoulos, Periklis Chatzimisios, Fabrice
Theoleyre

To cite this version:
Vasileios Kotsiou, Georgios Papadopoulos, Periklis Chatzimisios, Fabrice Theoleyre. LDSF: Low-
latency Distributed Scheduling Function for Industrial Internet of Things. IEEE Internet of Things
Journal, 2020, 7 (9), pp.8688-8699. �10.1109/JIOT.2020.2995499�. �hal-02614865�

https://hal.science/hal-02614865v1
https://hal.archives-ouvertes.fr

LDSF: Low-latency Distributed Scheduling
Function for Industrial Internet of Things

Vasileios Kotsiou, Georgios Z. Papadopoulos, Member, IEEE, Periklis Chatzimisios, Senior Member, IEEE,
Fabrice Theoleyre, Senior Member, IEEE

Abstract—The Industrial Internet of Things (IIoT) is expected
to be a key enabler for the Industry 4.0. However, networked
control automation often requires high reliability and a bounded
latency to react properly. Thus, modern wireless protocols for
industrial networks, such as IEEE 802.15.4-2015 Time Slotted
Channel Hopping (TSCH), rely on a strict schedule of the
transmissions to avoid collisions and to make the end-to-end
traffic deterministic. Unfortunately, guaranteeing a bounded end-
to-end latency is particularly challenging since transmissions have
to be temporally chained. Even worse, potential degradation
of the link quality may result in reconstructing the whole
TSCH schedule along the path. In this article, we propose
the Low-latency Distributed Scheduling Function (LDSF) that
relies on the organization of the slotframe in smaller parts,
called blocks. Each transmitter selects the right set of blocks,
depending on its hop distance from the border router, so that
retransmission opportunities are automatically scheduled. To save
energy, a node can still turn off its radio as soon as its packet
is correctly acknowledged. Our mathematical analysis as well as
our simulation evaluation show the efficiency of the proposed
LDSF algorithm compared to three state-of-the-art scheduling
functions, the Minimal Scheduling Function (MSF), Low Latency
Scheduling Function (LLSF) and Stratum.

Index Terms—Industrial Internet of Things; Distributed
Scheduling; End-To-End Delay; High Reliability

I. INTRODUCTION

The Industrial Internet of Things (IIoT) consists of a
large collection of wireless sensors and actuators for various
industrial applications. Typically, networked control systems
comprise of sensors, actuators and a controller [1]. The sensors
send their measurements regularly to a controller. According
to this feedback, the controller may trigger a reaction by
activating some actuators. This control loop has to react in
real-time.

Industry 4.0 is expected to rely heavily on the IIoT to make
the manufacturing process reconfigurable [2]. For instance,
industrial robots tend to exploit wireless communications
since cables are prone to breakage after a few thousands of
flexions [3]. The network topology can also be changed easily
to reconfigure the production lines [2]. Most of the industrial
applications require a highly reliable communication network,
with a bounded end-to-end latency to react appropriately.

This work was supported by the French National Research Agency
(ANR) project Nano-Net under contract ANR-18-CE25-0003.

V. Kotsiou and F. Theoleyre are with the ICube Laboratory, CNRS / Uni-
versity of Strasbourg, 67412 Illkirch, France, (e-mail: lastname@unistra.fr).

G. Z. Papadopoulos is with the IRISA, IMT Atlantique, UBL, 35510
Cesson-Sévigné, France, (e-mail: georgios.papadopoulos@imt-atlantique.fr).

P. Chatzimisios is with Department of Science and Technology, Inter-
national Hellenic University (IHU), 57001, Thessaloniki, Greece (e-mail:
pchatzimisios@ihu.gr).

Typically, big data requires to collect a large amount of
measurements to create an intelligent manufacturing sys-
tem [4]. For instance, predictive maintenance helps to replace
hardware before a failure/breakdown targeting to decrease the
shutdown time [5]. We here focus on the end-devices of the
Industrial Internet of Things, that use wireless transmissions
to send/receive their packets. To reduce the deployment cost,
some of the devices may forward the packets from others in
order to reach a gateway with a wired connection. The devices
are battery-operated and need to turn off regularly their radio
chipset to save energy. Thus, a transmitter must know when
the receiver will schedule its next wake-up. In the rest of this
article, we will use the term node to designate all these devices,
that generate and forward data packets.

To cope with these constraints, deterministic Medium Ac-
cess Control (MAC) protocols have been proposed in the
literature. These proposals rely on a strict schedule of the
transmissions: only non-interfering transmissions are triggered
at the same time to alleviate collisions. Moreover, slow channel
hopping strategies help to increase network capacity and to
combat external interference.

IEEE 802.15.4-TSCH typically adopts these strategies [6].
A scheduling matrix is composed of cells, defined by a times-
lot (when to transmit the packet) and channel offset (which
physical channel to use). Thus, the scheduling algorithm has
to allocate a certain number of cells to each transmitter. Since
a cell is designed to contain at most one packet transmission
and its acknowledgment, the number of cells represents di-
rectly a number of transmission opportunities. IEEE 802.15.4-
TSCH supports both centralized and distributed scheduling
algorithms [7], denoted as Scheduling Functions.

Since we rely on a wireless infrastructure, the receiver may
not always be able to decode a packet due to potential external
interference or multi-path fading. Thus, the transmitter has
to retransmit the corresponding packet through another cell.
Consequently, the scheduling function needs to allocate several
cells for each hop of the path, inversely proportional to its link
reliability metric [8].

Guaranteeing a maximum end-to-end delay requires to chain
the timeslots along the path: a node has to receive the packet
before being able to forward it. However, this sequential
scheduling has a negative impact on the end-to-end delay:
a packet can be forwarded only after all the retransmission
cells. In addition to this, a local change of the link quality
may imply a whole schedule reconfiguration along the path.

In this article, we propose a Low-latency Distributed
Scheduling Function (LDSF) tailored to minimize the latency,
while providing high reliability. We address the problem of
designing a scheduling algorithm that provides low end-to-end

delay even in the presence of retransmissions. LDSF is able
to schedule a large number of retransmissions to handle the
worst-case situation and to minimize the buffering delay where
the over-provisioned cells are chained. The contributions of
this article are as follows:

1) We design a novel organization of the slotframes, di-
vided into repetitive short blocks. Chaining the blocks
reduces drastically the overall end-to-end delay. More-
over, a transmission opportunity is automatically re-
served in consecutive blocks to deal with retransmis-
sions;

2) We define the concepts of primary and ghost cells to save
energy. While the primary cell corresponds to the earliest
expected reception time, ghost cells are automatically
reserved to deal with retransmissions, while limiting the
impact on the delay;

3) We provide a mathematical analysis of the average end-
to-end latency of the state-of-the-art scheduling algo-
rithms defined to minimize latency, including our LDSF
algorithm;

4) Simulations help us to investigate more complex scenar-
ios and highlight the practical interest of our proposed
scheduling function.

The rest of the article is organized as follows. Section II
provides the technical background and overviews the related
work on slow channel hopping and specifically scheduling.
Section III details the impact of the reliability on the delay
when scheduling the transmissions. Section IV describes the
proposed Low-latency Distributed Scheduling Function to
organize properly the transmissions targeting to reduce the
end-to-end delay. Section V provides a mathematical analysis
of the delay provided by different state-of-the-art solutions,
while Section VI presents a performance evaluation based on
simulations to assess the performance. Finally, Section VII
concludes this article and provides future perspectives.

II. TECHINICAL BACKGROUND AND RELATED WORK

In this section, we will detail the default operations of the
IEEE 802.15.4-TSCH and 6TiSCH standards, and present the
existing scheduling algorithms that focus on the end-to-end
delay minimization.

A. Industrial Stack

1) IEEE 802.15.4-TSCH: Relies on channel hopping to
combat external interference and signal fading [6]. The pro-
tocol relies on a classical Automatic Repeat reQuest (ARQ)
approach, where a packet is retransmitted if no acknowledge-
ment is received.

The slotframe contains a fixed number of timeslots, during
which a frame and its acknowledgment are transmitted. Each
timeslot is labelled with an Absolute Sequence Number (ASN)
which serves as a global clock, counting the number of
timeslots since the network bootstrapped. Based on a schedule,
a node can decide its role at the beginning of each timeslot.
Typically, a node can transmit if the cell is in Transmitting
mode in the schedule, and stays awake to possibly receive
a packet if the cell is in Receiving mode. If the cell is

A

DC

B

E

BE

CD

AB DE

broadcast
(shared cell)

timeslots

channel
offsets

unicast
(dedicated cells)

radio link

routing link
(parent)

0
1
2
3

0 1 2 3

Fig. 1: TSCH schedule for a 5 nodes topology.

allocated to the node, the physical frequency to use for
transmission/reception is derived from the ASN of the timeslot
and the channel offset, following a pseudo-random approach.

The standard supports two medium access techniques:
• Shared cells are contention-based cells that can be used

by multiple possibly interfering transmitters. A node
dequeues a packet and transmits it immediately in the
next shared cell. If an acknowledgement was required
and was not received, the transmitter assumes a collision
occurred and selects a random backoff, skipping the
corresponding number of shared cells;

• Dedicated cells are contention-free cells and are allocated
carefully to avoid collisions. Thus, a transmitter does
not implement any random access during these cells.
However, a packet can be retransmitted if no acknowl-
edgement is received, due to a bad radio link quality or
external interference.

Let us consider the topology illustrated in Figure 1. One
shared cell is placed at the beginning of the slotframe for
best-effort control traffic and broadcast packets. Then, each
node has a dedicated cell to send packets to its neighbors.

2) 6TiSCH: The IETF Working Group has defined a stack
of protocols to operate IPv6 on top of the IEEE 802.15.4-
TSCH standard. In particular, the standard makes a distinction
between how to negotiate the cells, with the 6P protocol [9],
and the Scheduling Function (SF) that represents the schedul-
ing algorithm. The Scheduling Function defines a method to
compute the number of cells, and which ones to pick in the
scheduling matrix for each link. Then, a 6P transaction is
engaged: a two-way handshake takes place over the shared
cells. More specifically, the sender transmits a list of available
cells to the receiver with a 6P request in unicast. Consequently,
the receiver verifies if all (or part of) these cells are available
in its schedule and sends a 6P reply accordingly.

B. Scheduling Approaches

1) Centralized scheduling algorithms: Determine the cells
to be allocated to each link in order to respect end-to-end
delay and reliability constraints. TASA [10] applies graph
theoretical tools to derive a compact schedule, and thus to
increase the network capacity. Additional cells can be reserved
in the schedule to deal with packet losses due to unreliable
links [11]. SchedEx reinforces the schedule by allocating more
transmission opportunities to the different flows while still
respecting the end-to-end delay constraints [12]. However,

centralized algorithms need a precise view of the network
conditions, and generate a large overhead when the schedule
has to be updated.

2) Distributed scheduling algorithms: These algorithms are
rather traffic adaptive. Typically, a hysteresis function decides
how many cells to reserve, (de)allocating some of them
to maintain the number of cells between two bounds [13].
Colliding cells are detected autonomously and moved in the
slotframe. To deal with unreliable links, additional cells have
to be provisioned for retransmissions: the number of cells
should be at least equal to the inverse of the packet delivery
ratio of the link, multiplied by the number of packets in
the queue [8]. PID based scheduling uses the well-known
proportional, integral, and derivative algorithm to decide how
many cells to reserve when a burst arrives [14]. Inversely,
cells are maintained in the schedule to possibly retransmit the
packets if required in the future. While these solutions decide
how many cells to use, the scheduling algorithm has also to
select the right ones to reduce the end-to-end delay.

Minimizing the end-to-end delay is also of primary im-
portance since many industrial applications rely on deadline
constraints. Stratum scheduling [15] divides the network into
stratums, regrouping the nodes by their hop distance from
the border router. By picking the cells in the corresponding
stratum, the system guarantees that the packet is delivered
before the end of the slotframe, even if the packet is retrans-
mitted. Hosni et al. [16] derive the right size of each stratum
to minimize the collision probability. However, the packet is
guaranteed to be delivered at the end of the slotframe, which
may correspond to a very long delay. Furthermore, stratum
scheduling does not allow frequency re-use.

ReSF [17] targets recurrent traffic with strict latency re-
quirements. Some cells are pre-reserved in the schedule for
these sporadic flows, allocating several cells per hop to cope
with retransmissions. The cells are chained along the path to
minimize the end-to-end delay. The Low Latency Scheduling
Function (LLSF) [18] attempts to move the transmitting and
receiving cells closer in the schedule to reduce the buffering
delay. However, a change in the link quality may result in
changing the whole schedule in the path.

Anycast helps to allocate the same cell to several receivers:
a transmission is successful if any of the receivers is able to
decode it. If we select the right number of parents, we can limit
the impact on the energy consumption [19]. Sending several
copies of the same packet through different paths may help
to improve the reliability while reducing the jitter [20]. These
techniques do not focus on the end-to-end delay optimization.

Handling unreliable links is of prime importance for low-
power and lossy networks. We need to propose a scheduling
algorithm able to provide a low delay, even if a packet has to
be retransmitted along the path to the border router. We will
detail hereafter the challenges to tackle to reach this objective.

III. PROBLEM FORMULATION AND OBJECTIVES

Centralized scheduling algorithms require the whole radio
and interference topology knowledge, while they are not
adaptive to changes. Thus, in this article, we rather propose a

TABLE I: Notation.

Pll(A,B) Probability that A receives the acknowledgement
from B (packet delivery ratio at the link layer)

Pnet(A,B, k) Probability that A receives at least one ack from B
after k retransmissions (packet delivery ratio at the
network layer)

MaxRetries Maximum number of retransmissions
nbretx Current number of retransmissions for a given packet

Cells(Ni, Ni+1) number of cells from Ni to Ni+1

SF length Slotframe length (in timeslots)
BLength Block length (in timeslots)
p = {A..B} path from A to B
hopdelay hop delay, considering the link-layer retransmissions
E2Edelay end-to-end delay
Hops the hop distance between the forwarding node and

the source of the packet
Bid block id (number of blocks from the beginning of

the slotframe)
RxSlotId receiving timeslot (in the 6P request if received by

the radio chipset, or given by the application layer
if the packet is generated locally)

NbGhostCells the number of ghost cells to add in the schedule for
this flow

NL Network lifetime
Lfi Node’s lifetime for the node i

distributed Scheduling Function to optimize both the following
performance metrics:
End-to-end delay: The packet has to be delivered to the

border router before a certain deadline constraint;
Reliability: Even if links are unreliable, the system has to

schedule retransmissions to guarantee a minimum end-
to-end Packet Delivery Ratio (PDR).

Guaranteeing end-to-end delay is actually very challenging,
since we have to also consider queuing delays. Let us consider
Figure 1. Typically the links CD and DE are scheduled in
two consecutive cells, and the delay is minimal. On the
contrary, the links BE and AB are scheduled inversely and the
packet has to be enqueued in B until the next slotframe. The
slotframe may be very long since we can handle very infre-
quent transmissions. The slotframe duration should typically
be equal to the inter-packet time. With heterogeneous periods,
the slotframe length should be equal to the least common
multiplier of all the packet’s periods.

A. Providing High-Reliability
Unreliable links require retransmissions. However, most of

the algorithms provision cells for the average case. Typically,
most scheduling algorithms allocate 2 cells if the PDR is equal
to 50%. If a packet needs more retransmissions, they will be
scheduled in the next slotframe, which may be very long.

Let us assume that a link provides a PDR of Pll(link),
i.e., ratio between the number of packets acknowledged by
the receiver with respect to the total amount of sent packets.
We assume here that k different cells are allocated, and thus,
the transmitter can transmit at most k times this frame. The
packet will be delivered from the transmitter A and correctly
acknowledged by the receiver B within the current slotframe
with the following probability:

Pnet(A,B, k) =
∑

i∈[1,k]

(1− Pll(A,B))i−1 ∗ Pll(A,B) (1)

P (A,B)

P (A,B)
ll

net

Number o
f cells

in the sc
hedule

Fig. 2: Probability to receive correctly the packet (Pnet())
depending on the link reliability of the link (Pll()) and the
number of cells allocated in the schedule.

A

D

B

C10720 3 964 5 81

80%

80%
65%

Per link
Packet Delivery

Ratio
(P)

P =1-(1-P) =0.992 P = 1-(1-P) =0.994
3 5

Number of cells

ll

llnet ll net

Fig. 3: Scheduling consecutive ranges of cells to limit the end-
to-end delay.

We assume here that all cells provide the same Packet Error
Rate (PER) for a given link. Indeed, the frequency hopping
scheme helps to mitigate external interference, so that the PER
is the same for any cell [13].

Figure 2 illustrates a numerical analysis of the network
reliability (Pnet()) achieved, depending on the link quality of
the link (Pll(A,B)) and the number of cells provisioned in the
schedule for the (re)transmissions. Increasing the number of
cells allows the transmitter to retransmit the packet. However,
we need a very large number of cells to achieve a very high
reliability. For a Packet Delivery Ratio of the link (Pll()) of
50%, we need 7 cells to achieve a 99% delivery to the next
hop, after the retransmissions.

B. Delay Constraint with Dynamic Scheduling

Some scheduling algorithms reserve a range of consecutive
cells for retransmissions to optimize the end-to-end delay [21].
The number of cells in this range has to be sufficient to handle
the worst case situation, with possibly a very large number of
cells (Eq. 1). Thus, the delay is proportional to the worst case,
since it corresponds to the sum of the ranges along the path.
Furthermore, negotiating cells is expensive since 6P control
packets use shared cells, which are prone to collisions and,
thus, increasing the convergence delay [8].

Even worse, such approach is inaccurate for dynamic net-
work conditions. Indeed, a node may detect a change in the
PDR, and has in that case to increase the number of cells with
its parent. Unfortunately, the cells are chained along the path.

Thus, inserting a novel cell requires to re-schedule all the cells
until the border router. This renegotiation is time-consuming,
and implies packet drops before the re-convergence.

Let us now consider the schedule illustrated in Figure 3. The
first two hops provide a reliability of 80% and 3 cells have
to be provisioned to provide a per link reliability of 99%.
However, inserting a novel cell for the link (AB) is expensive:
we have to move all the subsequent cells. Otherwise, we have
to place the retransmission cell after the 10th cell, requiring
to reserve novel cells for the rest of the path.

Stratum [15] tackles this reconfiguration problem by divid-
ing the whole slotframe into stratums (one stratum per hop).
However, this organization reduces the network capacity, and
the end-to-end delay can only be the slotframe length.

C. Objectives of LDSF

Our proposed Low Latency Distributed Scheduling Function
(LDSF) relies on the following features:
• Slotframe organization (in blocks): We reduce the end-

to-end delay by chaining appropriately the blocks. All
nodes that are at an even number of hops (respectively
odd) from the border router are scheduled during the even
blocks (respectively odd). This way, the packet progresses
on average by one hop at the end of each block.

• Cell allocation in sequence: A node identifies automati-
cally the expected earliest arrival of a packet to schedule
cells to forward the packet. Then, the node reserves a
cell in the next block, to minimize the buffering delay.
Additionally, it also reserves the same cell every two
blocks to cope with retransmissions. This way, a node can
proceed to a large number of retransmissions, to handle
the worst case.

• Energy Saving: The receiver wakes-up only when a
packet may be received (earliest time of arrival). We also
keep a deterministic behavior, without any false negative.

IV. LOW-LATENCY DISTRIBUTED SCHEDULING FUNCTION

We here consider very long slotframes, where packets are
generated infrequently but in a periodic manner. We propose
to organize the long slotframe to reduce the end-to-end delay,
by using smaller parts, that we call blocks (Fig. 4).

A. Slotframe organization

We here consider sporadic traffic, where each sensor reports
periodically its measurements to a border router. Thus, the
slotframe length has to be equal to the least common mul-
tiplier of all the traffic periods. Consequently, in each long
slotframe, shared cells are reserved for control traffic, such as
6P packets. One dedicated cell is also reserved for each node
to send its unicast control packets corresponding to routing
or synchronization. All data packets are transmitted through
dedicated cells, that each pair of nodes has to reserve.

We propose to organize the long slotframe into small blocks
that repeat over time. To reduce the end-to-end delay, we have
to limit the buffering delay when a packet is retransmitted. By
reserving consecutive blocks for retransmissions, the buffering

CD

BCBC

CDCD

ACAC

1 2 31 2 3 4 5 64 5 6 7 8 97 8 9 10 11 1210 11 12 13 14 1513 14 15 16 17 1816 17 18 19 20 2119 20 21 22 23 2422 23 24

block 0 block 1 block 2 block 3 block 4 block 5 block 6 block 7

D
B

A

C
AC

AC
CDCD

primary

ghost
overlaping cell of F1, F2 on link CDcell of F1 on link AC

25 26 2725 26 27

block 8

28 29 3028 29 30

block 9

0

shared cell

Timeslot

Slotframe

CD

31 32 3331 32 33 34 35 3634 35 36

block 10 block 11

CD CD

AC primary

ghost
cell of F2 on link BC

BC

BC

Fig. 4: Slotframe organization in blocks, where MaxRetries = 1
.

delay is proportional to the block size. Thus, we divide here
the slotframe into small blocks with a few timeslots.

A packet is typically received during a block, and forwarded
during the next one. Thus, a transmitter selects its block
according to its hop count from the border router. More
precisely, each block has a block id, that counts the number
of blocks since the beginning of the slotframe. We have
consequently even blocks (with an even block id), and odd
blocks (with an odd block id). A transmitter has to select a
block, so that the remainder of the Euclidean divisions of the
hop count and of the block id by 2 are equal. More formally,
a transmitter can select any cell in the blocks which respect
the following property:

HC (mod 2) = Bid (mod 2) (2)

where HC denotes the hop count from the transmitter to the
border router, and Bid the block id.

Let us consider the topology and the LDSF schedule illus-
trated in Figure 4. The node A is two hops away from the
border router, and the packet is assumed to be generated in
the timeslot 0. It must select a block with an even block id (2
(mod 2) = 0). In our example, it selects the timeslot 2. The
node C is 1 hop away from the border router, and considers
only the blocks with an odd block id. It selects the block 1 (the
consecutive block), and reserves one cell (here, the timeslot 5)
to forward the packets from A. The blocks are daisy-chained,
the packet received during the block i being forwarded in the
block i+ 1.

We make a distinction between the following types of cells:

• Shared cell for control packets in broadcast (Enhanced
Beacons, routing advertisements), and control packets in
unicast when no dedicated cell has been reserved (i.e.,
6P requests/replies);

• Primary (dedicated) cell corresponds to the earliest ex-
pected reception time of the data packet from the previous
hop (or from the application layer);

• Ghost (dedicated) cells correspond to the retransmission
opportunities, that are automatically used by the transmit-
ter if it did not receive an acknowledgment for its pre-
vious transmission. The ghost cells are scheduled in the

same timeslot and channel offset as for the corresponding
primary cell, but in the subsequent blocks.

When a node reserves a primary cell in a block, a fixed num-
ber of ghost cells is automatically reserved every two blocks.
Thus, we can daisy chain the transmission opportunities along
the path: a node is able to receive a packet during a block,
and forward it during the subsequent blocks. This way, we
maintain a low end-to-end delay.

A link quality degradation means more retransmissions: in
classical scheduling algorithms, we would need to reserve
additional cells. Here, we pre-reserve a large number of cells,
at the very beginning, to cope with the worst link qualities.
Thus, the number of ghost cells (for retransmissions) is fixed,
whatever the link quality.

Besides, the impact of the retransmissions on the end-to-end
delay is limited since the blocks comprise a small number
of timeslots. We use the Automatic Repeat reQuest (ARQ)
feature of IEEE 802.15.4-TSCH: the transmitter schedules a
retransmission in the next ghost cell only if it does not receive
an acknowledgement for its previous transmission.

B. Number of Ghost Cells

We have now to compute the number of ghost cells to
provision for the retransmissions.

1) Standard case: The delay induced by the retransmis-
sions is cumulative along the path. Thus, we have to cope
with the worst case: a packet may be retransmitted at most
MaxRetries times by each transmitter in the path. The latest
time of arrival corresponds to the last RX ghost cell (e.g., C
receives the packet from A at the latest during the timeslot 8
in Fig. 4).

We make here a distinction between the source of the flow
that generates a data packet, and a transmitter that forwards
this packet. The first transmitter in the path corresponds
trivially to the source. We can note that the number of ghost
cells is proportional to the hop distance from the source.
More precisely, a transmitter has to provision (MaxRetries∗
(Hops+1)) ghost cells for the retransmissions, where Hops
denotes the hop distance from the source to the transmitter.

In Figure 4, A is the source (Hops = 0) and provisions one
primary cell (timeslot 2) and one ghost cell (timeslot 8). For

the node C, it is one hop away from the source (Hops = 1).
Thus, C allocates for the flow F1 one primary cell (timeslot 5)
and 2 ghost cells (MaxRetries ∗ (Hops+ 1)). We can note
that the node C can receive the packet through the primary
or the ghost cells. Thus, even if it receives a packet during
the last ghost cell (timeslot 8), it has still two transmission
opportunities (timeslots 11 and 17) for one transmission, and
one retransmission.

2) Overlapping case: Some flows may overlap, i.e., one
relaying node uses the same ghost cells for two different flows.
For instance, flows F1 and F2 are both forwarded by the node
C, where some ghost cells are in common for both flows. A
node can easily detect an overlap when receiving a 6P request:
the primary cell corresponds to a ghost cell already reserved
for another flow.

Even with this overlap, we must be sure to have enough
ghost cells to handle the worst case. Let us consider the two
following cases:

Case 1) the node receives a packet from the novel flow (F2)
while a packet from the previous flow (F1) is already in the
queue. By construction, the first flow F1 has still enough ghost
cells to handle MaxRetries retransmissions. At the latest, the
packet for the flow F2 is received while only MaxRetries+
1 ghost cells remain in its schedule (primary transmission +
retransmissions). Thus, we need to provision MaxRetries+1
ghost cells for the novel flow F2, after the ghost cells that
would have been allocated to the flow F2.

Case 2) the node receives a packet from the novel flow
(F2) while the packet from the other flow (F1) was not yet
received. For the same reason, the node has enough ghost cells
for F2 for MaxRetries retransmissions. Thus, we have also
to insert in that case MaxRetries + 1 additional ghost cells
at the end of the range, but they will be used to forward the
packet for the flow F1.

In conclusion, it is sufficient to provision MaxRetries+1
additional ghost cells when an overlap is detected, whatever
the hop distance from the source.

C. Scheduling process
We now detail how the cells are reserved by each pair

of nodes. Shared cells are only used for signaling, i.e.,
sending/receiving the 6P packets to negotiate which dedicated
cells to use. A 6P request typically piggybacks a list of
possible (dedicated) primary cells. The (dedicated) ghost cells
are automatically derived from a primary cell. The receiver
sends a 6P reply to the transmitter to validate the reservation.
Since no dedicated cell is present in the schedule, the 6P
packets use the shared cell.

A novel allocation is triggered when a node receives either
a 6P request from the previous hop or directly the packet
from the application layer. Thus, we propose the following
procedure (see Algorithm. 1):

1) First of all, we need to allocate the receiving cells if we
receive a 6P request. We reserve in Receiving mode all
the timeslots every 2 blocks (lines 1-7), located after the
timeslot specified in the 6P request.
We allocate one primary cell, and (MaxRetries∗Hops)
ghost cells for the retransmission. The value Hops

Algorithm 1: Cell allocation process
Input:
Schedule: the current schedule
Hops: the hop distance between the node and the source of the
packet
RxSlotId: receiving timeslot (in the 6P request if received by the
radio chipset, or given by the application layer if the packet is
generated locally)
SF length: slotframe length
BLength: block length
Output:
Schedule: the schedule updated with the novel cells
// Allocation of the slots in Receiving mode,

only if the packet is received from the
radio chipset

1 if packetNotReceivedFromApplication() then
2 for nbretx ∈ [0,MaxRetries ∗Hops] do
3 ChOff ← pseudoRandom(0, NbChannels− 1)

// select the timeslots at regular
intervals (every 2 blocks) after the
timeslot present in the 6P request

4 TsOffset←
(RxSlotId+ nbretx ∗ 2 ∗ BLength)% SF length

5 Schedule.AddCell(TsOffset, ChOff,′RX′)
6 end
7 end
// Identify the block which is located just

after the first receiving timeslot
(allocated in the previous loop)

8 TxSlotId←
(RxSlotId+ (RxSlotId % BLength))% SF length

// Allocation of TxSlot (transmitter side)
9 if node 6= BorderRouter then

10 NbGhostCells←MaxRetries ∗ (Hops+ 1)
// If we have overlapping flows, pick-up the

TX cell already allocated in the block
11 if GetBusyTXSlotnBlock(TxSlotId) 6= ∅ then
12 {TxSlotId, ChOff} ←

GetBusyTXSlotnBlock(TxSlotId)
// ghost cells to handle queuing delays

13 NbGhostCells← NbGhostCells+MaxRetries+ 1
14 else

// Select randomly one timeslot in the
block

15 TxSlotId← TxSlotId+ random(BLength)
16 ChOff ← pseudoRandom(0, NbChannels− 1)
17 end

// Allocates the corresponding slots in the
schedule (every 2 blocks)

18 for nbretx ∈ [0, NbGhostCells] do
19 TsOffset←

(TxSlotId+ nbretx ∗ 2 ∗ BLength)% SF length
20 Schedule.AddCell(TsOffset, ChOff,′ TX′)
21 end
22 end
23 return Schedule

comes from the fact that the receiver for the 6P request
is one hop farther from the source than the transmitter.
Please note that the pseudo-random function
pseudoRandom() is executed with the same
argument by the receiver and the transmitter to derive
the same channel offset (lines 3, and 16).

2) We identify the block which is directly located after the
block of the first receiving timeslot (line 8). We will
schedule the TX cells after this block;

3) We have to allocate the primary cell, and
(MaxRetries ∗Hops) ghost cells (line 10);

4) We have then to make a distinction between the two
possible cases:

• Overlapping flows: A cell in this block is already
assigned (line 11). Thus, the allocation will re-use
the same timeslot and channel offset (line 12). We
have also to allocate (MaxRetries+ 1) additional
ghost cells to handle the worst queuing delay with
the overlapping flow (line 13).

• No-overlap: We select randomly the timeslot and
channel offset (line 15-16).

5) When we have determined the number of ghost cells,
and the first timeslot to allocate, we can proceed to
the allocation (lines 18-21). It is worth noting that with
overlapping flows, some TX cells may be reserved by
several flows (e.g., timeslot 11 in Fig. 4).

Let us illustrate this scheduling algorithm with Figure 4. For
the sake of better representation, we assume that the maximum
number of retransmissions is equal to one (MaxRetries = 1):
• As explained previously, A selects a cell in the block

0. It also reserves automatically one associated ghost
cell (MaxRetries ∗ 1 hop) in block 2. After the 6P
reservation, the primary and ghost cells are reserved for
both the transmitter and the receiver.

• The earliest time of arrival for the node C corresponds
to the timeslot 2. Thus, it reserves a cell in the next
block (1). It also reserves two ghost cells (MaxRetries∗
2hops), in the blocks 3 and 5;

• We can note that C is also forwarding the flow F2 (from
B). Its primary cell for the flow F2 is already reserved
as ghost cell for the flow F1: C detects an overlap.
Thus, it first reserves one primary cell (timeslot 11) and
2 ghost cells (timeslots 17 and 23) for the flow F2.
Because, of the overlap, it has also to allocate additional
ghost cells to consider the latest time of arrival (cf.
section IV-B2). Thus, it allocates two additional ghost
cells (one primary cell + MaxRetries) after its last ghost
cells. In conclusion, it selects the timeslots 29 and 35 as
ghost cells.

Since we rely on a distributed random scheduling algorithm,
two interfering links may select the same cell. A collision may
occur if both transmitters select the same primary cells, or if
the ghost and primary cells overlap. For instance, the links AB
and CD in Figure 1 may reserve the same timeslot and channel
offset. Then, if both nodes A and C send the packet over the
same cell, there will be a collision. Since, in our scenarios, the
packet generation period is sporadic, and we because consider
long slotframes, the probability two or more transmitters to
transmit over the same cell is very low. In case of collision, a
relocation mechanism [13] will be applied.

D. Energy Savings using Ghost Cells

Reserving ghost cells allows the network to improve the
reliability: LDSF can efficiently handle the fast link quality
changes since ghost cells are a priori over-provisioned. Con-
cerning the energy efficiency, the transmitter can safely sleep
when it has no data packet to transmit. For the receiver side,
we have to limit idle listening [22], forcing the node to wake-
up at the beginning of the timeslot because it is not aware that
the transmitter has nothing to transmit.

Under the LDSF algorithm, we configured a fixed number
of ghost cells, based on the hop distance from the source, and
a constant, whatever the link quality. A receiving node must
wake-up at the beginning of each primary cell, to possibly
receive a packet. Then, it must also wake-up for all the
subsequent ghost cells until a packet has been received and
correctly acknowledged. Once, a packet has been received or
the last ghost cell is encountered, the receiver can safely save
energy until the next primary cell. The receiver has then to
forward the packet, and becomes a transmitter. It selects the
corresponding cell in the next blocks, and starts to transmit
the packet to the next hop.

Let us consider the scenario illustrated in Fig. 4. Let us
assume that the node C has been able to decode the packet
from the node A in the timeslot 2. It can stop listening to the
ghost cell in timeslot 8. However, it will wake-up during the
next block (timeslot 5) to forward the packet to the node D.

The primary cell corresponds to the earliest time arrival to
optimize the end-to-end delay. Thus, we do not have any false
negatives: the receiver is always awake when the transmission
takes place, we thus keep the deterministic behavior of IEEE
802.15.4-TSCH.

V. MATHEMATICAL ANALYSIS

Let us analyze next the end-to-end delay, i.e., average time
required to deliver a data packet from a node A to the border
router S via a path p = {Ni}i∈[1,||p||], where ||p|| denotes the
number of nodes in the path p.

A. Model
To obtain a fair evaluation, we use the same mathematical

model to compare each scheduling approach (cf. notation in
Table I). We have made the following considerations:
• We consider the worst case delay, when the data packet

is enqueued at the beginning of the slotframe;
• We assume that the inter packet time is sufficiently large,

and the queue for the nodes is empty at the beginning of
the slotframe.

We apply here the same methodology as in [15] to compute
the average time before a packet is delivered to the border
router (i.e., the end-to-end delay).

1) MSF: Since cells are randomly scheduled, we consider
a uniform distribution of the cells in the slotframe.

To be generic, we compute the normalized delay in number
of timeslots. We have to multiply the normalized delay by the
timeslot duration Tslot to compute the actual delay. Compared
with [15], we have the following normalized delay:

hopdelay(Ni, Ni+1) =
SF length

2 ∗ Cells(Ni, Ni+1)
(3)

where SF length denotes the slotframe length, i.e., number of
timeslots.

If the radio link between Ni and Ni+1 is unreliable, the
transmitter needs 1

Pll(Ni,Ni+1)
transmissions before the packet

is successfully decoded and acknowledged. So using eq. 3:

hopdelay(Ni, Ni+1) =
SF length ∗ 1

Pll(Ni,Ni+1)

2 ∗ Cells(Ni, Ni+1)
(4)

Finally, the average end-to-end delay to deliver a packet
from a source node to the border router along the routing path
p = {Ni}i∈[1,||p||] is:

E2Edelay(p) = SF length ∗
||p||−1∑
i=1

1/Pll(Ni, Ni+1)

2 ∗ Cells(Ni, Ni+1)
(5)

2) Stratum: If we consider the length of each stratum is
sufficient to handle retransmissions, the maximum end-to-end
delay corresponds to the slotframe length (SF length). In this
case, the packet is delivered successfully before the end of the
stratum:

E2Edelay(p) = SF length (6)

If the number of cells is insufficient, the retransmissions may
be scheduled during the subsequent slotframe, increasing the
end-to-end delay by one slotframe length. We may use the
distribution of the packet delivery success according to eq 1
to derive the distribution of this additional delay. It depends
also on the length of each stratum, since it upper bounds the
number of cells we can allocate. While eq. 6 corresponds to an
optimistic case, we consider that the stratum length is correctly
sized to handle the worst case situation.

3) LDSF: The cells are pseudo-randomly allocated in a
block. Besides, the node Ni+1 will forward a packet it
received from Ni in the just immediately consecutive block
(by construction).

Thus, the average buffering time is equal to the block length:

hopdelay(Ni, Ni+1) = BLength (7)

If the radio link between Ni and Ni+1 is unreliable, they
require 1/Pll(Ni, Ni+1)−1 retransmissions. Since consecutive
primary/ghost cells are interspaced by 2 ∗BLength timeslots,
we have:

hopdelay(Ni, Ni+1) =

BLength+ BLength
(

2

Pll(Ni, Ni+1)
− 1

)
(8)

Finally, the average end-to-end delay is:

E2Edelay(p) = BLength
||p||−1∑
i=1

(
2

Pll((Ni, Ni+1)
− 1

)
(9)

4) LLSF: the approach daisy-chains the cells along the
path, relying on relocation when they are not contiguous
because of retransmission cells. Thus, we will here focus on
the steady-state, after the convergence, i.e. we neglect the
effect of suboptimal relocations.

The first hop delay is obtained similarly to MSF. Since the
nodes select the transmission cells randomly on the first hop,
the delay of the first hop is:

hopdelay(N1, N2) =
SF length ∗ 1

Pll(N1,N2)

2 ∗ Cells(N1, N2)
(10)

Then, the end-to-end delay is similar to LDSF. Indeed, two
cells for the retransmissions are now consecutive instead of

0 1000 2000 3000 4000 5000 6000
Slotframe Length

0

2000

4000

6000

8000

10000

E2
E

de
la

y
(ti

m
es

lo
ts

)

MSF
Stratum
LLSF
LDSF

(a) Flow through a route of 5 hops.

2 4 6 8 10
Number of Hops

0

50

100

150

200

250

300

350

E2
E

de
la

y
(ti

m
es

lo
ts

)

MSF
Stratum
LLSF
LDSF

(b) Slotframe with 101 timeslots.

Fig. 5: Impact of the slotframe length and number of hops on
the end to end delay with a PDR per link of 66%.

being separated by 2 ∗ BLength timeslots. The average end-
to-end delay is thus:

E2Edelay(p) = hopdelay(N1, N2)+

||p||−2∑
i=2

(
2

Pll(Ni, Ni+1)
− 1

)
(11)

B. Numerical results

We consider here a scenario, with unreliable radio links
(i.e., Pll = 66%). Thus, two cells are allocated for each link
(Cells = 2) for possible retransmissions, and the block length
is fixed to 5 timeslots (BLength = 5).

Figure 5a illustrates the impact of the slotframe length. The
end-to-end delay of both MSF and Stratum is linear with
the slotframe length. Indeed, Stratum can only guarantee a
delay equal to the slotframe length. As can be observed, the
performance of LLSF is affected by the slotframe length due
to the selection of the transmission cells randomly at the first
hop. On the contrary, the delay of LDSF is independent of the
slotframe length: the cells are chained along the path.

Similarly, we can see that the delay increases with the
number of hops for MSF (Figure 5b): the TX and RX cells
are uniformly distributed, and a node has to buffer the packet
for a long time before being able to forward it. On the

contrary, Stratum provides a delay independent of the hop
length. However, this hop distance cannot exceeds the number
of stratums, which is 10 in this case. LDSF achieves to provide
a much smaller delay, increasing only slightly for long routes.
More precisely, the delay is increased by one block length per
hop, i.e., 5 timeslots. Finally, the LLSF achieves low delay
too especially when the number of hops increases.

VI. PERFORMANCE EVALUATION

We now assess the performance of our distributed schedul-
ing function in a more realistic environment, where packets
can be dropped because of collisions and low link qualities.

A. Simulation Setup

We use here the 6TiSCH Simulator [23], a discrete-event
simulator written in Python. We consider the following sce-
narios:

1) Constant Bit Rate (CBR) flows
2) Topologies with a variable number of nodes (by default

39 nodes and one border router) to assess the scalability
of our Scheduling Function

We generate random topologies, where each node is ran-
domly located in an area of 2000X2000 m2. Thus, each node
has at least 3 neighbors. The propagation model of 6TiSCH
Simulator is based on the Pister-Hack model [24]. Table II
regroups all the values of the different parameters.

We extended the 6TiSCH Simulator with three additional
scheduling functions (LDSF, LLSF [18] and Stratum [15]).
For the LDSF and Stratum algorithms, each node has to
know its hop distance from the border router. We implement
in Stratum the opportunistic de-allocation of cells described
in [8], where an unused cell is removed after a long timeout
to avoid schedule’s inconsistencies.

The node’s lifetime is Lfi =
BatteryCapacity×SFduration

Qslotframe∗3600∗24∗365 .
Where SFduration is the duration of the slotframe (in sec-
onds), BatteryCapacity is the node’s battery capacity (in µC),
Qslotframe is the average energy drawn during a slotframe
(in µC), and (3600 ∗ 24 ∗ 365) allows to convert seconds
into years. To compute the lifetime of each node, we rely
on the energy model described in [22] that relies on real
measurements. The model provides the power of the node in
each state:
TxDataRxAck: the transmitter sends a packet and waits for

an acknowledgement;
TxData: the transmitter sends a packet without waiting for

an ACK (e.g., a broadcast packet);
RxDataTxAck: the receiver decodes a packet and sends an

ACK;
RxData: the receiver decodes the packet, and switches di-

rectly to sleeping mode, without sending an ACK;
Idle: the receivers listens to the medium but does not sense

anything;
Sleep: the nodes turns off its radio chipset.
Thus, the simulator [23] has just to count the time spent in

each state, combined with the values measured in [22] and
reported also in Table II to compute the lifetime metric.

TABLE II: Simulation setup.

Topology Parameter Value
of nodes 39 + 1 border router
of Experiments 20 per algorithm

Simulation
Duration 60 min
Payload size 90 bytes

Protocol
CoAP CBR (Unicast) 1 pkt/[5, 10, 20..120]sec
RPL DAO period 60 s

DIO period 8.5 s
TSCH NShared cells 1

Timeslot duration 10 ms
Maximum retries 5

MSF,
Stratum &
LLSF

Slotframe length 101 timeslots

LDSF Slotframe length CBR ∗ 101 timeslots
Block length 5 timeslots

Queues Timeout 10 s
Queue size 10 packets

Energy
Energy Model [22]
BatteryCapacity 10157.4× 106 µC
Idle 6.4 µC
Sleep 0 µC
TxDataRxAck 54.5 µC
TxData 49.5 µC
RxDataTxAck 32.6 µC
RxData 22.6 µC

We measure here the network lifetime as the time until the
first node dies because it runs out of energy (n-of-n lifetime
in [25]). We assume that the system reaches a steady state,
and we just have to identify the node with the largest energy
consumption. Finally, the network’s lifetime is:

NL = min{Lfi}i∈[1,||Nodes||−1] (12)

B. Scheduling Algorithms

We compare the following approaches:
MSF: [26] is the default scheduling function of 6TiSCH,

where autonomous (pseudo-random) cells are used for
control traffic and dedicated cells are used for data
packets;

Stratum: [15] divides the slotframe in blocks (i.e., stratums).
Each node selects a block according to its hop distance,
so that a packet is delivered in the current slotframe;

LLSF: [18] aims to reduce the end-to-end latency by allocat-
ing receiving and transmitting cells as close as possible
in the schedule.

LDSF: Our scheduling function described in Section IV.
Stratum uses a slotframe length of 101 timeslots, to be able

to provide an end-to-end delay equal to 1010 ms (=101 *
10ms). MSF and LLSF also uses the default slotframe length
(101). LDSF uses rather a slotframe length proportional to the
maximum flow rate, since it was designed for this purpose.
The same cell is used every two blocks for transmissions
and retransmissions. Since each block comprises 5 timeslots
in LDSF, the transmitter has to wait on average 10ms * 5
timeslots * 2blocks = 100ms.

Our implementation (simulation code,
scripts, and raw data) is freely available

5 10 20 40 60 80 10
0

12
0

Period of packet generation (sec)

0

250

500

750

1000

1250

1500

1750

2000

En
d

2
En

d
De

la
y

(m
s)

MSF
Stratum
LLSF
LDSF

(a) End-to-end delay performance.

5 10 20 40 60 80 10
0

12
0

Period of packet generation (sec)

0

200

400

600

800

1000

1200

1400

Jit
te

r (
m

s)

MSF
Stratum
LLSF
LDSF

(b) Jitter performance.

5 10 20 40 60 80 10
0

12
0

Period of packet generation (sec)

86

88

90

92

94

96

98

100

PD
R

(%
)

MSF
Stratum
LLSF
LDSF

(c) End-to-end packet delivery ratio.

5 10 20 40 60 80 10
0

12
0

Period of packet generation (sec)

0

2

4

6

8

10

Ne
tw

or
k

Lif
et

im
e

(y
ea

rs
)

MSF
Stratum
LLSF
LDSF

(d) Network lifetime.

Fig. 6: Impact of the traffic rate (i.e., inter packet time).

(https://github.com/vkotsiou/Scheduling for the
implementation, and https://doi.org/10.5281/zenodo.3748712
for our dataset).

C. Traffic Rate

We first measure the average end-to-end delay (Fig. 6a).
LDSF is very robust to large traffic rates: it keeps on providing
a very low delay. Stratum presents a very stable end-to-end
delay: packets are delivered at the end of the slotframe exactly
(101 timeslots * 10ms). MSF presents the highest end-to-end
delay because it does not have any cell allocation strategy
to minimize the delay: it picks randomly the cells. LLSF
provides also a very stable delay. While the cells are reserved
consecutively along the path, the first cell is picked randomly
and generates a large buffering delay (half of the slotframe =
505ms).

We can make the same remarks concerning the jitter
(Fig. 6b). LDSF provides the lowest jitter performance which
is less than 150 ms, even for very high traffic rates. Collisions
are accurately handled, and the packets are retransmitted
efficiently in the subsequent blocks to minimize the buffering
delay. LLSF achieves a larger jitter: the schedule is modified
as soon as some retransmission cells have to be inserted.
However, this optimization has a cost since the whole schedule
has to be modified along the path Stratum provides jitter
performance similar to LLSF, corresponding to the length of
the last stratum (i.e., block). Indeed, a packet is randomly

scheduled in the last stratumto be received by the border
router. Since this stratum is typically much larger than the
LDSF’s block, the jitter is mechanically increased. Finally,
MSF provides the worst jitter since retransmission cells can
create a cumulative effect along the path, since they can be
allocated after the cells of the next hop.

Figure 6c focuses on the reliability. The three schemes are
able to guarantee end-to-end reliability above 96% in most
cases. Stratum achieves the highest reliability for low traffic
rates since the blocks are large to avoid collisions. However,
the number of collisions starts to increase for high traffic rates
(inter packet time < 10s). LDSF is able to provide an end-to-
end packet delivery ratio higher than 98%. LLSF provides also
a good reliability, except for high-traffic rates: many collisions
arise and are particularly challenging to resolve since the cells
are contiguous. Moreover, the scheduling process needs to
solve the collisions for each cell, while LDSF is more robust
since the same cell is pre-reserved also for the retransmissions.

Fig. 6d illustrates the network lifetime. We extrapolate the
average energy consumption for the most loaded node to
derive the network lifetime. MSF generates a large number
of control packets with many (de)allocations, which impact
negatively the lifetime. Stratum increases slightly the lifetime,
by reducing the renegotiation of cells. LLSF achieves the same
characteristics since it uses a short slotframe (101 timeslots)
and that shared cells consume energy. Finally, LDSF is very
efficient to handle unreliability: ghost cells are automatically

10 20 40 60 80 10
0

Number of Nodes

250

500

750

1000

1250

1500

1750

2000
En

d
2

En
d

De
la

y
(m

s)
MSF
Stratum
LLSF
LDSF

(a) End-to-end delay

10 20 40 60 80 10
0

Number of Nodes

86

88

90

92

94

96

98

100

PD
R

(%
)

MSF
Stratum
LLSF
LDSF

(b) End-to-end packet delivery ratio

10 20 40 60 80 10
0

Number of Nodes

0

2

4

6

8

Ne
tw

or
k

Lif
et

im
e

(y
ea

rs
)

MSF
Stratum
LLSF
LDSF

(c) Network lifetime.

Fig. 7: Impact of the number of nodes.

MSF Stratum LLSF LDSF
Algorithms

0

5

10

15

20

25

%

Packet Rate: 1 packet per 20 sec
Allocated
Shared/Autonomous
TX
RX

Used
TX
RX

Fig. 8: Percentage of the slotframe occupied (i.e., cells al-
located), with one packet generated by each node every 20
seconds.

reserved after a 6P transactions, minimizing the amount of
control traffic. Thus, the lifetime increases for very low traffic
conditions.

D. Scalability

We then measure the scalability of these distributed schedul-
ing functions by increasing the number of nodes up to 100.
LDSF is very scalable; even a large number of nodes does
not increase significantly the collisions. The delay remains
below 200 ms. The delay of MSF and Stratum is much higher,
while the delay of LLSF scales smoothly with respect to
the number of nodes. MSF provides the lowest end-to-end
reliability (Fig. 7b): some packets are dropped because of an
excessive number of retransmissions, or because of a buffer
overflow. Stratum, LLSF and LDSF achieve to still provide
a very high reliability even with 100 nodes generating one
packet every 20 seconds. More than 98,5% of the packets are
delivered to the border router.

LDSF achieves the higher network lifetime whatever the
number of nodes (Figure 7c). The ghost cells are pre-reserved,
but the transmitter and the receiver do not have to wake-up in
every ghost cells. More precisely, they will wake-up only if
no acknowledgement was received correctly. This way, LDSF
provides the larger lifetime compared against MSF, LLSF and
Stratum approaches.

E. Slotframe occupation

Finally, Figure 8 illustrates the percentage of the slotframe
occupied, i.e., the cells are allocated to at least one transmitter.
We can note that MSF and LLSF use short slotframes, thus
the ratio of shared cells is higher compared to long slotframes.
Thus, idle listening will consume a large quantity of energy.
Stratum may generate more collisions since interfering links
have often to select their cell in the same stratum. Thus, the
number of allocated cells is reduced, but keeps larger than
LDSF. LDSF organizes the cells appropriately and can exploit
long slotframes (as long as the CBR period). While LDSF
reserves ghost cells for the retransmissions, they are used only
if the transmission has failed. If the packet was acknowledged,
neither the transmitter nor the receiver will wake-up during the
next ghost cells (cf. amount of unused cells in Figure 8).

VII. CONCLUSION AND FUTURE WORK

Minimizing the end-to-end delay requires to chain the
cells along a path, so that the buffering delay is minimized.
However, achieving high reliability in the context of IEEE
802.15.4-TSCH is particularly challenging since increasing the
number of retransmissions may imply to reschedule all the
cells in the path toward the destination. We propose here LDSF
which divides the long slotframe into small blocks that repeat
over time. Each node selects the right block corresponding
to its hop distance from the border router to minimize the
delay. In order to still provide high reliability, ghost cells
are automatically reserved in the slotframe and the delay is
still minimized even if the packet has to be retransmitted. Our
simulation results demonstrate that LDSF achieves low latency
and jitter with high reliability, even for multihop topologies.

In this article, we have assumed that a cell can be used to
send a packet from any flow. Considering flow isolation, each
flow can use only a specific set of cells. In other words, ghost
cells have to be reserved per flow, impacting negatively the
network capacity. Inversely, using the same ghost cells for all
flows may impact both the end-to-end delay and the reliability.

There are several techniques in the literature that improve
the reliability, such as multipath routing [27], whitelisting [28],
or even at the PHY layer [29]. For future work we aim
at investigating how these techniques can be combined with
LDSF in order to cope with time-variable delivery rates.

REFERENCES

[1] S. Longo, T. Su, G. Herrmann, and P. Barber, Optimal and robust
scheduling for networked control systems. CRC press, 2017.

[2] J. Wan, S. Tang, Z. Shu, D. Li, S. Wang, M. Imran, and A. V.
Vasilakos, “Software-Defined Industrial Internet of Things in the Context
of Industry 4.0,” IEEE Sensors Journal, vol. 16, no. 20, Oct 2016.

[3] G. Z. Papadopoulos, P. Thubert, F. Theoleyre, and J. Bernardos, “Raw
use cases,” IETF, draft-bernardos-raw-use-cases 03, March 2020.

[4] X. Xu and Q. Hua, “Industrial Big Data Analysis in Smart Factory:
Current Status and Research Strategies,” IEEE Access, pp. 17 543–
17 551, 2017.

[5] W. Yu, T. S. Dillon, F. Mostafa, W. Rahayu, and Y. Liu, “A Global
Manufacturing Big Data Ecosystem for Fault Detection in Predictive
Maintenance,” IEEE Transactions on Industrial Informatics, 2019.

[6] IEEE Standard for Low-Rate Wireless Networks, “IEEE Std 802.15.4-
2015 (Revision of IEEE Std 802.15.4-2011),” April 2016.

[7] R. T. Hermeto, A. Gallais, and F. Theoleyre, “Scheduling for
IEEE802.15.4-TSCH and Slow Channel Hopping MAC in Low Power
Industrial Wireless Networks,” Comput. Commun., pp. 84–105, Dec.
2017.

[8] F. Theoleyre and G. Z. Papadopoulos, “Experimental Validation of a
Distributed Self-Configured 6TiSCH with Traffic Isolation in Low Power
Lossy Networks,” in MSWiM. ACM, 2016.

[9] Wang, Qin and Vilajosana, Xavier and Watteyne, Thomas, “6TiSCH
Operation Sublayer (6top) Protocol (6P),” RFC 8480, November 2018.

[10] M. R. Palattella, N. Accettura, L. A. Grieco, G. Boggia, M. Dohler,
and T. Engel, “On Optimal Scheduling in Duty-Cycled Industrial IoT
Applications Using IEEE802.15.4e TSCH,” IEEE Sensors Journal,
vol. 13, no. 10, pp. 3655–3666, Oct 2013.

[11] G. Gaillard, D. Barthel, F. Theoleyre, and F. Valois, “High-reliability
scheduling in deterministic wireless multi-hop networks,” in PIMRC.
IEEE, Sep. 2016, pp. 1–6.

[12] F. Dobslaw, T. Zhang, and M. Gidlund, “End-to-End Reliability-Aware
Scheduling for Wireless Sensor Networks,” IEEE Transactions on In-
dustrial Informatics, vol. 12, no. 2, pp. 758–767, April 2016.

[13] T. Chang, T. Watteyne, X. Vilajosana, and Q. Wang, “CCR: Cost-
aware cell relocation in 6TiSCH networks,” Transactions on Emerging
Telecommunications Technologies, vol. 29, no. 1, p. e3211, 2018.

[14] M. Domingo-Prieto, T. Chang, X. Vilajosana, and T. Watteyne, “Dis-
tributed PID-Based Scheduling for 6TiSCH Networks,” IEEE Commu-
nications Letters, vol. 20, no. 5, pp. 1006–1009, May 2016.

[15] I. Hosni, F. Theoleyre, and N. Hamdi, “Localized scheduling for end-
to-end delay constrained Low Power Lossy networks with 6TiSCH,” in
ISCC, June 2016, pp. 507–512.

[16] I. Hosni and F. Theoleyre, “Self-healing distributed scheduling for end-
to-end delay optimization in multihop wireless networks with 6TiSCh,”
Computer Communications, vol. 110, pp. 103 – 119, 2017.

[17] G. Daneels, B. Spinnewyn, S. Latré, and J. Famaey, “ReSF: Recurrent
Low-Latency Scheduling in IEEE 802.15.4e TSCH networks,” Ad Hoc
Networks, vol. 69, pp. 100 – 114, 2018.

[18] T. Chang, T. Watteyne, Q. Wang, and X. Vilajosana, “LLSF: Low
Latency Scheduling Function for 6TiSCH Networks,” in DCOSS, May
2016.

[19] I. Hosni and F. Theoleyre, “Adaptive k-cast Scheduling for High-
Reliability and Low-Latency in IEEE802.15.4-TSCH,” in Ad-hoc, Mo-
bile, and Wireless Networks (ADHOCNOW). Springer, 2018, pp. 3–14.

[20] R.-A. Koutsiamanis, G. Z. Papadopoulos, X. Fafoutis, J. M. Del Fiore,
P. Thubert, and N. Montavont, “From Best Effort to Deterministic Packet
Delivery for Wireless Industrial IoT Networks,” IEEE Transactions on
Industrial Informatics, vol. 14, no. 10, pp. 4468–4480, Oct 2018.

[21] G. Gaillard, D. Barthel, F. Theoleyre, and F. Valois, “Kausa: KPI-aware
Scheduling Algorithm for Multi-flow in Multi-hop IoT Networks,” in
ADHOC-NOW, 2016, pp. 47–61.

[22] X. Vilajosana, Q. Wang, F. Chraim, T. Watteyne, T. Chang, and K. S. J.
Pister, “A Realistic Energy Consumption Model for TSCH Networks,”
IEEE Sensors Journal, vol. 14, no. 2, pp. 482–489, Feb 2014.

[23] E. Municio, G. Daneels, M. Vučinić, S. Latré, J. Famaey, Y. Tanaka,
K. Brun, K. Muraoka, X. Vilajosana, and T. Watteyne, “Simulat-
ing 6TiSCH networks,” Transactions on Emerging Telecommunications
Technologies, vol. 30, no. 3, 2019.

[24] H.-P. Le, M. John, and K. Pister, “Energy-aware routing in wireless
sensor networks with adaptive energy-slope control,” EE290Q-2 Spring,
2009.

[25] I. Dietrich and F. Dressler, “On the Lifetime of Wireless Sensor
Networks,” ACM Trans. Sen. Netw., vol. 5, no. 1, Feb. 2009.

[26] T. Chang, M. Vucinic, X. Vilajosana, S. Duquennoy, and D. Dujovne,
“6TiSCH Minimal Scheduling Function (MSF),” IETF, draft 3, April
2019, https://tools.ietf.org/html/draft-ietf-6tisch-msf-03.

[27] E. M. Ahrar, M. Nassiri, and F. Theoleyre, “Multipath aware scheduling
for high reliability and fault tolerance in low power industrial networks,”
Journal of Network and Computer Applications, pp. 25 – 36, 2019.

[28] V. Kotsiou, G. Z. Papadopoulos, P. Chatzimisios, and F. Theoleyre,
“Whitelisting without Collisions for Centralized Scheduling in Wireless
Industrial Networks,” IEEE Internet of Things Journal, vol. 6, no. 3, pp.
5713–5721, June 2019.

[29] N. Saxena, A. Roy, B. J. R. Sahu, and H. Kim, “Efficient IoT Gateway
over 5G Wireless: A New Design with Prototype and Implementation
Results,” IEEE Communications Magazine, pp. 97–105, Feb. 2017.

Vasileios Kotsiou is a Ph.D. student at the ICube
laboratory, University of Strasbourg (France). Pre-
viously, he received his M.Sc. in Engineering of
Pervasive Computing Systems from Hellenic Open
University in 2014 and his B.Sc. in Computer Sci-
ence from University of Crete (Heraklion) in 1996.
He has already co-authored several peer-reviewed
papers in international conferences and journals.
His research interests span primarily in the area
of Wireless Sensor Networks (WSNs), Internet of
Things (IoT), Ubiquitous and Mobile Computing.

Georgios Z. Papadopoulos [S’10, M’15] serves
as an Associate Professor at the IMT Atlantique
in Rennes, France. He received his Ph.D. from
University of Strasbourg (France), in 2015 with
honors. Dr. Papadopoulos has been involved in the
organization committee of many international events
(IEEE ISCC’20, AdHoc-Now’18, IEEE CSCN’18,
GIIS’18). Moreover, he has been serving as Editor
for Wireless Networks journal and Internet Tech-
nology Letters. He is author of more than 50 peer-
reviewed publications in the area of networking.

Periklis Chatzimisios [S’02, M’05, SM12’] re-
ceived his B.Sc. from Alexander TEI of Thessaloniki
(ATEITHE) (Greece) in 2000 and his Ph.D. from
Bournemouth University (U.K.) in 2005. He serves
as a Professor in the Department of Science and
Technology at the International Hellenic University.
He is involved in several standardization and IEEE
activities serving as a member of the Standards
Program Development and the Education Services
Boards for the IEEE Communication Society (Com-
Soc) as well as the Chair of the IEEE ComSoc

Technical Committee on Information Infrastructure and Networking (TCIIN).

Fabrice Théoleyre [S’05, M’09, SM’16] is a re-
searcher at the CNRS. After having spent 2 years
in the Grenoble Informatics Laboratory (France), he
is part of the ICube lab (Strasbourg, France) since
2009. He received his Ph.D. in computer science
from INSA, Lyon (France) in 2006. He was a visit-
ing scholar at the University of Waterloo (Canada)
in 2006, and a visiting researcher at INRIA Sophia
Antipolis (France) in 2005 and at Inje University
(Korea) in 2014. He’s involved in about ten TPC
per year, and is area editor for Ad Hoc Networks

since 2018. He has been associate editor for IEEE Communications Letters
and guest editor for Computer Communications and Eurasip JWCN.

