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Abstract – The Doppler effect is a phenomenon inherent to source motion, which introduces a variable
propagation time between the source and a listening point. In the case of a vibrating piston, this is responsible
for distortion of the radiated sound pressure. This moving-boundary phenomenon is part of the nonlinear effects
involved in loudspeaker radiation. The present paper investigates the significance of this distortion, usually
considered as neglectible, and addresses its correction. First, the direct problem is solved by: (a) converting
the (Lagrangian) position of the moving source into its equivalent (Eulerian) velocity field at a fixed position;
(b) deriving the acoustic pressure radiated from this velocity field. A series solution of (a) is derived and time-
domain simulations of (b) are built from the truncated series combined with a baffled piston radiation model.
Simulations show that Doppler distortion can be significant for realistic loudspeaker diaphragm motion with a
wide spectral content. Second, the inverse (anti-Doppler) problem is examined, that is, the derivation of a
piston displacement that generates a targeted Eulerian velocity field. The corrected piston velocity solution
proves to be an uncentered signal, leading to a diverging displacement. In order to remove this practical
problem, a centered approximation is preferred, based on modified inverse Volterra kernels. The anti-Doppler
algorithm is reliable in the audio range.

1 Introduction

When a loudspeaker diaphragm vibrates, its displace-
ment modulates the propagation time of the generated
acoustic waves, between its surface and a listening point.
This moving-boundary phenomenon, similar to the Doppler
effect, is usually considered to be negligible in practice, based
on distortion measurements [1–4]. This is especially relevant
for narrow-band or harmonic excitations. However, distor-
tion increases for more complex signals, due to a significant
intermodulation between the low-frequency content (large
displacements) and the higher-frequency content (large
accelerations). It has been shown [5, 6] that this phe-
nomenon can be a dominant source of intermodulation
distortion (compared to other sources such as force factor,
suspension, etc.) for full-range speakers at high frequencies.

Initial investigations were carried out by Beers and
Belar [7], who measured sound distortion generated by a
two-tone vibrating diaphragm and derived a criterion for
the evaluation of the Doppler distortion magnitude.
Various models have been proposed to describe this
phenomenon: (i) van Wulfften Palthe [1] adopted a pulsat-
ing sphere as a loudspeaker radiation approximation
and performed calculation of intermodulation distortion,
considering both the moving-boundary effect (Doppler)

and the nonlinear propagation; (ii) Braun [8] established a
time-domain formulation of the problem, followed by
Butterweck [9] who derived a series solution for plane waves
propagation generated by a vibrating piston in an infinite
baffle; (iii) Zóltogórski [10] added nonlinear propagation
effects to Butterweck’s model, and presented a preliminary
design of an anti-Doppler filter. Another correction system
has been proposed by Klippel [11], in which the electrical
input is delayed to oppose the time-shift introduced by
the moving boundary.

The present paper models this distortion effect in a sim-
ilar way as in [9, 10], using a regular perturbation method.
It examines its significance and addresses its correction
based an algorithm built on inverse Volterra kernels.

The content is organised as follows. First, the considered
model and both the direct and inverse problems are
described in Section 2. Then the direct problem is solved
in Section 3 by: (a) converting of the (Lagrangian) position
of the moving source into its equivalent (Eulerian) velocity
field at a fixed position; (b) deriving the acoustic pressure
radiated from this velocity field. Finally, the inverse (anti-
Doppler) problem is examined in Section 4, that is, the
derivation of a piston displacement that generates a
targeted Eulerian velocity field. Conclusions are drawn in
Section 5 on the relevance of Doppler distortion and anti-
Doppler efficiency in the case of realistic loudspeaker
diaphragm motions.*Corresponding author: tristan.lebrun@ircam.fr
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2 Problem statement

Consider a baffled circular piston of radius R0, localised
at position z = 0 (see Fig. 1a). For an Eulerian velocity field
excitation V0(t), the corresponding far-field pressure p(z, t)
on the symmetry axis at position z > 0 is given in the time
domain by [12]

pðz; tÞ ¼ q0 R
2
0

2z
d
dt

V 0 t � z
c0

� �
; ð1Þ

where q0 is the air density and c0 is the speed of sound.
The core of this study focuses on the (nonlinear)

mapping between the rigid piston displacement and the
equivalent Eulerian velocity field V0(t), as described in
Figure 1b. This issue is addressed under the following
assumptions:

H1 (geometry): The piston displacement n(t) is small
compared to its radius (|n(t)| < nmax � R0)

H2 (fields equivalence approximation): In the domain
X = [�nmax, nmax], the particle velocity n0(t) at the
piston position n(t) results from the conservative
plane wave propagation of an Eulerian velocity field
V0(t) at z = 0

H3 (waveform): the piston displacement n is a smooth
function and no shockwave propagates in X

H4 (radiation): the piston radiates into a semi-infinite
space (no backward wave)

Following (H1–H2–H4), the particle velocity v is
described by a forward wave V0

vðz; tÞ ¼ V 0ðt � z=c0Þ: ð2Þ
and satisfies a moving-boundary condition at the piston
position that reads

V 0ðt � nðtÞ=c0Þ ¼ n0ðtÞ: ð3Þ
Moreover, condition H3 implies that the Eulerian

velocity field V0 must be a regular function.
Let us denote D the operator that converts the piston

displacement into its equivalent Eulerian velocity (see
Fig. 2), such that V 0ðtÞ ¼ D½n�ðtÞ. This study examines
the following problems:

P1 (Direct problem): Is-it possible to derive a solver
for D that satisfies (2)–(3)?

P2 (Inverse problem): What is the corrected displace-
ment nc(t) to provide to D so that its output is the
target V0ðtÞ ¼ n0ðtÞ?

The direct problem P1 is tackled in Section 3 and the
inverse problem P2 is examined in Section 4.

3 Direct problem: simulation of the Doppler
distortion

This section addresses the direct problem (Doppler
effect) for smooth excitations: in Section 3.1, an exact
solution of the Eulerian velocity V0 is determined for a
linear propagation, based on the method of characteristics;
in Section 3.2, a truncated series expansion that approxi-
mates the Eulerian velocity V0 by a closed-form solution
is derived for simulation purposes, based on a perturbation
method; the distortion is evaluated on the radiated pressure
in Section 3.3; finally Section 3.4 includes the influence of
nonlinear acoustic wave propagation.

3.1 Method of characteristics

This part addresses the existence and uniqueness of
regular solutions of P1, based on the method of characteris-
tics. It provides a regular expression of the velocity wave-
form V0 under a necessary and sufficient condition on
C1-regular functions n. In the following,

� “a” refers to quantities related to the arrival time of
the acoustic wave at the observing point,

� “d” denotes quantities related to the departure time of
the wave from the piston position.

Figure 2. Block diagram of the system under consideration,
with input nðtÞ and output pðz; tÞ.

Figure 1. Description of the physical model composed of
(a) on-axis baffled piston radiation for the evaluation of the
sound pressure and (b) conversion of the piston displacement
into an equivalent Eulerian velocity source V 0ðtÞ.
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Definition 3.1 (Characteristic). Let us define the regular
functions

san : R 7!R

t 7! t � nðtÞ
c0

ð4Þ

and
Kn : K

d
n 7!Ka

n

ðz; tÞ 7!ðz; sanðtÞ þ z=c0Þ;
ð5Þ

where the domain Kd
n and codomain Ka

n are

Kd
n ¼ fðz; tÞ 2 R2 s:t: z � nðtÞg;

Ka
n ¼ fKnðz; tÞ for ðz; tÞ 2 Kd

ng:
ð6Þ

The characteristic lines Kn defined above are depicted in
Figure 3. They represent the linear propagation of the
acoustic wave over space and time. A departure time t d

is mapped to an arrival time ta at a given position Z through
Kn. One should note that

1. the propagation is conservative so that the particle
velocity is constant on the characteristic line
described by Kn (r, t d) when z varies, for given a
departure time t d. For the boundary condition (3),
this observation yields

vðZ; taÞ ¼ n0ðtdÞ; ð7Þ
2. the departure and arrival times are related by

t a ¼ t d þ Z�nðtdÞ
c0

. This can be written using the charac-

teristic equation (6),

ðZ; taÞ ¼ KnðZ; tdÞ: ð8Þ
It is clear from these observations that the particle velocity v
at any space-time coordinates ðZ; taÞ 2 Ka

n can be computed
from (7), if the departure time td is known. However,
equation (8) shows that the existence of td is conditionned
by the existence of K�1

n , the reciprocal of Kn. This point is
examined in the property detailed in Appendix A, which
yields a condition on the Mach number of the piston
velocity,

jn0ðtÞj < c0: ð9Þ
Finally, the solution of P1 is given in Theorem 3.2. It pro-
vides the regular waveform V0, solution of the propagation
equation (2) and the boundary condition (3), under the
Mach number condition (9).

Theorem 3.2 (Regular solution). Let n be a C nþ1-regular
function and suppose that the Mach number condition (9)
is fulfilled. Then the regular solution of (2)–(3) is given by
the C n-regular function

V 0 : R
þ 7!R

t 7!n0 � sdnðtÞ
ð10Þ

where sdn is the reciprocal of san.

Proof. From the property detailed in Appendix A, Kn is a
C n-diffeormorphism, so that the reciprocal K�1

n exists and
is C n-regular. Moreover,

K�1
n ðnðtÞ; tÞ ¼ ðnðtÞ; tÞ; ð11Þ

since (n(t), t) is a fixed point of Kn. The reciprocal func-
tion K�1

n can be developped

nðtÞ; sdn t � nðtÞ
c0

� �� �
¼ nðtÞ; tð Þ; ð12Þ

where the second component of (12) reads

sdn t � nðtÞ
c0

� �
¼ t: ð13Þ

Finally,

V 0ðt � nðtÞ=c0Þ ¼ n0 � sdn t � nðtÞ
c0

� �
¼ n0ðtÞ; ð14Þ

therefore the regular solution (10) verifies the boundary
condition (3). Moreover, n0 � sdn is Cn-regular because n0

and sdn are Cn-regular, which concludes the proof. h

This theorem can be summarized in equations (15) and
(16), with the expression of the Eulerian source

V 0ðtÞ ¼ n0 � sdnðtÞ; ð15Þ

where sdnðtÞ maps the current time t at z = 0 to the depar-
ture time of the wave at the piston position, satisfying the
implicit equation

sdnðtÞ ¼ t þ n � sdnðtÞ
c0

: ð16Þ

The velocity source V0(t) cannot be directly computed from
the piston displacement n(t) because of the implicit

Figure 3. Illustration of the mapping from departure coordi-
nates ðnðtdÞ; tdÞ to arrival coordinates ðZ ; taÞ through the
characteristic line (described by K nðz; tdÞ when z varies), for a
sinusoidal piston motion. Note the variation in the propagation
time ta � td ¼ Z�nðtdÞ

c0
.
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equation (16). The derivation of a direct solver for (15)
and (16) is addressed in the next part.

3.2 Regular perturbation method

A direct solver is established in this subsection,
assuming a regular function n 2 C1 and jn0ðtÞj < c0, so that
sdn 2 C1 from Theorem 3.2. First, function sdn is substi-
tuted for the C1-regular function � : t 7!sdnðtÞ � t. Then
equations (15) and (16) can be reformulated

V 0ðtÞ ¼ n0ðt þ �ðtÞÞ; ð17Þ

�ðtÞ ¼ nðt þ �ðtÞÞ
c0

: ð18Þ

Equation (17) highlights that �(t) acts as a perturbation of
the standard (linear) solution V0(t) = n'(t).

Now the implicit equation (18) is solved using the regu-
lar perturbation method. The piston displacement function
n is marked with an auxiliary amplitude a > 0, so that we
define n(t) = au(t). Then we seek a power series solution of
�(t) of the form

�ðtÞ ¼
X1
n¼0

�nðtÞan: ð19Þ

Calculations, developed in Appendix B, yield the exact
series solution of the form

V 0ðtÞ ¼
X1
n¼1

vDn ðtÞ; ð20Þ

in which each term vDn ðtÞ are defined as follows,

vDn ðtÞ ¼
n0ðtÞ if n ¼ 1;Pn�1

k¼1

nðkþ1ÞðtÞ
k!

P
i2Cn�1;k

�i1ðtÞ:::�ik ðtÞ otherwise;

8><
>: ð21Þ

where n(i) stands for the ith derivative of n and the �i is
defined recursively in Appendix B.

In the sequel, computation of V0(t) is carried out by
truncating the series at N = 3, that appears sufficient to
capture the Doppler distortion effect for typical loud-
speaker diaphragm motions. The expression of the
truncated series is

V 0ðtÞjN¼3 ¼ n0ðtÞ|ffl{zffl}
n¼1

þ 1
c0
n tð Þn00ðtÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

n¼2

þ 1
c20

1
2
n000ðtÞnðtÞ2 þ n00ðtÞn0ðtÞnðtÞ

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

n¼3

:

ð22Þ

The term n = 1 corresponds to the linear solution without
taking into account the Doppler effect: the Eulerian field
V0(t) equals the piston velocity. Considering the term
n = 2, the product n(t)n00(t) will be of high amplitude if

the piston velocity signal is composed of low frequency
components (amplified by n) together with high frequencies
(amplified by n00), therefore generating intermodulation
distortion in V0(t).

A realisation structure of D is drawn from this
truncated solution, with input n(t) and output V0(t),
depicted in Figure 4. Time-domain simulations are handled
for any input signal n(t) by choosing appropriate discrete
time approximation of the operator d

dt.

3.3 Evaluation of the Doppler distortion effect

The distortion due to the Doppler effect is evaluated
through the computation of the (truncated) Eulerian source
(22) and the on-axis pressure field (1) at z = 1 m. First, a
piston velocity signal composed of a low-frequency tone at
f0 and a high-frequency tone at fa is chosen, expressed as

n0ðtÞ ¼ A sinð2pf0tÞ þ sinð2pfatÞð Þ; ð23Þ
where A, f0 and fa correspond to a realistic high-amplitude
loudspeaker motion parameters (see Tab. 1).

The amplitude spectrum of the acoustic pressure P(f )
for the piston velocity signal (23) is depicted in Figure 5,
where P(z = 1, f ) is the discrete Fourier transform or
p(z = 1, t). One should note that the level of the low-
frequency f0 is lower than that of the high-frequency tone

Figure 4. Continuous time realisation structure ofD truncated
at N = 3, composed of sums and products of the diaphragm
displacement and its time derivatives.

Table 1. Simulation parameters used for the Doppler distortion
evaluation.

Simulation parameters

fs 48 kHz
d/dt Central differences scheme
A 1 m/s
f0 40 Hz
fa 1 kHz
fb 2 kHz
T 3000 s
q0 1.225 kg/m3

R0 10 cm
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fa because of the time derivation of the velocity signal in (1).
Two kinds of signal distortion are observed:

� Harmonic distortion (HD) at frequency 2f0 = 80 Hz.
The level of the harmonic is �56 dB below the funda-
mental f0. In the case of loudspeaker diaphragm
motion, this effect is often considered as neglectable [6].

� Intermodulation distortion (IMD) at frequencies
fa ± f0, fa ± 2f0 and fa ± 3f0. The low-frequency tone
f0 modulates the high-frequency tone, generating
sidelobes around fa = 1 kHz. The first-order intermod-
ulation peaks fa ± f0 reach �35 dB below the funda-
mental fa.

The above-mentionned intermodulation distortion
effect can be seen in the time domain in Figure 6, where
the signal p(z = 1, t) (solid line) is represented for a few
periods 1/fa. A time shift of the high-frequency waveform
is observed, compared to the acoustic pressure without
Doppler effect (dashed line). This corresponds to the
time-domain version of the frequency modulation caused
by the Doppler effect.

In order to evaluate the influence of the high-frequency
tone on the Doppler distortion, a second input velocity sig-
nal is examined, composed of a low-frequency tone at f0 and
a logarithmic chirp whose instantaneous frequency varies
between fa and fb. The piston velocity expression reads

n0ðtÞ ¼ A sinð2pf0tÞ þ cos 2p
Z t

0
fb

fb
fa

� �t=T

dt

 ! !
; ð24Þ

where fb and T are defined in Table 1. The spectrograms
of the piston velocity signal (24) and the acoustic pressure
are depicted respectively in Figures 7 and 8.

Only the chirp part of the signal in the range [fa, fb] is
visible on these graphs. Sidelobes are still observed along
the rising frequency. Second-order intermodulation prod-
ucts of frequency f ± f0 are noticed with amplitudes in
the range [�35 dB, �25 dB]. Weak third order intermodu-
lation (f ± 2f0) is also noted. This highlights once again the
intermodulation distortion created by the low-frequency
tone f0. Moreover the sidelobes level clearly increase with
the chirp frequency: the first sidelobe f ± f0 starts at
�35 dB at fa = 1000 Hz to reach �25 dB at fb = 2000 Hz.

Figure 6. Time domain signal pðz ¼ 1; tÞ. A time shift of the
acoustic pressure (solid line) is observed, compared to the case
without Doppler (dashed line).

Figure 7. Spectrogram of the input piston velocity signal n0ðtÞ,
consisting of a chirp in the range [fa, fb] and a low-frequency tone
f0 (not visible here).

Figure 8. Spectrogram of the output acoustic pressure
pðz ¼ 1; tÞ. Intermodulation distortion is observed, increasing
with the chirp frequency f 2 ½fa; fb�.

Figure 5. Amplitude spectrum of the acoustic pressure for a
piston velocity signal composed of a low-frequency tone at
f0 ¼ 40 Hz and a high-frequency tone at fa ¼ 1 kHz. Intermod-
ulation distortion is visible around fa, together with a slight
harmonic distortion at 2f 0.

T. Lebrun and T. Hélie: Acta Acustica 2020, 4, 2 5



This numerical evaluation states that the Doppler effect
of a vibrating piston causes mostly intermodulation distor-
tion in the radiated pressure, in agreement with previous
studies. This distortion increases with the ratio fmax/fmin,
where fmin and fmax are respectively the minimum and
maximum frequency of excitation. For a realistic loud-
speaker diaphragm motion, it is shown that this effect can
potentially produce sound corruption at �25 dB below
the unaltered pressure signal.

3.4 Nonlinear wave propagation effect

Several authors [1, 10] have pointed out that the moving-
boundary (Doppler) effect should be tackled together with
the nonlinear propagation phenomenon, since both appear
at large diaphragm displacements. This section briefly
investigates this coupling by substituting the linear propa-
gation in H2 for the inviscid Burger’s equation, describing
the nonlinear propagation of progressive plane waves,

otvðz; tÞ þ ðc0 þ bvðz; tÞÞoxvðz; tÞ ¼ 0; ð25Þ
where b is a coefficient derived from the nonlinear relation-
ship between pressure and air density. This equation can be
solved by using the method of characteristics as in
Section 3.1. In that case, the characteristic reads

Kn : ðz; tÞ7! z; t þ z� nðtÞ
c0 þ bn0ðtÞ

� �
; ð26Þ

where the term 1/(c0 + bn0(t)) stands for the nonlinear
propagation effect: the propagation speed differs from c0
and is higher for high-amplitude waves. The moving-
boundary is still taken into account by the term z � n(t).
The existence of K�1

n is limited (i) in space by the nonlinear
propagation (z should be small enough so that no shock-
wave appears) and (ii) in amplitude by the Mach number
condition as in (9).

A formal series solution for the particle velocity v(z, t)
is derived by applying a perturbation method similar to
Section 3.2. The three first orders are listed below:

v1ðz; sÞ ¼ n0ðsÞ; ð27Þ

v2ðz; sÞ ¼ vD2 ðsÞ þ vC2 ðz; sÞ; ð28Þ

v3ðz; sÞ ¼ vD3 ðsÞ þ vC3 ðz; sÞ; ð29Þ
where s= t� z/c0, vD2 and vD3 correspond to the terms solely
due to the Doppler effect (defined in (22)) and the convec-
tive terms vC2 and vC3 are

vC2 ðz; sÞ ¼
bz
c20

n0ðsÞn00ðsÞ; ð30Þ

vC3 ðz; sÞ ¼
�b
c20

n00ðsÞn0ðsÞnðsÞ þ bz
c30

�
n000ðsÞn0ðsÞnðsÞ ð31Þ

þ ðn00ðsÞÞ2nðsÞ þ ð1� bÞn00ðsÞðn00ðsÞÞ2
�

þ b2z2

c40
ðn00ðsÞÞ2n0ðsÞ þ n000ðsÞðn0ðsÞÞ2

2

" #
;

The contribution of the convection can be separated
from the Doppler effect up to the order 3, as described in
equations (27)–(29). One should note that this separation
is not possible for higher order terms since both effects
will be coupled. Moreover the convective terms at z = 0
yield

vC2 ðr ¼ 0; tÞ ¼ 0; ð32Þ

vC3 ðr ¼ 0; tÞ ¼ �b
c20

n00ðtÞn0ðtÞnðtÞ: ð33Þ

It appears that orders 1 and 2 does not influence the
equivalent Eulerian source V 0ðtÞ at z = 0. However the
third order term vC3 has a nonzero value at z = 0. This cor-
responds to the influence of nonlinear propagation in the
domain X = [�nmax, nmax], that alternates the equivalent
Eulerian source at z = 0 calculated in (22). Therefore the
Doppler effect can be treated independently from the non-
linear propagation at orders 1 and 2, but higher orders
require consideration of both effects coupled. In the follow-
ing part, the anti-Doppler system is derived from third
order expansion of V0(t) presented in Section 3.2, thus
neglecting the term (33) introduced by the nonlinear
propagation.

4 Inverse problem: anti-Doppler system

This section presents the derivation of a corrector DH

that provides a diaphragm displacement nc(t) compensating
for the Doppler effect. This feed-forward controller relies on
the design of a pre-inverse system, as described in Figure 9.
First, the operator D is recasted into the Volterra series
formalism in Section 4.1, for which pre-inversion methods
exist and are easily tractable [13]. Then a realisation struc-
ture ofDH is built from the calculated pre-inverse kernels in
Section 4.2.

4.1 Volterra series formulation

Proposition 4.1. The system D admits a representation into
Volterra series and its transfer kernels are given by

DnðsÞ ¼
s if n ¼ 1;Pn�1

k¼1

P
i2Cn�1;k

skþ1
n D�

i1
ðr1ðsÞÞ:::D�

ik
ðrkðsÞÞ otherwise;

8><
>:

ð34Þ
where

D�
nðsÞ ¼

1=c0 if n ¼ 1;Pn�1

k¼1

P
i2Cn�1;k

skn
c0
D�

i1
ðr1ðsÞÞ:::D�

ik
ðrkðsÞÞ otherwise;

8><
>:

ð35Þ
and s 2 C1�njRðsÞ > 0,
ra ¼ ðsi1þ:::þia�1þ1; :::; si1þ:::þiaÞ.
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The proof is given in Appendix C. The three first kernels
calculated from this proposition are listed below:

D1ðs1Þ ¼ s1; ð36Þ

D2ðs1; s2Þ ¼ s21
c0
; ð37Þ

D3ðs1; s2; s3Þ ¼ 1
c20

s31
2
þ s1s22

� �
: ð38Þ

4.2 Third-order corrector calculation

The purpose of the anti-Doppler filter is to reshape the
diaphragm displacement waveform n(t) into another dis-
placement nc(t) in order to reach the following target
Eulerian velocity field,

V H
0 ðtÞ ¼ n0ðtÞ: ð39Þ

The pre-inverse system presented in Figure 9 is calculated
so that the tandem system D � DH of input V H

0 ðtÞ ¼ n0ðtÞ
must be equal to the identity. This property is translated
into the Volterra series formalism by

1 ¼ DH
1 s1ð ÞD1 s1ð Þ: ð40Þ

Moreover, higher order terms of the series composition must
vanish, yielding one equation per order. Solving recursively
for n = 1, 2, 3 yields

DH
1 ðs1Þ ¼ 1=s1; ð41Þ

DH
2 ðs1; s2Þ ¼ � s1

c0s2ðs1 þ s2Þ ; ð42Þ

DH
3 ðs1; s2; s3Þ ¼

s1s2
s3ðs2 þ s3Þ þ

s21
2s2s3

c20ðs1 þ s2 þ s3Þ : ð43Þ

The realisation structure of (41)–(43) is presented in
Figure 10. A prior integration of V0(t) = n0(t) is assumed,
so that n(t) is the input of DH. This correction algorithm
is also decomposed into orders of homogeneous degree,
where for instance nc1(t) = n(t) is the contribution from
the first order. Note that the second-order term

nc2ðtÞ ¼ � 1
c0

Z t

0
n00ðtÞnðtÞdt

¼ 1
c0

Z t

0
½n0ðtÞ�2dt � nðtÞn0ðtÞ

� � ð44Þ

is not centered on zero and constantly increases with time
due to the integral of [n0(t)]2. A similar divergence can be

observed for the third-order term. This problem,
illustrated in Figure 11, can be interpreted as follows:
the particle velocity generated by the moving piston is
slightly more compressed for positive values and relaxed
for negative values (see top-right picture in Fig. 11), lead-
ing to a signal assymetry and thus a non-zero (negative)
mean value. Therefore the required diaphragm displace-
ment nc(t) to perfectly compensate for the Doppler effect
must constantly move toward the listener (see down-left
picture in Fig. 11). To get around this problem, another
corrector DH

c is proposed, that substitutes the perfect
integrator 1=s in the Laplace domain for 1/(s + 2pfc),
where fc is below the lowest frequency of interest.
The impact of this substitution is evaluated on the
orders 1 and 2 by connecting in tandem DH

c and D in
equations (45) and (46).

� The identity is retrieved (1 if n = 1 and 0 for n = 2) by
setting a = 0.

� The composition D1 �DH
c;1 behaves like a gain of 1 for

frequencies greater than fc.
� The composition D2 �DH

c;2 is equivalent to the product
of two filters s/(s + 2pfc), connected in tandem with
an integrator 1/(s + 2pfc) and a gain of �2pfc. The
result of this composition is very close to 0 for frequen-
cies greater than fc.

D1ðs1Þ � DH
c;1 ¼

s1
ðs1 þ aÞ ð45Þ

D2ðs1; s2Þ � DH
c;2 ¼

�s2s1a
ðs1 þ aÞðs2 þ aÞðs1 þ s2 þ aÞ ð46Þ

Similar observations can be made by evaluating the third
order. It can be concluded that DH

c tends to equal DH for
frequencies higher than fc, therefore restoring the exact
correction for sufficiently high frequencies.

4.3 Numerical evaluation of the corrector

The evaluation of the corrector is carried out with the
same piston velocity signal as in the previous Section 3,

Figure 10. Continuous time realisation structure of DH trun-
cated at N = 3, built from the transfer kernels DH

1 DH
2 , D

H
3 . This

structure is composed of products and sums of differentiators
and integrators.

Figure 9. Description of the pre-inverse system DH. The
tandem system D �DH generates the identity.
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composed of a low-frequency tone and a rising chirp. The
cutoff frequency of DH

c is set to fc ¼ 0:1 Hz and the
numerical integration is achieved by the bilinear transform
of 1=ðsþ 2pfcÞ. A complete block diagram of the correction
evaluation is presented in Figure 12: the targeted Eulerian
field is sent to the corrector DH

c that generates a corrected
piston displacement ncðtÞ. Then the Eulerian source V 0ðtÞ is
calculated throughD and the acoustic pressure is evaluated
at z = 1 m by (1).

Spectrogram of the corrected acoustic pressure
pðz ¼ 1; tÞ, presented in Figure 13, should be compared to
the case without correction in Figure 8. Second order inter-
modulation is now below �36 dB (compared to �25 dB
without correction) and third order is no longer visible.

Finally, an intermodulation factor is evaluated at the
swept sine frequency f from the following formula,

IMDP ðf Þ ¼ 100

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4

P2
n¼1

P ðf þ nf 0Þ2 þ P ðf � nf 0Þ2
� 	s

jPðf Þj ; ð47Þ

where Pðf Þ is the discrete Fourier transform of the acous-
tic pressure pðz ¼ 1; tÞ. This factor is calculated at various

ratio f =f0, with and without correction of the piston
displacement.

The results, presented in Figure 14, confirms the
increase of intermodulation distortion with frequency: the
case without correction reaches 15% of IMD for
f =f0 ¼ 100. For f =f0 ¼ 50, which corresponds to a realistic
case f0 ¼ 40 Hz and f = 2 kHz, the IMD is about 7.5%. The
correction algorithm DH

c maintains the intermodulation
level below 4%. The slight loss of efficiency of DH with
frequency is due to (i) the truncation at order 3 and
(ii) the phase and amplitude limitations of the implemented
differentiator filter.

Figure 11. Illustration of the (slow) divergence of the displacement signal for a centered target Eulerian field. The centered
displacement signal nðtÞ (top-left) generates an Eulerian field V 0ðtÞ (top-right) with a negative mean value. Therefore, a centered
target Eulerian field (down-right) requires a corrected piston velocity n0cðtÞ thas has a positive mean value (down-middle) and the
corresponding displacement ncðtÞ constantly increases with time (down-left). For the sake of illustration, calculations have been
carried out with exaggerated displacement amplitude of 1 m at 10 Hz.

Figure 12. Block diagram of the corrector evaluation, with the
target Eulerian field as input VH

0 ðtÞ ¼ n0ðtÞ and the acoustic
pressure as output pðz; tÞ.

Figure 13. Spectrogram of the acoustic pressure pðz ¼ 1; tÞ for
a corrected diaphragm displacement ncðtÞ. Intermodulation
distortion is reduced compared to Figure 8.

T. Lebrun and T. Hélie: Acta Acustica 2020, 4, 28



5 Conclusion

The influence of the Doppler effect induced by a
vibrating source has been investigated in terms of intermod-
ulation distortion, based on the truncation of an exact
series expansion that generates an equivalent Eulerian veloc-
ity field. The sound artefact generated by this nonlinear
phenomenon increases with the distance between the high-
est and the lowest frequencies of the source signal.

Distortions can be expected up to 7.5% for diaphragm
displacements with a wide frequency content (typically
[40 Hz, 2 kHz]) and large amplitudes (a few millimeters).
In this situation, truncating the series expansion at order 3
is sufficient to represent this distortion effect with a
good accuracy. Also, the nonlinear propagation (due to
convection) has been examined: this effect only appears from
order 3. More precisely, compared to the Doppler alone, the
convection effect only modifies one coefficient of the third
order contribution.

In addition, an algorithm to compensate for this effect
while preserving a centered version of the membrane dis-
placement has been proposed. The solution is derived by
inverting the series of the direct problem and replacing each
time-integrator by a “band-limited integrator”. Numerical
tests show that this solution yields a satisfying distortion
reduction.

A future work is concerned with the experimental
validation of the proposed Doppler system on loudspeakers.
Another one will be devoted to the validation of the
anti-Doppler system, through its combination with correc-
tion techniques to reject the driver electromechanical
nonlinearities.
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Appendix A
Property 1: Kn is a diffeomorphism

Property A.1 (Kn is a Cn-diffeomorphism). Let n be a
C1-regular function that satisfies the condition 9 on the
Mach number. If function n is also Cnþ1-regular with
n 2 N, then

� K n is a Cn-regular diffeomorphism. Consequently the

functions K�1
n and sdn ¼ ½san��1 exist and are Cn-regular,

� Ka
n ¼ Kd

n ¼ Kn.

Proof. (i) Bijection. By construction of the image set Ka
n

(see (6)), Kn is a surjective function. Moreover n is
C1-regular, so that san and then Kn are also C1-regular func-
tions. For all ðz; tÞ 2 Kd

n , the Jacobian of Kn is given by

JKn
ðz; tÞ ¼ 1 0

1=c0 1� n0ðtÞ=c0

� �
;

in which 1� n0ðtÞ=c0 is strictly positive from (9), therefore
K n is bijective.

(ii) Diffeomorphism. Now let n 2 N and consider
n 2 Cnþ1-regular. Then, K�1

n exists and can be expressed as

Figure 14. Evolution of the intermodulation distortion
IMDPðf Þ with f =f0. The intermodulation distortion due to
Doppler effect (in blue) reaches 15% at f =f0 ¼ 100. The correction
algorithm DH (in red) maintains the distortion level below 4%.
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K�1
n : Ka

n 7!Kd
n

ðz; tÞ 7! ðz; sdnðt � z=c0ÞÞ;
ðA1Þ

where sdn is the reciprocal of san. The Jacobian of K�1 is
given by

JK�1 : Ka
n ! M2;2ðRÞ

ðz; tÞ 7!
1 0
�1

c0 � n0ðsdnðt � z=c0ÞÞ
1

1� n0ðsdnðt � z=c0ÞÞ=c0

0
@

1
A :

ðA2Þ
Now, we prove by induction that sdn is Cp-regular for
1 	 p 	 n.

� Case p ¼ 1: sdn 2 C1.
From (4), san is C

1-regular, so that sdn exists and is contin-

uous. Then the Jacobian JK�1 defined in (A2) is a contin-

uous function, so that K�1
n and then sdn are C1-regular.

� Case p � 2: If sdn is C
p-regular, then sdn is C

p
1-regular.
From (A2), the Jacobian JK�1 is Cp-regular. Therefore
and K�1 sdn are Cpþ1-regular, which proves that K n is a
diffeomorphism.

Moreover, KnðnðtÞ; tÞ ¼ ðnðtÞ; tÞ proves that the
codomain Ka

n is also bounded by the fixed point ðnðtÞ; tÞ,
leading to Ka

n ¼ Kd
n ¼ Kn. h

Appendix B
Derivation of the perturbation method

Injecting (19) into (18) yieldsX1
n¼0

�nðtÞan ¼ auðt þ
X1
n¼0

�nðtÞanÞ=c0; ðB1Þ

where function u can be expanded into Taylor series at
point t, leading to

X1
n¼0

�nðtÞan ¼ 1
c0
a
X1
m¼0

uðmÞðtÞ
m!

X1
n¼0

�nðtÞan
 !m

: ðB2Þ

The power series composition at the right-hand side is
simplified as follows,X1

n¼1

�nðtÞan ¼ auðtÞ
c0

þ
X1
q¼1

aqþ1
Xq
k¼1

uðkÞðtÞ
k!c0

X
i2Cq;k

�i1ðtÞ:::�ik ðtÞ

ðB3Þ
where Cn;k ¼ fði1; :::; ikÞji1 þ ::: þ ik ¼ ng is the set of com-
positions of n into k parts. Finally, equating (B3) for each

power of a yields the following recursive relation, for all
n 2 N�,

�nðtÞ ¼
nðtÞ=c0 if n ¼ 1;Pn�1

k¼1

nðkÞðtÞ
k!c0

P
i2Cn�1;k

�i1ðtÞ:::�ik ðtÞ otherwise;

8><
>: ðB4Þ

where the amplitude a is set to 1, so that u ¼ n.
Now that (18) is solved, (17) can be written

V 0ðtÞ ¼ n0 t þ
X1
q¼1

�qðtÞ
 !

; ðB5Þ

where n0 can be expanded into Taylor series at point t

V 0ðtÞ ¼
X1
n¼0

nðnþ1ÞðtÞ
n!

X1
q¼1

�qðtÞ
 !n

: ðB6Þ

Appendix C
Proof of Proposition 4.1

Proof. The formula (35) is proven by induction.

� Case p ¼ 1: D�
1.

The proof is straightforward since �1ðtÞ ¼ nðtÞ=c0, so
that its associated transfer kernel is D�

1ðs1Þ ¼ 1=c0.
� Case p � 2: if D�

p is true, then H �
p
1 is true.

From its construction using the regular perturbation
method, �pðtÞ is a homogeneous multivariate polynomial
of degree p, so that its associated transfer kernel only
consists of order p. Thus, the transfer kernel of following
product

pi;kðtÞ ¼ nðkÞðtÞ�i1ðtÞ:::�ik ðtÞ ðC1Þ

is given by

P i;kðsÞ ¼ ski1þ:::þikþ1h
�
i1
ðr1ðsÞÞ:::h�ik ðrkðsÞÞ: ðC2Þ

Therefore the transfer kernel associated with

�pþ1ðtÞ ¼
Xp
k¼1

X
i2Cp;k

pi;kðtÞ=c0 ðC3Þ

is

D�
pþ1ðsÞ ¼

Xp
k¼1

X
i2Cp;k

P i;kðsÞ=c0; ðC4Þ

that concludes the proof by induction.
The transfer kernels HnðsÞ are derived similarly. h
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