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Abstract 

Using deep learning methods has led to significant 
improvement in speaker recognition systems. Introducing x-
vectors as a speaker modeling method has made these systems 
more robust. Since, in challenging environments with noise and 
reverberation, the performance of x-vectors systems degrades 
significantly, the demand for denoising techniques remains as 
before. In this paper, for the first time, we try to denoise the x-

vectors speaker embedding. Our focus is on additive noise. 
Firstly, we use the i-MAP method which considers that both 
noise and clean x-vectors have a Gaussian distribution. Then, 
leveraging denoising autoencoders (DAE) we try to reconstruct 
the clean x-vector from the corrupted version. After that, we 
propose two hybrid systems composed of statistical i-MAP and 
DAE. Finally, we propose a novel DAE architecture, named 
Deep Stacked DAE, composed of several DAEs where each 

DAE receives as input the output of its predecessor DAE 
concatenated with the difference between noisy x-vectors and 
its predecessor’s output. The experiments on Fabiol corpus 
show that the results given by the hybrid DAE i-MAP method 
in several cases outperforms the conventional DAE and i-MAP 
methods. Also, the results for Deep Stacked DAE in most cases 
is better than the other proposed methods. For utterances longer 
than 12 seconds we achieved a 51% improvement in terms of 

EER with Deep Stacked DAE, and for utterances shorter than 2 
seconds, Deep Stacked DAE gives 18% improvements 
compared to the baseline system. 

 

Key terms: Speaker recognition, x-vector, i-MAP, Noise 
compensation, Denoising autoencoder 

 

1. Introduction 

Speaker recognition is the task of identifying speakers from 

their utterances. In the past decade, introducing the i-vector 
statistical model and x-vector speaker embedding has led to 
notable progress in the speaker recognition area. However, x-
vector speaker modeling method has caused substantial 
improvement in speaker recognition system, the performance 
of this system in challenging environments with the presence of 
unseen noises and reverberation degrades significantly. In our 
experiments, with low SNR and a large number of unseen 

noises added to the test data, we observed that the performance 
of x-vector embedding diminishes drastically in comparison to 
results obtained with noise-free x-vectors. 

Some studies [1, 2, 3] showed that by increasing the number 
of speakers, the amount of training data, and by using data 

augmentation, the x-vectors can achieve a certain degree of 
robustness with the presence of noise, but this degree of 
robustness remains very insufficient especially in the case of 
low SNR.  

In this paper, in addition to the common data augmentation 
techniques, we propose to denoise the noisy x-vectors to 
approach the performance obtained by noise-free x-vectors. In 
this manner, it becomes easier to target a specific unseen noise 

or to adapt the denoising system to new conditions. In other 
words, the proposed system is a pipeline of two systems, the 
first one allows to generate the best x-vectors possible and the 
second is used to denoise it.  

Applying denoising techniques at the speaker modeling 
level has been done successfully in the i-vector space [4, 5, 6]. 
In this paper we apply statistical denoising techniques on x-
vectors that works effectively in i-vector domain. Although, we 

want to explore the effectiveness of DNN denoising techniques 
in x-vector domain. Our first attempt consists of using a 
statistical approach based on the use of maximum a posteriori 
(MAP), namely the i-MAP approach [5]. The i-MAP denoising 
technique has been used successfully in the i-vector space. 
Then, we compare the results obtained by i-MAP with 
denoising autoencoder. Furthermore, we propose two hybrid 
systems that use both denoising autoencoders and i-MAP. 

Finally, we propose a novel DNN, named Deep Stacked DAE 
that outperforms all the other methods. 

Our contributions are: 

• We applied i-MAP statistical technique in the x-
vector space.  

• We introduced two hybrid DAE architectures 
combined with i-MAP to denoise x-vectors 

• We also introduced another DAE architecture, 
composed of several DAEs, that each DAE receives 
the output of its predecessor DAE concatenated with 
the difference between noisy x-vectors and its 
predecessor’s output. 

In all denoising techniques used in this paper, our goal is to 
develop a system that tries to compensate for different kinds of 
noises without explicit information about the noise for a given 
utterance in the test data. We expect that by including explicit 

information about the noise (obtained from non-speech part of 
the test segment) it is possible to achieve more robust systems 
with denoising autoencoders and our next exploration will be 
focused in that direction. 
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The proposed techniques only compensate for additive 
noise, but the same idea can be applied to the short duration 

variabilityy or to the reverberation. Of course, in these cases, 
the architecture of the different models must be adapted for 
modeling the specific characteristics of such variabilities. 

2. Related works 

The previous work on denoising techniques for speaker 
recognition has been done in three levels: signal level, feature 
level, and speaker modeling level (i-vectors, x-vectors). Thanks 
to its statistical properties, developing denoising techniques in 

modeling level is more promising and easier than signal or 
feature level. The relative improvement of EER, in signal level 
[7], shows that results obtained in speaker modeling level are 
better than signal or feature level [4]. 

In the signal level, statistical and deep learning speech 
enhancement methods are used. Statistical speech enhancement 
methods consider some frames from the beginning of utterance 
as the noise information. Since these methods do not consider 

the time-varying nature of the noise, they are not so effective 
[8, 9]. Besides statistical models, several deep learning speech 
enhancement methods are used in speaker recognition. In [7], 
two different DNN architectures were proposed in order to 
denoise the corrupted signal. In the first one, the log-magnitude 
spectrum passed through a five-layer BLSTM network. The 
hidden layers are used to handle the context dependencies in the 
signal and the output LSTM layer is used to reconstruct the 

clean signal. In another architecture, a CNN encoder-decoder 
network is used to denoise the short-time Fourier transform 
(STFT) magnitude spectrogram. Denoising autoencoder is 
another DNN method used as a preprocessing step in speaker 
recognition. In [10] a deep feedforward autoencoder trained in 
order to transform the noisy log magnitude spectrum to a clean 
compact encoded signal in the same domain. In another paper, 
a DNN architecture that uses the feedback from the speaker 

verification (SV) system to generate a ratio mask was designed. 
The generated mask multiplied pointwise with the original 
spectrogram to remove unnecessary parts of the signal for 
speaker verification [11].  

Several publications deal with denoising techniques at 
speaker modeling level. In [12], a new speaker embedding 
method called adversarial speaker verification (ASV) is 
proposed. ASV tries to not only classify the utterances from 
speaker embedding but also to classify the type of utterance in 

terms of environmental noise, and Signal to Noise Ratio (SNR). 
I-MAP is a statistical denoising method that is applied in the i-
vector space. The main advantage of this method is that it uses 
both information about the relation between noisy and clean 
speech and the clean speech distribution [5]. A nonparametric 
algorithm without considering the relation between corrupted 
and clean i-vector was proposed by [4], that utilizes the joint 
distribution of corrupted and clean i-vectors to denoise 

corrupted i-vector with an MMSE estimator. Neural 
autoencoders for denoising  i-vectors have also been 
investigated in [13] and in [14] a classifier is jointly trained with 
a DAE in order to make the new i-vector more discriminative. 

To the best of our knowledge, there seems to be no previous 
attempt to do noise compensation in x-vector framework except 
ours. In our work we show the performance degradation of the 
x-vector speaker modeling method in a noisy environment. 

Then we try to compensate the negative effect of additive noise 
using different denoising techniques. 

This paper is structured as follows: First, our methodology 
is described in section 3. In section 4, the experiment setup and 

data are described. Later, section 5 presents the results of the 
experiments. 

3. Methodology 

In this section, the details about the i-MAP, DAE, and our 
proposed variants of DAEs are discussed. Firstly, the i-MAP 
method is described. Then, denoising autoencoders are 
described and two hybrid systems developed from i-MAP and 
DAEs are presented. Finally, a novel DAE architecture is 

introduced. 

 

 3.1 i-MAP 

The i-MAP is a statistical denoising method originally 
developed for the i-vector domain. Since in our work it is used 
for denoising x-vectors, from now on, we call it x-MAP. We 
define X and Y as the random variables for clean and noisy x-
vectors. A third random variable for noise is defined as: 

𝑁 = 𝑌 − 𝑋      (1) 

Where:  

𝑋   ̴ 𝑁(𝜇𝑋 , ∑𝑋)                    (2) 

𝑁  ̴ 𝑁(𝜇𝑁, ∑𝑁)                    (3) 

In the x-MAP approach, we assume that both noise and clean 
x-vectors have a Gaussian distribution.  

For a given noisy x-vector Y0, from 1, 2, and 3 relations we 
fined: 

𝑓(𝑌0|𝑋) =
1

(2𝜋)
𝑝
2|𝛴𝑁|

1
2

𝑒𝑥𝑝−
1

2
(𝑌0−𝑋−𝜇𝑁)𝑇 ∑ (𝑌0−𝑋−𝜇𝑁)−1

𝑁             

(4)  

To find X0, the clean version of Y0, a MAP estimator is used: 

𝑋0 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑋{𝑙𝑛 𝑓(𝑌0|𝑋)𝑓(𝑋)}                        (5) 

The final expression of calculating denoised x-vectors is: 

𝑋0 = (𝛴𝑁
−1 + 𝛴𝑁

−1)−1(𝛴𝑁
−1(𝑦 − 𝜇𝑁) + 𝛴𝑋

−1𝜇𝑋)               (6) 

More details about the mathematics of x-MAP can be found 
in [4, 5].  

 

3.2 Denoising autoencoder 

Denoising autoencoder is a specific type of autoencoder that 
takes the noisy x-vector as input and tries to reconstruct the 
clean version at the output. Denoising autoencoder tries to 
minimize: 

𝐿(𝒙, 𝑓(𝒚))                   (7) 

where L is the loss function, 𝒚 is the corrupted x-vector and 

𝑓(𝒚) is the output of DAE [15]. 

In this paper, we propose to use denoising autoencoders to 
denoise x-vectors. Then, we suggest three variations of DAE 
that are described in the following sections. 

 

3.3 Hybrid systems 
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Here, we try to benefit from the potential of x-MAP and 
DAE simultaneously. In order to do this, we combine those 

systems in two ways: 

DAE x-MAP: In this system, we used DAE and x-MAP 
methods sequentially. Firstly, the noisy x-vector is denoised by 
leveraging DAE, then the output of the DAE is denoised with 
x-MAP. The architecture of this system is presented in Figure 
1.A. 

Gaussian DAE: Adding a regularization term to the loss 
function is a common way to constraint the solution space in 

denoising DNNs [16, 17]. In Bayesian formulation, the 
regularization terms correspond to prior probabilities added to 
the loss function. Similar to x-MAP, in Gaussian DAE, we want 
to impose on the output of DAE and the estimated noised to 
have a Gaussian distribution.  

In the same manner, we add a regularization term to the 
MSE loss function. The proposed system is named Gaussian 
DAE. In Gaussian DAE we defined a new loss function to 

reduce MSE between input and output, and simultaneously 
maximize the a priori probabilities of the noise and of the 
obtained x-vectors (both assumed to be Gaussian) like in the x-
MAP. In this system, the following relation is used as a loss 
function: 

𝐿𝑜𝑠𝑠 = 𝑀𝑆𝐸 + (𝑌 − 𝑋 − 𝜇𝑁)𝛴𝑁
−1(𝑌 − 𝑋 − 𝜇𝑁) + {(𝑌 − 𝑋 −

𝜇𝑋)𝛴𝑋
−1(𝑌 − 𝑋 − 𝜇𝑋)}     (8) 

Where, Y is the input of DAE and X is the output of DAE at 

each mini-batch,  𝜇𝑁 and 𝜇𝑋 are the mean of noise and clean x-

vectors respectively, 𝛴𝑁
−1 and 𝛴𝑋

−1 are the inverse of the 
covariance matrix for noise and clean data, all these parameters 
are estimated on the whole training data. The architecture of this 
system is described in Figure 1.B. 

 

 

 

 

 

(A) 

 

(B) 

Figure 1. (A) the hybrid DAE x-MAP; (B) Gaussian DAE: 
Impose on DAE that assumes denoised x-vectors and the noise 

have a Gaussian distribution. 

 

3.4 Deep stacked Denoising Autoencoder 

In this subsection, we introduce a new denoising autoencoder 

called Deep Stacked DAE. In this architecture we have several 

DAE blocks. The noisy x-vectors fed to the first DAE. The next 

DAE block receives 𝑋𝑖 (the output of its predecessor block) 

concatenated with 𝑍𝑖 = 𝑌 − 𝑋𝑖−1(the difference between noisy 
x-vectors and the output of the previous block).  The stacked 

DAEs are trained jointly with the SGD optimization algorithm. 
The architecture of Deep Stacked DAE is presented in Figure 
2.  

       As we can see in next section, this architecture outperforms 
all other methods. One assumption behind the effectiveness of 
this method is that using the difference between noisy x-vectors 
and the output of the previous DAE, can capture the noise 
information. Let X be a clean x-vector and Y be a noisy x-

vector. If we use Y and X-Y in the input of denoising 

autoencoder and construct 𝑋̂ (the denoised x-vectors) in the 
output, the results will be very close to X. Despite the output 
layer that uses MSE to shift the output toward clean x-vectors, 
in hidden layers we don’t have such kind of implications. So, 
we don’t know about the nature of the output of each DAE. 
Moreover, this is similar to residual connection [24] which 
helps to build deeper models. 

 

Figure 2. Deep Stacked DAE 

 

4. Experiments setup 

4.1 Corpus 

In this subsection we briefly discuss all datasets used in our 
experiments: 

Voxceleb: The Voxceleb dataset released in two stages: 
Voxceleb1 and Voxceleb2. Voxceleb1 contains 100,000 
utterances from 1,251 celebrities. Voceleb2 includes over 1 
million utterances from 6,000 speakers. The speakers are from 
different ethnicities with different ages, professions and 

accents. All utterances crucially degraded with different types 
of noises including background chatter, laughter, overlapping 
speech and room acoustics. Although there are a lot of 
variations in recording devices and channels [18].    

Musan: The Musan corpus consists 109 hours audio including 
60 hours speech, 42 hours music, and 929 noise files. The 
Musan corpus is suitable for data augmentation [19]. 

BBC Noise: The BBC Noise corpus contains16,000 sound 

effects made available [20]. 

Fabiol: Fabiol is a French corpus consisting of 6882 utterances. 
The length of files spans from very short utterances less than 2 
seconds to very long utterances.  

 

4.2 Train x-vector extractor 

Noisy x-vector Denoised x-vector 

Noisy x-vector Denoised x-vector 

Clean distribution 

Noise distribution 

D
A

E
 

Y 

D
A

E
 

X1 

Y-X1 

D
A

E
 

X2 

Y-X2 

X3

3 

x
-M

A
P

 

D
A

E
 

D
A

E
 

77



 

In the experiments, a standard Kaldi recipe introduced in 
[21] is used. Firstly, we augmented Voxceleb1 with different 

branches of Musan corpus (music, babble, noise, 
reverberation). Then, we extracted MFCC features for 500,000 
randomly chosen utterances from the augmented data. Then, 
Cepstral Mean Variance Normalization (CMVN) is applied to 
the features. Finally, the VAD is applied to remove silent 
frames. In the next step, the TDNN discussed in [21] is used to 
extract x-vectors. The trained network is used in all experiments 
to create x-vectors in train and test parts of denoising 

techniques. 

 

4.3 Train and test x-vectors used in denoising techniques 

     In denoising techniques, we need the noisy x-vectors and 
their corresponding clean version. The x-vectors are extracted 
with the x-vector extractor described in 4.2 section. Simulating 
noisy signals by adding a noise to clean signals in the time 
domain is an approach which has proven its effectiveness for 

generating training data in x-vector extractor (data 
augmentation). However, in this paper we use the same 
approach to generate training and test data used in denoising 
techniques. 

For training x-vectors, we used Voxceleb1 and Voxceleb2. 
Firstly, we extracted the x-vectors from clean files in 
Voxceleb1 and Voxceleb2. Then, BBC Noises and Musan were 
added to Voxceleb1 and Voxceleb2 with different SNRs from 

0 to 15 and the x-vectors of noisy files extracted. We used 1638 
noise files from BBC corpus. The final version of the train data 
consists 1.975 million pairs of noisy x-vectors and their 
corresponding clean version. For some clean files there is more 
than one corrupted version.   

For test and enrollment dataset we used the Fabiol Corpus. 
The Fabiol corpus consists 6882 utterances where half of them 
were used for enrollment and the remaining part used as the test 

dataset. Because in real applications it is possible to have clean 
data for enrollment, in our experiments we used the clean files 
for enrollment. But for the test part we added 547 different 
noises form BBC corpus to the test files with different SNRs 
from 0 to 15. The noise files used in the test are different from 
those used in the train dataset. Since the length of utterances in 
Fabiol is varied from very short (less than 2 seconds) to longer 
utterances (more than 12 seconds), we separated the utterances 
in 6 groups to investigate the results of denoising methods on 

each group and specially to observe the effectiveness of the 
denoising techniques on very short utterances. 

 

4.4 Scoring method: 

In the experiments, the PLDA classifier is used. Before 
training the PLDA, the x-vectors are centered and their 
dimensionality reduced to 128 with LDA. 

 

5. Results 

In this section, we describe the results obtained by statistical 
x-MAP method and our proposed methods. The results are 
presented in Table 1 and Table 2. In our experiments, we used 
the equal error rate (EER) metric to evaluate the performance 
of the recognition system. 

Clean: In this experiment the clean version of x-vectors is used 
in the test dataset. As it is shown, the results are strongly 

dependent on the duration of test files. The aim of this 
experiment is to compare the results obtained by denoising 

techniques with noise-free x-vectors. 

Baseline: To show the weakness of x-vectors in noisy 
environments, the BBC noise files were added to the test data. 
In Table 1, we can see that there is a drastic degradation in our 
results. For example, for utterances longer than 12 seconds the 
EER increased from 0.833 to 5.131. 

x-MAP: In this experiment, we tried to find a denoised version 
of test x-vectors by using relation 6 in section 2.1. As it is shown 

in Table 1, in all cases the x-MAP improves the results 
significantly. For utterances longer than 12 seconds, it gives 
50% improvements in terms of EER. It can also be observed 
that the best gains are obtained for longer segments. 

DAE: We did several experiments to find the best denoising 
autoencoder. In the best architecture we found, three layers are 
used. The activation function of the input and output layers is 
linear. In the hidden layer, there are 1024 neurons with Tanh 

activation function. The network is trained with stochastic 
gradient descent algorithm with learning rate equal to 0.02 and 
0.0001 decay of the learning rate. The number of epochs in this 
experiment and all other variations of DAEs set to 100, and 
Mean Square Error (MSE) is used as loss function. From our 
experiments, we observed that the number of epochs is very 
important and small reduction in MSE value has a large impact 
on the results. In Table 1, we can see that for shorter utterances 

the fine-tuned DAE outperforms x-MAP method but for longer 
utterances the results are equivalent to x-MAP ones. In all 
experiments with conventional DAE and its modifications in 
the next experiments, we used Tensorflow [22] and Keras [23] 
frameworks.  

DAE x-MAP: In this method, we used the DAE with the same 
architecture and parameters used in simple DAE. The denoised 
x-vectors are passed through the x-MAP method for further 

noise compensation. In several cases, the results with this 
hybrid system are better than simple DAE. In Table 1. we can 
see that for utterance between 10 and 12 seconds we achieved 
46% improvement in relative EER.  

Gaussian DAE: In this experiment, we try to not only decrease 
the MSE with DAE but also maximize the prior probabilities of 
the estimated noise and of the obtained x-vectors. The only 
difference between Gaussian DAE and simple DAE is the loss 
function. In this experiment the function defined in relation 8 

were used as loss function. The results in Table 1 show that in 
some cases, the Gaussian DAE gives better results than x-MAP 
and conventional DAE.  

Deep Stacked DAE: In this experiment, the Deep Stacked 
DAE which was introduced in section 2.5 is used. In the first 
DAE, there are three layers. The input and output layers are 
linear and the hidden layer’s activation function is Tanh. The 
output of the first DAE concatenated with the difference 

between noisy x-vector and the output layer from its 
predecessor DAE, fed to the next DAE. In the second DAE 
there are two Tanh layers with 1024 neurons and the output 
layer is linear. The number of neurons in the output layer is 512 
which equals to the length of noisy x-vector. The network was 
trained with stochastic gradient descent method. The learning 
rate is 0.02 and the decay of learning rate is 0.0001.  

In another experiment, three stacked DAEs are used. The 

architecture of the third DAE, is the same as the second one. 
The third DAE receives its input from the output of the second 
DAE concatenated with the difference between noisy x-vectors 
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and the output layer of the second DAE. The results in Table 2 
show that adding more DAEs doesn't cause significant 

improvement.   

As we can see from Table 1 and 2, there is a slip in the 
results for utterances between 8 and 10 seconds. We believe that 

it happens because the number of trials for this experiment in 
the Fabiol corpus is small.

 

Table 1. Results obtained by x-MAP, DAE, DAE x-MAP, and Gaussian DAE in terms of EER for utterances with different 

  lengths 

Length  

(second) 

s<2 2<s<4 4<s<6 6<s<8 8<s<10 10<s<12 12<s 

Clean 11.59 7.646 4.144 2.239 3.111 1.538 0.8339 

Baseline 15.94 12.88 10.5 7.836 8.889 6.667 5.131 

x-MAP 14.2 11.07 8.011 5.597 5.333 4.103 2.630 

DAE 13.62 10.87 8.287 5.597 5.778 4.103 2.694 

DAE x-MAP 14.78 10.87 8.287 4.851 5.333 3.59 2.758 

Gaussian 
DAE 

14.2 9.859 7.459 5.597 5.778 4.103 3.143 

 

Table 2. Results for proposed Deep Stacked DAE 

Length/  

N° DAEs 

s<2 2<s<4 4<s<6 6<s<8 8<s<10 10<s<12 12<s 

2 13.04 10.46 8.011 5.224 5.333 3.59 2.502 

3 13.04 9.658 7.735 4.851 5.778 4.103 2.502 

5. Conclusion and future work 

In this paper we applied noise compensation in x-vector space. 
Firstly, we showed that in x-vector space when there are many 
unseen noises, the results degrade substantially. Then, we tried 
to exploit x-MAP statistical denoising technique, originally 
designed for i-vector space, to denoise x-vectors. The x-MAP 

technique is applicable in x-vector domain. In this paper, 
several variations of denoising autoencoders are proposed. The 
combination of x-MAP and DAE is better than using them 
separately for denoising x-vectors. In another method 
(Gaussian DAE), we defined a new loss function which tries to 
combine the MSE term with two additional terms 
corresponding to the likelihood of the output data with respect 
to prior Gaussian distributions. Finally, a Deep Stacked DAE 

was proposed that each DAE receives the output of its 
predecessor DAE concatenated with the difference between 

noisy x-vectors and its predecessor’s output. The results 
obtained by Deep Stacked DAE, outperforms statistical x-MAP 
technique and other variations of DAE discussed in this paper. 
We expect that by having an estimation of the noise we can 
achieve better results; in our future research we try to find 
explicit information about the noise from non-speech frames in 

test utterances and use this information alongside noisy x-
vectors in denoising autoencoder to design more robust speaker 
recognition systems.  
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