
HAL Id: hal-02614616
https://hal.science/hal-02614616

Submitted on 21 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Denoising x-vectors for Robust Speaker Recognition
Mohammad Mohammadamini, Driss Matrouf, Paul-Gauthier Noé

To cite this version:
Mohammad Mohammadamini, Driss Matrouf, Paul-Gauthier Noé. Denoising x-vectors for Robust
Speaker Recognition. Odyssey 2020 The Speaker and Language Recognition Workshop, Nov 2020,
Tokyo, Japan. pp.75-80, �10.21437/Odyssey.2020-11�. �hal-02614616�

https://hal.science/hal-02614616
https://hal.archives-ouvertes.fr

DENOISING X-VECTORS FOR ROBUST SPEAKER RECOGNITION

Mohammad MohammadAmini, Driss Matrouf, Paul-Gauthier Noé

LIA (Laboratoire Informatique d’Avignon)

Avignon University

{mohammad.mohammadamini , driss.matrouf , paul-gauthier.noe}@univ-avignon.fr

Abstract

Using deep learning methods has led to significant
improvement in speaker recognition systems. Introducing x-
vectors as a speaker modeling method has made these systems
more robust. Since, in challenging environments with noise and
reverberation, the performance of x-vectors systems degrades
significantly, the demand for denoising techniques remains as
before. In this paper, for the first time, we try to denoise the x-

vectors speaker embedding. Our focus is on additive noise.
Firstly, we use the i-MAP method which considers that both
noise and clean x-vectors have a Gaussian distribution. Then,
leveraging denoising autoencoders (DAE) we try to reconstruct
the clean x-vector from the corrupted version. After that, we
propose two hybrid systems composed of statistical i-MAP and
DAE. Finally, we propose a novel DAE architecture, named
Deep Stacked DAE, composed of several DAEs where each

DAE receives as input the output of its predecessor DAE
concatenated with the difference between noisy x-vectors and
its predecessor’s output. The experiments on Fabiol corpus
show that the results given by the hybrid DAE i-MAP method
in several cases outperforms the conventional DAE and i-MAP
methods. Also, the results for Deep Stacked DAE in most cases
is better than the other proposed methods. For utterances longer
than 12 seconds we achieved a 51% improvement in terms of

EER with Deep Stacked DAE, and for utterances shorter than 2
seconds, Deep Stacked DAE gives 18% improvements
compared to the baseline system.

Key terms: Speaker recognition, x-vector, i-MAP, Noise
compensation, Denoising autoencoder

1. Introduction

Speaker recognition is the task of identifying speakers from

their utterances. In the past decade, introducing the i-vector
statistical model and x-vector speaker embedding has led to
notable progress in the speaker recognition area. However, x-
vector speaker modeling method has caused substantial
improvement in speaker recognition system, the performance
of this system in challenging environments with the presence of
unseen noises and reverberation degrades significantly. In our
experiments, with low SNR and a large number of unseen

noises added to the test data, we observed that the performance
of x-vector embedding diminishes drastically in comparison to
results obtained with noise-free x-vectors.

Some studies [1, 2, 3] showed that by increasing the number
of speakers, the amount of training data, and by using data

augmentation, the x-vectors can achieve a certain degree of
robustness with the presence of noise, but this degree of
robustness remains very insufficient especially in the case of
low SNR.

In this paper, in addition to the common data augmentation
techniques, we propose to denoise the noisy x-vectors to
approach the performance obtained by noise-free x-vectors. In
this manner, it becomes easier to target a specific unseen noise

or to adapt the denoising system to new conditions. In other
words, the proposed system is a pipeline of two systems, the
first one allows to generate the best x-vectors possible and the
second is used to denoise it.

Applying denoising techniques at the speaker modeling
level has been done successfully in the i-vector space [4, 5, 6].
In this paper we apply statistical denoising techniques on x-
vectors that works effectively in i-vector domain. Although, we

want to explore the effectiveness of DNN denoising techniques
in x-vector domain. Our first attempt consists of using a
statistical approach based on the use of maximum a posteriori
(MAP), namely the i-MAP approach [5]. The i-MAP denoising
technique has been used successfully in the i-vector space.
Then, we compare the results obtained by i-MAP with
denoising autoencoder. Furthermore, we propose two hybrid
systems that use both denoising autoencoders and i-MAP.

Finally, we propose a novel DNN, named Deep Stacked DAE
that outperforms all the other methods.

Our contributions are:

• We applied i-MAP statistical technique in the x-
vector space.

• We introduced two hybrid DAE architectures
combined with i-MAP to denoise x-vectors

• We also introduced another DAE architecture,
composed of several DAEs, that each DAE receives
the output of its predecessor DAE concatenated with
the difference between noisy x-vectors and its
predecessor’s output.

In all denoising techniques used in this paper, our goal is to
develop a system that tries to compensate for different kinds of
noises without explicit information about the noise for a given
utterance in the test data. We expect that by including explicit

information about the noise (obtained from non-speech part of
the test segment) it is possible to achieve more robust systems
with denoising autoencoders and our next exploration will be
focused in that direction.

Odyssey 2020 The Speaker and Language Recognition Workshop
1-5 November 2020, Tokyo, Japan

75 10.21437/Odyssey.2020-11

http://www.isca-speech.org/archive/Odyssey_2020/abstracts/78.html

The proposed techniques only compensate for additive
noise, but the same idea can be applied to the short duration

variabilityy or to the reverberation. Of course, in these cases,
the architecture of the different models must be adapted for
modeling the specific characteristics of such variabilities.

2. Related works

The previous work on denoising techniques for speaker
recognition has been done in three levels: signal level, feature
level, and speaker modeling level (i-vectors, x-vectors). Thanks
to its statistical properties, developing denoising techniques in

modeling level is more promising and easier than signal or
feature level. The relative improvement of EER, in signal level
[7], shows that results obtained in speaker modeling level are
better than signal or feature level [4].

In the signal level, statistical and deep learning speech
enhancement methods are used. Statistical speech enhancement
methods consider some frames from the beginning of utterance
as the noise information. Since these methods do not consider

the time-varying nature of the noise, they are not so effective
[8, 9]. Besides statistical models, several deep learning speech
enhancement methods are used in speaker recognition. In [7],
two different DNN architectures were proposed in order to
denoise the corrupted signal. In the first one, the log-magnitude
spectrum passed through a five-layer BLSTM network. The
hidden layers are used to handle the context dependencies in the
signal and the output LSTM layer is used to reconstruct the

clean signal. In another architecture, a CNN encoder-decoder
network is used to denoise the short-time Fourier transform
(STFT) magnitude spectrogram. Denoising autoencoder is
another DNN method used as a preprocessing step in speaker
recognition. In [10] a deep feedforward autoencoder trained in
order to transform the noisy log magnitude spectrum to a clean
compact encoded signal in the same domain. In another paper,
a DNN architecture that uses the feedback from the speaker

verification (SV) system to generate a ratio mask was designed.
The generated mask multiplied pointwise with the original
spectrogram to remove unnecessary parts of the signal for
speaker verification [11].

Several publications deal with denoising techniques at
speaker modeling level. In [12], a new speaker embedding
method called adversarial speaker verification (ASV) is
proposed. ASV tries to not only classify the utterances from
speaker embedding but also to classify the type of utterance in

terms of environmental noise, and Signal to Noise Ratio (SNR).
I-MAP is a statistical denoising method that is applied in the i-
vector space. The main advantage of this method is that it uses
both information about the relation between noisy and clean
speech and the clean speech distribution [5]. A nonparametric
algorithm without considering the relation between corrupted
and clean i-vector was proposed by [4], that utilizes the joint
distribution of corrupted and clean i-vectors to denoise

corrupted i-vector with an MMSE estimator. Neural
autoencoders for denoising i-vectors have also been
investigated in [13] and in [14] a classifier is jointly trained with
a DAE in order to make the new i-vector more discriminative.

To the best of our knowledge, there seems to be no previous
attempt to do noise compensation in x-vector framework except
ours. In our work we show the performance degradation of the
x-vector speaker modeling method in a noisy environment.

Then we try to compensate the negative effect of additive noise
using different denoising techniques.

This paper is structured as follows: First, our methodology
is described in section 3. In section 4, the experiment setup and

data are described. Later, section 5 presents the results of the
experiments.

3. Methodology

In this section, the details about the i-MAP, DAE, and our
proposed variants of DAEs are discussed. Firstly, the i-MAP
method is described. Then, denoising autoencoders are
described and two hybrid systems developed from i-MAP and
DAEs are presented. Finally, a novel DAE architecture is

introduced.

 3.1 i-MAP

The i-MAP is a statistical denoising method originally
developed for the i-vector domain. Since in our work it is used
for denoising x-vectors, from now on, we call it x-MAP. We
define X and Y as the random variables for clean and noisy x-
vectors. A third random variable for noise is defined as:

𝑁 = 𝑌 − 𝑋 (1)

Where:

𝑋 ̴ 𝑁(𝜇𝑋 , ∑𝑋) (2)

𝑁 ̴ 𝑁(𝜇𝑁, ∑𝑁) (3)

In the x-MAP approach, we assume that both noise and clean
x-vectors have a Gaussian distribution.

For a given noisy x-vector Y0, from 1, 2, and 3 relations we
fined:

𝑓(𝑌0|𝑋) =
1

(2𝜋)
𝑝
2|𝛴𝑁|

1
2

𝑒𝑥𝑝−
1

2
(𝑌0−𝑋−𝜇𝑁)𝑇 ∑ (𝑌0−𝑋−𝜇𝑁)−1

𝑁

(4)

To find X0, the clean version of Y0, a MAP estimator is used:

𝑋0 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑋{𝑙𝑛 𝑓(𝑌0|𝑋)𝑓(𝑋)} (5)

The final expression of calculating denoised x-vectors is:

𝑋0 = (𝛴𝑁
−1 + 𝛴𝑁

−1)−1(𝛴𝑁
−1(𝑦 − 𝜇𝑁) + 𝛴𝑋

−1𝜇𝑋) (6)

More details about the mathematics of x-MAP can be found
in [4, 5].

3.2 Denoising autoencoder

Denoising autoencoder is a specific type of autoencoder that
takes the noisy x-vector as input and tries to reconstruct the
clean version at the output. Denoising autoencoder tries to
minimize:

𝐿(𝒙, 𝑓(𝒚)) (7)

where L is the loss function, 𝒚 is the corrupted x-vector and

𝑓(𝒚) is the output of DAE [15].

In this paper, we propose to use denoising autoencoders to
denoise x-vectors. Then, we suggest three variations of DAE
that are described in the following sections.

3.3 Hybrid systems

76

Here, we try to benefit from the potential of x-MAP and
DAE simultaneously. In order to do this, we combine those

systems in two ways:

DAE x-MAP: In this system, we used DAE and x-MAP
methods sequentially. Firstly, the noisy x-vector is denoised by
leveraging DAE, then the output of the DAE is denoised with
x-MAP. The architecture of this system is presented in Figure
1.A.

Gaussian DAE: Adding a regularization term to the loss
function is a common way to constraint the solution space in

denoising DNNs [16, 17]. In Bayesian formulation, the
regularization terms correspond to prior probabilities added to
the loss function. Similar to x-MAP, in Gaussian DAE, we want
to impose on the output of DAE and the estimated noised to
have a Gaussian distribution.

In the same manner, we add a regularization term to the
MSE loss function. The proposed system is named Gaussian
DAE. In Gaussian DAE we defined a new loss function to

reduce MSE between input and output, and simultaneously
maximize the a priori probabilities of the noise and of the
obtained x-vectors (both assumed to be Gaussian) like in the x-
MAP. In this system, the following relation is used as a loss
function:

𝐿𝑜𝑠𝑠 = 𝑀𝑆𝐸 + (𝑌 − 𝑋 − 𝜇𝑁)𝛴𝑁
−1(𝑌 − 𝑋 − 𝜇𝑁) + {(𝑌 − 𝑋 −

𝜇𝑋)𝛴𝑋
−1(𝑌 − 𝑋 − 𝜇𝑋)} (8)

Where, Y is the input of DAE and X is the output of DAE at

each mini-batch, 𝜇𝑁 and 𝜇𝑋 are the mean of noise and clean x-

vectors respectively, 𝛴𝑁
−1 and 𝛴𝑋

−1 are the inverse of the
covariance matrix for noise and clean data, all these parameters
are estimated on the whole training data. The architecture of this
system is described in Figure 1.B.

(A)

(B)

Figure 1. (A) the hybrid DAE x-MAP; (B) Gaussian DAE:
Impose on DAE that assumes denoised x-vectors and the noise

have a Gaussian distribution.

3.4 Deep stacked Denoising Autoencoder

In this subsection, we introduce a new denoising autoencoder

called Deep Stacked DAE. In this architecture we have several

DAE blocks. The noisy x-vectors fed to the first DAE. The next

DAE block receives 𝑋𝑖 (the output of its predecessor block)

concatenated with 𝑍𝑖 = 𝑌 − 𝑋𝑖−1(the difference between noisy
x-vectors and the output of the previous block). The stacked

DAEs are trained jointly with the SGD optimization algorithm.
The architecture of Deep Stacked DAE is presented in Figure
2.

 As we can see in next section, this architecture outperforms
all other methods. One assumption behind the effectiveness of
this method is that using the difference between noisy x-vectors
and the output of the previous DAE, can capture the noise
information. Let X be a clean x-vector and Y be a noisy x-

vector. If we use Y and X-Y in the input of denoising

autoencoder and construct 𝑋̂ (the denoised x-vectors) in the
output, the results will be very close to X. Despite the output
layer that uses MSE to shift the output toward clean x-vectors,
in hidden layers we don’t have such kind of implications. So,
we don’t know about the nature of the output of each DAE.
Moreover, this is similar to residual connection [24] which
helps to build deeper models.

Figure 2. Deep Stacked DAE

4. Experiments setup

4.1 Corpus

In this subsection we briefly discuss all datasets used in our
experiments:

Voxceleb: The Voxceleb dataset released in two stages:
Voxceleb1 and Voxceleb2. Voxceleb1 contains 100,000
utterances from 1,251 celebrities. Voceleb2 includes over 1
million utterances from 6,000 speakers. The speakers are from
different ethnicities with different ages, professions and

accents. All utterances crucially degraded with different types
of noises including background chatter, laughter, overlapping
speech and room acoustics. Although there are a lot of
variations in recording devices and channels [18].

Musan: The Musan corpus consists 109 hours audio including
60 hours speech, 42 hours music, and 929 noise files. The
Musan corpus is suitable for data augmentation [19].

BBC Noise: The BBC Noise corpus contains16,000 sound

effects made available [20].

Fabiol: Fabiol is a French corpus consisting of 6882 utterances.
The length of files spans from very short utterances less than 2
seconds to very long utterances.

4.2 Train x-vector extractor

Noisy x-vector Denoised x-vector

Noisy x-vector Denoised x-vector

Clean distribution

Noise distribution

D
A

E

Y

D
A

E

X1

Y-X1

D
A

E

X2

Y-X2

X3

3

x
-M

A
P

D
A

E

D
A

E

77

In the experiments, a standard Kaldi recipe introduced in
[21] is used. Firstly, we augmented Voxceleb1 with different

branches of Musan corpus (music, babble, noise,
reverberation). Then, we extracted MFCC features for 500,000
randomly chosen utterances from the augmented data. Then,
Cepstral Mean Variance Normalization (CMVN) is applied to
the features. Finally, the VAD is applied to remove silent
frames. In the next step, the TDNN discussed in [21] is used to
extract x-vectors. The trained network is used in all experiments
to create x-vectors in train and test parts of denoising

techniques.

4.3 Train and test x-vectors used in denoising techniques

 In denoising techniques, we need the noisy x-vectors and
their corresponding clean version. The x-vectors are extracted
with the x-vector extractor described in 4.2 section. Simulating
noisy signals by adding a noise to clean signals in the time
domain is an approach which has proven its effectiveness for

generating training data in x-vector extractor (data
augmentation). However, in this paper we use the same
approach to generate training and test data used in denoising
techniques.

For training x-vectors, we used Voxceleb1 and Voxceleb2.
Firstly, we extracted the x-vectors from clean files in
Voxceleb1 and Voxceleb2. Then, BBC Noises and Musan were
added to Voxceleb1 and Voxceleb2 with different SNRs from

0 to 15 and the x-vectors of noisy files extracted. We used 1638
noise files from BBC corpus. The final version of the train data
consists 1.975 million pairs of noisy x-vectors and their
corresponding clean version. For some clean files there is more
than one corrupted version.

For test and enrollment dataset we used the Fabiol Corpus.
The Fabiol corpus consists 6882 utterances where half of them
were used for enrollment and the remaining part used as the test

dataset. Because in real applications it is possible to have clean
data for enrollment, in our experiments we used the clean files
for enrollment. But for the test part we added 547 different
noises form BBC corpus to the test files with different SNRs
from 0 to 15. The noise files used in the test are different from
those used in the train dataset. Since the length of utterances in
Fabiol is varied from very short (less than 2 seconds) to longer
utterances (more than 12 seconds), we separated the utterances
in 6 groups to investigate the results of denoising methods on

each group and specially to observe the effectiveness of the
denoising techniques on very short utterances.

4.4 Scoring method:

In the experiments, the PLDA classifier is used. Before
training the PLDA, the x-vectors are centered and their
dimensionality reduced to 128 with LDA.

5. Results

In this section, we describe the results obtained by statistical
x-MAP method and our proposed methods. The results are
presented in Table 1 and Table 2. In our experiments, we used
the equal error rate (EER) metric to evaluate the performance
of the recognition system.

Clean: In this experiment the clean version of x-vectors is used
in the test dataset. As it is shown, the results are strongly

dependent on the duration of test files. The aim of this
experiment is to compare the results obtained by denoising

techniques with noise-free x-vectors.

Baseline: To show the weakness of x-vectors in noisy
environments, the BBC noise files were added to the test data.
In Table 1, we can see that there is a drastic degradation in our
results. For example, for utterances longer than 12 seconds the
EER increased from 0.833 to 5.131.

x-MAP: In this experiment, we tried to find a denoised version
of test x-vectors by using relation 6 in section 2.1. As it is shown

in Table 1, in all cases the x-MAP improves the results
significantly. For utterances longer than 12 seconds, it gives
50% improvements in terms of EER. It can also be observed
that the best gains are obtained for longer segments.

DAE: We did several experiments to find the best denoising
autoencoder. In the best architecture we found, three layers are
used. The activation function of the input and output layers is
linear. In the hidden layer, there are 1024 neurons with Tanh

activation function. The network is trained with stochastic
gradient descent algorithm with learning rate equal to 0.02 and
0.0001 decay of the learning rate. The number of epochs in this
experiment and all other variations of DAEs set to 100, and
Mean Square Error (MSE) is used as loss function. From our
experiments, we observed that the number of epochs is very
important and small reduction in MSE value has a large impact
on the results. In Table 1, we can see that for shorter utterances

the fine-tuned DAE outperforms x-MAP method but for longer
utterances the results are equivalent to x-MAP ones. In all
experiments with conventional DAE and its modifications in
the next experiments, we used Tensorflow [22] and Keras [23]
frameworks.

DAE x-MAP: In this method, we used the DAE with the same
architecture and parameters used in simple DAE. The denoised
x-vectors are passed through the x-MAP method for further

noise compensation. In several cases, the results with this
hybrid system are better than simple DAE. In Table 1. we can
see that for utterance between 10 and 12 seconds we achieved
46% improvement in relative EER.

Gaussian DAE: In this experiment, we try to not only decrease
the MSE with DAE but also maximize the prior probabilities of
the estimated noise and of the obtained x-vectors. The only
difference between Gaussian DAE and simple DAE is the loss
function. In this experiment the function defined in relation 8

were used as loss function. The results in Table 1 show that in
some cases, the Gaussian DAE gives better results than x-MAP
and conventional DAE.

Deep Stacked DAE: In this experiment, the Deep Stacked
DAE which was introduced in section 2.5 is used. In the first
DAE, there are three layers. The input and output layers are
linear and the hidden layer’s activation function is Tanh. The
output of the first DAE concatenated with the difference

between noisy x-vector and the output layer from its
predecessor DAE, fed to the next DAE. In the second DAE
there are two Tanh layers with 1024 neurons and the output
layer is linear. The number of neurons in the output layer is 512
which equals to the length of noisy x-vector. The network was
trained with stochastic gradient descent method. The learning
rate is 0.02 and the decay of learning rate is 0.0001.

In another experiment, three stacked DAEs are used. The

architecture of the third DAE, is the same as the second one.
The third DAE receives its input from the output of the second
DAE concatenated with the difference between noisy x-vectors

78

and the output layer of the second DAE. The results in Table 2
show that adding more DAEs doesn't cause significant

improvement.

As we can see from Table 1 and 2, there is a slip in the
results for utterances between 8 and 10 seconds. We believe that

it happens because the number of trials for this experiment in
the Fabiol corpus is small.

Table 1. Results obtained by x-MAP, DAE, DAE x-MAP, and Gaussian DAE in terms of EER for utterances with different

 lengths

Length

(second)

s<2 2<s<4 4<s<6 6<s<8 8<s<10 10<s<12 12<s

Clean 11.59 7.646 4.144 2.239 3.111 1.538 0.8339

Baseline 15.94 12.88 10.5 7.836 8.889 6.667 5.131

x-MAP 14.2 11.07 8.011 5.597 5.333 4.103 2.630

DAE 13.62 10.87 8.287 5.597 5.778 4.103 2.694

DAE x-MAP 14.78 10.87 8.287 4.851 5.333 3.59 2.758

Gaussian
DAE

14.2 9.859 7.459 5.597 5.778 4.103 3.143

Table 2. Results for proposed Deep Stacked DAE

Length/

N° DAEs

s<2 2<s<4 4<s<6 6<s<8 8<s<10 10<s<12 12<s

2 13.04 10.46 8.011 5.224 5.333 3.59 2.502

3 13.04 9.658 7.735 4.851 5.778 4.103 2.502

5. Conclusion and future work

In this paper we applied noise compensation in x-vector space.
Firstly, we showed that in x-vector space when there are many
unseen noises, the results degrade substantially. Then, we tried
to exploit x-MAP statistical denoising technique, originally
designed for i-vector space, to denoise x-vectors. The x-MAP

technique is applicable in x-vector domain. In this paper,
several variations of denoising autoencoders are proposed. The
combination of x-MAP and DAE is better than using them
separately for denoising x-vectors. In another method
(Gaussian DAE), we defined a new loss function which tries to
combine the MSE term with two additional terms
corresponding to the likelihood of the output data with respect
to prior Gaussian distributions. Finally, a Deep Stacked DAE

was proposed that each DAE receives the output of its
predecessor DAE concatenated with the difference between

noisy x-vectors and its predecessor’s output. The results
obtained by Deep Stacked DAE, outperforms statistical x-MAP
technique and other variations of DAE discussed in this paper.
We expect that by having an estimation of the noise we can
achieve better results; in our future research we try to find
explicit information about the noise from non-speech frames in

test utterances and use this information alongside noisy x-
vectors in denoising autoencoder to design more robust speaker
recognition systems.

Acknowledgement

This work was funded by ROBOVOX and VoicePersonae
ANR projects.

Bibliography

[1] M, McLaren, D. Castan, M. Kumar Nandwana, L.

Ferrer and E. Yilmaz, "How to train your speaker
embedding extractor," in Odyssey 2018, 2018.

[2] Ondrej Novotny, Oldrich Plchot, Pavel Matejka,
Ladislav Mosner, Ondrej Glembek, "On the use of
X-vectors for Robust Speaker Recognition," in
Odyssey 2018, Les Sables d’Olonne, France, 2018.

[3] A. Kanagasundaram, S. Sridharan, G. Sriram, S.
Prachi3, C. Fookes, "A Study of X-vector Based
Speaker Recognition on Short Utterances," in
Interspeech, 2019.

[4] Waad Ben Kheder, Matrouf Driss, Moez Ajili, Jean-
François Bonastre, "A Unified Joint Model to Deal

With Nuisance Variabilities in the i-Vector Space,"
in IEEE/ACM Transactions on Audio, Speech, and
Language Processing, 2018.

[5] Waad Ben Kheder, Driss Matrouf. Pierre-Michel
Bousquet. Jean-François Bonastre, Moez Ajili, "Fast

79

i-vector denoising using MAP estimation and a

noise distributions database for robust speaker
recognition," Computer Speech & Language, vol.
45, pp. 104-122, 2017.

[6] Waad Ben Kheder, Matrouf Driss, Moez Ajili, Jean-
François Bonastre, "Probabilistic Approach Using
Joint Clean and Noisy i-Vectors Modeling for
Speaker Recognition," in Interspeech 2016, 2016.

[7] Sefik Emre Eskimeza, Peter Soufleris, Zhiya Duana,

Wendi HeinIman, "Front-end speech enhancement
for commercial speaker verification systems,"
Speech Communication, vol. 99, pp. 101-113, 2018.

[8] S. Boll, "Suppression of Acoustic Noise in Speech
Using Spectral Subtraction," IEEE Transactions on
Acoustics, Speech, and Signal Processing, vol. 27,
no. 2, pp. 113-120, 1979.

[9] Y. E. a. D. Malah, "Speech enhancement using a
minimum mean-square error-log-spectral amplitude

estimator(Article)," IEEE Transactions on
Acoustics, Speech, and Signal Processing, vol. 33,
no. 2, pp. 443-445, 1985.

[10] Ondřej Novotný, Oldřich Plchot, Ondřej Glembek,
Jan Honza Černocký, Lukáš Burget, "Analysis of
DNN Speech Signal Enhancement for Robust
Speaker Recognition," Computer Speech &
Language, vol. 58, pp. 403-421, 2019.

[11] Suwon Shon, Hao Tang, James Glass, "VoiceID
Loss: Speech Enhancement for Speaker
Verification," in INTERSPEECH 2019, Graz,
Austria, 2019.

[12] Zhong Meng, Yong Zhao, Jinyu Li, Yifan Gong,
"Adverserial Speaker Verification," in ICASSP
2019, Brighton, 2019.

[13] Timur Pekhovsky, Sergey Novoselov, Aleksei

Sholohov, Oleg Kudashev, "On autoencoders in the
i-vector space for speaker recognition," in Odyssey
2016, Bilbao, Spain, 2016.

[14] Shivangi Mahto, Hitoshi Yamamoto, Takafumi
Koshinaka, "I-vector Transformation Using a Novel
Discriminative Denoising Autoencoderfor Noise-
robust Speaker Recognitio," in INTERSPEECH
2017, Stockholm, Sweden, 2017.

[15] Ian Goodfellow, Yoshua Bengio, Aaron Courville,
Deep Learning, MIT Press, 2016.

[16] J. D. Y.-n. W. Li Chai, "Gaussian denisty guided

deep neural network for single-channel speech
enhancement," in 2017 IEEE International
workshop in machine learning for signal
processing, Tokyo, Japan, 2017.

[17] W. Z. S. G. L. Z. Kai Zhang, "Learning Deep CNN
Denoiser Prior for Image Restoration," in 2017
IEEE Conference on Computer Vision and Pattern
Recognition, 2017.

[18] Arsha Nagrani, Joon Son Chung, Weidi Xie, Weidi
Xie, Andrew Zisserman, "Voxceleb: Large-scale
speaker verification in the wild," Computer Speech
& Language, vol. 60, 2020.

[19] D. Snyder, D. Garcia-Romero, G. Sell, D. Povey, S.
Khudanpur, "MUSAN: A Music, Speech, and Noise
Corpus," 28 10 2015. [Online]. Available:
https://arxiv.org/abs/1510.08484. [Accessed 25 01
2020].

[20] BBC, "BBC," BBC, [Online]. Available:
http://bbcsfx.acropolis.org.uk/. [Accessed 25 01
2020].

[21] D. Snyder, D. Garcia-Romero, G. Sell, D. Povey, S.
Khudanpur, "X-Vectors: Robust DNN Embeddings
for Speaker Recognition,," in 2018 IEEE
International Conference on Acoustics, Speech and
Signal Processing (ICASSP), Calgary, 2018.

[22] Martín Abadi, Ashish Agarwal, Paul Barham,
Eugene Brevdo, "TensorFlow: Large-scale machine
learning on heterogeneous systems," Tensorflow,
2015.

[23] F. Chollet, "Keras," [Online]. Available:
https://keras.io/ [Accessed 25 01 2020]..

[24] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian
Sun, "Deep Residual Learning for Image

Recognition," [Online]. Available:
https://arxiv.org/abs/1512.03385 [Accessed 07 04
2020]..

80

