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The transport equation for the two-point statistics of the liquid phase
was first introduced by Thiesset et al. [1] and employed to characterize
the transport of liquid in homogeneous decaying turbulence. The same
framework was then applied to a liquid/gas shear flow by Thiesset et al.
[2] and Thiesset et al. [3]. In these situations, the two-point statistics of the
liquid phase is appraised from Direct Numerical Simulations data (DNSs)
using the archer code and the increments library of pyarcher (the
python platform for pre- and post-processing archer data). The present
paper aims at documenting the appropriateness of such numerical tools on
some validation test cases. Light is shed onto (i) the effect of the numerical
resolution, (ii) the type of scalar (liquid-volume-fraction LVF vs colour-
function CF) which is employed as representative of the liquid phase and
(iii) the appropriateness of some numerical strategies for computing angular
or spherical averages.

Illustration of the 3D subset of a 4D structure function in a liquid-gas shear flow [3]
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1. Context and objectives

1.1. Two-point budget of the liquid phase
The analytical framework describing the scale/space/time transport of the liquid phase in two-phase flows is based on
the transport equation for the second-order structure function:〈

(δφ)2
〉
E

=

〈[
φ(x+)− φ(x−)

]2〉
E

=

〈[
φ
(
X +

r

2

)
− φ

(
X − r

2

)]2〉
E

(1.1)

where φ will be used to designate either the liquid-volume-fraction (LVF) or colour-function field (CF), the brackets
denote average and the subscript E indicates an ensemble average. If applicable, ensemble averages can be replaced
by spatial averages over homogeneity directions. The mid-point is defined by X = (x+ + x−)/2 and the separation
vector r= (x+ − x−) [6].

The transport equation for
〈
(δφ)2

〉
E

writes

∂t
〈
(δφ)2

〉
E

= −∇r •Φr −∇X •ΦX (1.2)

where the two terms on the right-hand-side of Eq. (1.2) are two transfer terms in the combined space of scales r and
geometrical positionsX , and read as the divergence of the flux Φr and ΦX in scale and physical space, respectively:

Φr =
〈
(δu) (δφ)2

〉
E

(1.3a)

ΦX =
〈
(σu) (δφ)2

〉
E

(1.3b)

Further details on the derivations of Eq. (1.2) and the physical interpretation of the different terms of this equation
are given by Thiesset et al. [1]. Note that Eq. (1.2) pertain to the total liquid field, but Refs. [1,3] also discussed the
equations for the fluctuating part φ′ = φ− 〈φ〉E.

1.2. Recent changes
In Refs. [1–3], special care was given to the accuracy with which the two-point budget Eq. (1.2) was closed. This was
considered as a stringent test of the appropriateness of both the numerical simulations and of the post-processing
procedures. However, between Thiesset et al. [1,2] and Thiesset et al. [3] there were few changes in the usage of two-
point statistical equations. These differences are listed below:

• in Refs. [1,2], the equations were tested for LVF field while in Ref. [3], we considered the CF which is constructed
in pyarcher from the excursion set: level-set(x)> 0. The latter can take only 0 or 1 values while the former
can take any value between 0 and 1 in cells containing an interface. When Ref. [1] was peer-reviewed, one of
the reviewer pointed out that:

"the authors base their analysis on a liquid volume fraction. The potential issue with this start is that the liquid volume
fraction is by definition a quantity associated with a sampling volume. Why not start the analysis with a color function
instead, which is a point quantity?"

We replied that:

"mathematically, the difference between the LVF and the phase indicator function is perceptible only in cells containing
an interface since they both are equal to 1 (0) in the liquid (gas) phase. In addition, when the mesh cell goes to zero, the
LVF tends to the colour function. Hence, it is expected that for sufficiently small mesh size, the budgets for the LVF and
the colour function are the same."

and we provided a figure showing that the second-order structure function of the LVF and CF field were very
similar and conclude that the dependence to the mesh size was not significant. In Ref. [3], we employed the CF
field instead because we made comparisons with some theoretical predictions [4,5,7]. These were developed
by the community of porous media for which heterogeneous materials are characterized through their CF field
and not their LVF field.

• Another difference between Refs. [1,2] and Ref. [3] is the numerical procedure for computing spherical or
angular averages. This will be discussed in great details in §3.

1.3. Objectives of the present work
The objectives of the present technical report are the following:

• Firstly, in §2, a presentation of the archer solver and the pyarcher.increments library is provided.
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• Secondly, §3 aims at discussing the appropriateness of the two different numerical strategies for computing

angular or spherical averages.
• Thirdly, although the LVF field asymptotes the CF field for infinitely small grid spacing, it is worth

documenting the dependence to the mesh size of two-point statistics for finite resolutions. This is tackled in §4.
• Fourthly, the order of convergence of the two-point budget with respect to the mesh size for both the LVF and

CF fields is presented in §5.

2. The archer solver and the pyarcher.increments library
Before proceeding with the validation of the numerical tools used to compute the two-point budget Eq. (1.2), we start
by providing a short description of the archer code, the pyarcher.increments library and its main functionalities.

2.1. The archer solver
We use the High-Performance-Computing code archer developed at the CORIA laboratory. It was one of the first code
worldwide, undertaking the simulation of liquid-jet atomization under a realistic diesel injection configuration [8]. It
solves on a staggered Cartesian mesh the one-fluid formulation of the incompressible Navier-Stokes equation, viz.

∂t ρu+∇ · (ρu⊗ u) =−∇p+∇ · (2µD) + f + γκδsn (2.1)

where p is the pressure field, D the strain rate tensor, f a source term, µ the dynamic viscosity, ρ the density, γ
the surface tension, n the unit normal vector to the liquid-gas interface, κ its mean curvature and δs is the Dirac
function characterizing the locations of the liquid gas interface. For solving Eq. (2.1), the convective term is written in
conservative form and solved using the improved Rudman’s technique [9] presented in Ref. [10]. The latter allows mass
and momentum to be transported in a consistent manner thereby enabling flows with large liquid/gas density ratios
to be simulated accurately. The viscosity term is computed following the method presented by Ref. [11]. To ensure
incompressibility of the velocity field, a Poisson equation is solved. The latter accounts for the surface tension force and
is solved using a MultiGrid preconditioned Conjugate Gradient algorithm (MGCG) [12] coupled with a Ghost-Fluid
method [13].

For transporting the interface, use is made of a coupled level-set and volume-of-fluid (CLSVOF) solver, in which
the level-set function accurately describes the geometric features of the interface (its normal and curvature) and the
volume-of-fluid function ensures mass conservation. The density is calculated from the volume-of-fluid ψ (≡ LVF)
as ρ= ρLψ + ρG(1− ψ), where ρL, ρG is the density of the liquid and gas phase. The dynamic viscosity (µL or µG)
depends on the sign of the level-set function. In cells containing both a liquid and gas phase, a specific treatment is
performed to evaluate the dynamic viscosity, following the procedure of Ref. [11]. For more information about the
archer solver, the reader can refer to Refs. [8,10,14].

2.2. Reading and pre-processing archer files
Results from archer simulations are written hdf5 format with one time series per processor and multiple time-
step per file. For visualization purposes using e.g. paraview, archer further writes xdmf files which also contain
informations about the geometry (e.g. origin, grid spacing) and topology (connectivity between MPI blocks) of the
simulation domain.

pyarcher reads such data using the dask library and store them in a xarray.Dataset. All the time-steps and all
the processors are merged into a 4D array, with coordinates "x", "y", "z", "t". These coordinates can be either
specified by the user or read in the xdmf files. The minimal blocks (one processor and one time-step) are called chunks
and are the unit of work for dask. We make extensive usage of the "lazy" approach of dask. More on this aspect is
given in the subsection 2.3.

archer is a staggered CFD code following the MAC discretization. For some post-computations (e.g. the two-point
statistical equations), the velocity field and scalar field (e.g. the volume-of-fluid, the level-set) should be known at the
same point. This is not initially the case due to the staggered nature of the archer mesh. In this situation, one needs
to interpolate the velocity field at the center of the (cubic) cells. In pyarcher, this is done with the interp function
of xarray which proceeds by linear interpolation. This function has been extended to work with chunked data. It is
embedded in the method .to_cell_center().

The data written by archer contain ghost cells for boundary conditions and processors interface. The latter
are removed during the previously mentioned merging operation, but not the former which can be removed with
the method .without_ghost(). Boundary conditions (periodic, symmetric) can be prescribed with the method
.add_boundary_conditions().

2.3. The all_increments pipeline
The computation of two-point statistics can be done in one line of code through the use of the all_increments

method of the pyarcher.increments library:
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data = increments.all_increments ( velocity, scalar, max_separation, inhomogeneity )

For the moment, the library can handle 3D budgets [in case in homogeneous fields as in Ref. 1] or 4D budgets [for
configurations with 1 direction of inhomogeneity as in Refs. 2,3]. The function all_increments takes four input
arguments:

• velocity≡ (u, v, w) of type CenteredVectorField, is a tuple containing the three velocity components as
a function of (x, y, z).
• scalar ≡ φ of type CenteredScalarField, is the scalar field used to compute the two-point equations.
scalar is either the CF (≡ level-set> 0) or LVF (≡ volume-of-fluid) field.
• max_separation of type integer is the maximum value (in terms of number of grid points) for the

separation vector r
• inhomogeneity = {None, "x", "y", "z"} is the inhomogeneity direction (if any). By default
inhomogeneity = None

The function all_increments creates a pipeline constituted of 6 consecutive steps described below:

(i) increments, takes as input arguments velocity, scalar, max_separation, inhomogeneity and
computes the spatially averaged (along homogeneity directions) of all type of two-point quantities (differences,
sums, cross-moments, etc) that are needed in the budgets. For computational efficiency, this function uses
a Fortran90 kernel with a memory distributed openMP parallelization. It returns a xarray.Dataset

containing every two-point statistics with some associated keywords, e.g. 〈(δφ)〉 ≡ "dphim", 〈(δφ)2〉 ≡
"dphi2", 〈δu(δφ′)2〉 ≡ "du_dphip2", 〈σw(δφ)2〉 ≡ "sw_dphi2", etc. These datasets have coordinates
"rx", "ry", "rz" ∈ {−max_separation; +max_separation}. The coordinate "t" is also added only
if velocity and/or scalar contain "t" as coordinate. If inhomogeneity is not None, then "X" is added
as coordinates of the xarray.Dataset.

(ii) flux_velocity, takes as input argument the output xarray.Dataset of the increments function
described above. The flux velocities are noted ωr,X and are defined as the ratio of the flux component in
one direction of the combined {r,X} space divided by 〈(δφ)2〉 or 〈(δφ′)2〉 [see Ref. 1]. This function returns an
xarray.Dataset containing the flux velocity with associated keywords, e.g. ωrx ≡ "w_rx", ω′Y ≡ "wp_Y",
etc.

(iii) scalar_potential, takes as input argument the output xarray.Dataset of the flux_velocity function
described above. This function decomposes the flux velocity field into a solenoidal and non solenoidal velocity
components by solving a Poisson equation [see Ref. 1, for more details]. Here again, an xarray.Dataset is
returned with e.g. the keywords "w_pot_rx", "wp_sol_Y". The returned xarray.Dataset also contain the
scalar potential field with the keywords "potential" or "potential_p" for either the total or fluctuating
field. The Poisson equation is solved with zero gradient boundary conditions using the minres algorithm and
a Jacobi preconditioning. If inhomogeneity is not None, then the decomposition is carried out for all points
in the inhomogeneity direction and "X" is added as coordinates of the xarray.Dataset.

(iv) budget_terms takes as arguments the xarray.Dataset returned by increments, the xarray.Dataset
returned by flux_velocity, the xarray.Dataset returned by scalar_potential and the argument
inhomogeneity. It returns a xarray.Dataset containing all the possible terms and/or decompositions of
the scale budget of the total and/or fluctuating field. These terms are given keywords e.g. "transfer_r",
"transferp_X", "production_r", "production_X", "advection_sol_r", "advection_pot_r",
etc. The time derivative term is not handled.

(v) spherical_average, computes and return the spherical average (described later) of the xarray.Dataset
returned by increments and budget_terms. The returned dataset uses the same keywords as in input to
which is added the extension "_sav", e.g. "dphi2_sav", "transfer_r_sav" and has coordinate "rn"
∈ {0 : max_separation}. If inhomogeneity is not None, then the spherical average is computed for all
points in the inhomogeneity direction and "X" is added as coordinates of the xarray.Dataset.

(vi) angular_average, computes and return the angular average (described later) of the xarray.Dataset

returned by increments and budget_terms. Here the extension "_aav" is added, e.g. "dphi2_aav",
"transfer_r_aav" and the returned xarray.Dataset has coordinate "rn" ∈ {0 : max_separation}.
If inhomogeneity is not None, then the angular average is computed for all points in the inhomogeneity
direction and "X" is added as coordinates of the xarray.Dataset.

all_increments returns a merged xarray.Dataset containing all aforementioned datasets with their
respective coordinates.
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2.4. The dask’s delayed method and the load function
Because it is generally not necessary to compute all aforementioned quantities, the all_increments pipeline
described above is tackled in lazy mode. This means that the dependence between variables is created but these
variables are neither computed nor loaded into memory. This has been done using dask’s delayed functions.

This is a very beneficial feature of the dask library that we use extensively throughout the library for managing
the data. This is completely transparent to the user as it is still possible to ignore completely the laziness aspect of the
library because e.g. a plot triggers the computation.

However, there is no caching mechanism. For illustrating this, let us take a simple example of two arbitrary variables
B and C that depend on a variable A. Plotting B triggers the computation of A then B. Similarly, plotting C requires
computing A then C. In this example. A is thus computed twice. In order to avoid this, the load function that can
handle multiple variables have been added to pyarcher. This function specifically aims at precluding computing
several times a given variable.

When applied to the increments library, if one wants to compute e.g. the spherical average and angular averages
of 〈(δφ)2〉, one simply call the function

load ( data.dphi2_sav, data.dphi2_aav )

In this example, 〈(δφ)2〉 will first be computed through increments and then it will proceed to the spherical and
angular average through spherical_average and angular_average, respectively. Here, 〈(δφ)2〉 is computed only
once.

2.5. The write & read functionalities
Results from the pyarcher.increments library can be saved in hdf5 format by use of the function
pyarcher.increments.write(hdf5_file, data, **kwargs). It is worth stressing that only the quantities
that have been loaded by the load function will be saved. The coordinates {"rx", "ry", "rz"} will also be saved
together with {"rn", "t", "X"} if applicable. Any scalar value can also be written using user-defined **kwargs.
This can be convenient to save e.g. the grid spacing, the surface density, or any other relevant quantity.

The pyarcher.increments library also contains a function read(hdf5_file, option). This function allows
one to read the data that have been written by the pyarcher.increments.write function. It proceeds in recasting
the data in the same form as the original xarray.Dataset. It has two options. option="read_only"which is faster,
recreates an xarray.Dataset containing only the variables saved in the hdf5_file. The option="post_pro"

resets the full pipeline of all_increments and replaces the variables by that saved in the hdf5_file. The latter
option is made for allowing to post-compute some quantities. For instance, if the three components of Φr were saved
in the hdf5_file, then one can easily post-compute the angularly averaged r-transfer term by the commands:

data = increments.read(hdf5_file, option="post_pro")
load(data.transfer_r_aav)

3. Computation of spherical and angular averages

3.1. Definition
The angular average is noted 〈•〉Ω and is defined by [3]:

〈•〉Ω =
1

4π

∫∫
Ω
• sin θdθdϕ (3.1)

where the set of solid angles Ω = {ϕ, θ | 0≤ϕ≤ π, 0≤ θ≤ 2π} with ϕ= arctan(ry/rx) and θ= arccos(rz/|r|). The
angular average is related to the spherical average within a sphere of radius r= |r|, noted 〈•〉S and defined by [1,6]:

〈•〉S =
3

4πr3

∫∫∫
S
• r2 sin θdθdϕdr= 3

r3

∫r
0
〈•〉Ω r2dr (3.2)

Note that the angular average relies on a double integral while the spherical average necessitates integrating the three
directions of the separation vector written in spherical coordinates.

In Refs. [1,2], we used the RegularGridInterpolator function of the python scipy library for linearly
interpolating two-point statistics from the Cartesian (rx, ry, rz) mesh to the spherical mesh (r, θ, φ). Integration over
(r, θ, φ) is then done using the trapz function of scipy. In Ref. [3], we realized that at small scales where the angular
dependence of two-point statistics is limited to few points, this method is not very accurate. We then replaced this
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Figure 1. Comparison of different methods for computing angular (left) and spherical (right) averages, using

RegularGridInterpolator + trapz (abbreviated by RGI) or the Rbf + dblquad or tplquad (abbreviated by

RBF). Angular and spherical averages are compared to theoretical predictions of Refs. [4,5]. The angular average (left) is also compared to

a cut of the 3D structure function along the rx, ry = rz = 0 axis. The insets show the second-order structure function normalized by Σr/2

(left) and 3Σr/8 (right)

procedure by using the Radial Basis Function Rbf interpolation of scipy and integration is performed using dblquad
(angular average) or tplquad (spherical average).

3.2. Description of the validation test case
With the aim of comparing the performance of the two aforementioned procedures for computing spherical and angular
averages, we use the following benchmark:

• A level-set function field representing a sphere of radius Rs = 10 + 2/3 is set. The numerical domain contains
Nx ×Ny ×Nz = 643 points and the grid spacing is ∆x=∆y=∆z = 1. The sphere is placed at the center of
the numerical domain.
• The increments library of pyarcher is then used to calculate the 3D second-order structure function of the

CF field, the latter being defined by the excursion set: level-set(x)> 0. A spatial average is performed, i.e. two-
point statistics are averaged over R∈ {x, y, z}. Given the geometry, two-point statistics are isotropic and thus
〈(δφ)2〉R(r) = 〈(δφ)2〉R(r= |r|).
• pyarcher.increments further allows us computing the spherical and angular averages using either

the RegularGridInterpolator + trapz (abbreviated by RGI) or Rbf + dblquad or tplquad

(abbreviated by RBF). For the Rbf method, use was made of a linear basis function, and for the
RegularGridInterpolator linear interpolation was used. Here, isotropy yields 〈(δφ)2〉R(r= |r|) =
〈(δφ)2〉R,Ω(r) which is convenient for assessing the accuracy of the angular average procedure.
• Angular and spherical averages are further compared to the theoretical prediction of Refs. [4,5], which writes

〈(δφ)2〉Ω =
Σr

2

[
1− r2

8

(
〈H〉0 −

〈G〉0
3

)]
(3.3)

where H and G are the mean and Gaussian curvatures, Σ is the interface surface area divided by the total
(liquid+gas) volume and 〈•〉0 denotes the area weighted average. For a sphereH2 = G =R−2s . By virtue of Eq.
(3.2), one can readily write

〈(δφ)2〉S =
3Σr

8

[
1− r2

12

(
〈H〉0 −

〈G〉0
3

)]
(3.4)

3.3. Results
Results are presented in Fig. 1. The difference between the two numerical procedures is perceptible only at small scales
where the angular dependence of 〈(δφ)2〉R is limited to few points in the r-space. The RGI method deviates from
theoretical expectations while the RBF behaves very nicely irrespectively of the probed separation r. In Fig. 1 (left), it is
observed that the RBF angular average collapses perfectly onto a cut of 〈(δφ)2〉R along the axis (rx, ry = rz = 0) which
further validates the appropriateness of this procedure.

This has important consequences when estimating the surface density, the mean and Gaussian curvatures from the
limit to small separations of 〈(δφ)2〉R,Ω or 〈(δφ)2〉R,S. The insets show the second-order structure function normalized
by Σr/2 (left) and 8Σr/3 (right). Given Eq. (3.3) and (3.4), one should expect such normalized structure functions to
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Figure 2. Simulation using the archer code of some liquid droplets evolving in a Taylor-Green flow. From top left to bottom right, t= 5 µs

to t= 30 µs. Snapshots are separated by t= 5 µs.

approach a value of 1 when r goes to zero. It is observed that while the RBF method is very accurate, the error made on
the surface density using RGI is about 15-20%. The two-procedures yield however very similar values at intermediate
and large scales.

Although the RBF method appears much more accurate, it requires a larger computational effort. For some
situations, when the r-space was discretized using more than 643 points, the program failed due to memory limitations.
For overcoming this issue, we employed a blended version of the two aforementioned approaches, where at small
scales (i.e. |r| ≤ 12∆x) the RBF method is used while the RGI applies to larger scales. Note also that spherical averages
are performed by integrating over r, ϕ, θ (hence tplquad) while angular averages only require integration over ϕ, θ
(dplquad). Therefore, angular averages are more efficient in terms of computational time and should be preferred over
spherical averages when large datasets are to be considered.

4. LVF vs CF fields

4.1. Description of the validation test case
For assessing the convergence of the two-point budget of the LVF and CF fields with respect to the mesh size, archer is
used to simulate the configuration of 4 initially spherical droplets evolving in a Taylor-Green type of flow. The velocity
field is initialized as follows

u(x, y, z) =+U cos(4πx̃) sin(2πỹ) sin(2πz̃) (4.1)

v(x, y, z) =−U sin(4πx̃) cos(2πỹ) sin(2πz̃) (4.2)

w(x, y, z) =−U sin(4πx̃) sin(2πỹ) cos(2πz̃) (4.3)

Here (x̃, ỹ, z̃) = (x/Lx, y/Ly, z/Lz), and we chose Lx =Ly =Lz = 300 µm and U was set to 4 m.s−1. For the liquid
phase, 4 droplets of radius 70 µm are placed within the domain with 3 located in the center of each face and one
located in the center of the domain. Triply periodic boundary conditions are employed. The liquid (gas) density is
ρL = 753.0 kg.m−3 (ρG = 25.0 kg.m−3) and dynamic viscosity µL = 5.65 10−4 Pa.s (µG = 1.879 10−5 Pa.s). The surface
tension of the liquid/gas interface is 0.0135. Different numerical resolutions were considered, i.e. Nx ×Ny ×Nz =
483, 643, 963, 1283 & 1923. The grid spacing ∆x=∆y=∆z decreases accordingly. In order to compute the time
derivative in Eq. (1.2), we saved the simulation results every 0.5 µs.
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Figure 3. Angularly averaged second-order structure functions of the CF, LVF and corrected LVF fields at t= 15 µs (left) and t= 30 µs (right)

for three spatial resolutions 643, 963, 1923. The inset shows the second-order structure function divided by Σr/2.

Typical snapshots of the simulation results using 1283 points are presented in Fig. 2. These are separated by t= 5 µs.
Fig. 2 shows that the four droplets progressively deform and become more and more elongated. The surface area
of the liquid-gas interface increases with time. At time t≥ 15 µs, the four droplet also merge. As a consequence, this
configuration is archetypal of the mechanisms which are generally at play in turbulent two-phase flows. It thus appears
as a relevant and reproducible test case for assessing the convergence of the two-point budgets w.r.t the mesh size.

4.2. Second-order structure function
We start by investigating the effect of mesh resolution on the second-order statistics of the CF and LVF fields. Results are
presented in Fig. 3 where 〈(δφ)2〉R,Ω (here φ is used interchangeably for either the LVF or CF field) is plotted against r
for different numerical resolutions (Nx =Ny =Nz = 64, 96, 192). The separation r is normalized by the surface density
Σ which is estimated using the highest numerical resolution (1923), using the routines of Refs. [15,16]. These results are
obtained at t= 30 µs

We observe that 〈(δφ)2〉R,Ω of the CF field is independent of the mesh resolution. On the other hand, 〈(δφ)2〉R,Ω
reveals a substantial dependence to the mesh size. Note also that the difference between the CF and LFV field is
more pronounced at t= 30µs than at t= 15µs suggesting that the second-order structure function of the LVF field
is influenced by both the grid spacing ∆x and the surface density Σ. Note that, as expected, the difference between the
LVF and CF fields tends to zero when the mesh resolution increases, and thus:

lim
∆x→0

〈(δφ)2〉R,Ω
∣∣∣
LVF

= 〈(δφ)2〉R,Ω
∣∣∣
CF

(4.4)

The second-order structure function of the LVF field can be expressed in terms of that of the CF field. For this purpose,
we drew inspiration from the result of Ref. [17] for filtered telegraphic signals, and ended up with

〈(δφ)2〉R,Ω
∣∣∣
LVF

=
〈(δφ)2〉R,Ω

∣∣∣
CF
− aΣF (r)

1 + (aΣ)2
(4.5)

where a=∆x/3 and F (r) =
[
1 + a

r exp(1− r/a)
]
. Eq. (4.5) provides the expected asymptotic regime Eq. (4.4) when

∆x→ 0. Hence, we can now correct the second-order structure function of the LVF field from the bias associated with
finite resolutions by inverting Eq. (4.5), yielding

〈(δφ)2〉R,Ω
∣∣∣
Corr.

=
〈(δφ)2〉R,Ω

∣∣∣
LVF

+ aΣF (r)

1 + (aΣ)2
(4.6)

Fig. 3 shows the appropriateness of the correction Eq. (4.6). Results are portrayed as symbols and are labelled by "Corr".
The corrected LVF structure functions collapse perfectly well with those of the CF field whatever the spatial resolution
∆x and surface density Σ. Eq. (4.6) is likely to be demonstrated on some mathematical grounds using geometrical
arguments, but this is much beyond the scope of the present technical report.

4.3. Budget of the LVF vs CF field
We now proceed with the estimation of the angularly averaged budgets (using the blended RBF/RGI method) of the
CF and LVF fields using different spatial resolution. We use triply periodic boundary conditions, hence the X-transfer
term vanishes, i.e. −〈∇X •ΦX〉R = 0 [see Ref. 1].
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Figure 4. Effect of the mesh size on the transfer term of either CF or LVF fields (top left), the budget of the CF field (top right), the budget of

LVF field (bottom left) and corrected LVF field (bottom right). Results are for t= 30 µs

We start by analysing the difference between the transfer term −〈∇r •Φr〉R,Ω of the LVF and CF fields for different
spatial resolutions. Results are presented in Fig. 4 for three spatial resolutions 643, 963, 1923. It appears that the transfer
term of the CF and LVF fields are undistinguishable. However there remains an influence of the spatial resolution
which is mostly perceptible around the peak of energy transfer rΣ ≈ 0.5. Similar trends were observed at different time
during the simulation. Therefore, although there was a clear difference between second-order structure functions of the
LVF and CF fields for finite resolutions, the r-transfer term does not reveal such discrepancies. Further investigations
are required for confirming this as regards to the X-transfer and production terms.

Let us now turn our attention to the budget Eq. (1.2) pertaining to either the LVF or CF field. The corrected LVF
field which is obtained by Eq. (4.5) is also considered. Results at a time t= 30 µs are presented in Fig. 4 for three spatial
resolutions 643, 963, 1923.

The budget for the CF field is not satisfactorily closed for a 643 resolution. However, we observe that the error
between the r-transfer term and the time-derivative term diminishes when spatial resolution is increased. At the highest
resolution the unsteady term compensates almost perfectly the r-transfer term and the budget is nicely closed.

As far as the LVF field is concerned, the discrepancy between the two terms in Eq. (1.2) are more pronounced. At the
highest resolution 1923, there remain substantial errors in the closure of the two-point equation. Our previous findings
on the effect of spatial resolution on 〈(δφ)2〉R,Ω allows us elaborating a bit more on the origin of this discrepancy.
Indeed, it was shown that second- and third-order statistics are not equally affected by finite resolution effects. More
precisely, although we observed that

〈∇r •Φr〉R,Ω
∣∣
LVF

= 〈∇r •Φr〉R,Ω
∣∣
CF

, (4.7)

deriving Eq. (4.6) w.r.t time leads to

∂t〈(δφ)2〉R,Ω
∣∣∣
Corr.

=
∂t 〈(δφ)2〉R,Ω

∣∣∣
LVF

1 + (aΣ)2
+
F (r)

[
1− (aΣ)2

]
− 2aΣ 〈(δφ)2〉R,Ω

∣∣∣
LVF

[1 + (aΣ)2]
2

∂taΣ (4.8)

Therefore, the errors on the budget closure due to finite resolutions are made at the level of the time-derivative term.
These errors increases with both aΣ and ∂taΣ. In Ref. [1], the errors on the budget were not perceptible because aΣ
was small enough and further because ∂taΣ was negligible compared to ∂t〈(δφ)2〉R,Ω .

The budget of the corrected LVF field with the time derivative term computed from Eq. (4.8) is shown in Fig. 4. The
latter appears to be very nicely closed, almost irrespectively of the numerical resolution. Interestingly, Eq. (1.2) is even
better satisfied than it was for the CF field.
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5. Order of convergence and sources of error
The error on Eq. (1.2) can be quantified by the L2-norm of the difference between the time-derivative and the r-transfer
terms, viz.

E(r, t) [%] = 100×

∣∣∣∂t〈(δφ)2〉R,Ω + 〈∇r •Φr〉R,Ω
∣∣∣

max(−〈∇r •Φr〉R,Ω)
(5.1)

The evolution of this quantity, after being averaged over all separations r and over several time-steps t, is plotted as a
function of the grid spacing in Fig. 5. A log-log plot representation is chosen so that to appraise the order of convergence
of Eq. (1.2). It is readily seen that the error that is made on the budget of the LVF field is significantly larger than the
one pertaining to the CF field. Further, while the budget of the LVF field appears to converge with an approximate
first-order scaling, that of the CF field has a convergence close to second-order. The corrected LVF budget using Eq.
(4.8) reveals a substantially smaller error especially for coarse meshes. In addition, the convergence of the corrected
LVF field remains close to first order. For a resolution of 1923 the error for the CF and corrected LVF fields is within 1%
while for the LVF field, the error attains 5% of the maximum of the r transfer term.

It is worth questioning the source of error in the budget for both the CF and LVF fields. As far as the CF field is
concerned the origin of the discrepancy between the unsteady and transfer term are most likely due to the binarization
used to define the CF field. Indeed, the volume of the CF field defined as the volume of the excursion set level-set(x)> 0

may not be constant in time. Given that Eq. (1.2) is the equation for a conserved non diffusive scalar, the non constancy
of the CF mass might cause significant errors. To confirm this, we have plotted in Fig. 6 the error on Eq. (1.2) as a
function of the time-derivative of the CF field volume (divided by the maximum of the r-transfer term). Results align
quite well along a line which indicate a correlation between the closure of the CF field and the conservation of the CF
volume.

On the other hand, the LVF field does not suffer from this drawback since conservation of the LVF mass is much
more accurately satisfied thanks to the Rudman type solver. However, as discussed before, the budget of LVF field is
significantly altered by the value of aΣ and its variation in time. A scatter plot of the error on the budget of the LVF
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field as a function of ∂taΣ (divided by the maximum of the r-transfer term) is presented in Fig. 6(right). Here again,
results align quite well along a line which confirm our previous statements.

6. Conclusion
This paper provides a description of the pyarcher.increments library. It further aims at documenting some
validation test cases allowing us to appraise (i) the accuracy of the numerical procedures for computing angular and
spherical average, (ii) the effect of finite spatial resolution on the two-point statistics of the LVF and CF fields and (iii)
the closure of Eq. (1.2) with respect to the grid spacing and the sources of errors. Different outcomes emerge from the
present analysis:

SUMMARY

(1) The new procedure for computing spherical and angular averages on the basis of the Rbf + tplquad

or dblquad works much better than the one initially used by Ref. [1] where use was made of the
RegularGridInterpolator and the trapz functions. The difference between the two methods is mostly
perceptible at small scales and hence, to limit computational expenses, a blended version is proposed that uses
the RBF method at small scales and the RGI method at larger scales. Further, because the angular average
requires only double integration over θ and ϕ, it should be preferred over the spherical average when large
datasets are concerned.

(2) We emphasize that the second-order structure function of the CF field does not depend on the spatial resolution.
On the contrary, the LVF field is strongly affected by the mesh size. We proposed a scale-dependent correction
for the LVF field second-order structure function which explicitly account for the finite value of Σ∆x. On the
other hand, we notice that there was no difference of the r-transfer term between the CF and LVF fields. This
term was further shown to depend only weakly on the mesh size.

(3) The closure of Eq. (1.2) for the LVF and CF fields is appraised for different grid spacing. It is shown that the
budget of the CF field converge more quickly than that of the LVF field. Furthermore, the error was substantially
smaller for the CF field than the LVF field. The plausible sources of discrepancy for the budgets are discussed.
In particular, it appears that the main source of error for the CF budget is the non-constancy of the CF volume
while for the LVF field, the error arises from the influence of both Σ∆x and ∂tΣ∆x. In Ref. [1], the budget was
well closed because the grid spacing was small enough for these effects to be negligible. Finally a correction for
the LVF budget is proposed which has the double benefit of correcting the LVF statistics from the influence of
Σ∆x and ∂tΣ∆x while taking advantage the mass conservation of the LVF field. This corrected budget was
shown to yield the smallest errors and is especially recommended when relatively coarse meshes are used.
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