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Abstract

Fine renal artery segmentation on abdominal CT angiography (CTA) image is

one of the most important tasks for kidney disease diagnosis and pre-operative

planning. It will help clinicians locate each interlobar artery’s blood-feeding re-

gion via providing the complete 3D renal artery tree masks. However, it is still a

task of great challenges due to the large intra-scale changes, large inter-anatomy

variation, thin structures, small volume ratio and small labeled dataset of the

fine renal artery. In this paper, we propose the first semi-supervised 3D fine re-

nal artery segmentation framework, DPA-DenseBiasNet, which combines deep

prior anatomy (DPA), dense biased network (DenseBiasNet) and hard region

adaptation loss (HRA): 1) Based on our proposed dense biased connection, the

DenseBiasNet fuses multi-receptive field and multi-resolution feature maps for

large intra-scale changes. This dense biased connection also obtains a dense
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information flow and dense gradient flow so that the training is accelerated and

the accuracy is enhanced. 2) DPA features extracted from an autoencoder (AE)

are embedded in DenseBiasNet to cope with the challenge of large inter-anatomy

variation and thin structures. The AE is pre-trained (unsupervised) by numer-

ous unlabeled data to achieve the representation ability of anatomy features

and these features are embedded in DenseBiasNet. This process will not intro-

duce incorrect labels as optimization targets and thus contributes to a stable

semi-supervised training strategy that is suitable for sensitive thin structures.

3) The HRA selects the loss value calculation region dynamically according to

the segmentation quality so the network will pay attention to the hard regions

in the training process and keep the class balanced.

Experiments demonstrated that DPA-DenseBiasNet had high predictive ac-

curacy and generalization with the Dice coefficient of 0.884 which increased by

0.083 compared with 3D U-Net (Çiçek et al., 2016). This revealed our frame-

work with great potential for the 3D fine renal artery segmentation in clinical

practice.

Keywords: renal artery segmentation, semi-supervised learning, dense biased

network, dense biased connection, deep priori anatomy, hard region

adaptation loss function, 3D fine segmentation, CT angiography image
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1. Introduction

Fine renal artery segmentation on abdominal CT angiography (CTA) image

is one of the most important tasks for pre-operative planning (Ljungberg et al.,

2015; Shao et al., 2011, 2012; Porpiglia et al., 2018). It targets on achieving 3D

renal artery tree masks that reach the end of interlobar arteries, if successful,5

clinicians will locate each interlobar artery’s blood-feeding region to complete an

accurate pre-operative plan (Zhang et al., 2019). As is shown in Fig. 1(a), it will

play a key role in the clamping of segmental renal arteries before laparoscopic

partial nephrectomy (LPN) (Shao et al., 2011, 2012). The tumor-feeding interlo-
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bar arteries (red arrows) which attach to the tumor on CTA images are detected10

to find the segmental renal artery, thus helping the operation go smoothly.

However, obtaining a fine renal artery segmentation automatically is a chal-

lenging task due to: 1) Large intra-scale changes. As is shown in Fig. 1(a), there

is a large-scale change between different renal artery parts of the same patient.

The interlobular arteries are less than 1.5 mm which are one-fifth of the thick-15

est part. Thus, multi-scale feature representations are required to adapt to the

artery’s large intra-scale changes in our task. 2) Large inter-anatomy variation.

Renal arteries’ branch structures, ostia, accessory arteries and the way entering

the kidneys are various among different patients as is shown in Fig. 1(b). For

example, Petru et al. (2012) counted 11 different renal artery structures just20

from 461 kidneys. Therefore, some singular anatomical structures are difficult

to be covered in the dataset leading to the model’s poor generalization ability,

especially when the labeled dataset is small. 3) Thin structures. The renal

artery has an elongated tubular structure where the thinnest part is less than

1.5 mm as shown in Fig. 1(a)(b). Such thin objects have more hard regions,25

such as edges, surfaces, ends, etc., which lead to serious instability of the results

and are prone to be over-segmented or under-segmented. 4) Small volume ra-

tio. The renal artery only accounts for 0.27 percent of the kidney’s interest of

region which leads to severe class imbalance. Thus, a) the training process will

be inefficient because the background region which is the majority of the image30

will produce low loss, and b) it is easy for the network to judge the pixels as

the majority class so that the minority vessels will be ignored. 5) Small labeled

dataset. It is challenging to delineate the renal arteries manually which leads

to the limitation of fine-labeled data and thus making it difficult for the seg-

mentation model to achieve the feature representation of singular anatomical35

structures.

Semi-supervised learning strategy improves the model generalization ability

(Weston et al., 2012) and is suitable for challenges of inter-anatomy variation

and data limitation, while previous strategies (Nie et al., 2018; Bai et al., 2017)

cannot be applied to our task. These strategies use unlabeled data to get inac-40
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Figure 1: The challenges in fine renal artery segmentation. a) There are large scale gaps

between different renal artery parts, with the interlobular arteries being one-fourth of the

main arteries. The artery containing large hard regions is much thinner than other organs. b)

Different arteries’ branch structures, ostia, accessory arteries and the way entering the kidneys

are variable between patients. c) Renal arteries account for 0.27 percent of the kidney region

leading to serious class imbalance.

curate labels that lose thin structures like vessels easily and take these wrong

labels as optimization targets causing the training process interfered and the

model performance weakened. We propose the deep priori anatomy strategy

which trains an autoencoder (AE) in an unsupervised manner with numerous

unlabeled data and embeds its feature representation ability in the supervised45

model to guide the adaptation of more anatomy structures. Therefore, the

unsupervised training in the first stage combines with supervised training in

the second stage making it a semi-supervised framework (Hady and Schwenker,

2013). This feature embedding method will not introduce inaccurate labels so

that the segmentation quality of thin structures is ensured.50

Dense connections (Gao et al., 2017) transmit all feature maps in each layer

to every forward layer which fuses multi-receptive field feature maps so that

it has powerful representation capability for the objects with different scales.

However, the depth and width of the networks based on the dense connection

are limited due to the reusing of all feature maps which take up too much55
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memory. We propose a dense biased connection that compresses feature maps

before transmission so that it will keep the advantages of dense connection,

simplify the network and save the memory. The whole network’s dense biased

connection will also make the fusion of multi-resolution feature maps and guide

the adaptation of large-scale changes. Besides, the dense connectivity pattern60

keeps dense information flow and leads to implicit deep supervision (Lee et al.,

2015) which will improve the accuracy and accelerate the training.

Re-dividing the dataset to increase the minority or decrease the majority

category images is a general method to cope with the class imbalance (Liu,

2009). But in our segmentation task, it is limited due to the class imbalance65

comes from the intra-image. We propose a hard region adaptation loss function

that samples the loss region dynamically according to the segmentation quality

intra-image so that the hard-to-segment regions such as edges, surfaces, ends,

etc. will be focused and their segmentation quality will be enhanced.

In this paper, we propose a 3D semi-supervised framework (DPA-DenseBiasNet)70

for the first time to overcome fine renal artery segmentation challenges and

achieve this task robustly. It is based on deep priori anatomy (DPA) strategy,

dense biased network (DenseBiasNet) and hard region adaptation (HRA) loss

to guide the adaptation of inter-anatomy variation steadily, fuse multi-receptive

field features for intra-scale changes, and focus on hard regions to keep class75

balanced dynamically.

1.1. Related work

Vascular segmentation. Vascular segmentation is significant for disease di-

agnosis and pre-operative planning, many works have made efforts on this task.

Some traditional methods (Lesage et al., 2009), such as some centerline-based80

methods (Yang et al., 2012; Tyrrell et al., 2007), region-growing approaches

(Metz et al., 2007; Tschirren et al., 2005), active contours (Toledo et al., 2000;

Mille and Cohen, 2009), etc., have achieved success in many vascular segmenta-

tion scenarios. These methods require a lot of manual design and are sensitive

to parameters. With the development of deep learning, deep learning-based85
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vascular segmentation methods (Moccia et al., 2018; Wolterink et al., 2019; Bai

et al., 2018; Noothout et al., 2018) are widely used for vascular segmentation

owing to their fast speed, high accuracy and powerful generalization ability.

However, these deep learning-based vascular segmentation methods always rely

on large fine labeled datasets whose performance will be limited when datasets90

are small.

Fine renal artery segmentation has not been reported success apart from

the rough renal artery segmentation which are obtained in multi-object seg-

mentation tasks (Li et al., 2018a; Taha et al., 2018). Li et al. (2018a) train a

convolutional neural network with 400 arterial-phase CT images to achieve the95

segmentation of multiple renal structures including the main and segmental re-

nal arteries. Taha et al. (2018) propose a Kid-Net which is trained via 99 cases

to segment the kidney vessels, while only the renal arteries that outside the kid-

ney are segmented successfully. These methods cannot meet the requirements

of our task because of their inherent flaws: 1) Insufficient fineness. The renal100

artery part before the interlobular artery corresponds to a large blood-feeding

region which impossible to locate the vessel feeding for a specific region, such as

the tumor-feeding artery. 2) Dependence on large datasets. These supervised

models are trained based on large rough labeled datasets, and if the dataset is

small, their generalization ability will be limited.105

Semi-supervised learning. Semi-supervised learning has great potential in

improving the generalization ability of neural networks via utilizing unlabeled

data (Weston et al., 2012; Hady and Schwenker, 2013) which has achieved suc-

cess in the image processing field (Qiao et al., 2018; Gu and Angelov, 2018;

Hung et al., 2018; Tang et al., 2018). Numerous semi-supervised methods such110

as co-training (Han et al., 2018) and adversarial learning (Hung et al., 2018)

have achieved remarkable results. In biomedical image segmentation, some semi-

supervised methods (Nie et al., 2018; Bai et al., 2017) have been used to help

handle the problem of the limitation of labeled data. Bai et al. (2017) combine

conditional random fields with a fully convolutional network for cardiac MR im-115
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age segmentation and use 240 unlabeled data to improve the model’s accuracy.

Nie et al. (2018) take the generative adversarial network to obtain a confidence

map so that the segmentation result of the unlabeled data can be used as a

label for network training. However, these semi-supervised strategies cannot be

applied to vessel segmentation tasks because the unlabeled data was used to get120

inaccurate labels losing thin structures like vessels easily. Therefore, the wrong

labels bringing inaccurate optimization targets will interfere with the training

process and weaken the model performance in our task. Our DPA strategy uti-

lizes feature embedding method fusing the knowledge from numerous unlabeled

data to the supervised model directly, thus avoiding the inaccurate optimization125

target and enhancing the accuracy steadily.

Dense connection. Dense connection (Gao et al., 2017) improves the flow of

information and gradients which optimize the training process, but it also brings

feature redundancy and memory limitation problem which is not suitable for

big 3D medical images. Mixed-Scale Dense (MS-D) network (Pelt and Sethian,130

2018) take dense connection method and achieve the biomedical image segmen-

tation. Similarly, Li et al. (2018b) design a novel hybrid densely connected

U-Net which consists of 2D and 3D DenseUnet and obtain the liver tumor seg-

mentation. DenseASPP (Yang et al., 2018) combines dense connection with

dilated convolution to fuse multi-scale information and improve the accuracy of135

semantic segmentation. Since these networks consume a large quantity of mem-

ory with all feature maps reused, the input data size is limited. Especially in the

3D medical image segmentation task, this memory problem will be more serious.

Our dense biased connection compresses the feature maps before transmission,

thus avoiding feature redundancy, keeping the advantages of dense connection140

and saving the memory. This method makes it easy to build whole network

dense connectivity patterns so that each hidden layer will have additional direct

access to the gradients from the loss function through the shorter connections.

Therefore, these additional gradients will optimize these layers during the train-

ing process making implicit deep supervision (Lee et al., 2015; Gao et al., 2017)145
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improving the accuracy and accelerating the training.

Autoencoder network (AE). AE (Masci et al., 2011) is an unsupervised

neural network that extracts and composes robust features, so it can be used

for semi-supervised learning to improve the model’s performance. Three main

methods for applying AE to semi-supervised learning can be identified. 1) Gra-150

dient embedding. The features from the pre-trained encoder network are used

as an auxiliary optimization target for the specific task network, thereby the

additional gradients are embedded in the training process (Sedai et al., 2017).

2) Auxiliary task. AE shares a part of parameters with the specific task network

and is trained as an additional task at the same time (Rasmus et al., 2015b,a).155

3) Feature embedding. The features extracted by the pre-trained autoencoder

are embedded in the supervised neural network (Wu et al., 2019; Kingma et al.,

2014; Xiao et al., 2018). Different than in the previous two methods, the feature

embedding method fuses the knowledge from numerous unlabeled data to the

supervised model directly avoiding the impact on the training process which is160

friendly to our renal arteries (thin structure). Therefore, we use a denoising

autoencoder (Vincent et al., 2010) which captures higher-level features from the

input images for priori anatomy features extraction and embedding.

Class imbalance. Class imbalance means that there is a large gap between the

number of different classes in the dataset, a severe class imbalance will lead to165

inefficient training process and model degradation (Lin et al., 2017). Wolterink

et al. (2016) take a two-stage hard negative mining method in coronary artery

calcium scoring task that locates the rare class before its scoring, thus balancing

the classes and achieving success. The soft Dice loss (Milletari et al., 2016)

calculates the Dice value of different categories as the loss value to avoid the170

inter-class interaction. The weighted cross-entropy gives higher weight to rare

categories making the network pay more attention to them, but the weight

is a hyper-parameter and is difficult to determine. The focal loss (Lin et al.,

2017) adds to the weighted cross-entropy a modulating factor which calculated

from the result so that the network pays more attention to the hard region.175
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The first two loss functions do not distinguish the difficulty of hard regions in

the segmentation task which leads to local defects easily. Although focal loss

weakens this problem to some extent, the weighted sum of the main class’s

loss values is still much larger than the rare class when the class is seriously

imbalanced. In our proposed HRA loss, most of the regions that have been180

segmented well are not involved in the training process, thus keeping the balance

of the class dynamically and making the network focus on the hard-to-segment

regions.

1.2. Contributions

We propose a powerful 3D semi-supervised framework (DPA-DenseBiasNet)185

for the first time to achieve fine renal artery segmentation. The detailed contri-

butions of our work are as follows:

• As far as we know, we achieve fine renal artery segmentation for the first

time and review the relevant technical and clinical value of this topic,

which will provide a valuable reference for follow-up works.190

• We propose a novel 3D semi-supervised framework for fine renal artery

segmentation which can play an important role in pre-operative planning

and demonstrate its excellent performance via complete experiments.

• We present a steady semi-supervised learning strategy named deep priori

anatomy (DPA) to guide the adaptation of more anatomy structures and195

weaken the data limitation. It extracts priori anatomy features via a pre-

trained AE and embeds them in the segmentation network to introduce

anatomy features representation ability from numerous unlabeled data.

• Our newly proposed dense biased connection method fuses multi-receptive

field and multi-resolution features so that more powerful multi-scale rep-200

resentation ability is achieved to adapt the network to intra-scale changes.

A dense biased network (DenseBiasNet) based on this dense biased con-

nection is designed.
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• We propose a hard region adaptation (HRA) loss function to keep class

balanced. It samples the loss function according to the segmentation qual-205

ity so that the network will attach significance to the hard-to-segment

region dynamically, thus keeping the class balanced and improving the

segmentation quality of hard regions.

In this work, we advance our preliminary efforts (He et al., 2019) on fine

renal artery segmentation task in the following aspects: 1) conduct more com-210

prehensive review of the techniques related to fine renal artery segmentation, 2)

propose a hard region adaptation loss function (HRA) to focus on the hard-to-

segment region, thus keeping the class balanced and improving the segmentation

quality of hard regions, and 3) demonstrate the performance of our proposed

DPA-DenseBiasNet in the fine renal artery segmentation task via carrying out215

more extensive experiments for performance analysis and comparison.

For the rest of the paper, we demonstrate the details of the proposed DPA-

DenseBiasNet in Sec. 2, including deep priori anatomy (DPA), dense biased net-

work (DenseBiasNet) and hard region adaptation (HRA) loss function. Then the

dataset, experiment settings, and evaluation measures are described in Sec. 3.220

Sec. 4 shows the results and analysis of comparison experiments and ablation

experiments. Sec. 5 discusses and concludes the paper.

2. Methodology

As shown in Fig. 2, the DPA-DenseBiasNet is proposed for fine renal artery

segmentation. It has three structures: 1) An AE is pre-trained and used to225

extract and embed DPA features to guide the adaptation of anatomy variation.

This process forms a steady semi-supervised learning strategy and we call it

DPA strategy (Sec. 2.1). 2) Based on dense biased connection, a DenseBiasNet

(Sec. 2.2) fuses multi-receptive field and multi-resolution feature maps for pow-

erful multi-scale representation ability, thus adapting to the intra-scale changes.230

3) Based on an intra-image region sampling strategy, an HRA (Sec. 2.3) loss

samples the loss region dynamically according to the segmentation quality so
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Figure 2: DPA-DenseBiasNet for fine renal artery segmentation: Stage 1 is the AE pre-

training. The AE is trained by unlabeled images, and the encoder network is used to extract

DPA features in stage 2. Stage 2 is DPA features embedding and DenseBiasNet training.

The DenseBiasNet with dense biased connection takes DPA features to adapt the anatomical

variation and is optimized by the HRA loss function to keep the class balanced.

the network will focus on the hard regions and keep the class balanced. The

training process consists of two stages including a) AE pre-training, b) DPA fea-

tures embedding and DenseBiasNet training. In stage 1, an AE (Masci et al.,235

2011) is trained with a big unlabeled dataset (unsupervised) to get the repre-

sentation ability of numerous anatomy features. In stage 2, an encoder network

from this AE extracts the DPA features and embeds them in the DenseBiasNet

as the priori information to adapt the anatomy variation. To achieve fine renal

artery segmentation, the DenseBiasNet is trained by both the labeled data and240

the DPA features with the HRA loss function.

2.1. Deep priori anatomy for anatomy variation adaptation

DPA strategy is a novel steady semi-supervised learning strategy that uti-

lizes the feature representation ability of pre-trained AE to extracts anatomy

features (Sec. 2.1.2) and embeds them in different depth of a segmentation net-245

work for anatomy variation adaptation (Sec. 2.1.3) as is illustrated in Fig. 2.
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This process pre-trains the encoder, pre-extracts the features which reflect the

anatomical information from different depth of the encoder, and fuses these fea-

tures to different depth of the segmentation network. Thus, we extract three

representative keywords and name this strategy ’Deep priori anatomy’.250

2.1.1. Advantages of DPA

1) Steady and suitable for thin structures. Other semi-supervised segmen-

tation methods (Nie et al., 2018; Bai et al., 2017) take inaccurate optimization

targets and interfere with the training process. Our DPA strategy fuses the

knowledge from numerous unlabeled data to the supervised model directly and255

takes a single accurate optimization target to avoid interference thus bringing a

steady training process. This steady process is suitable for the thin structures

which are lost easily. 2) Generalization improvement. DPA strategy embeds

the feature extraction ability learned from numerous unlabeled images to the

segmentation network to guide the adaptation of more anatomy structures so260

that its generalization ability will be improved.

2.1.2. AE pre-training for DPA features representation

DPA strategy takes an AE to obtain anatomy feature representation capa-

bility via numerous unlabeled data. Then the pre-trained encoder of the AE

is used to extract DPA features in our framework. As is shown in Fig. 3, we265

take the denoising autoencoder (DAE) (Vincent et al., 2010) for better higher-

level representation and build a convolutional DAE which has an encoder and a

decoder. The encoder encodes the image into low-resolution anatomy features

via successive downsampling, and then these features are upsampled by the de-

coder to reconstruct the original image. An unlabeled image x is an input into270

a dropout (Srivastava et al., 2014) layer to get the image x′ corrupted by noise

before entering the network. The encoder extracts the feature of x′ to obtain

the code h = f(x′), and then restores the image x̂ = g(h) through the decoder.

Finally, the mean square error (MSE) loss (Masci et al., 2011) values between

the reconstructed image x̂ and the original image x are calculated for network275
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Figure 3: AE for anatomy features representation. The convolutional denoising autoencoder

(DAE) is trained with numerous unlabeled data for anatomy feature representation ability

and the encoder outputs four sets of DPA features with different resolutions from different

depths. The Cn, Hn,Wn, Dn is the channels, height, width and depth of the feature maps for

each layer.

optimization. A large amount of unlabeled data is used to train this DAE to

equip it with the DPA features extraction ability in stage 1. Its encoder net-

work is used to extract DPA features of different semantic levels from encoder’s

different resolution stages for DenseBiasNet in stage 2.

2.1.3. DPA features for anatomy variation adaptation280

DPA strategy extracts the DPA features from input images via the pre-

trained encoder and embeds them in the DenseBiasNet for anatomy varia-

tion adaptation as is shown in Fig. 2. The image x is put into the frozen

encoder network which is trained via numerous unlabeled data during stage

1 to get the DPA features of different semantic levels from different depths285

{Ff1, Ff2, Ff3, Ff4} = f(x). These features are concatenated to the input fea-

ture maps of the second convolution layer of their corresponding resolution stage

in DenseBiasNet’s analysis path as shown in Fig. 5. And the DenseBiasNet uti-

lizes the original image x and these DPA features to obtain the segmentation

result ŷ = d(x, Ff1, Ff2, Ff3, Ff4). The loss value, calculated from the result ŷ290

and the label y, is used to optimize the DenseBiasNet L(ŷ, y).
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2.2. Dense biased network for multi-scale adaptation

DenseBiasNet (Sec. 2.2.3) adopts the dense biased connection (Sec. 2.2.2)

compressing and transmitting all feature maps in each layer to every forward

layer, so that multi-receptive field and multi-resolution features are fused for295

powerful multi-scale representation ability to adapt to intra-scale changes. Due

to this dense connectivity pattern, the information flow and gradient flow are

completely transmitted in the network, thus the training process will be accel-

erated and the accuracy will be improved.

2.2.1. Advantages of dense biased connection300

1) Intra-scale changes adaptation. It fuses the feature maps with different

receptive fields and resolutions in each layer so that the network will have pow-

erful multi-scale representation ability, thus adapting to different scale vessels.

2) Training acceleration. The gradient from the loss function optimizes each

layer directly along with the connections leading to implicit deep supervision305

(Lee et al., 2015), so the training process will be accelerated. 3) Complete infor-

mation flow. The feature maps in each layer are compressed and transmitted to

every forward layer so that the complete information is obtained in deep layers.

4) Simplified network structure. Compared to dense connection (Gao et al.,

2017), it transmits much fewer feature maps which reduces feature redundancy310

and makes it easier to build full network dense connectivity pattern, so that it

is more suitable for large medical image sizes.

2.2.2. Dense biased connection as connectivity pattern

DenseBiasNet takes dense biased connection as the connectivity pattern that

compresses and transmits the feature maps in each layer to every forward layer,

so the multi-scale features are integrated, the integrities of information flow

and gradient flow are kept as shown in Fig. 4. Equ. 1 illustrates the calculation

process of the lth layer in the network with the dense biased connection. Pooling

and upsampling are used to unify the feature maps at different scales.

Fl = Hl(Fl−1 ◦ Conv(Fl−2;ml−2) ◦ ... ◦ Conv(F0;m0)) (1)

14



Dense biased connection:

Compress and transmit the feature maps in each layer to 

every forward layer
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Figure 4: The dense biased connection compresses and transmits the feature maps in each

layer to every forward layer to reduce feature redundancy, keep the integrity of information

flow and gradient flow and fuse multi-scale features.

where the Fl is the feature maps output from the lth layer and {F0, . . . , Fl−2}

are the feature maps from previous layers. Conv(·) is a 1 × 1 × 1 convolution315

layer which compresses the feature maps into a small number of maps, and

the {m0, . . . ,ml−2} are the bias quantities which represent the number of the

output feature maps of these convolution layers. Hl(·) is a combination function

that can be group normalization (GN) (Wu and He, 2018), rectified linear units

(ReLU), pooling, upsampling or convolution (Conv). In our experiments, we320

set it as a Conv followed by a GN and a ReLU. ′◦′ is a concatenation operation

that concatenates all feature maps from the l − 1th layer and the compressed

feature maps from {0, 1, ..., l − 2th}.

2.2.3. DenseBiasNet design

Based on the dense biased connection, the DenseBiasNet takes standard325

3D U-Net’s analysis path and synthesis path (Çiçek et al., 2016) as the basic

structure. Continuous downsampling in the analysis path saves GPU memory

effectively and the synthesis path restores the low-resolution feature maps to

the one with the original resolution which achieves an end-to-end output with

the same resolution. The dense biased connection fuses the feature maps with330

different resolutions and different receptive fields so that the network has the
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Figure 5: The proposed DenseBiasNet with dense biased connection is embedded with DPA

features. The Dense biased connection is used throughout the network which builds a dense

connectivity pattern for the adaptation of different scale arteries. The DPA features from the

encoder network are concatenated to different resolution stages of the DenseBiasNet to guide

the adaptation of more anatomical structures. The Cn, Hn,Wn, Dn is the channels, height,

width, and depth of the feature maps from each layer.
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representation ability for features of different semantic levels. As shown in Fig. 5,

it has 2 paths and 4 resolution stages with two 3×3×3 convolution layers which

are followed by a GN and a ReLU. Maxpooling is used to reduce the resolution

at the end of the stages in analysis path and upsampling is used to improve the335

resolution at the beginning of the stages in synthesis. A 1 × 1 × 1 convolution

layer followed by a softmax is used as the output layer to reduce the number of

channels to classes. The dense biased connection is used throughout the network

and feature maps’ resolution is changed by maxpooling or upsampling to adapt

to different resolution stages.340

2.3. Hard region adaptation loss for class balance

Hard region adaptation loss function is presented to sample the hard regions

intra-image, thus the network will focus on the hard-to-segment region and

dynamically keep the class balanced during the training process. Based on our

designed intra-image sampling method, it only trains hard region to ensure the345

intra-class and inter-class balance of the dataset and improving the network

accuracy. We will introduce the hard region adaptation loss based on the cross-

entropy (CE).

2.3.1. Advantages of HRA

1) Training process adaptation. Our HRA selects the regions to calculate the350

loss function according to the segmentation quality dynamically. Therefore, as

the model converges, HRA will gradually exclude the easy-to-segment regions

and focus on the hard regions fitting the actual situation of the training. 2)

Feature-based class balance. It balances the data with a dynamic selection of

hard regions and is more suitable for the real situation of the features than the355

weighting methods that never focus on regional features.

2.3.2. HRA definition

HRA loss finds hard-to-segment regions according to the segmentation qual-

ity of results dynamically and optimizes these regions to keep class balanced
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Figure 6: Hard region adaptation loss keeps the class balanced. The red regions are the

sampled hard regions. 1) The standard cross-entropy loss is calculated covering all regions

which will cause a serious class imbalance problem. 2) The hard region adaptation loss takes

an L1 distance to sample the hard-to-segment regions such as vascular boundary, small ends,

etc. and thus keeping class balanced dynamically

.

dynamically. As is shown in Fig. 6, the red regions of the outputs are calcu-

lated for the cross-entropy loss. When training the segmentation network with a

standard cross-entropy loss, we calculate the loss value covering all regions and

pay the same attention to hard regions and easy regions which causes a serious

class imbalance problem. When it comes to HRA loss, the hard regions such as

vascular boundary, small ends, etc. are found via calculating the L1 distance

between the results and ground truth, and thresholding for hard-to-segment

region mask. Then, the cross-entropy loss is calculated on these regions as is

illustrated in Equ. 2:

LHRA−CE = −
N∑
n

I(yn, ŷn)yn log ŷn (2)

where yn is the target value and ŷn indicates the predicted value. I(yn, ŷn) is

the intra-image sampling strategy and in this paper we set that if |yn− ŷn| > T ,

I(yn, ŷn) = 1, otherwise I(yn, ŷn) = 0. The hyper parameter T serves as the360

threshold to control the sensitivity of hard region, when T = 0, the loss value

will be calculated on the whole image.

In the training process, the large easy-to-segment regions are fitted well

quickly, so the network will calculate the loss value only on hard regions con-

tributing to class balance. If the network is too focused on the hard regions365

18



and starts to reduce the accuracy of easy regions, the L1 distance of the easy

regions will increase, so that the network will pay attention to these regions

again. Therefore, the segmentation quality of both the easy and hard regions

will be guaranteed dynamically. In this section, we present the definition of

HRA with the cross-entropy as an example, while its form is not limited to this.370

This loss function design method based on the intra-image sampling strategy

can be applied to improve other loss functions such as Dice loss and mean square

error for class balance.

3. Experiments configurations

3.1. Evaluation dataset375

Dataset introduction. Abdominal contrast-enhanced CT images from 196

kidney cancer patients who have a kidney with renal tumor and a healthy kidney

were retrospectively selected from the radiology department of Jiangsu Province

Hospital in this study. The age of these patients is between 15 to 82 years

old. The size of the kidneys is between 85.76ml to 262.78ml and the size of380

the tumors is between 1.75ml to 144.82ml. The kidney tumor types consist

of clear renal cell carcinomas, papillary, chromophobe, angiomyolipoma and

eosinophilic adenoma. Each image was acquired on a Siemens dual-source 64-

slice CT scanner and the contrast media was injected during the CT image

acquisition. The X-ray tube current, the convolution kernel, the exposure time385

and the voltage are 480mA, B25f, 500ms and 120KV. The pixel size of these CT

images is between 0.59mm/pixel to 0.74mm/pixel. The slice’s thickness and the

spacing in z-direction were fixed at 0.75mm/pixel and 0.5mm/pixel respectively.

The kidney regions of interests (ROIs) whose sizes were 152 × 152 × Z

were cropped on the abdominal contrast-enhanced CT images automatically390

via multi-atlas-based approach (Yang et al., 2014) in the pre-processing firstly,

thus leading to 392 kidney ROI images. The renal artery boundary that reaches

the end of interlobar arteries was semi-automatically delineated by a trained re-

searcher and manually verified by a clinician in 156 images. 52 of them were used
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as the training set and the other 104 as the test set. The remaining 236 unla-395

beled images were used for the unsupervised training of the convolutional DAE.

In the training processing, these kidney ROIs were cropped into 152× 152× 64

online before putted into the network due to the limitation of hardware memory.

Data augmentation. Random mirroring and random rotation methods were

used to augment the image during the training process. The flipping method400

was performed randomly in the x, y and z axis of the kidney ROI and the

random rotation angle was [−10◦, 10◦].

3.2. Training strategies and implementation

The convolutional DAE and DenseBiasNet were all optimized by Adam

whose learning rate, β1, β2 and decay rate was 10−4, 0.9, 0.999 and 10−5 re-405

spectively. The training batch size was 1 owing to the limitation of memory and

was iterated 200 epochs on their corresponding data sets. Our implementation

used the Keras library of the Tensorflow backend which was publicly available.

We trained the proposed framework on a single 1080 GPU with 8 GB memory.

3.3. Evaluation measures410

To demonstrate the advantage of our framework, we compared our proposed

DenseBiasNet with three general supervised methods (3D U-Net (Çiçek et al.,

2016), V-Net (Milletari et al., 2016), Kid-Net (Taha et al., 2018)) and DPA-

DenseBiasNet with two semi-supervised methods (SemiFCN (Baur et al., 2017),

ASDNet (Nie et al., 2018)). These models were trained on the same dataset415

with the same implementation. Mean Dice coefficient, mean centerline distance,

mean surface distance and Hausdorff distance were adopted to evaluate our

proposed method. All the metrics were calculated for each image and the mean

values were got in the end. The standard deviation of each metric was used to

measure the dispersion on different images to offer an objective way to evaluate420

the robustness of our method.
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Dice coefficient (Dice). The Dice coefficient was used to evaluate the simi-

larity of the foreground regions in the two images according to Equ. 3.

Dice(G,P ) =
2 | G

⋂
P |

| G | + | P |
(3)

where G is the renal artery region in the ground truth, and P is the region in

the predicted result.

Mean centerline distance (MCD). In order to evaluate the displacement of

the renal artery segmentation, the centerline distance was used as an evaluation425

metric. The centerline was obtained following paper Boskamp et al. (2005) and

the average Hausdorff distance (Taha and Hanbury, 2015) was calculated using

the Equ. 4.

Mean surface distance (MSD). It was used to evaluate the lumen thickness

and surface coincidence of the renal artery. We first extracted the surface of the

blood vessel and then calculated the average Hausdorff distance using Equ. 4.

A small number of voxels away from the main segmentation object has a huge

impact on the Hausdorff distance, so we used average Hausdorff distance.

HDmean(G,P ) = max[f(G,P ), f(P,G)]

f(G,P ) = mean
g∈G

(min
p∈P
||g − p||)

f(P,G) = mean
p∈P

(min
g∈G
||p− g||)

(4)

Hausdorff distance (HD). It was used to evaluate the outliers which is sen-

sitive in vessel segmentation task. It will give additional information about the430

segmentation accuracy that cannot be evaluated by surface distance. We follow

the Hausdorff distance introduced by Taha and Hanbury (2015).

4. Results and analysis

DPA-DenseBiasNet adapts to the intra-scale changes and inter-anatomy

variation, ensures the class balanced, weakens the dataset limitation steady,435
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optimizes the training process, and achieves the excellent fine renal artery seg-

mentation ultimately. In this part, we thoroughly evaluate and analyze the

effectiveness of our proposed DPA-DenseBiasNet in three folds. 1) Firstly, the

performances of different existing methods on the 3D fine renal artery segmen-

tation task are quantified on four metrics and their segmentation results were vi-440

sually analyzed (Sec. 4.1). 2) Next, we analyze the role of HRA in handling class

imbalance problems, the help of dense biased connection to accelerate training

and improve accuracy, the effectiveness of DPA in smaller datasets, and the

enhancement of low-level features in the dense biased connection (Sec. 4.2). 3)

Finally, the influence of different hyper-parameters of the framework is analyzed445

and the most suitable hyper-parameters for our task are selected (Sec. 4.3).

4.1. Excellent fine renal artery segmentation results

The proposed DPA-DenseBiasNet has strong superiority both in visual and

evaluation metrics.

Quantitative evaluation supports the advantages. As demonstrated in450

Tab. 1, the DPA-DenseBiasNet achieves state-of-the-art performance in four

metrics. The performance of DenseBiasNet with HRA, whose Dice coefficient,

mean centerline distance, mean surface distance and Hausdorff distance are

0.872, 1.440mm, 1.006mm and 27.268mm, is much better than the other three

supervised learning methods. The DPA is friendly to small structures and im-455

proves the Dice up to 0.884, and will not weaken the network performance like

the other two semi-supervised methods which cannot achieve the renal artery

mask. The ablation experiments in the second part compare the impact of

different strategies and validate that the DPA and HRA improve the model

performance obviously.460

Qualitative evaluation supports the visual superiority. As shown in

Fig. 7, our proposed DPA-DenseBiasNet achieves the fine renal artery segmen-

tation and ensures the segmentation quality of different scales and singular

structures. The visual superiority of our framework is demonstrated via four
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Figure 7: The visual superiority of the proposed framework (DPA-DenseBiasNet). The blue

boxes indicate the high segmentation quality of artery endings via our DenseBiasNet and the

yellow boxes indicate the high segmentation quality of the singular regions brought by our

DAP strategy.
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Table 1: The proposed DPA-DenseBiasNet achieves state-of-the-art performance in four met-

rics. The DenseBiasNet has better performance than three supervised methods (V-Net, 3D

U-Net, and Kid-Net), and the DPA strategy improves the generalization ability and will not

weaken the network performance like the other two semi-supervised methods (SemiFCN and

ASDNet). The HRA loss balances the categories and further improves the performance of

standard cross-entropy (CE).

Network Dice±std MCD±std(mm) MSD±std(mm) HD±std(mm)

V-Net (Milletari et al., 2016) 0.715±0.167 2.856±3.133 1.893±2.733 31.976±15.206

3D U-Net (Çiçek et al., 2016) 0.801±0.114 2.070±1.915 1.578±2.135 32.240±17.169

Kid-Net (Taha et al., 2018) 0.771±0.131 2.838±2.652 1.955±2.527 33.761±17.320

(Semi)SemiFCN (Baur et al., 2017) 0.685±0.281 2.622±3.054 2.151±3.387 29.876±16.960

(Semi)ASDNet (Nie et al., 2018) 0.617±0.149 4.226±3.127 3.201±3.10 38.608±16.390

DenseBiasNet (CE) 0.869±0.082 1.428±1.50 1.038±1.537 28.263±16.212

DenseBiasNet (CE+HRA) 0.872±0.095 1.440±1.486 1.006±1.495 27.268±15.681

(Semi)DPA-DenseBiasNet (CE+HRA) 0.884±0.076 1.385±1.489 0.940±1.529 25.439±15.710

typical subjects including two left and two right kidney ROIs. The blue boxes465

in Case 4 indicate the high segmentation quality of artery endings brought by

our DenseBiasNet, and the other two models lose the thin endings without our

dense connectivity pattern. The yellow boxes in Case 2 show the high segmen-

tation quality of the singular regions brought by our DPA strategy. Without the

DPA features, 3D U-Net, ASDNet, and our DenseBiasNet lose these structures470

in yellow boxes easily. Our proposed DPA-DenseBiasNet achieves complete and

continuous fine renal artery segmentation reaching the end of the interlobular

artery. As a semi-supervised method, ASDNet segments the spine and other ves-

sels as renal arteries leading to a severe mis-segmentation problem, as a result of

the inaccurate optimization target which is sensitive to thin structures. Mean-475

while, 3D U-Net has much severe over-segmentation and under-segmentation

problems where part of the bifurcation regions are lost and some other vessels

are segmented as renal arteries.
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Figure 8: Our dense biased connection accelerates the training process and enhances accuracy.

Our DenseBiasNet has faster convergence speed and higher accuracy than the other two

networks owing to its dense connectivity pattern that keeps the integrity of the information

flow and gradient flow.

4.2. Improvements analysis

Dense biased connection training optimization. As demonstrated in Fig. 8480

and Fig. 10, the dense biased connection optimizes the training process by accel-

erating the training speed and enhancing the accuracy. The validation accuracy

and loss value of DenseBiasNet, 3D U-Net and the basic network structure with-

out dense biased connection are compared. Thanks to the dense connectivity

pattern, the DenseBiasNet keeps the complete information flow and gradient485

flow so that it has higher accuracy and faster convergence speed than the other

two methods. Compared with the basic network structure without dense biased

connection, the 3D U-Net gets better training speed and accuracy owing to its

partial skip connections. The DenseBiasNet also has higher accuracy than the

other three networks (3D U-Net, V-Net, Kid-Net) according to the ROC and490

PR curves.

Low-level features enhancement. As is shown in Fig. 9, the low-level fea-

tures are more sensitive to the arteries than high-level features in red boxes

so that transmitting these features from each layer to every forward layer via

our dense biased connection will enhance the sensitivity of the network for thin495

structures. Thus, the segmentation quality will be ensured not only in large
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Figure 9: Low-level features are more sensitive to thin structures. a)-h) The feature maps

transmitted in dense biased connection from the analysis path of DenseBiasNet with the

hyper-parameter m of 1. a)-d) from the first two resolution stages represent the low-level

features and e)-h) from the third and fourth stages represent high-level features. The red

boxes show that the low-level features in our dense biased connection are more sensitive to

arteries than high-level features.

regions but also in thin structures.

HRA for class balance. HRA balances the class dynamically thus preventing

the inefficient training process and model degradation. As revealed in Fig. 11,

it samples the loss calculation regions according to the segmentation quality500

to fit the actual situation during the training process. The loss value ratio of

background and vessel is calculated and the standard cross-entropy (CE) loss is

used as a comparison object. The ratio of the proposed HRA loss declines during

the first 50 epochs which means the network focused on hard region gradually.

Then the ratio is kept below 10 in the later stages of training indicating that the505

classes are kept balanced, while the standard CE loss’s ratio fluctuates around

100 whose categories are seriously imbalanced which leads to slow convergence

and loss of foreground.

As shown in Fig. 10, HRA increases the accuracy of CE loss function owing

to the class balance it brings. The ROC and PR curve of the HRA loss cover the510
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Figure 10: a)-b) The ROCs and PRs show that DenseBiasNet has higher segmentation accu-

racy than other networks and the HRA loss function improves the accuracy of CE.

standard CE which means the model trained via HRA has powerful performance.

Due to the serious class imbalance in our task, the true positive rate will rise

rapidly above 0.8 when plotting the ROC curve. For better demonstration, we

show the ROC curves with a true positive rate between 0.8 and 1.

Effectiveness of DPA on smaller datasets. As shown in Tab. 2, the DPA515

for semi-supervised learning greatly improves the model performance especially

when the dataset is small. We randomly downsample the training set to 50%,

20% and 10% of the original, and use them to evaluate the effectiveness of DPA

on smaller datasets. As the amount of labeled images decreases, the enhance-

ment ability of DPA is gradually reflected that DPA-DenseBiasNet improves520

the mean Dice coefficient by 7.1% over DenseBiasNet when data size is reduced

to 10%.

4.3. Hyper-parameter analysis

As shown in Tab. 3, we performed ablation experiments on the bias quantity

(m) in dense biased connection and the threshold (T ) in HRA to analyze the525

effects of these hyper-parameters. We tried two options for the bias quantity:

1) All layers in the network share the same bias quantity. 2) The bias quantity

is a proportion of the number of feature maps that output from each layer (r).
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Figure 11: HRA keeps categories balanced thus preventing the inefficient training process and

model degradation. The loss value ratio of background and vessel during the training process

shows that the HRA loss keeps the ratio below 10 in the later stages of training which keeps

class balanced while the cross-entropy loss function’s ratio fluctuates around 100.

Table 2: The DPA for semi-supervised learning keeps the network performance as the dataset

decreases. The table shows the Dice coefficient of DenseBiasNet and DPA-DenseBiasNet

trained via different labeled images amount.

Amount DenseBiasNet DPA-DenseBiasNet

100% 0.872±0.095 0.884±0.076

50% 0.836±0.117 0.853±0.094

20% 0.757±0.146 0.785±0.129

10% 0.630±0.200 0.701±0.183
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Table 3: Hyper-parameter analysis. The bias quantity (m) in dense biased connection and

the threshold (T ) in HRA are studied to analyze their effects.

Amount m T Dice±std Parameters

100% 1 0.1 0.861±0.091 1.301M

100% 2 0.1 0.857±0.089 1.405M

100% 4 0.1 0.872±0.095 1.612M

100% 4 0.2 0.848±0.103 1.612M

100% 0.1r 0.1 0.871±0.079 1.627M

100% 0.2r 0.1 0.839±0.119 2.102M

The results show that DenseBiasNet (CE+HRA) achieves the best performance

and relatively small number of parameters when m = 4 and T = 0.1.530

5. Discussion and conclusion

In this paper, we have proposed and validated the first effective semi-supervised

framework, DPA-DenseBiasNet, for 3D fine renal artery segmentation. DPA-

DenseBiasNet combines advantages of the DenseBiasNet, deep priori anatomy

and hard region adaptation loss so that it achieves powerful generalization abil-535

ity. Our dense biased connection method which builds the DenseBiasNet is

presented to fuse multi-receptive field and multi-resolution features for handing

intra-scale changes problem in our task. It also leads the implicit deep su-

pervision which accelerates the training and enhances the accuracy. The DPA

strategy is extracted from input images via a trained encoder and embedded540

in the DenseBiasNet for inter-anatomy variation problem. The HRA makes

the network focus on hard regions and keeps class balanced during the training

process dynamically.

The experiment verified that our DPA-DenseBiasNet with HRA loss has

high accuracy compared to the real mask. Tab. 1 shows the high Dice coefficient545

(0.884), low centerline distance (1.385mm), low surface distance (0.940mm) and

low Hausdorff distance (25.439mm) which has verified the effectiveness, robust-
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ness, and consistency of our proposed framework compared with three advanced

supervised methods (Çiçek et al., 2016; Milletari et al., 2016; Taha et al., 2018)

and two advanced semi-supervised methods (Baur et al., 2017; Nie et al., 2018).550

Fig. 7 shows the visual superiority, our framework has the capability to finely

segment the thin structures and has high segmentation quality of singular struc-

tures such as the case 2 which will help clinicians accurately and directly locate

the blood-feeding region.

Clinically, as the first automatic 3D fine renal artery segmentation frame-555

work, DPA-DenseBiasNet greatly improves the efficiency of kidney pre-operative

plan and reduces the cost of personalized medicine. Our work avoids the time-

consuming and challenging renal artery mask delineation process, and provides

renal artery masks for the pre-operative plan of LPN with segmental renal artery

clamping (Shao et al., 2011, 2012), handling one of the key technical problems560

for this task. Therefore, with the increasing probability of kidney disease (Bray

et al., 2018), more efficient and lower-cost medical services indirectly brought

by our work will create greater survival opportunities and higher quality of life

for patients.

The success of fine renal artery segmentation task provides a technical refer-565

ence for similar tasks whose thin structures are important and labeled dataset

is small. As shown in Tab. 2, the DPA strategy improves the segmentation

performance more significantly with the decrease of labeled data. Therefore,

this strategy will improve the performance of the segmentation task (Ge et al.,

2019a; Wolterink et al., 2019; Yang et al., 2012) in which the anatomy varia-570

tion is diverse, the labeling is difficult and the labeled dataset is small. The

process of DPA strategy also will not introduce incorrect labels as optimization

targets and thus contributes to a stable semi-supervised training strategy that

is friendly to thin structures. Besides, the proposed HRA loss keeps class bal-

anced, so that the model will pay attention to the hard-to-segment regions and575

the segmentation quality of thin structures will be improved.

Based on dense biased connection method, the proposed DenseBiasNet op-

timizes the training process via the complete information and gradient flow.
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Fig. 8 demonstrates the acceleration of the training and the enhancement of

the accuracy brought by this novel connection method. As shown in Fig. 9,580

more Low-level features are fused and transmitted to the deep layers to supple-

ment the sensitivity of thin structures. The gradient flows directly optimize the

shallow layers during back-propagation through the dense connectivity pattern,

leading the implicit deep supervision (Lee et al., 2015). Therefore, the train-

ing process is greatly optimized and the segmentation quality is also improved.585

In addition, owing to the advantages of the complete information and gradient

flow, this network structure is expected to serve as a new backbone network for

other deep learning-based tasks such as quantization (Xue et al., 2017; Afshin

et al., 2012; Ge et al., 2019b), super resolution (Ge et al., 2019c), descriptor

learning (Zhen et al., 2015), etc.590

Our DenseBiasNet greatly enhances the effectiveness in the segmentation of

thin structures such as renal arteries, however, the parallelism of the computing

process is weakened due to the full network dense connection (Ma et al., 2018).

This limitation reduces the speed of our framework resulting in more processing

time compared with other frameworks of the same complexity. Fortunately, the595

fine renal artery segmentation task has low real-time requirements, so it is worth

the extra processing time for higher accuracy.

The DPA strategy has enhanced the segmentation generalization perfor-

mance of our framework, but its encoder brings a lot of parameters as an addi-

tional module which will take up more computing resources. Fortunately, there600

are many lightweight models (Ma et al., 2018; Howard et al., 2017) and network

slimming methods (Liu et al., 2017; Zhuang et al., 2018) have been applied

to reduce framework parameters successfully. Therefore, further research on

the high-performance lightweight fine renal artery segmentation framework for

landing is one of our important directions. Besides, using powerful computing605

equipment in clinical applications is also an effective solution for this limitation.
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