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A covariant formalism is used in order to examine the status of Maxwell equations and to unify the concept of balances, for all chemical engineering applications in relation with electrodynamics. The resulting formal structure serves as a discussion in studying the determinism of electromagnetic systems, and examining the theoretical foundations for a general classification of chemical engineering applications when non-conservative forces are concerned. A strategy for modeling such applications is then sketched and the balances for the main conserved and non-conserved extensive quantities are then summarized in their covariant and classical forms.

Introduction

Electrodynamics (in the broadest sense) is a field of increasing importance in relation with chemical engineering applications, both in conventional industry or in high technology sectors. Modeling and scheduling such applications requires to properly establish a general formalism in which balances are formulated in order to verify the invariance principles [START_REF] Truesdell | The Classical Field Theory[END_REF][START_REF] Goldstein | Classical Mechanics[END_REF][START_REF] Jou | Extended Irreversible Thermodynamics[END_REF]. Because they play a crucial role in electromagnetic problems, this objective also involves to discuss the status of Maxwell equations. These equations, containing the velocity of light as an intrinsic parameter are obviously available in special and general relativity. Consequently, a formal structure of balances can only be reached in a four dimensional space-time continuum, requiring a general covariant formulation. This ensures the invariance of any physical law under Lorentz transformation which then appears as an orthogonal transformation in the Minkowski space, satisfying per se the equivalence principle [START_REF] Goldstein | Classical Mechanics[END_REF].

The aim of this paper is to examine how the well-established general covariant four-dimensional approach is able to integrate the classical local balances [START_REF] Bird | Transport Phenomena[END_REF][START_REF] Slattery | Momentum, Energy, and Mass Transfer in Continua[END_REF][START_REF] Wilmanski | Thermomechanics of Continua[END_REF] together with the well-known Maxwell equations in an unified point of view. In relation, the status of Maxwell equations as covariant balances is investigated. The resulting set of equations, necessary to physically formulate a chemical engineering problem in relation to electrodynamics, provides a theoretical basis in order to investigate the mathematical foundations of such applications. This leads to a consistent analysis of the coupling between the material and the electromagnetic phases of the process, enabling to propose a general classification of chemical engineering problems, both for electrodynamics and wave transport phenomena.

Classical Balances for Inertial and Galilean Frame of Reference.

Different ways exist in order to formulate local balances for classical applications, with only conservative forces. Authors have used the invariance principle in a galilean frame of motion [START_REF] Jou | Extended Irreversible Thermodynamics[END_REF], conservation principles [START_REF] Slattery | Momentum, Energy, and Mass Transfer in Continua[END_REF], differential balances [START_REF] Bird | Transport Phenomena[END_REF] or more axiomatic approaches [START_REF] Wilmanski | Thermomechanics of Continua[END_REF]. An alternative well-known approach, which presents the advantage to be quite general, is briefly presented in the following.

One considers a given extensive quantity, which may be a scalar or a vector Ψ ( ) i (the subscript i between brackets authorizes that Ψ be a vector) and flowing through a volume element dV, defined by a moving control surface F. ψ ( ) i corresponds to the quantity Ψ ( ) i by unit volume and J ij ( ) is the flux density of Ψ ( ) i , considering an outward normal to the system (the second subscript j authorizes that J be a tensor, the rank of J being always one order higher than Ψ ( ) i ). Actually, J is the sum of three terms :

J J J J J J ij ij l ij f ij c ij r ij c ( ) ( ) ( ) ( ) ( ) ( ) = - + = + (1) 
where J ij l ( ) is a convective flux density ; J ij f ( ) is a flux density related to the moving frontier ( J v ij f i j f ( ) ( ) ( )

= ψ

) ;

J ij c ( ) is a conductive flux density. Finally, J J J ij r ij l ij f ( ) ( ) ( )
= is a flux density by relative displacement.

The term J ij r ( ) corresponds to the transport of the flux density of Ψ ( ) i by the material phase, equal to ɺ ( )

Ψ i m dw where ) (i Ψ ɺ is the quantity Ψ ( )
i by unit mass, and

S v d dw r m ⋅ - = ρ
. It can also include forced convection terms by inter-phase mass transfer. The last term J ij c ( ) corresponds to the conductive flux density at the right of fluid sections, locally of major importance. Finally, it is necessary to take into account a source term of Ψ ( ) i for nonconserved quantities, which is ±σ ( ) i .

Spatial and Local Balances

The general spatial form for the balance of the quantity Ψ is then :

d dt J d dV i ij S i V Ψ ( ) ( ) ( ) ɺ = - × +   S σ (2) 
where the operator " ɺ × " involves the vectorial or tensorial nature of J. This formulation corresponds to a generalization of the conservation laws of mechanics, but does not contain any information about the terms J ij ( ) and σ (i) . From eq. ( 1) one has for the spatial balance :

d dt J d J d J d dV i ij l S ij f S ij c S i V Ψ ( ) ( ) ( ) ( ) ( ) ɺ ɺ ɺ = - × + × - × +     S S S σ (3) 
The local balance formulation requires to develop the time derivative of Ψ ( ) i :

 ψ = Ψ V i i dV dt d dt d ) ( ) ( (4) 
in which we have ψ ρ

( ) ( ) ɺ i i
= Ψ only for a material phase. One can then expand the eq. ( 3) in the form :

d dt d dt dV t dV d dt dV i i V i i V V Ψ ( ) ( ) ( ) ( ) ( ) = = +    ψ ∂ ψ ∂ ψ (5) 
Because the displacement of the frontier F is the sole way to cause a volume variation dV, one has :

dt d dV d f v S ⋅ = ) (
and the corresponding flux of Ψ ( ) i then is : (6) which enables to write eq. ( 5) in the general form :

ψ ψ ( ) ( ) ( ) ( ) ( ) ɺ ɺ i V i j f S ij f S d dt dV v d J d    = × = × S S
d dt dV t dV J d i i ij f S V V ψ ∂ ψ ∂ ( ) ( ) 
( ) ɺ = + ×
   S (7) This relation is known as the Leibnitz rule or generalized transport theorem [START_REF] Truesdell | The Classical Field Theory[END_REF][START_REF] Slattery | Momentum, Energy, and Mass Transfer in Continua[END_REF][START_REF] Wilmanski | Thermomechanics of Continua[END_REF] and it is a purely kinematics equation, available even for a non-material phase.

The identification with the terms of the spatial balance (eq. 3) gives :

∂ ψ ∂ σ ( ) ( ) ( ) ( ) ( ) ɺ i ij l ij c S i V V t dV J J d dV = - + × +    S ( 8 
)
and using the divergence theorem :

J d x J dV ij i ij V S ( ) ( ) ɺ × =   S ∂ ∂ one obtains : ∂ ψ ∂ ∂ ∂ σ ( ) ( ) ( ) ( ) ( ) i i ij c ij l i V t x J J dV + + -                = 0 (9)
Because the frontier F is arbitrarily defined, the integral vanishes, giving the local balance of Ψ ( ) i :

∂ ψ ∂ ∂ ∂ σ ( ) ( ) ( ) ( ) ( ) i i ij c ij l i t x J J = - + + (10) 
This equation corresponds to the general eulerian form for an extensive quantity balance in an inertial and galilean frame of reference [START_REF] Marsden | Mathematical Foundations of Elasticity[END_REF][START_REF] Dennery | de Thermodynamique Rationnelle[END_REF], and leads to the famous equations of change [START_REF] Bird | Transport Phenomena[END_REF][START_REF] Slattery | Momentum, Energy, and Mass Transfer in Continua[END_REF] for chemical and mechanical engineering applications. A more rigorous demonstration of this equation is available in the relevant literature [START_REF] Truesdell | The Classical Field Theory[END_REF][START_REF] Wilmanski | Thermomechanics of Continua[END_REF][START_REF] Marsden | Mathematical Foundations of Elasticity[END_REF][START_REF] Lindsay | Foundations of Physics[END_REF]. The non-inertial form of eq. ( 10) is further discussed in the textbooks of Dennery [START_REF] Dennery | de Thermodynamique Rationnelle[END_REF] and Wilmansky [START_REF] Wilmanski | Thermomechanics of Continua[END_REF].

Covariant Formalism for Inertial and Relativistic Frame of Reference

As previously explained, the classical approach excludes modeling of chemical engineering applications in which external forces are non-conservative (the long range volumetric forces acting on the system, and their corresponding work, appearing in the source term of the material balances are assumed conservative), i.e.

electrodynamics applications. In these cases, it is necessary to use the well-known Maxwell equations, the formal structure of which is not clearly debated, except by some authors [START_REF] Post | Formal Structure of Electromagnetics -General Covariance and Electromagnetics[END_REF]. From the physical point of view, Maxwell equations which intrinsically contain the speed of light, may appears as principles, valid in special and general relativity. Consequently, their integration in a general balances formalism must be sought for only in a Minkowski four-dimensions space-time frame of reference, even for chemical engineering applications in which the nonrelativistic assumption is always valid.

The reader is here assumed familiar with tensorial notations in four-dimensions space-time frame of reference [START_REF] Post | Formal Structure of Electromagnetics -General Covariance and Electromagnetics[END_REF][START_REF] Landau | Théorie des Champs[END_REF]. A and A λµ (scalar density). The covariant and contravariant quantity are related by the metric tensor g λµ :

g g c λµ λµ = = - - -               2 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 with g A A λµ µ λ = and g A A λµ µ λ =
From these definitions, one can examine the re-formulation of balances in the form of eq. [START_REF] Post | Formal Structure of Electromagnetics -General Covariance and Electromagnetics[END_REF], in order to generalize the approach to non-conservative forces, i.e. taking into account the electromagnetic field. The problem is then quite different for a scalar or a vector extensive quantity.

Scalar Balances

In this case, the flux density is unambiguously and easily defined by the 4-vector ) , (

l c l c J + µ + ψ = J , leading
to write the four-dimensional form of eq. ( 10) as :

∂ ∂ σ µ µ J x c l + = (11) 
which is the local balance of the quantity Ψ ( ) i in the Minkowski space, and restores, in a galilean space a scalar equation in divergence and ∂ ∂ t .

Vector Balances

In this case, the flux density is a 4-tensor, and eq. ( 10) takes the general form :

∂ ∂ σ λµ µ λ J x c l + = (12) 
where σ λ is a 4-vector source. Dramatically, the 4-tensor J c l + λµ can have different forms, depending if it is related to a material phase (momentum balance for example) or to an electromagnetic extensive quantity.

In the case of a material phase, the 4-tensor J c l + λµ is a true symmetric tensor. For the non-relativistic approximation, it takes the following form [START_REF] Landau | Mécanique des Fluides[END_REF] : 

J J J J J J J J J J J
+ + + + + + + + + + =               λµ ψ ψ ψ ψ ψ ψ 00 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (13) 
This 4-tensor is then structured in three different terms : a scalar J 00 = J 00 , a 3-vector

ψ ψ ψ ψ = µ 0 J corresponding to a
volumetric density, and a 3-tensor J (ij)c+l = J (ji)c+l corresponding to the convective and conductive flux density.

Clearly, applying eq. ( 13) to non-relativistic momentum balance gives :

J U v 00 1 2 2 = + ρ ρ ɺ , energy density for the fluid, v ρ ψ = i , and J (ij)c+l = Π ij + ρv i v j with Π ij = τ ij + Pδ ij .
From this definition, the general four-dimensional equation ( 12) restores, from the spatial coordinates, the well-known momentum balance for a material phase [START_REF] Bird | Transport Phenomena[END_REF][START_REF] Slattery | Momentum, Energy, and Mass Transfer in Continua[END_REF][START_REF] Landau | Mécanique des Fluides[END_REF] ; the temporal coordinate giving a colinear equation. Of course, it must be emphasized that this approach does not present any interest for classical chemical engineering applications on a material phase, because the momentum balance can be easily obtained from the classical way, using eq. ( 10) ; it is just here a formal presentation to keep some generality to the proposed approach.

For extensive electromagnetic quantity balances, the flux density terms are assimilated to conductive term, because obviously independent of the material phase. Moreover, the 4-tensor flux density term is in reality an antisymmetric 4-pseudotensor (a scalar density), or a six-vector defined as :

              - - - - - - = 0 0 0 0 ) ( ) ( ) ( ) ( ) ( ) ( c x c y z c x c z y c y c z x z y x c J J J J J J J ψ ψ ψ ψ ψ ψ λµ (14)
ψ ψ ψ ψ is a polar vector and c J is an axial vector. A partial mathematical demonstration of the structure of this 4-tensor is available in the related literature [START_REF] Post | Formal Structure of Electromagnetics -General Covariance and Electromagnetics[END_REF][START_REF] Landau | Théorie des Champs[END_REF][START_REF] Panofsky | Classical Electricity and Magnetism[END_REF]. From this definition, the four-dimensional equation ( 12) restores in a galilean frame of reference, a vector equation in curl and ∂ ∂ t terms with a scalar equation in divergence, leading to the two non-homogeneous Maxwell equations, if applied to the electromagnetic fields.

The major difference of structure between equations ( 13) and ( 14) comes from the fact that for a material phase, the balance is obtained considering a motion in a constant field, whereas for electromagnetic field balance one considers a given motion in varying the field potentials which then take place for "coordinates".

Application to Balances in an Electromagnetic Field

As a first example, using equation [START_REF] Landau | Théorie des Champs[END_REF] in the field of electrodynamics, it is easy to show how the charge continuity equation for the material phase is obtained. Defining the current density 4-vector by

J J c l e c l c l + + + = = µ ρ ( , ) ( 
, ) J J 0 and taking σ = 0 for the charge conservation, eq. ( 11) immediately gives :

0 = + = + + + = + + l c e z y x e l c div t z J y J x J t x J J ∂ ρ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ρ ∂ ∂ ∂ µ µ (15)
which is indeed a charge balance Ψ = Q for the material phase, also given by eq. [START_REF] Post | Formal Structure of Electromagnetics -General Covariance and Electromagnetics[END_REF]. At the contrary, if the second example deals with extensive quantities of the electromagnetic fields, only equation ( 12) is concerned. The 4-tensor of electric and magnetic excitations then takes the form of eq. ( 14) : [START_REF] Bird | The Basic Concepts in Transport Phenomena[END_REF] and the 4-vector source is the current density J e λ ρ = ( , ) J , leading to the balance, from eq. ( 12), [10, 13] :

J G G G G G G G G G G G G G D D D D H H D H H D H H c x y z x z y y z x z y x λµ λµ = =               = - - - - - -               0 0 0 0 0 0 0
∂ ∂ λµ µ λ G x J = ( 17 
)
which is the Minkowski's form of the two non-homogeneous Maxwell equations. Taking the three spatial coordinates of eq. ( 17), λ = 1, 2, 3, one has indeed : 

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
G G G G J G G G G J G G G G J + + + = + + + = + + + =      that is : curl H D J - = ∂ ∂ t (18)
and taking the temporal coordinate, gives : (19) Clearly, the balance equation ( 17) leads to the first pair of Maxwell equations (eq. 18 and 19) corresponding respectively to extensive quantities defined by the local magnetic moment

∂ ∂ ∂ ∂ 0 00 1 01 2 02 3 03 0 G G G G J + + + = , or div D = ρ e
) or ( V V J J J J M M M M = = = j m Ψ Ψ Ψ Ψ
, and the local electric moment Ψ Ψ Ψ Ψ = = p P P P P V and appearing in the thermodynamic treatment of electromagnetic systems [14].

The main balances for chemical engineering applications, in classical three-dimensional space, and in the Minkowski form in a four-dimensional space, are summarized in Table 1. A proof in obtaining the balance equation ( 17) using the lagrangian formalism and the least action principle is also given in Appendix 1.

Covariant Formalism for Electromagnetic Field

The first part of this paper dealt with classical applications, with constant fields deriving from a scalar potential grad ɺ Φ with ∂ ∂ ɺ Φ t = 0 (as gravity g and electric field E for example). The field equation is often omitted in classical formulation of problems (definition of gravity) whereas it is a necessary relation to obtain the internal energy balance from the total energy conservation equation. In case of electromagnetic applications, it is necessary to extend the definition to variable electric and magnetic fields, which is classically feasible defining the vector potential A :

E A = - - gradV t ∂ ∂ (20) and B A = curl (21)
Taking the curl of eq. ( 20) and the divergence of eq. ( 21), then applying the identities curl grad = 0 and div curl = 0, leads immediately to the two homogeneous Maxwell equations :

div B = 0 (22) curl E B + = ∂ ∂ t 0 (23)
which then appear as variable fields definition equations and not as balance equations.

In order to keep an intrinsic formal structure to this presentation, it is possible to obtain the Minkowski formulation of these two equations in a four-dimensional frame, from the definition of the covariant 4-tensor for fields F λµ :

F A x A x A E E E E B B E B B E B B x y z x z y y z x z y x λµ ν λ λ ν µ ∂ ∂ ∂ ∂ = - = = - - - - - -               curl 0 0 0 0 (24) 
from which the field equations (22-23) may be condensed in [START_REF] Post | Formal Structure of Electromagnetics -General Covariance and Electromagnetics[END_REF] :

∂ ∂ ∂ ∂ ∂ ∂ νρ µ ρµ ν µν ρ F x F x F x + + = 0 or, [ ] ∂ µ νρ F = 0 (25)
Once more, this equation is not a balance, but a relation between fields and the generalized vector potential.

Nevertheless, it is necessary to formulate all the electrodynamics relevant applications. So, it appears as fields definition in Table 1. 

∂ ∂ µ µ J x = 0 [ J e µ ρ = ( , ) ( ) J ] (conserved) ∂ ρ ∂ ( ) div e t = - J Momentum ∂ ∂ λµ µ T x = 0
T λµ is the energy-momentum tensor [START_REF] Landau | Théorie des Champs[END_REF] (conserved

) [ ] [ ] ∂ ∂ ρ ∂ ∂ ρ t x v v T i i j ij ij v D B + × = - + - ( ) 
Π
where the tensor Π ij

ij ij P = + τ δ Total Energy ∂ ∂ µ µ E x = 0 [ E E TOT E TOT µ = ( , ) J ] (conserved) ∂ ∂ ρ τ ρ E t v U P TOT ij k k = - + + × + + + - ⋅ - ⋅ +            div ɺ ɺ ( ) ( ) S v v v J v E v H v J k Q 1 2 2 Φ P P P P J J J J where E w v U TOT e = + + + 1 2 2 ρ ρ ρ ɺ ɺ ( ) Φ Electromagnetic Moment (non-homogeneous Maxwell equations) ∂ ∂ λµ µ λ G x J = (not conserved) div D = ρ e curl H D J - = ∂ ∂ t Electromagnetic Field (homogeneous Maxwell equations) ∂ ∂ ∂ ∂ ∂ ∂ νρ µ ρµ ν µν ρ F x F x F x + + = 0 , or [ ] ∂ µ νρ F = 0 div B = 0 or B A = curl curl E B + = ∂ ∂ t 0 or E A = - - gradV t ∂ ∂

Determinism of Electromagnetic Systems

Writing balance equations to entirely determine and formulate a chemical engineering problem (or in the broadest sense an engineering problem in continua) is an important question already debated [START_REF] Jou | Extended Irreversible Thermodynamics[END_REF][START_REF] Bird | Transport Phenomena[END_REF][START_REF] Slattery | Momentum, Energy, and Mass Transfer in Continua[END_REF][START_REF] Haase | Thermodynamics of Irreversible Processes[END_REF][START_REF] Groot | Non-equilibrium Thermodynamics[END_REF][START_REF] Bird | The Basic Concepts in Transport Phenomena[END_REF]. The extension of this problem to applications in electrodynamics of continua is here of prime importance. Classical textbooks present different approaches in relation with this question [START_REF] Goldstein | Classical Mechanics[END_REF][START_REF] Landau | Théorie des Champs[END_REF]. In its two major monographs Truesdell [START_REF] Truesdell | The Classical Field Theory[END_REF][START_REF] Truesdell | The non-linear Field Theories of Mechanics[END_REF], mentions the six main conservative quantities for this kind of problems : the mass, the momentum, the moment of momentum, the total energy, the charge and the magnetic flux, arguing that this enables to generalize the mechanics of continua to the electrodynamics of continua. As previously discussed in this paper, this appears as a reduced view of the problem, because modeling most of electrodynamics applications requires to use the four (or at least two) Maxwell equations [START_REF] Goldstein | Classical Mechanics[END_REF][START_REF] Russakoff | A derivation of the macroscopic Maxwell equations[END_REF]. Moreover, it is easy to show that the conservation of charge is already contained in the Maxwell equations, i.e. it is a redundant equation (Appendix 2). Consequently, one can conclude that the unified treatment of electrodynamics applications requires to use, in addition to the four classical Minkowski balances (mass, momentum, moment of momentum and energy), only the Minkowski electromagnetic moment balance (eq. 17). Nevertheless, it must be emphasized that any electromagnetic problem formulation requires also to use equations defining the non-stationary fields, and that a complete description often requires to explain internal energy or entropy balances, which is impossible without a thermodynamic treatment (second principle, Gibbs equation -see [START_REF] Jou | Extended Irreversible Thermodynamics[END_REF][START_REF] Haase | Thermodynamics of Irreversible Processes[END_REF][START_REF] Groot | Non-equilibrium Thermodynamics[END_REF]] -). Finally, a considerable difficulty to transform a balance equation into a more tractable field of intensive quantity equation may result in defining constitutive relations characterizing the material phase, specially for non-linear media [START_REF] Post | Formal Structure of Electromagnetics -General Covariance and Electromagnetics[END_REF][START_REF] Groot | Non-equilibrium Thermodynamics[END_REF][START_REF] Bird | Fluid mechanics and the transport phenomena[END_REF].

In addition to their general form given in Table 1, the main balances discussed above are summarized in their practical form in Table 2, both on the material phase and on the electromagnetic phase. The information contained in the Maxwell equations is examined in Appendix 2.

Table 2 : Main balances of practical use on material and electromagnetic phases with source terms

transferred between them.

Material Phase Electromagnetic Phase

Mass

∂ ρ ∂

( )

div e t = - J _ Momentum [ ] [ ] ∂ ∂ ρ ∂ ∂ ρ t x v v i i j ij v F = - + + Π
alternative expressions of the ponderomotive force F are given in [START_REF] Haase | Thermodynamics of Irreversible Processes[END_REF][START_REF] Groot | Non-equilibrium Thermodynamics[END_REF][START_REF] Mazur | Contribution à la thermodynamique de la matière dans un champ électromagnétique[END_REF].

[Minkowski definition)

∂ ∂ ∂ ∂ ( ) D B F × = - t x T i ij or [ ] ∂ ∂ ∂ ∂ ε µ δ ∂ ∂ ∂ ∂ ρ ( ) ( ) D B E J B × = + - + - - - -× t x D E B H E H E x H x i i j i j ij j j i j j i e 1 2 0 2 1 2 0 2 P J
where T ij is the Maxwell stress tensor

Total Energy

Electrodynamics of Continua Applications

Radiative Transfer

Applications ∂ ∂ ρ ρ ρ τ ρ t v U v U P ij 1 2 1 2 2 2 +       = - + × + + - ⋅ - ⋅ + + ⋅ ɺ div[ ɺ ( ) ( ) ] v v v v E v H v J E J Q P P P P J J J J ∂ ∂ ρ ρ ρ ρ ρ ρ t v U v U e e ij k k 1 2 1 2 2 2 + +       = - + + × + + + + -  ɺ ɺ div[ ɺ ɺ ɺ ] ( ) ( ) Φ Φ Π Φ v v v v J J k Q A E
Poynting equation :

∂ ∂ w t = - -⋅ div S E J ∂ ∂ w t = - -+ div J R A E

Constitutive and Wave Equations for Linear and Isotropic Media

As already discussed, the two independent pairs of homogeneous and non-homogeneous Maxwell equations revealed different status. It clearly appears from balance eq. 17 that the vector source J λ (charges and electric currents) produces, independently of the given medium, a 4-tensor of electric and magnetic excitations G λµ , whereas electromagnetic forces are linked to the 4-tensor for fields F λµ . In order to have a relation between excitations and fields, depending of the electromagnetic properties of the material phase (the so-called closure problem), it is necessary to define a constitutive equation. For a linear medium, a constitutive tensor χ is introduced giving (see Appendix 1):

µρ λνµρ λν χ F G 2 1 = (26) 
Formally, from the symmetry relations applying to the constitutive tensor χ, only 20 independent components are necessary to characterize a given medium [START_REF] Post | Formal Structure of Electromagnetics -General Covariance and Electromagnetics[END_REF], but for linear and isotropic media, corresponding to many practical chemical engineering operations, the general four dimensional tensorial equation ( 26) reduces to the classical pair of constitutive equations:

E D 0 ε ε r = ( 27 
)
B H = 0 µ µ r ( 28 
)
The permittivities and permeabilities involved in eq. [START_REF] Holm | Poisson bracket and Clebsch representations for magnetohydrodynamics, multifluid plasmas and elasticity[END_REF][START_REF] Edwards | Unified view of transport phenomena based on the generalized bracket formulation[END_REF] are defined in Table 3. These constitutive equations enable then to define the polarization P P P P and magnetization M M M M vectors expressing the electric and magnetic properties of a considered medium from:

E D 0 ε - = P P P P (29) H B - = 0 µ M M M M ( 30 
)
These vector fields have been previously shown to play a crucial role in the definitions of the local electric and magnetic moments, which are the main extensive quantities involved in the generalized definitions of enthalpy and Gibbs equation for electromagnetic systems [START_REF] Haase | Thermodynamics of Irreversible Processes[END_REF].

In the same manner, it is possible to use the constitutive equations [START_REF] Holm | Poisson bracket and Clebsch representations for magnetohydrodynamics, multifluid plasmas and elasticity[END_REF][START_REF] Edwards | Unified view of transport phenomena based on the generalized bracket formulation[END_REF] to define any electromagnetic state from only two vectors fields. Generally, in order to perform an energetic treatment of the problem involving the Poynting vector, the E and H vectors are retained. It is then easy to combine Maxwell equations [START_REF] Russakoff | A derivation of the macroscopic Maxwell equations[END_REF][START_REF] Bird | Fluid mechanics and the transport phenomena[END_REF][START_REF] Siegel | Thermal Radiation Heat Transfer[END_REF][START_REF] Cornet | Conversion of Radiant Light Energy in Photobioreactors[END_REF] with the constitutive equations [START_REF] Holm | Poisson bracket and Clebsch representations for magnetohydrodynamics, multifluid plasmas and elasticity[END_REF][START_REF] Edwards | Unified view of transport phenomena based on the generalized bracket formulation[END_REF] to obtain the so-called wave equations for a linear, isotropic medium verifying the electroneutrality [START_REF] Panofsky | Classical Electricity and Magnetism[END_REF]:

0 2 = + ∆ E E γ (31) 0 2 = + ∆ H H γ (32)
where εµ ω γ 2 2 = .

These wave equations are a starting point to solve any problem of electromagnetic wave propagation in conducting or dielectric media, as a preliminary step to the formulation of the coupling with any chemical engineering application. In all cases, the electromagnetic behavior of the system is strongly related to the electromagnetic properties of the considered material phase. The reciprocal relations between electromagnetic properties and optical properties of any linear and isotropic non-magnetized medium are given in Table 3.

Table 3 : Reciprocal relations between electromagnetic and optical properties for a linear, isotropic and conducting medium (for a simple dielectric medium, the imaginary part of complex quantities vanishes).

Electromagnetic Properties Optical Properties

Permittivity of free space ε 0 = 8.85418781762 10 -12 F.m -1

Permeability of free space µ 0 = 4π 10 -7 H.m -1

Relative permeability

0 µ µ µ = r Complex relative permittivity (dielectric constants) ' ' ' r r r i ε ε ε - = Complex refractive index m = n -i κ = r r µ ε Ohm's law: E J σ = κ π µ λ σ n c 4 0 0 = Conductivity

Reciprocal relations for a non-magnetized medium with µ µ µ µ

= µ µ µ µ 0 0 ' 2 0 2 2 ' ε ε εµ κ ε = = - = c n r 0 0 ' ' ' ' 2 ε ω σ ε ε κ ε = = = n r 2 ' 2 ' ' 2 ' r r r n ε ε ε + + = 2 ' 2 ' ' 2 ' r r r ε ε ε κ - + =

Classification of Chemical Engineering Problems Related to Electrodynamics and Strategy for Modeling

As explained in introduction, the number of applications for electrodynamics in chemical engineering processes is considerable in numerous domains, both in conventional and high technology industry. Examining the formal structure of the balance equations and formulating their coupling may authorize to propose a classification of these problems, even if it is always a partial and difficult task. Two main classes of problems can be addressed, defining a strong or a weak coupling between electromagnetic field and the material phase.

Electrodynamics of Continua

In this case, strong interactions appear in the material phase put in the electromagnetic field. The medium may be charged or not, and conduction or convection currents may exist. All the main balances, including mass and momentum balances, need to be reformulate [START_REF] Eringen | Electrodynamics of Continua II, Fluids and complex media[END_REF]. New source terms appear, corresponding to long range and nonconservative forces acting on the medium and requiring to be clearly defined (Tables 1 and2). Of course, these chemical engineering applications are non-relativistic and the quasi-static form of Maxwell's equations are excellent approximations. The considered quasi-static field for each case then serves to define different classes in chemical engineering applications (Table 4).

Wave Transport Phenomena

These applications involve all the problems of electromagnetic waves propagation in complex media.

Because the coupling with the material phase only exists through the energy balance, it is called a weak coupling. Two different ways are then possible to treat the relevant problems, depending of the case study. First, the electromagnetic wave approach consists to solve the Maxwell equations in the form of a wave equation (eq. 31-32). This leads to the spatial distribution of the electric and magnetic fields in the medium. This approach is preferred for non-scattering media (conducting media), and when the penetration length of the wave is lower or of the same order of magnitude than the characteristic length of the process, as it is often the case for micro-wave processes. Second, the radiative transfer approach [START_REF] Chandrasekhar | Radiative Transfer[END_REF][START_REF] Siegel | Thermal Radiation Heat Transfer[END_REF] enables to calculate the local irradiance field in scattering and complex media. The two methods lead to local variables calculations, related to important integral quantities, as for example the mean volumetric rate of electromagnetic energy transferred between the material and the photonic phase, which can induce thermal or chemical modifications of the material phase [START_REF] Cornet | Conversion of Radiant Light Energy in Photobioreactors[END_REF]. It must be emphasized that, even in the radiative formulation, any practical use of balances requires to know the optical properties of the material medium, i.e. the absorption and scattering coefficients and the phase function for scattering. These coefficients can be theoretically calculated from the elemental electromagnetic properties of the medium (Table 3) using the Lorenz-Mie which corresponds to the computation of the Maxwell equations on "particles" of different shapes and sizes [START_REF] Van De Hulst | Light Scattering by Small Particles[END_REF][START_REF] Bohren | Absorption and Scattering of Light by Small Particles[END_REF].

Other Classification Criteria

The two previous classes of applications still involve many different problems and additional criteria exist, examining the mathematical nature of the considered application. It is first important to define if the problem is linear or not, in regard to the electrodynamics, i.e. if the material medium may interact with the electromagnetic fields. This appears each time that convection currents exist or when the medium is charged, which considerably increases the mathematical treatment complexity. A simplification of great importance is also to discuss if the material medium may be considered as non-polarizable (electrically or magnetically). Finally, it is necessary to distinguish if the problem is "direct" (actual modeling of a phenomenon) or "inverse" (model inversion from indirect observations of the phenomenon).

The applications in electrodynamics of continua are generally direct problems, but many are non-linear. In all cases, the mathematical treatment is simplified for the non-polarizable medium hypothesis. For the applications in wave transport phenomena, only the linear problem presents some interest in chemical engineering. It corresponds to the study of free waves propagation in complex media. In these cases, one can distinguish between direct modeling problems and inverse problems, these latter being often used in sophisticated analytical techniques relying on light and matter interactions.

The different classes discussed in this section with a non-exhaustive list of examples and applications in the field of chemical engineering [START_REF] Eringen | Electrodynamics of Continua II, Fluids and complex media[END_REF] are summarized in Table 4. 

Concluding Remarks

In order to generalize the classical balances formulation to chemical engineering applications dealing with electrodynamics, it is necessary to use a covariant formalism in a four dimensions space-time continuum. This enables to distinguish between balances and field equations, and to focus on the main extensive quantities involves in electromagnetic This latter point is of crucial importance in combining balances of conserved and nonconserved quantities for a generalized thermo-mechanics treatment of an arbitrary continuum [START_REF] Groot | Non-equilibrium Thermodynamics[END_REF].

Examining the formal structure of such covariant equations authorizes to discuss the theoretical foundations and the underlying determinism in modeling electrodynamics applications for chemical engineering. By the same way, in defining the strength and the linearity of the coupling between the material and the electromagnetic phases, one can select different classes of problems relevant to electrodynamics of continua, or to wave transport phenomena.

The practical use of intensive field equations always requires to know the constitutive relations for the material phase (permittivity, permeability,…or derived "radiative" quantities as absorption and scattering coefficients, phase function for scattering,…), related to the molecular properties of the considered matter [START_REF] Bird | The Basic Concepts in Transport Phenomena[END_REF].

Moreover, even if it was not considered in this paper, it generally requires to develop the total energy balance from a thermodynamic treatment using for example the Gibbs equation [START_REF] Jou | Extended Irreversible Thermodynamics[END_REF][START_REF] Haase | Thermodynamics of Irreversible Processes[END_REF][START_REF] Groot | Non-equilibrium Thermodynamics[END_REF].

Although the current presentation is limited to local aspects because electrodynamics problems are intrinsically local, a special attention must be further paid on volumetric integration of local balances [START_REF] Eringen | Electrodynamics of Continua II, Fluids and complex media[END_REF], leading to engineering equations of practical use [START_REF] Bird | Transport Phenomena[END_REF][START_REF] Bird | The Basic Concepts in Transport Phenomena[END_REF].

Finally, a more rigorous general treatment, unifying dynamics and electrodynamics balances in relation with chemical engineering applications still remains to formulate in the near future. In this paper, we have restricted the analysis to the classical eulerian approach, which is not the most suitable in order to establish the theoretical foundations of chemical engineering problems with electromagnetic fields. This latter objective will be probably reached using a covariant hamiltonian approach [START_REF] Panofsky | Classical Electricity and Magnetism[END_REF] in connection to the generalized bracket formulation [START_REF] Holm | Poisson bracket and Clebsch representations for magnetohydrodynamics, multifluid plasmas and elasticity[END_REF][START_REF] Edwards | Unified view of transport phenomena based on the generalized bracket formulation[END_REF],

enabling to include in the formalism, other important classes of balances for chemical engineering applications such as populations balances or Boltzmann-type balances.

APPENDIX 1

Proof of the Electromagnetic Moment Covariant Balance (eq. 17) from the Least Action Principle ________________________________

The least action principle [2 , 9, 11] is a variational method widely used in classical mechanics to establish momentum equations. It can be used also in tensorial field theory, and generalized to continua by defining a Lagragian density L. It then appears as a powerful tool and a concurrent method in demonstrating balances, specially in case of electrodynamics when the field potentials variation is required [START_REF] Goldstein | Classical Mechanics[END_REF][START_REF] Landau | Théorie des Champs[END_REF].

Considering the general relation between the 4-tensor of fields F and the 4-tensor of excitations G from the tensor of electromagnetic properties for the medium χ

[10] µρ λνµρ λν χ F G 2 1 =
, it is possible to write the Lagrangian density for the electromagnetic field as:

λ λ µρ λν λνµρ χ A J F F - = 8 1 L (A1)
where A is the 4-vector generalized potential.

The action for the system is then defined by S d 

Ω

, leading from eq. (A1) to :

Ω       - - = Ω       - χ - =   λ λ λν λν λ λ µρ λν λνµρ d A J F G d A J F F S 4 1 8 1 (A2)
Applying the least action principle for the variation of the integral, and taking into account that the current must not vary [START_REF] Landau | Théorie des Champs[END_REF], it comes:

( ) which leads, by permutation of subscripts λ and ν on which the summation is performed and taking F νλ = -F λν€ :

   =       + + - - = 0 
   =       + - - = 0 2 1 Ω δ ∂ ∂ δ δ λ ν λν λ λ d A x G A J S (A6)
Integrating by part the second integral of eq. (A6), or applying the Gauss theorem one has :

 -          + - - = ν λ λν λ ν λν λ δ Ω δ ∂ ∂ δ dS A G d A x G J S (A7)
In the second term, the integral must be evaluated to the limits of integration. Considering the coordinates, these limits are infinity because the field vanishes at infinity. About the initial and final given times, one can consider that there is no potentials variation, because, from the least action principle, the potentials are known at these times. Consequently, the second term of eq. (A7) vanishes, leading to:

0 =          + - - = Ω δ ∂ ∂ δ λ ν λν λ d A x G J S (A8)
because the variations δA λ were arbitrary, the coefficient for δA λ must be equal to zero, i.e.:

λ ν λν ∂ ∂ J x G = (A9)
which correspond to the balance equation for extensive quantity of electromagnetic field (eq. 17). An analogous proof, based on the hamiltonian formalism is available in the textbook of Panofsky and Phillips [START_REF] Landau | Mécanique des Fluides[END_REF]. This equation corresponds to the charge conservation (eq. 15) and then appears to be already contained in the first pair of Maxwell equations.

The 4 -

 4 vectors and covariant 4-pseudotensors are given in the form A a λ = -( , ) A and A λµ (scalar capacity); the 4-vectors and contravariant 4-pseudotensors are A a c

  correspond to a set of two non-homogeneous equations for electromagnetic moments balance: div D = ρ e (A1) of two homogeneous equations describing the non-stationary fields:

Table 1 : Minkowski covariant form and classical form for the main balances of interest when chemical engineering applications with electromagnetic field are concerned. Balance Covariant Formulation (Minkowski formalism) Classical Formulation (Galilean formalism) Mass

 1 

Table 4 : Electrodynamics and Chemical Engineering Applications (proposal for problems classification)

 4 

	ELECTRODYNAMICS	WAVE TRANSPORT
	OF CONTINUA	PHENOMENA
	________________________________________	______________________________
	(polarizable or non-polarizable medium)	(linear case = free wave)
	LINEAR	NON LINEAR		
	(convection current free and	(convection currents and	DIRECT	INVERSE
	ρ e ≡ 0 )	ρ e ≠ 0 or = 0)		
	-Electrochemical processes	Magnetohydrodynamics	Transfer:	-Particle
	(Electrostatics)	(MHD = quasi-static		characterization (micro-
		magnetic field):	-High temperature	organisms, mean
	Joule effect Heating		processes	diameter, shape, bubble
		-Charged media (plasmas,	-Combustion	sizing.......)
	-Induction Heating	ionized media...)	-Radiation heating	
		-Liquid metals	-Infra-red processes	-Granular and porous
	-Electric and Magnetic	-Nuclear reactors	-Radiative equilibrium	media characterization
	fields separations		-Solar energy	
		Electrohydrodynamics (EHD		-Hyperfrequency
	(Electrophoresis, Electro-	= quasi-static electric field):	____________	sensor
	phoretic Centrifugation)			
		-Pumping and levitation of	-Chemical Photo-	-Transmitance and
	-Galvanomagnetic Effects	liquids and gases	reactors	reflectance applications
		-Gas electrodynamic	and	(turbidimetry,....)
	-Thermomagnetic Effects	compression	-Photobioreactors	
		-poly-electrolytes		-Particles RTD
		(proteins, ADN...)	-UV applications	
		-Enhancement of heat		-Retro-diffusion Laser
			-High frequency	
		-Extraction of contaminants	heating	
		gases		
		-Property measurements in	-Micro-wave	
		fluid systems	applications (reactors,	
			drying, heating...)	
		Ferrofluids:		
			-Optical and Radiative	
		-Magnetic stabilization of	properties determination	
		fluidized beds	(absorption, scattering,	
		-Lubricants and withstand of	phase function,...)	
		highly corrosive gases		
		-Magnetocaloric energy	-Ionizing radiations (X,	
		conversion	γ)	
		-Fluidmagnetic buoyancy		
		-Magnetic-fluid pumping	-Laser applications	
		-Flow separations		

NOTATIONS

A

Volumetric rate of radiant energy absorption [W.m -3 

J µ 4-vector of flux density J λµ 4-tensor of flux density µ

σ

Potential energy mass density for the component k [J.kg -1 ou V.m] χ λµνρ 4-tensor for medium electromagnetic properties

Superscripts

'

Relative to the real part of the complex permittivity ''

Relative to the imaginary part of the complex permittivitty

Subscripts c

Relative to conduction Relative to the moving frontier F l Relative to convection 0 Relative to free space properties