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Abstract

In the paper we study the estimation of reinsurance premiums when the claim size is
observed together with additional information in the form of random covariates. Using
extreme value arguments, we propose an estimator for the risk premium conditional on a
value for the covariate, and derive its asymptotic properties, after suitable normalization.
The finite sample behavior is evaluated with a simulation experiment, and we apply the
methodology to a dataset of automobile insurance claims from Australia.
Keywords: Pareto-type distribution, tail index, reinsurance premium, risk.

1 Introduction

In reinsurance, a popular premium calculation method is the net premium principle. If the claim
amount or the loss of a reinsurance policy is modelled as a non-negative random variable Y then
the reinsurance premium Π at retention level R is defined as

ΠpRq “ ErpY ´Rq`s,

where x` :“ maxt0, xu. By standard calculations the above equation can be expressed directly
in terms of the distribution function F of Y as

ΠpRq “

ż 8

R
p1´ F pyqqdy. (1)

Under this premium principle, the reinsurer charges as premium the expected payment, and
hence in theory the reinsurer would on average not loose money. In practice, reinsurers must
adjust for, among others, the potential risk in fluctuations of actually experienced losses from
their expected values and hence they will charge a premium that is at least ErpY ´ Rq`s. We
refer to Albrecher et al. (2017) for a comprehensive discussion of premium principles in reinsur-
ance.
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The net premium principle in (1) can be generalized by introducing a distortion function g to

ΠpRq “

ż 8

R
g p1´ F pyqq dy, (2)

where g is an increasing, concave function that maps r0, 1s onto r0, 1s, see, e.g., Wang (1996).
In a reinsurance setting, focus is often on extreme events, that is, events with a low frequency
of occurrence but a high, often catastrophic, impact. As such, the retention level R is typically
large, near the largest observed claim amounts, or even outside the observed data range, which
calls for an accurate estimation of the upper tail of the loss or claim size distribution. Extreme
value statistics offers the natural toolbox required for this type of tail analysis. We refer to
Beirlant et al. (2004) and de Haan and Ferreira (2006).

In this paper, we will consider the estimation of the conditional risk premium when the random
variable of main interest Y is recorded together with a random covariate X P Rd. We will
denote by F p¨|xq the continuous conditional distribution function of Y , given X “ x, and
use the notation F p¨|xq for the conditional survival function and Up¨|xq for the associated tail
quantile function defined as Up¨|xq “ infty : F py|xq ě 1´ 1{¨u. Also, we will denote by fX the
density function of the covariate X and by x0 a reference position such that x0 P IntpSXq, the
interior of the support SX Ă Rd of fX , which is assumed to be non-empty. Our aim will be to
estimate the conditional risk premium, given X “ x0, and defined as

ΠpRn|x0q “

ż 8

Rn

g
`

F py|x0q
˘

dy, (3)

where Rn is a non-random value which tends to 8 as nÑ8. Taking covariate information into
account allows reinsurers to differentiate the risks they are exposed to according to the value of
the covariate, which leads to more accurate premium determination.

The estimation of reinsurance premiums under the net premium principle (1) using univariate
extreme value methods was studied in Beirlant et al. (2001). Vandewalle and Beirlant (2006)
generalized Beirlant et al. (2001), by considering the estimation of (2), along with deriving the
asymptotic properties of the proposed estimator under a second order extreme value framework.
In El Methni et al. (2014) the nonparametric estimation of extreme risk measures in a heavy-
tailed context with random covariates was studied, among others they proposed an estimator for
(1) in presence of random covariates. See also El Methni et al. (2018) for a study of conditional
risk measures in the general max-domain of attraction.

The paper is organized as follows. In the next section we introduce our estimator for (3) and
study its asymptotic properties in the framework of conditional heavy-tailed losses. The finite
sample behavior of the estimator is studied in Section 3 by a simulation experiment, and in
Section 4 we illustrate the methodology on a dataset of automobile claims data from Australia.
All the proofs are postponed to the Appendix.
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2 Estimator and asymptotic properties

In this section we will introduce the estimator for ΠpRn|x0q and study its asymptotic properties.

In the sequel, the function g is assumed to be regularly varying at zero with index ´ρ, ρ ă 0, i.e.,
gpyq “ y´ρ`gpyq, where `gpyq “ Ct1`∆pyqu with C ą 0 and ∆p¨q is ultimately of constant sign
and |∆p¨q| is regularly varying with index ´ρ˚, ρ˚ ă 0, i.e., |∆pyq| “ y´ρ

˚

`∆pyq, `∆ being a slowly
varying function. A function ` is said to be slowly varying at infinity if limtÑ8 `ptyq{`ptq “ 1,
@y ą 0. The class of regularly varying functions with index α will be denoted as RVα.

Additionally, we assume that Y follows a conditional Pareto-type model.

Assumption pDq For all x P SX , the conditional survival function of Y given X “ x, satisfies

F py|xq “ Apxqy´1{γpxq

ˆ

1`
1

γpxq
δpy|xq

˙

,

where Apxq ą 0, γpxq ą 0, and |δp.|xq| is normalized regularly varying at infinity with index
´βpxq, βpxq ą 0, i.e.,

δpy|xq “ Bpxq exp

ˆ
ż y

1

εpu|xq

u
du

˙

,

with Bpxq P R and εpy|xq Ñ ´βpxq as y Ñ 8. Moreover, we assume y Ñ εpy|xq to be a
continuous function.

Clearly, Assumption pDq implies that Up¨|xq satisfies

Upy|xq “ rApxqsγpxq yγpxq p1` apy|xqq

where apy|xq “ δpUpy|xq|xqp1` op1qq, and thus |ap.|xq| P RV´βpxqγpxq.

Note that under our assumptions, g and F p.|xq both satisfy the commonly used second order
condition from extreme value theory, see, e.g., Theorem 2.3.9 in de Haan and Ferreira (2006).
A second order condition on the tail behavior is typically needed for obtaining the limiting dis-
tribution of estimators for tail parameters.

Remark that we have the following decomposition

ΠpRn|x0q “

ż 8

Rn

y
ρ

γpx0q `py|x0qdy

“ `pRn|x0q

ż 8

Rn

y
ρ

γpx0qdy ` `pRn|x0q

ż 8

Rn

y
ρ

γpx0q

„

`py|x0q

`pRn|x0q
´ 1



dy

where `py|x0q :“ rApx0qs
´ρ

´

1` 1
γpx0q

δpy|x0q

¯´ρ
`gpF py|x0qq is a slowly varying function at in-

finity. Now, assuming γpx0q ă ´ρ, according to Proposition B.1.10 in de Haan and Ferreira
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(2006), for any ε ą 0 and ζ P p0,´1´ρ{γpx0qq, we have for n large and for some constant L ą 0

`pRn|x0q

ˇ

ˇ

ˇ

ˇ

ż 8

Rn

y
ρ

γpx0q

„

`py|x0q

`pRn|x0q
´ 1



dy

ˇ

ˇ

ˇ

ˇ

ď ε`pRn|x0q

ż 8

Rn

y
ρ

γpx0q

ˆ

y

Rn

˙ζ

dy

ď Lε `pRn|x0qR
1` ρ

γpx0q
n ,

and hence,

`pRn|x0q

ż 8

Rn

y
ρ

γpx0q

„

`py|x0q

`pRn|x0q
´ 1



dy “ o
`

Rng
`

F pRn|x0q
˘˘

, (4)

as nÑ8. From this, we deduce that, for nÑ8,

ΠpRn|x0q „ ´
γpx0q

γpx0q ` ρ
Rn g

`

F pRn|x0q
˘

“: rΠpRn|x0q. (5)

Hence, to estimate rΠpRn|x0q, we clearly need to estimate γpx0q and F pRn|x0q.

Let pYi, Xiq, i “ 1, . . . , n, be independent copies of pY,Xq. Concerning γpx0q, we use the following
estimator, studied in Goegebeur et al. (2020b),

pγpx0q :“

1
k

řn
i“1Khnpx0 ´Xiq

´

lnYi ´ ln pUpn{k|x0q

¯

1l
tYiěpUpn{k|x0qu

pfnpx0q
(6)

where Khnp.q :“ Kp.{hnq{h
d
n, with K a joint density function on Rd, k an intermediate sequence

such that k Ñ8 with k{nÑ 0, hn a positive non-random sequence of bandwidths with hn Ñ 0
if n Ñ 8, 1lA the indicator function on the event A, and pfnpx0q :“ 1{n

řn
i“1Khnpx0 ´ Xiq

is a classical kernel density estimator. Here pUp.|x0q is an estimator for Up.|x0q, defined as
pUp.|x0q :“ infty : pFnpy|x0q ě 1´ 1{.u where

pFnpy|x0q :“
1
n

řn
i“1Khnpx0 ´Xiq1ltYiďyu

pfnpx0q
.

This estimator for γpx0q can be seen as a local version of the well-known Hill estimator (Hill,
1975), initially developed for the univariate context.

Concerning F pRn|x0q, we first remark that for a high threshold t such that Rn ą t, we have,
under assumption pDq,

F pRn|x0q “ F pt|x0q
F pRn|x0q

F pt|x0q
» F pt|x0q

ˆ

Rn
t

˙´ 1
γpx0q

. (7)

Let t :“ Upn{k|x0q, and estimate F pRn|x0q by

pF pRn|x0q :“
k

n

˜

Rn
pUpn{k|x0q

¸´ 1
pγpx0q

.
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Combining (5) with (6) and (7), we propose to estimate ΠpRn|x0q by

pΠpRn|x0q :“ ´
pγpx0q

pγpx0q ` ρ
Rn g

¨

˝

k

n

˜

Rn
pUpn{k|x0q

¸´ 1
pγpx0q

˛

‚.

We can decompose

pΠpRn|x0q

ΠpRn|x0q
´ 1 “

#

pΠpRn|x0q

rΠpRn|x0q
´ 1

+

`

#«

rΠpRn|x0q

ΠpRn|x0q
´ 1

ff

pΠpRn|x0q

rΠpRn|x0q

+

. (8)

To study the two terms in the right-hand side of (8), we need some assumptions due to the
regression context. In particular, fX and the functions appearing in F py|xq are assumed to
satisfy the following Hölder conditions. Let }.} denote some norm on Rd.

Assumption pHq There exist positive constants MfX , MA, Mγ, MB, Mε, ηfX , ηA, ηγ, ηB and
ηε, such that for all x, z P SX :

|fXpxq ´ fXpzq| ď MfX }x´ z}
ηfX ,

|Apxq ´Apzq| ď MA}x´ z}
ηA ,

|γpxq ´ γpzq| ď Mγ}x´ z}
ηγ ,

|Bpxq ´Bpzq| ď MB}x´ z}
ηB ,

sup
yě1

|εpy|xq ´ εpy|zq| ď Mε}x´ z}
ηε .

We also impose a condition on the kernel function K, which is a standard condition in local
estimation.

Assumption pKq K is a bounded density function on Rd, with support SK included in the unit
ball in Rd.

As a first result, we make the error explicit when rΠpRn|x0q is used as approximation to ΠpRn|x0q.

Theorem 2.1 Assume pDq. If γpx0q ă ´ρ, then, we have for nÑ8

ΠpRn|x0q

rΠpRn|x0q
´ 1 “ ´

ρβpx0q

γpx0q ` ρ´ γpx0qβpx0q
δpRn|x0q ´

ρ˚

γpx0q ` ρ` ρ˚
∆pF pRn|x0qq

`opδpRn|x0qq ` op∆pF pRn|x0qqq.

As mentioned above, our estimator for ΠpRn|x0q depends on estimators for γpx0q and F pRn|x0q.
The asymptotic properties of these will be given the next two theorems.

The weak convergence of pγpx0q, after proper normalization, was obtained by Goegebeur et al.
(2020b). Since this result is used several times in the proofs of our theorems, we repeat it here
for completeness. In the sequel, weak convergence will be denoted by the arrow  .
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Theorem 2.2 Assume pDq, pHq, pKq, x0 P IntpSXq with fXpx0q ą 0, and y Ñ F py|x0q, is
strictly increasing. Consider sequences k Ñ8 and hn Ñ 0 as nÑ8, in such a way that k{nÑ
0, khdn Ñ8, hηεn lnn{k Ñ 0,

a

khdn h
ηfX^ηA
n Ñ 0,

a

khdn h
ηγ
n lnn{k Ñ 0,

a

khdn|δpUpn{k|x0q|x0q| Ñ

0. Then we have,

b

khdn ppγpx0q ´ γpx0qq 
γpx0q

fXpx0q

„
ż 1

0
W pzq

1

z
dz ´W p1q



,

where W pzq is a zero centered Gaussian process with covariance function

EpW pzqW pzqq “ }K}22fXpx0q pz ^ zq .

Note that the variance of the limiting distribution of pγpx0q, after normalization, is given by
γ2px0q}K}

2
2{fXpx0q, compared to an asymptotic variance of γ2 for the Hill estimator in the

univariate context. The asymptotic variance of pγpx0q is inversely proportional to fXpx0q, which
makes intuitively sense, as for x0 where the density value is low, we expect fewer observations,
leading to an increased variability of the estimator.

Next we establish the limiting distribution of the estimator pF pRn|x0q, after normalization.

Theorem 2.3 Assume pDq, pHq, pKq, x0 P IntpSXq with fXpx0q ą 0 and y Ñ F py|x0q is strictly
increasing. Consider sequences k Ñ 8 and hn Ñ 0 as n Ñ 8, in such a way that k{n Ñ 0,
hηεn lnn{k Ñ 0,

a

khdn h
ηfX^ηA
n Ñ 0,

a

khdn h
ηγ
n lnn{k Ñ 0,

a

khdn|δpUpn{k|x0q|x0q| Ñ 0. Then,

if Rn Ñ8 such that k
nF pRn|x0q

Ñ8 and

?
khdn

lnrk{pnF pRn|x0qqs
Ñ8, as nÑ8, we have

a

khdn
lnrk{pnF pRn|x0qqs

#

pF pRn|x0q

F pRn|x0q
´ 1

+

 
1

fXpx0q

„
ż 1

0
W pzq

1

z
dz ´W p1q



.

The result of Theorem 2.3 indicates that the estimator pF pRn|x0q inherits its asymptotic behav-
ior from the estimator pγpx0q, up to the factor γpx0q.

The aim of the next result is to handle the first term in the right-hand side of (8).

Theorem 2.4 Assume pDq, pHq, pKq, x0 P IntpSXq with fXpx0q ą 0 and y Ñ F py|x0q is strictly
increasing. Consider sequences k Ñ 8 and hn Ñ 0 as n Ñ 8, in such a way that k{n Ñ 0,
hηεn lnn{k Ñ 0,

a

khdn h
ηfX^ηA
n Ñ 0,

a

khdn h
ηγ
n lnn{k Ñ 0,

a

khdn|δpUpn{k|x0q|x0q| Ñ 0. Then,

if Rn Ñ 8 such that k
nF pRn|x0q

Ñ 8,

?
khdn

lnrk{pnF pRn|x0qqs
Ñ 8 and

?
khdn

lnrk{pnF pRn|x0qqs
∆
`

F pRn|x0q
˘

Ñ

0, as nÑ8, we have for γpx0q ă ´ρ

a

khdn
lnrk{pnF pRn|x0qqs

#

pΠpRn|x0q

rΠpRn|x0q
´ 1

+

 ´
ρ

fXpx0q

„
ż 1

0
W pzq

1

z
dz ´W p1q



.

Decomposition (8), combined with Theorem 2.1 and Theorem 2.4, yields the main result of the
paper.
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Theorem 2.5 Assume pDq, pHq, pKq, x0 P IntpSXq with fXpx0q ą 0 and y Ñ F py|x0q is strictly
increasing. Consider sequences k Ñ 8 and hn Ñ 0 as n Ñ 8, in such a way that k{n Ñ 0,
hηεn lnn{k Ñ 0,

a

khdn h
ηfX^ηA
n Ñ 0,

a

khdn h
ηγ
n lnn{k Ñ 0,

a

khdn|δpUpn{k|x0q|x0q| Ñ 0. Then,

if Rn Ñ 8 such that k
nF pRn|x0q

Ñ 8,

?
khdn

lnrk{pnF pRn|x0qqs
Ñ 8 and

?
khdn

lnrk{pnF pRn|x0qqs
∆
`

F pRn|x0q
˘

Ñ

0, as nÑ8, we have for γpx0q ă ´ρ

a

khdn
lnrk{pnF pRn|x0qqs

#

pΠpRn|x0q

ΠpRn|x0q
´ 1

+

 ´
ρ

fXpx0q

„
ż 1

0
W pzq

1

z
dz ´W p1q



.

From this theorem we can see that the limiting distribution of pΠpRn|x0q is normal with mean
zero and variance ρ2}K}22{fXpx0q.

3 Simulation experiment

In this section we evaluate the finite sample properties of the proposed estimator by a simulation
experiment. In this, two premium principles will be considered:

‚ the net premium principle, corresponding to gpxq “ x, for which ρ “ ´1,

‚ the dual-power premium principle, corresponding to gpxq “ 1 ´ p1 ´ xqα, for which ρ “ ´1.
We set the loading parameter α at 1.366, as in Wang (1996), and as also used by Vandewalle
and Beirlant (2006).

We assume that the conditional distribution of Y given X “ x is a Burr distribution with

F py|xq “

ˆ

β

β ` yτpxq

˙λ

, y ą 0, λ, β, τpxq ą 0.

This model satisfies assumption pDq with γpxq “ 1{pλτpxqq and βpxq “ τpxq. The covariate X
is assumed to be uniformly distributed on r0, 1s. In our simulation we consider the following
settings

‚ Setting 1: β “ λ “ 1 and

τpxq “ 2

«

p0.1` sinpπxqq

˜

1.1´ 0.5 exp

˜

´64

ˆ

x´
1

2

˙2
¸¸ff´1

.

‚ Setting 2: β “ λ “ 1 and

τpxq “ 1{
`

´0.43` 0.48
?

1` x
˘

.

In Figure 1 we show the graphs of γpx0q and Figure 2 displays the risk premiums ΠpRn|x0q for
the values of Rn considered in the simulation experiment, for both of the settings.
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Figure 1: Burr simulation. γpx0q for Setting 1 (left) and Setting 2 (right).
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Figure 2: Burr simulation. ΠpRn|x0q for Setting 1 (left) and Setting 2 (right): net premium
principle with Rn “ Up0.35n|x0q (solid line) and Rn “ Up0.7n|x0q (dashed line), and the dual-
power premium principle with Rn “ Up0.35n|x0q (dotted line) and Rn “ Up0.7n|x0q (dashed-
dotted line), where n “ 1000.

We implement the proposed estimator with the bi-quadratic kernel function given by

Kpxq “
15

16
p1´ x2q21ltxPr´1,1su.
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The parameter hn is selected in a data-driven way by using the following cross-validation criterion

hcv :“ argmin
hnPH

n
ÿ

i“1

n
ÿ

j“1

´

1ltYiďYju ´
pFn,´ipYj |Xiq

¯2
,

where H is a grid of values for hn and

pFn,´ipy|xq :“

řn
j“1,j‰iKhnpx´Xjq1ltYjďyu
řn
j“1,j‰iKhnpx´Xjq

,

is a cross-validation kernel estimator for F py|xq. This criterion was introduced in Yao (1999),
and considered in an extreme value context by Daouia et al. (2011, 2013) and Escobar-Bach et
al. (2018). We set H “ t0.05, 0.06, . . . , 0.15u ˆRX , where RX is the range of X.

Next to the selection of hn, our estimator also requires to determine k. In extreme value
statistics, a reasonable value of k is typically obtained by plotting an estimate for an extreme
value parameter of interest, here ΠpRn|x0q, as a function of k, whereafter k is determined by a
visual inspection of the obtained plot for a stable horizontal part. For an automated selection
of the good k-range for estimation of ΠpRn|x0q, we propose the following data-driven method:

1. Compute pΠpRn|x0q for k “ 30, . . . , n˚ ´ 1, where n˚ is the number of observations in the
neighborhood of x0 with radius hn,

2. compute the standard deviation of the pΠpRn|x0q values in a moving block of 50 successive
k-values,

3. select the block with the smallest standard deviation,

4. within the block selected in step 3, repeat the steps 2 and 3, now with block size 25,

5. the estimate for ΠpRn|x0q is the median of the pΠpRn|x0q in the finally selected block.

This data-driven method was introduced in the related context of estimation of γpx0q by Goege-
beur et al. (2019). Clearly, the method tries to identify a k-range in the stable region of the
plot pk, pΠpRn|x0qq in an automatic way.

We simulate 500 datasets of size n “ 1000, and consider the premium estimation at x0 “

0.1, 0.2, . . . , 0.9. In Figure 3 we show for Setting 1 the boxplots of the estimates pΠpRn|x0q

obtained in the 500 simulations at the different x0, along with the true premium ΠpRn|x0q at
these positions (connected by a blue line), with Rn “ Up0.35n|x0q (left) and Rn “ Up0.7n|x0q

(right), and for the net premium principle (top row) and the dual-power premium principle
(bottom row). Figure 4 shows the same information but now for Setting 2.

From the simulations we can draw the following conclusions:

• Overall, the boxplots of the premium estimates follow the shape of the true premium
function ΠpRn|xq, with the true premium typically located inside the central box.
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• Although Rn was set to Up0.35n|x0q and Up0.7n|x0q, respectively, this leads already to
premium calculations with extrapolations outside the data range. Indeed, for the two
settings under consideration, the bandwidths obtained by the cross-validation are typically
of the order 0.10-0.14, so that under a U r0, 1s distribution for the covariate X one expects
around 200-300 observations locally. Despite this the proposed method works quite well.

• The estimation is more difficult in case of Setting 1 compared to Setting 2. This can be
expected since the function γpx0q is more complicated in Setting 1 where it shows local
maxima and minima, while it is monotone in Setting 2. From the results for Setting 1 one
can, e.g., see that at the local maxima, the median of the estimates is below ΠpRn|x0q. This
can be explained by the local nature of the estimation: indeed, for x0 at or nearby a local
maximum of γpx0q one uses in the estimation mainly observations from distributions with
a smaller γpx0q value, leading to an underestimate of the premium. A similar comment
can be made about the estimation at the local minima, where the estimate tends to be
slightly upwards biased.

• The premium ΠpRn|x0q is decreasing in Rn, and is larger for the dual-power principle than
for the net premium principle. The proposed method seems to perform equally well for
the different combinations of Rn and premium principle.

4 Application to automobile claims data

In this section we illustrate the developed methodology on a dataset of automobile claims from
Australia. As in many countries, third party insurance is a mandatory insurance for vehicle
owners in Australia. This type of insurance protects vehicle owners against claims due to injury
caused to other drivers, passengers or pedestrians, as a result of an accident. The dataset is
available under the name ausprivauto0405 in the R package CASdatasets, which is a collection
of datasets from Charpentier (2014). It is based on one-year vehicle insurance policies taken
out in 2004 or 2005, and contains information on variables like vehicle value (in thousands of
Australian Dollars), vehicle age, gender and age of the policyholder, and the claim amount,
from 67856 policies, of which 4624 had at least one claim. We focus here the analysis on the
claim amounts which are positive and the corresponding vehicle values. In Figure 5 we show the
scatterplot of claim size versus vehicle value (left) and versus lnpvehicle valueq (right). Due to
the skewness of the distribution of vehicle value, we will focus the analysis on using the covariate
lnpvehicle valueq. Also, we restrict the estimation to the data with lnpvehicle valueq P r´1, 1.5s,
since outside this interval the data are scarce. In order to validate the assumption of underlying
conditional Pareto-type distributions for the claim sizes, we constructed local Pareto quantile
plots of claim sizes for which the covariate is in a neighborhood of lnpvehicle valueq “ ´0.25,
0.25 and 1, see Figure 6. If a dataset originates from a Pareto-type distribution, then the Pareto
quantile plot will become linear in the largest observations (Beirlant et al., 2004, Section 2.3.5).
The local Pareto quantile plots displayed in Figure 6 show an approximate linear pattern in the
largest observations, indicating underlying Pareto-type distributions for the claim sizes. This
is further confirmed by the plot of pγplnpvehicle valueqq versus lnpvehicle valueq shown in Figure
7, where the estimates pγplnpvehicle valueqq are in the range r0.2, 0.5s, a range that is moreover
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Figure 3: Setting 1. Boxplots of pΠpRn|x0q, with Rn “ Up0.35|x0q (left) and Rn “ Up0.70|x0q

(right), for the net premium principle (top row) and the dual-power premium principle (bottom
row). The true premium values ΠpRn|x0q are connected with a blue line.

reasonable for actuarial applications. These estimates for the tail index are computed with the hn
and k values that were obtained from the premium determination algorithm. Next we estimate
the reinsurance premiums with the methodology presented in this paper. In Figure 8 we show the
estimate pΠpRn| lnpvehicle valueqq as a function of lnpvehicle valueq for the net premium principle
(left) and the dual-power premium principle with α “ 1.366 (right). We consider the retention
levels Rn “ pUp0.7n˚| lnpvehicle valueqq (solid line) and Rn “ pUp0.9n˚| lnpvehicle valueqq (dashed
line). The reported premium estimates are obtained with the algorithms for hn and k selection
described in the simulation section. Overall, the premium estimate follows the pattern in the
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Figure 4: Setting 2. Boxplots of pΠpRn|x0q, with Rn “ Up0.35|x0q (left) and Rn “ Up0.70|x0q

(right), for the net premium principle (top row) and the dual-power premium principle (bottom
row). The true premium values ΠpRn|x0q are connected with a blue line.

data. Indeed, at locations where the spacings of the top observations are large, we have a large
tail index, leading in turn to a large premium estimate. Also, as expected, the dual-power
premium principle leads to higher premium estimates compared to the net premium principle.
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Figure 5: Australian automobile claims data. Scatterplot of claim size versus vehicle value (left)
and versus lnpvehicle valueq (right).
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Figure 6: Australian automobile claims data. Local Pareto quantile plots of claim size at
lnpvehicle valueq “ ´0.25 (left), lnpvehicle valueq “ 0.25 (middle) and lnpvehicle valueq “ 1
(right).

Appendix

To be self contained, we recall below Lemma 5.6 from Goegebeur et al. (2020a), which is used sev-
eral times in our proofs, and which states the weak convergence of pun :“ pUpn{k|x0q{Upn{k|x0q.

Lemma 4.1 Assume pDq, pHq, pKq, x0 P IntpSXq with fXpx0q ą 0 and y Ñ F py|x0q is strictly
increasing. Consider sequences k Ñ 8 and hn Ñ 0 as n Ñ 8, in such a way that k{n Ñ 0,
khdn Ñ8, hηεn lnn{k Ñ 0,

a

khdn h
ηfX^ηA
n Ñ 0,

a

khdn h
ηγ
n lnn{k Ñ 0,

a

khdn|δpUpn{k|x0q|x0q| Ñ
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Figure 7: Australian automobile claims data. pγplnpvehicle valueqq versus lnpvehicle valueq.
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Figure 8: Australian automobile claims data. pΠpRn| lnpvehicle valueqq as a function of
lnpvehicle valueq for the net premium principle (left) and the dual-power premium princi-
ple with α “ 1.366 (right), with Rn “ pUp0.7n˚| lnpvehicle valueqq (solid line) and Rn “
pUp0.9n˚| lnpvehicle valueqq (dashed line).

0. Then, as nÑ8, we have

b

khdn ppun ´ 1q 
γpx0qW p1q

fXpx0q
.
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Proof of Theorem 2.1.

Note that

ΠpRn|x0q

rΠpRn|x0q
“ ´

γpx0q ` ρ

γpx0q

1

Rn

ż 8

Rn

gpF py|x0qq

gpF pRn|x0qq
dy

“ ´
γpx0q ` ρ

γpx0q

ż 8

1

ˆ

F pzRn|x0q

F pRn|x0q

˙´ρ
`gpF pzRn|x0qq

`gpF pRn|x0qq
dz

“ ´
γpx0q ` ρ

γpx0q

ż 8

1

ˆ

F pzRn|x0q

F pRn|x0q

˙´ρ

dz

´
γpx0q ` ρ

γpx0q

ż 8

1

ˆ

F pzRn|x0q

F pRn|x0q

˙´ρ „
`gpF pzRn|x0qq

`gpF pRn|x0qq
´ 1



dz

“ ´
γpx0q ` ρ

γpx0q

ż 8

1

ˆ

F pzRn|x0q

F pRn|x0q

˙´ρ

dz

´
∆pF pRn|x0qq

1`∆pF pRn|x0qq

γpx0q ` ρ

γpx0q

ż 8

1

ˆ

F pzRn|x0q

F pRn|x0q

˙´ρ
«

ˆ

F pzRn|x0q

F pRn|x0q

˙´ρ˚

´ 1

ff

dz

´
∆pF pRn|x0qq

1`∆pF pRn|x0qq

γpx0q ` ρ

γpx0q

ż 8

1

ˆ

F pzRn|x0q

F pRn|x0q

˙´ρ´ρ˚ „
`∆pF pzRn|x0qq

`∆pF pRn|x0qq
´ 1



dz

“: T1,n ` T2,n ` T3,n.

Note that a slight modification of Proposition 2.3 in Beirlant et al. (2009) gives

sup
zě1

z1{γpx0q

ˇ

ˇ

ˇ

ˇ

F pzRn|x0q

F pRn|x0q
´Gpz; γpx0q, δpRn|x0q, βpx0qq

ˇ

ˇ

ˇ

ˇ

“ op|δpRn|x0q|q, Rn Ñ8.

where the extended Pareto distribution function G is defined by

Gpz; γ, δ, βq “

"

1´ rzp1` δ ´ δz´βqs´1{γ , z ą 1,
0, z ď 1.

This implies

F pzRn|x0q

F pRn|x0q
“ z´1{γpx0q

"

1´
δpRn|x0q

γpx0q

”

1´ z´βpx0q
ı

` opδpRn|x0qq

*

, (9)

where the error term is uniform in z ě 1.

Clearly, using (9), we have for γpx0q ă ´ρ

T1,n “ 1´
ρβpx0q

γpx0q ` ρ´ γpx0qβpx0q
δpRn|x0q ` opδpRn|x0qq, (10)

T2,n “ ´
ρ˚

γpx0q ` ρ` ρ˚
∆pF pRn|x0qq ` op∆pF pRn|x0qqq. (11)

15



Now, concerning T3,n, according to Proposition B.1.10 in de Haan and Ferreira (2006), for any
ε ą 0 and ζ P p0,´ρ˚s, we have for n large and for some constant L ą 0

|T3,n| ď Lε |∆pF pRn|x0qq|

ż 8

1

ˆ

F pzRn|x0q

F pRn|x0q

˙´ρ´ρ˚´ζ

dz.

Hence, again using (9), we have that

T3,n “ o
`

|∆pF pRn|x0qq|
˘

. (12)

Combining (10), (11) and (12) yields Theorem 2.1.

Proof of Theorem 2.3.

We need to study

a

khdn
lnrk{pnF pRn|x0qqs

#

pF pRn|x0q

F pRn|x0q
´ 1

+

“

a

khdn
lnrk{pnF pRn|x0qqs

$

’

&

’

%

k

nF pRn|x0q

»

–

U
´

n
k

k
nF pRn|x0q

ˇ

ˇ

ˇ
x0

¯

U
`

n
k |x0

˘

fi

fl

´1{pγpx0q

pu1{pγpx0q
n ´ 1

,

/

.

/

-

“

a

khdn
lnrk{pnF pRn|x0qqs

$

’

&

’

%

ˆ

k

nF pRn|x0q

˙

pγpx0q´γpx0q
pγpx0q

¨

˝

1` a
`

n
k |x0

˘

1` a
´

1
F pRn|x0q

ˇ

ˇ

ˇ
x0

¯

˛

‚

1{pγpx0q

pu1{pγpx0q
n ´ 1

,

/

.

/

-

“:

a

khdn
lnrk{pnF pRn|x0qqs

tT4,nT5,nT6,n ´ 1u

“

a

khdn
lnrk{pnF pRn|x0qqs

tpT4,n ´ 1qT5,nT6,n ` pT5,n ´ 1qT6,n ` pT6,n ´ 1qu . (13)

We have
a

khdn
lnrk{pnF pRn|x0qqs

pT4,n ´ 1q

“

a

khdn
lnrk{pnF pRn|x0qqs

«

exp

˜

b

khdn
pγpx0q ´ γpx0q

pγpx0q

lnrk{pnF pRn|x0qqs
a

khdn

¸

´ 1

ff

,

which gives, after applying a Taylor series expansion,

a

khdn
lnrk{pnF pRn|x0qqs

pT4,n ´ 1q “ exppΓnq

a

khdn
pγpx0q

ppγpx0q ´ γpx0qq ,

16



where Γn is a random value between zero and

b

khdn
pγpx0q ´ γpx0q

pγpx0q

lnrk{pnF pRn|x0qqs
a

khdn
.

Thus, under our assumptions and using Theorem 2.2, together with Slutsky’s theorem, we have

a

khdn
lnrk{pnF pRn|x0qqs

pT4,n ´ 1q 
1

fXpx0q

„
ż 1

0
W pzq

1

z
dz ´W p1q



. (14)

Now we turn to T5,n. Again by a Taylor series expansion we obtain

a

khdn
lnrk{pnF pRn|x0qqs

pT5,n ´ 1q “

a

khdn
lnrk{pnF pRn|x0qqs

1

pγpx0q

“

apn{k|x0q ´ ap1{F pRn|x0q|x0q
‰

p1` oPp1qq.

Using the fact that apy|x0q “ δpUpy|x0q|x0qp1` op1qq gives

a

khdn
lnrk{pnF pRn|x0qqs

apn{k|x0q “

a

khdn
lnrk{pnF pRn|x0qqs

δpUpn{k|x0q|x0qp1` op1qq

Ñ 0,

under our assumptions. As for the term involving ap1{F pRn|x0q|x0q, we use Potter’s bounds
(see Proposition B.1.9 (5) in de Haan and Ferreira, 2006) to obtain, for some constant L ą 0
and 0 ă ξ ă βpx0q, and for n large,

a

khdn
lnrk{pnF pRn|x0qqs

ˇ

ˇ

ˇ

ˇ

δ

ˆ

U

ˆ

1

F pRn|x0q

ˇ

ˇ

ˇ
x0

˙

ˇ

ˇ

ˇ
x0

˙ˇ

ˇ

ˇ

ˇ

“

a

khdn
lnrk{pnF pRn|x0qqs

ˇ

ˇ

ˇ
δ
´

U
´n

k

ˇ

ˇ

ˇ
x0

¯ ˇ

ˇ

ˇ
x0

¯ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

δ
´

U
´

1
F pRn|x0q

ˇ

ˇ

ˇ
x0

¯ ˇ

ˇ

ˇ
x0

¯

δ
´

U
´

n
k

ˇ

ˇ

ˇ
x0

¯
ˇ

ˇ

ˇ
x0

¯

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď L

a

khdn
lnrk{pnF pRn|x0qqs

ˇ

ˇ

ˇ
δ
´

U
´n

k

ˇ

ˇ

ˇ
x0

¯ ˇ

ˇ

ˇ
x0

¯ˇ

ˇ

ˇ

¨

˝

U
´

1
F pRn|x0q

ˇ

ˇ

ˇ
x0

¯

U
´

n
k

ˇ

ˇ

ˇ
x0

¯

˛

‚

´βpx0q`ξ

ď L

a

khdn
lnrk{pnF pRn|x0qqs

ˇ

ˇ

ˇ
δ
´

U
´n

k

ˇ

ˇ

ˇ
x0

¯
ˇ

ˇ

ˇ
x0

¯
ˇ

ˇ

ˇ
,

and hence
a

khdn
lnrk{pnF pRn|x0qqs

a

ˆ

1

F pRn|x0q

ˇ

ˇ

ˇ
x0

˙

“ op1q.

This leads to
a

khdn
lnrk{pnF pRn|x0qqs

pT5,n ´ 1q “ oPp1q. (15)
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Finally,

a

khdn
lnrk{pnF pRn|x0qqs

pT6,n ´ 1q “ oPp1q, (16)

by Lemma 4.1.

Combining (13) with (14), (15) and (16) establishes Theorem 2.3.

Proof of Theorem 2.4.

We have the decomposition

a

khdn
lnrk{pnF pRn|x0qqs

#

pΠpRn|x0q

rΠpRn|x0q
´ 1

+

“

a

khdn
lnrk{pnF pRn|x0qqs

$

&

%

pγpx0q

γpx0q

γpx0q ` ρ

pγpx0q ` ρ

g
´

pF pRn|x0q

¯

g
`

F pRn|x0q
˘ ´ 1

,

.

-

“

a

khdn
lnrk{pnF pRn|x0qqs

"

pγpx0q

γpx0q
´ 1

*

γpx0q ` ρ

pγpx0q ` ρ

g
´

pF pRn|x0q

¯

g
`

F pRn|x0q
˘

`

a

khdn
lnrk{pnF pRn|x0qqs

"

γpx0q ` ρ

pγpx0q ` ρ
´ 1

* g
´

pF pRn|x0q

¯

g
`

F pRn|x0q
˘

`

a

khdn
lnrk{pnF pRn|x0qqs

$

&

%

g
´

pF pRn|x0q

¯

g
`

F pRn|x0q
˘ ´ 1

,

.

-

“: T7,n ` T8,n ` T9,n.

Clearly, by Theorem 2.2 combining with our assumptions, we have

T7,n “ oPp1q,

T8,n “ oPp1q.

Note also that

T9,n “

a

khdn
lnrk{pnF pRn|x0qqs

$

&

%

˜

pF pRn|x0q

F pRn|x0q

¸´ρ
`g

´

pF pRn|x0q

¯

`g
`

F pRn|x0q
˘ ´ 1

,

.

-

“

a

khdn
lnrk{pnF pRn|x0qqs

$

&

%

˜

pF pRn|x0q

F pRn|x0q

¸´ρ

´ 1

,

.

-

`

a

khdn
lnrk{pnF pRn|x0qqs

∆pF pRn|x0qq

1`∆pF pRn|x0qq

«

∆ppF pRn|x0qq

∆pF pRn|x0qq
´ 1

ff˜

pF pRn|x0q

F pRn|x0q

¸´ρ

“: T9,1,n ` T9,2,n.
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By Theorem 2.3 and the delta method (see, e.g., van der Vaart, 1998) we have

T9,1,n  ´
ρ

fXpx0q

„
ż 1

0
W pzq

1

z
dz ´W p1q



.

As for T9,2,n we use Proposition B.1.10 in de Haan and Ferreira (2006) to obtain, with ε, ξ ą 0,
arbitrary, and for n large, with arbitrary large probability

ˇ

ˇ

ˇ

ˇ

ˇ

∆ppF pRn|x0qq

∆pF pRn|x0qq
´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

∆ppF pRn|x0qq

∆pF pRn|x0qq
´

˜

pF pRn|x0qq

F pRn|x0q

¸´ρ˚
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

˜

pF pRn|x0qq

F pRn|x0q

¸´ρ˚

´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď ε

˜

pF pRn|x0qq

F pRn|x0q

¸´ρ˚˘ξ

`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

˜

pF pRn|x0qq

F pRn|x0q

¸´ρ˚

´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

,

where the notation a˘‚ means a‚ if a ě 1 and a´‚ if a ă 1.

Hence
ˇ

ˇ

ˇ

ˇ

ˇ

∆ppF pRn|x0qq

∆pF pRn|x0qq
´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

“ oPp1q,

and thus T9,2,n “ oPp1q. Then, by Slutsky’s theorem we have that

T9,n  ´
ρ

fXpx0q

„
ż 1

0
W pzq

1

z
dz ´W p1q



.

This achieves the proof of Theorem 2.4.

Proof of Theorem 2.5.

We have by (8) and Theorem 2.1

a

khdn
lnrk{pnF pRn|x0qqs

#

pΠpRn|x0q

ΠpRn|x0q
´ 1

+

“

a

khdn
lnrk{pnF pRn|x0qqs

#

pΠpRn|x0q

rΠpRn|x0q
´ 1

+

`

a

khdn
lnrk{pnF pRn|x0qqs

"

ρβpx0q

γpx0q ` ρ´ γpx0qβpx0q
δpRn|x0q `

ρ˚

γpx0q ` ρ` ρ˚
∆pF pRn|x0qq

*

p1` oPp1qq

“

a

khdn
lnrk{pnF pRn|x0qqs

#

pΠpRn|x0q

rΠpRn|x0q
´ 1

+

` oPp1q

under our assumptions. Theorem 2.4 achieves the proof of Theorem 2.5.
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