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In the paper we study the estimation of reinsurance premiums when the claim size is observed together with additional information in the form of random covariates. Using extreme value arguments, we propose an estimator for the risk premium conditional on a value for the covariate, and derive its asymptotic properties, after suitable normalization. The finite sample behavior is evaluated with a simulation experiment, and we apply the methodology to a dataset of automobile insurance claims from Australia.

Introduction

In reinsurance, a popular premium calculation method is the net premium principle. If the claim amount or the loss of a reinsurance policy is modelled as a non-negative random variable Y then the reinsurance premium Π at retention level R is defined as ΠpRq " ErpY ´Rq `s, where x `:" maxt0, xu. By standard calculations the above equation can be expressed directly in terms of the distribution function F of Y as ΠpRq " ż 8 R p1 ´F pyqqdy.

(1)

Under this premium principle, the reinsurer charges as premium the expected payment, and hence in theory the reinsurer would on average not loose money. In practice, reinsurers must adjust for, among others, the potential risk in fluctuations of actually experienced losses from their expected values and hence they will charge a premium that is at least ErpY ´Rq `s. We refer to [START_REF] Albrecher | Reinsurance: Actuarial and Statistical Aspects[END_REF] for a comprehensive discussion of premium principles in reinsurance.

1

The net premium principle in (1) can be generalized by introducing a distortion function g to ΠpRq "

ż 8 R g p1 ´F pyqq dy, (2) 
where g is an increasing, concave function that maps r0, 1s onto r0, 1s, see, e.g., [START_REF] Wang | Premium calculation by transforming the layer premium density[END_REF].

In a reinsurance setting, focus is often on extreme events, that is, events with a low frequency of occurrence but a high, often catastrophic, impact. As such, the retention level R is typically large, near the largest observed claim amounts, or even outside the observed data range, which calls for an accurate estimation of the upper tail of the loss or claim size distribution. Extreme value statistics offers the natural toolbox required for this type of tail analysis. We refer to [START_REF] Beirlant | Statistics of Extremes -Theory and Applications[END_REF] and de [START_REF] De Haan | Extreme value theory[END_REF].

In this paper, we will consider the estimation of the conditional risk premium when the random variable of main interest Y is recorded together with a random covariate X P R d . We will denote by F p¨|xq the continuous conditional distribution function of Y , given X " x, and use the notation F p¨|xq for the conditional survival function and U p¨|xq for the associated tail quantile function defined as U p¨|xq " infty : F py|xq ě 1 ´1{¨u. Also, we will denote by f X the density function of the covariate X and by x 0 a reference position such that x 0 P IntpS X q, the interior of the support S X Ă R d of f X , which is assumed to be non-empty. Our aim will be to estimate the conditional risk premium, given X " x 0 , and defined as

ΠpR n |x 0 q " ż 8 Rn g `F py|x 0 q ˘dy, (3) 
where R n is a non-random value which tends to 8 as n Ñ 8. Taking covariate information into account allows reinsurers to differentiate the risks they are exposed to according to the value of the covariate, which leads to more accurate premium determination.

The estimation of reinsurance premiums under the net premium principle (1) using univariate extreme value methods was studied in [START_REF] Beirlant | Heavy-tailed distributions and rating[END_REF]. [START_REF] Vandewalle | On univariate extreme value statistics and the estimation of reinsurance premiums[END_REF] generalized [START_REF] Beirlant | Heavy-tailed distributions and rating[END_REF], by considering the estimation of (2), along with deriving the asymptotic properties of the proposed estimator under a second order extreme value framework.

In El [START_REF] El Methni | Non-parametric estimation of extreme risk measures from conditional heavy-tailed distributions[END_REF] the nonparametric estimation of extreme risk measures in a heavytailed context with random covariates was studied, among others they proposed an estimator for (1) in presence of random covariates. See also El [START_REF] El Methni | Kernel estimation of extreme regression risk measures[END_REF] for a study of conditional risk measures in the general max-domain of attraction.

The paper is organized as follows. In the next section we introduce our estimator for (3) and study its asymptotic properties in the framework of conditional heavy-tailed losses. The finite sample behavior of the estimator is studied in Section 3 by a simulation experiment, and in Section 4 we illustrate the methodology on a dataset of automobile claims data from Australia.

All the proofs are postponed to the Appendix.

Estimator and asymptotic properties

In this section we will introduce the estimator for ΠpR n |x 0 q and study its asymptotic properties.

In the sequel, the function g is assumed to be regularly varying at zero with index ´ρ, ρ ă 0, i.e., gpyq " y ´ρ g pyq, where g pyq " Ct1 `∆pyqu with C ą 0 and ∆p¨q is ultimately of constant sign and |∆p¨q| is regularly varying with index ´ρ˚, ρ ˚ă 0, i.e., |∆pyq| " y ´ρ˚ ∆ pyq, ∆ being a slowly varying function. A function is said to be slowly varying at infinity if lim tÑ8 ptyq{ ptq " 1, @y ą 0. The class of regularly varying functions with index α will be denoted as RV α .

Additionally, we assume that Y follows a conditional Pareto-type model.

Assumption pDq For all x P S X , the conditional survival function of Y given X " x, satisfies F py|xq " Apxqy ´1{γpxq ˆ1 `1 γpxq δpy|xq

˙,

where Apxq ą 0, γpxq ą 0, and |δp.|xq| is normalized regularly varying at infinity with index ´βpxq, βpxq ą 0, i.e.,

δpy|xq " Bpxq exp

ˆż y 1 εpu|xq u du ˙,
with Bpxq P R and εpy|xq Ñ ´βpxq as y Ñ 8. Moreover, we assume y Ñ εpy|xq to be a continuous function.

Clearly, Assumption pDq implies that U p¨|xq satisfies U py|xq " rApxqs γpxq y γpxq p1 `apy|xqq where apy|xq " δpU py|xq|xqp1 `op1qq, and thus |ap.|xq| P RV ´βpxqγpxq .

Note that under our assumptions, g and F p.|xq both satisfy the commonly used second order condition from extreme value theory, see, e.g., Theorem 2.3.9 in de [START_REF] De Haan | Extreme value theory[END_REF].

A second order condition on the tail behavior is typically needed for obtaining the limiting distribution of estimators for tail parameters.

Remark that we have the following decomposition ΠpR n |x 0 q " ż 8 Rn y ρ γpx 0 q py|x 0 qdy " pR n |x 0 q ż 8 Rn y ρ γpx 0 q dy ` pR n |x 0 q ż 8 Rn y ρ γpx 0 q " py|x 0 q pR n |x 0 q ´1 dy where py|x 0 q :" rApx 0 qs ´ρ ´1 `1 γpx 0 q δpy|x 0 q ¯´ρ g pF py|x 0 qq is a slowly varying function at infinity. Now, assuming γpx 0 q ă ´ρ, according to Proposition B.1.10 in de [START_REF] De Haan | Extreme value theory[END_REF], for any ε ą 0 and ζ P p0, ´1 ´ρ{γpx 0 qq, we have for n large and for some constant L ą 0

pR n |x 0 q ˇˇˇż 8 Rn y ρ γpx 0 q " py|x 0 q pR n |x 0 q ´1 dy ˇˇˇď ε pR n |x 0 q ż 8 Rn y ρ γpx 0 q ˆy R n ˙ζ dy ď Lε pR n |x 0 qR 1`ρ γpx 0 q n
, and hence,

pR n |x 0 q ż 8 Rn y ρ γpx 0 q " py|x 0 q pR n |x 0 q ´1 dy " o `Rn g `F pR n |x 0 q ˘˘, (4) 
as n Ñ 8. From this, we deduce that, for n Ñ 8,

ΠpR n |x 0 q " ´γpx 0 q γpx 0 q `ρ R n g `F pR n |x 0 q ˘": r ΠpR n |x 0 q. ( 5 
)
Hence, to estimate r ΠpR n |x 0 q, we clearly need to estimate γpx 0 q and F pR n |x 0 q.

Let pY i , X i q, i " 1, . . . , n, be independent copies of pY, Xq. Concerning γpx 0 q, we use the following estimator, studied in [START_REF] Goegebeur | A Weissman-type estimator of the conditional marginal expected shortfall[END_REF],

p γpx 0 q :" 1 k ř n i"1 K hn px 0 ´Xi q ´ln Y i ´ln p U pn{k|x 0 q ¯1l tY i ě p U pn{k|x 0 qu p f n px 0 q (6)
where K hn p.q :" Kp.{h n q{h d n , with K a joint density function on R d , k an intermediate sequence such that k Ñ 8 with k{n Ñ 0, h n a positive non-random sequence of bandwidths with h n Ñ 0 if n Ñ 8, 1l A the indicator function on the event A, and p f n px 0 q :" 1{n ř n i"1 K hn px 0 ´Xi q is a classical kernel density estimator. Here p U p.|x 0 q is an estimator for U p.|x 0 q, defined as p U p.|x 0 q :" infty : p F n py|x 0 q ě 1 ´1{.u where p F n py|x 0 q :"

1 n ř n i"1 K hn px 0 ´Xi q1l tY i ďyu p f n px 0 q .
This estimator for γpx 0 q can be seen as a local version of the well-known Hill estimator [START_REF] Hill | A simple general approach to inference about the tail of a distribution[END_REF], initially developed for the univariate context.

Concerning F pR n |x 0 q, we first remark that for a high threshold t such that R n ą t, we have, under assumption pDq,

F pR n |x 0 q " F pt|x 0 q F pR n |x 0 q F pt|x 0 q » F pt|x 0 q ˆRn t ˙´1 γpx 0 q . ( 7 
)
Let t :" U pn{k|x 0 q, and estimate F pR n |x 0 q by p F pR n |x 0 q :" k n ˜Rn p U pn{k|x 0 q ¸´1 p γpx 0 q .

Combining ( 5) with ( 6) and ( 7), we propose to estimate ΠpR n |x 0 q by p ΠpR n |x 0 q :" ´p γpx 0 q

p γpx 0 q `ρ R n g ¨k n ˜Rn p U pn{k|x 0 q ¸´1 p γpx 0 q '.
We can decompose

p ΠpR n |x 0 q ΠpR n |x 0 q ´1 " # p ΠpR n |x 0 q r ΠpR n |x 0 q ´1+ `#« r ΠpR n |x 0 q ΠpR n |x 0 q ´1ff p ΠpR n |x 0 q r ΠpR n |x 0 q + . ( 8 
)
To study the two terms in the right-hand side of (8), we need some assumptions due to the regression context. In particular, f X and the functions appearing in F py|xq are assumed to satisfy the following Hölder conditions. Let }.} denote some norm on R d .

Assumption pHq There exist positive constants

M f X , M A , M γ , M B , M ε , η f X , η A , η γ , η B and
η ε , such that for all x, z P S X :

|f X pxq ´fX pzq| ď M f X }x ´z} η f X , |Apxq ´Apzq| ď M A }x ´z} η A , |γpxq ´γpzq| ď M γ }x ´z} ηγ , |Bpxq ´Bpzq| ď M B }x ´z} η B , sup yě1 |εpy|xq ´εpy|zq| ď M ε }x ´z} ηε .
We also impose a condition on the kernel function K, which is a standard condition in local estimation.

Assumption pKq K is a bounded density function on R d , with support S K included in the unit ball in R d .

As a first result, we make the error explicit when r

ΠpR n |x 0 q is used as approximation to ΠpR n |x 0 q.

Theorem 2.1 Assume pDq. If γpx 0 q ă ´ρ, then, we have for n Ñ 8

ΠpR n |x 0 q r ΠpR n |x 0 q ´1 " ´ρβpx 0 q γpx 0 q `ρ ´γpx 0 qβpx 0 q δpR n |x 0 q ´ργ px 0 q `ρ `ρ˚∆ pF pR n |x 0 qq `opδpR n |x 0 qq `op∆pF pR n |x 0 qqq.

As mentioned above, our estimator for ΠpR n |x 0 q depends on estimators for γpx 0 q and F pR n |x 0 q. The asymptotic properties of these will be given the next two theorems.

The weak convergence of p γpx 0 q, after proper normalization, was obtained by [START_REF] Goegebeur | A Weissman-type estimator of the conditional marginal expected shortfall[END_REF]. Since this result is used several times in the proofs of our theorems, we repeat it here for completeness. In the sequel, weak convergence will be denoted by the arrow .

Theorem 2.2 Assume pDq, pHq, pKq, x 0 P IntpS X q with f X px 0 q ą 0, and y Ñ F py|x 0 q, is strictly increasing. Consider sequences k Ñ 8 and h n Ñ 0 as n Ñ 8, in such a way that k{n Ñ 0, kh d n Ñ 8, h ηε n ln n{k Ñ 0,

a kh d n h η f X ^ηA n Ñ 0, a kh d n h ηγ n ln n{k Ñ 0, a kh d n |δpU pn{k|x 0 q|x 0 q| Ñ 0. Then we have, b kh d n pp γpx 0 q ´γpx 0 qq γpx 0 q f X px 0 q "ż 1 0 W pzq 1 z dz ´W p1q  ,
where W pzq is a zero centered Gaussian process with covariance function

EpW pzqW pzqq " }K} 2 2 f X px 0 q pz ^zq .

Note that the variance of the limiting distribution of p γpx 0 q, after normalization, is given by γ 2 px 0 q}K} 2 2 {f X px 0 q, compared to an asymptotic variance of γ 2 for the Hill estimator in the univariate context. The asymptotic variance of p γpx 0 q is inversely proportional to f X px 0 q, which makes intuitively sense, as for x 0 where the density value is low, we expect fewer observations, leading to an increased variability of the estimator.

Next we establish the limiting distribution of the estimator p F pR n |x 0 q, after normalization.

Theorem 2.3 Assume pDq, pHq, pKq, x 0 P IntpS X q with f X px 0 q ą 0 and y Ñ F py|x 0 q is strictly increasing. Consider sequences k Ñ 8 and h n Ñ 0 as n Ñ 8, in such a way that k{n Ñ 0,

h ηε n ln n{k Ñ 0, a kh d n h η f X ^ηA n Ñ 0, a kh d n h ηγ n ln n{k Ñ 0, a kh d n |δpU pn{k|x 0 q|x 0 q| Ñ 0. Then, if R n Ñ 8 such that k nF pRn|x 0 q Ñ 8 and ? kh d n lnrk{pnF pRn|x 0 qqs Ñ 8, as n Ñ 8, we have a kh d n lnrk{pnF pR n |x 0 qqs # p F pR n |x 0 q F pR n |x 0 q ´1+ 1 f X px 0 q "ż 1 0 W pzq 1 z dz ´W p1q  .
The result of Theorem 2.3 indicates that the estimator p F pR n |x 0 q inherits its asymptotic behavior from the estimator p γpx 0 q, up to the factor γpx 0 q.

The aim of the next result is to handle the first term in the right-hand side of (8).

Theorem 2.4 Assume pDq, pHq, pKq, x 0 P IntpS X q with f X px 0 q ą 0 and y Ñ F py|x 0 q is strictly increasing. Consider sequences k Ñ 8 and h n Ñ 0 as n Ñ 8, in such a way that k{n Ñ 0,

h ηε n ln n{k Ñ 0, a kh d n h η f X ^ηA n Ñ 0, a kh d n h ηγ n ln n{k Ñ 0, a kh d n |δpU pn{k|x 0 q|x 0 q| Ñ 0. Then, if R n Ñ 8 such that k nF pRn|x 0 q Ñ 8, ? kh d n lnrk{pnF pRn|x 0 qqs Ñ 8 and ? kh d n lnrk{pnF pRn|x 0 qqs ∆ `F pR n |x 0 q ˘Ñ 0, as n Ñ 8, we have for γpx 0 q ă ´ρ a kh d n lnrk{pnF pR n |x 0 qqs # p ΠpR n |x 0 q r ΠpR n |x 0 q ´1+ ´ρ f X px 0 q "ż 1 0 W pzq 1 z dz ´W p1q  .
Decomposition (8), combined with Theorem 2.1 and Theorem 2.4, yields the main result of the paper.

Theorem 2.5 Assume pDq, pHq, pKq, x 0 P IntpS X q with f X px 0 q ą 0 and y Ñ F py|x 0 q is strictly increasing. Consider sequences k Ñ 8 and h n Ñ 0 as n Ñ 8, in such a way that k{n Ñ 0, h ηε n ln n{k Ñ 0, 

a kh d n h η f X ^ηA n Ñ 0, a kh d n h ηγ n ln n{k Ñ 0, a kh d n |δpU pn{k|x 0 q|x 0 q| Ñ 0. Then, if R n Ñ 8 such that k nF pRn|x 0 q Ñ 8, ?
# p ΠpR n |x 0 q ΠpR n |x 0 q ´1+ ´ρ f X px 0 q "ż 1 0 W pzq 1 z dz ´W p1q  .
From this theorem we can see that the limiting distribution of p ΠpR n |x 0 q is normal with mean zero and variance ρ 2 }K} 2 2 {f X px 0 q.

Simulation experiment

In this section we evaluate the finite sample properties of the proposed estimator by a simulation experiment. In this, two premium principles will be considered:

' the net premium principle, corresponding to gpxq " x, for which ρ " ´1, ' the dual-power premium principle, corresponding to gpxq " 1 ´p1 ´xq α , for which ρ " ´1.

We set the loading parameter α at 1.366, as in [START_REF] Wang | Premium calculation by transforming the layer premium density[END_REF], and as also used by [START_REF] Vandewalle | On univariate extreme value statistics and the estimation of reinsurance premiums[END_REF].

We assume that the conditional distribution of Y given X " x is a Burr distribution with F py|xq " ˆβ β `yτpxq ˙λ , y ą 0, λ, β, τ pxq ą 0.

This model satisfies assumption pDq with γpxq " 1{pλτ pxqq and βpxq " τ pxq. The covariate X is assumed to be uniformly distributed on r0, 1s. In our simulation we consider the following settings ' Setting 1: β " λ " 1 and

τ pxq " 2 « p0.1 `sinpπxqq ˜1.1 ´0.5 exp ˜´64 ˆx ´1 2 ˙2¸¸ff ´1 .
' Setting 2: β " λ " 1 and τ pxq " 1{ `´0.43 `0.48 ? 1 `x˘.

In Figure 1 we show the graphs of γpx 0 q and Figure 2 displays the risk premiums ΠpR n |x 0 q for the values of R n considered in the simulation experiment, for both of the settings. Figure 2: Burr simulation. ΠpR n |x 0 q for Setting 1 (left) and Setting 2 (right): net premium principle with R n " U p0.35n|x 0 q (solid line) and R n " U p0.7n|x 0 q (dashed line), and the dualpower premium principle with R n " U p0.35n|x 0 q (dotted line) and R n " U p0.7n|x 0 q (dasheddotted line), where n " 1000.

We implement the proposed estimator with the bi-quadratic kernel function given by Kpxq " 15 16 p1 ´x2 q 2 1l txPr´1,1su .

The parameter h n is selected in a data-driven way by using the following cross-validation criterion

h cv :" argmin hnPH n ÿ i"1 n ÿ j"1 ´1l tY i ďY j u ´p F n,´i pY j |X i q ¯2 ,
where H is a grid of values for h n and p F n,´i py|xq :" ř n j"1,j‰i K hn px ´Xj q1l tY j ďyu ř n j"1,j‰i K hn px ´Xj q , is a cross-validation kernel estimator for F py|xq. This criterion was introduced in Yao (1999), and considered in an extreme value context by [START_REF] Daouia | Kernel estimators of extreme level curves[END_REF][START_REF] Daouia | On kernel smoothing for extremal quantile regression[END_REF] and [START_REF] Escobar-Bach | Local estimation of the conditional stable tail dependence function[END_REF]. We set H " t0.05, 0.06, . . . , 0.15u ˆRX , where R X is the range of X.

Next to the selection of h n , our estimator also requires to determine k. In extreme value statistics, a reasonable value of k is typically obtained by plotting an estimate for an extreme value parameter of interest, here ΠpR n |x 0 q, as a function of k, whereafter k is determined by a visual inspection of the obtained plot for a stable horizontal part. For an automated selection of the good k-range for estimation of ΠpR n |x 0 q, we propose the following data-driven method:

1. Compute p ΠpR n |x 0 q for k " 30, . . . , n ˚´1, where n ˚is the number of observations in the neighborhood of x 0 with radius h n , 2. compute the standard deviation of the p ΠpR n |x 0 q values in a moving block of 50 successive k-values, 3. select the block with the smallest standard deviation, 4. within the block selected in step 3, repeat the steps 2 and 3, now with block size 25, 5. the estimate for ΠpR n |x 0 q is the median of the p ΠpR n |x 0 q in the finally selected block.

This data-driven method was introduced in the related context of estimation of γpx 0 q by [START_REF] Goegebeur | Bias-corrected estimation for conditional Paretotype distributions with random right censoring[END_REF]. Clearly, the method tries to identify a k-range in the stable region of the plot pk, p ΠpR n |x 0 qq in an automatic way.

We simulate 500 datasets of size n " 1000, and consider the premium estimation at x 0 " 0.1, 0.2, . . . , 0.9. In Figure 3 we show for Setting 1 the boxplots of the estimates p ΠpR n |x 0 q obtained in the 500 simulations at the different x 0 , along with the true premium ΠpR n |x 0 q at these positions (connected by a blue line), with R n " U p0.35n|x 0 q (left) and R n " U p0.7n|x 0 q (right), and for the net premium principle (top row) and the dual-power premium principle (bottom row). Figure 4 shows the same information but now for Setting 2.

From the simulations we can draw the following conclusions:

• Overall, the boxplots of the premium estimates follow the shape of the true premium function ΠpR n |xq, with the true premium typically located inside the central box.

• Although R n was set to U p0.35n|x 0 q and U p0.7n|x 0 q, respectively, this leads already to premium calculations with extrapolations outside the data range. Indeed, for the two settings under consideration, the bandwidths obtained by the cross-validation are typically of the order 0.10-0.14, so that under a U r0, 1s distribution for the covariate X one expects around 200-300 observations locally. Despite this the proposed method works quite well.

• The estimation is more difficult in case of Setting 1 compared to Setting 2. This can be expected since the function γpx 0 q is more complicated in Setting 1 where it shows local maxima and minima, while it is monotone in Setting 2. From the results for Setting 1 one can, e.g., see that at the local maxima, the median of the estimates is below ΠpR n |x 0 q. This can be explained by the local nature of the estimation: indeed, for x 0 at or nearby a local maximum of γpx 0 q one uses in the estimation mainly observations from distributions with a smaller γpx 0 q value, leading to an underestimate of the premium. A similar comment can be made about the estimation at the local minima, where the estimate tends to be slightly upwards biased.

• The premium ΠpR n |x 0 q is decreasing in R n , and is larger for the dual-power principle than for the net premium principle. The proposed method seems to perform equally well for the different combinations of R n and premium principle.

Application to automobile claims data

In this section we illustrate the developed methodology on a dataset of automobile claims from Australia. As in many countries, third party insurance is a mandatory insurance for vehicle owners in Australia. This type of insurance protects vehicle owners against claims due to injury caused to other drivers, passengers or pedestrians, as a result of an accident. The dataset is available under the name ausprivauto0405 in the R package CASdatasets, which is a collection of datasets from [START_REF] Charpentier | Computational actuarial science with R[END_REF]. It is based on one-year vehicle insurance policies taken out in 2004 or 2005, and contains information on variables like vehicle value (in thousands of Australian Dollars), vehicle age, gender and age of the policyholder, and the claim amount, from 67856 policies, of which 4624 had at least one claim. We focus here the analysis on the claim amounts which are positive and the corresponding vehicle values. In Figure 5 we show the scatterplot of claim size versus vehicle value (left) and versus lnpvehicle valueq (right). Due to the skewness of the distribution of vehicle value, we will focus the analysis on using the covariate lnpvehicle valueq. Also, we restrict the estimation to the data with lnpvehicle valueq P r´1, 1.5s, since outside this interval the data are scarce. In order to validate the assumption of underlying conditional Pareto-type distributions for the claim sizes, we constructed local Pareto quantile plots of claim sizes for which the covariate is in a neighborhood of lnpvehicle valueq " ´0.25, 0.25 and 1, see Figure 6. If a dataset originates from a Pareto-type distribution, then the Pareto quantile plot will become linear in the largest observations (Beirlant et al., 2004, Section 2.3.5).
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Note that

ΠpR

n |x 0 q r ΠpR n |x 0 q " ´γpx 0 q `ρ γpx 0 q 1 R n ż 8 Rn gpF py|x 0 qq gpF pR n |x 0 qq dy " ´γpx 0 q `ρ γpx 0 q ż 8 1 ˆF pzR n |x 0 q F pR n |x 0 q ˙´ρ g pF pzR n |x 0 qq g pF pR n |x 0 qq dz " ´γpx 0 q `ρ γpx 0 q ż 8 1 ˆF pzR n |x 0 q F pR n |x 0 q ˙´ρ dz ´γpx 0 q `ρ γpx 0 q ż 8 1 ˆF pzR n |x 0 q F pR n |x 0 q ˙´ρ " g pF pzR n |x 0 qq g pF pR n |x 0 qq ´1 dz " ´γpx 0 q `ρ γpx 0 q ż 8 1 ˆF pzR n |x 0 q F pR n |x 0 q ˙´ρ dz ´∆pF pR n |x 0 qq 1 `∆pF pR n |x 0 qq γpx 0 q `ρ γpx 0 q ż 8 1 ˆF pzR n |x 0 q F pR n |x 0 q ˙´ρ « ˆF pzR n |x 0 q F pR n |x 0 q ˙´ρ˚´1 ff dz ´∆pF pR n |x 0 qq 1 `∆pF pR n |x 0 qq γpx 0 q `ρ γpx 0 q ż 8 1 ˆF pzR n |x 0 q F pR n |x 0 q ˙´ρ´ρ ˚" ∆ pF pzR n |x 0 qq ∆ pF pR n |x 0 qq ´1 dz ": T 1,n `T2,n `T3,n .
Note that a slight modification of Proposition 2.3 in [START_REF] Beirlant | Second-order refined peaks-over-threshold modelling for heavy-tailed distributions[END_REF] gives sup zě1 z 1{γpx 0 q ˇˇˇF pzR n |x 0 q F pR n |x 0 q ´Gpz; γpx 0 q, δpR n |x 0 q, βpx 0 qq ˇˇˇ" op|δpR n |x 0 q|q, R n Ñ 8.

where the extended Pareto distribution function G is defined by Gpz; γ, δ, βq "

" 1 ´rzp1 `δ ´δz ´β qs ´1{γ , z ą 1, 0, z ď 1.
This implies

F pzR n |x 0 q F pR n |x 0 q " z ´1{γpx 0 q " 1 ´δpR n |x 0 q γpx 0 q " 1 ´z´βpx 0 q ı `opδpR n |x 0 qq * , (9) 
where the error term is uniform in z ě 1.

Clearly, using (9), we have for γpx 0 q ă ´ρ T 1,n " 1 ´ρβpx 0 q γpx 0 q `ρ ´γpx 0 qβpx 0 q δpR n |x 0 q `opδpR n |x 0 qq,

T 2,n " ´ργ px 0 q `ρ `ρ˚∆ pF pR n |x 0 qq `op∆pF pR n |x 0 qqq. F pR n |x 0 q ˙´ρ´ρ ˚´ζ dz.

Hence, again using (9), we have that

T 3,n " o `|∆pF pR n |x 0 qq| ˘. (12) 
Combining ( 10), ( 11) and ( 12) yields Theorem 2.1.

Proof of Theorem 2.3.

We need to study " apn{k|x 0 q ´ap1{F pR n |x 0 q|x 0 q ‰ p1 `oP p1qq.

Using the fact that apy|x 0 q " δpU py|x 0 q|x 0 qp1 `op1qq gives a kh d n lnrk{pnF pR n |x 0 qqs apn{k|x 0 q " a kh d n lnrk{pnF pR n |x 0 qqs δpU pn{k|x 0 q|x 0 qp1 `op1qq Ñ 0, under our assumptions. As for the term involving ap1{F pR n |x 0 q|x 0 q, we use Potter's bounds (see Proposition B.1.9 (5) in de [START_REF] De Haan | Extreme value theory[END_REF] to obtain, for some constant L ą 0 and 0 ă ξ ă βpx 0 q, and for n large, Combining ( 13) with ( 14), ( 15) and ( 16) establishes Theorem 2.3.

Proof of Theorem 2.4.

We have the decomposition % p γpx 0 q γpx 0 q γpx 0 q `ρ p γpx 0 q `ρ g ´p F pR n |x 0 q ḡ `F pR n |x 0 q ˘´1

, .

-" a kh d n lnrk{pnF pR n |x 0 qqs " p γpx 0 q γpx 0 q ´1* γpx 0 q `ρ p γpx 0 q `ρ g ´p F pR n |x 0 q ḡ `F pR n |x 0 q ȃkh d n lnrk{pnF pR n |x 0 qqs " γpx 0 q `ρ p γpx 0 q `ρ ´1* g ´p F pR n |x 0 q ḡ `F pR n |x 0 q ȃkh , .

-": T 7,n `T8,n `T9,n .

Clearly, by Theorem 2.2 combining with our assumptions, we have T 7,n " o P p1q, T 8,n " o P p1q. ´1ff ˜p F pR n |x 0 q F pR n |x 0 q ¸´ρ ": T 9,1,n `T9,2,n .

Note also that

By Theorem 2.3 and the delta method (see, e.g., van der Vaart, 1998) we have T 9,1,n ´ρ f X px 0 q "ż 1 0 W pzq 1 z dz ´W p1q

 .

As for T 9,2,n we use Proposition B.1.10 in de [START_REF] De Haan | Extreme value theory[END_REF] This achieves the proof of Theorem 2.4.

Proof of Theorem 2.5.

We have by ( 8 " ρβpx 0 q γpx 0 q `ρ ´γpx 0 qβpx 0 q δpR n |x 0 q `ργ px 0 q `ρ `ρ˚∆ pF pR n |x 0 qq * p1 `oP p1qq 

  0 qqs ∆ `F pR n |x 0 q ˘Ñ 0, as n Ñ 8, we have for γpx 0 q ă ´ρ a kh d n lnrk{pnF pR n |x 0 qqs

Figure 3 :

 3 Figure 3: Setting 1. Boxplots of pΠpR n |x 0 q, with R n " U p0.35|x 0 q (left) and R n " U p0.70|x 0 q (right), for the net premium principle (top row) and the dual-power premium principle (bottom row). The true premium values ΠpR n |x 0 q are connected with a blue line.

Figure 4 :

 4 Figure 4: Setting 2. Boxplots of pΠpR n |x 0 q, with R n " U p0.35|x 0 q (left) and R n " U p0.70|x 0 q (right), for the net premium principle (top row) and the dual-power premium principle (bottom row). The true premium values ΠpR n |x 0 q are connected with a blue line.

Figure 5 :

 5 Figure 5: Australian automobile claims data. Scatterplot of claim size versus vehicle value (left) and versus lnpvehicle valueq (right).

Figure 6 :Figure 7 :Figure 8 :

 678 Figure 6: Australian automobile claims data. Local Pareto quantile plots of claim size at lnpvehicle valueq " ´0.25 (left), lnpvehicle valueq " 0.25 (middle) and lnpvehicle valueq " 1 (right).

8 1

 8 T 3,n , according to Proposition B.1.10 in de[START_REF] De Haan | Extreme value theory[END_REF], for any ε ą 0 and ζ P p0, ´ρ˚s , we have for n large and for some constant L ą 0|T 3,n | ď L ε |∆pF pR n |x 0 qq| ż ˆF pzR n |x 0 q

  n |x 0 qqs tT 4,n T 5,n T 6,n ´1u " a kh d n lnrk{pnF pR n |x 0 qqs tpT 4,n ´1qT 5,n T 6,n `pT 5,n ´1qT 6,n `pT 6,n ´1qu .

g

  ´p F pR n |x 0 q ḡ `F pR n |x 0 q ˘´1

F

  pR n |x 0 q ¸´ρ g ´p F pR n |x 0 q ¯ g `F pR n |x 0 q n |x 0 qqs ∆pF pR n |x 0 qq 1 `∆pF pR n |x 0 qq « ∆p p F pR n |x 0 qq ∆pF pR n |x 0 qq

  . Theorem 2.4 achieves the proof of Theorem 2.5.

  to obtain, with ε, ξ ą 0, arbitrary, and for n large, with arbitrary large probabilityˇˇˇˇ∆ p p F pR n |x 0 qq ∆pF pR n |x 0 qq ´1ˇˇˇˇˇď ˇˇˇˇˇ∆ p p F pR n |x 0 qq ∆pF pR n |x 0 qq ´˜p F pR n |x 0 qq F pR n |x 0 q ¸´ρ ˚ˇ`ˇ˜p F pR n |x 0 qq F pR n |x 0 qwhere the notation a ˘' means a ' if a ě 1 and a ´' if a ă 1.Henceˇˇˇˇ∆ p p F pR n |x 0 qq ∆pF pR n |x 0 qq ´1ˇˇˇˇˇ" o P p1q,and thus T 9,2,n " o P p1q. Then, by Slutsky's theorem we have that T 9,n ´ρ f X px 0 q

								¸´ρ ˚´1 ˇˇˇˇď
	ε	F pR n |x 0 q ˜p F pR n |x 0 qq	¸´ρ ˚˘ξ	F pR n |x 0 q `ˇˇˇˇˇ˜p F pR n |x 0 qq	¸´ρ	˚´1	ˇˇˇˇˇ,
		"ż 1 0	W pzq	1 z	 dz ´W p1q	.
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Appendix

To be self contained, we recall below Lemma 5.6 from [START_REF] Goegebeur | Conditional marginal expected shortfall[END_REF], which is used several times in our proofs, and which states the weak convergence of p u n :" p U pn{k|x 0 q{U pn{k|x 0 q.

Lemma 4.1 Assume pDq, pHq, pKq, x 0 P IntpS X q with f X px 0 q ą 0 and y Ñ F py|x 0 q is strictly increasing. Consider sequences k Ñ 8 and h n Ñ 0 as n Ñ 8, in such a way that k{n Ñ 0,