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The overall objective of the present work is to benchmark the novel Multilayer-HySEA model using laboratory experiment data for landslide generated tsunamis.

In particular, this second part of the work deals with granular slides, while the first part, in a companion paper, considers rigid slides. The experimental data used have been proposed by the US National Tsunami Hazard and Mitigation Program (NTHMP) and established for the NTHMP Landslide Benchmark Workshop, held in January 2017 at Galveston. Three of the seven benchmark problems proposed in that workshop dealt with tsunamis generated by rigid slides and are collected in the companion paper (Macías et al., 2020). Another three benchmarks considered tsunamis generated by granular slides. They are the subject of the present study. In order to reproduce the laboratory experiments dealing with granular slides, two models need to be coupled, one for the granular slide and a second one for the water dynamics. The coupled model used consists of a new and efficient hybrid finite volume/finite difference implementation on GPU architectures of a non-hydrostatic multilayer model coupled with a Savage-Hutter model. A brief description of model equations and the numerical scheme is included. The dispersive properties of the multilayer model can be found in the companion paper. Then, results for the three NTHMP benchmark problems dealing with tsunamis generated by granular slides are presented with

Introduction

Following the introduction of the companion paper [START_REF] Macías | Multilayer-HySEA model validation for landslide generated tsunamis. Part I Rigid slides[END_REF], a landslide tsunami model benchmarking and validation workshop was held, January 9-11, 2017, in Galveston, TX. This workshop, which was organized on behalf of NOAA-NWS's National Tsunami Hazard Mitigation Program (NTHMP) Mapping and Modeling Subcommittee (MMS), with the expected outcome being to develop: (i) a set of community accepted benchmark tests for validating models used for landslide tsunami generation and propagation in NTHMP inundation mapping work; (ii) workshop documentation and a web-based repository, for benchmark data, model results, and workshop documentation, results, and conclusions, and (iii) provide recommendations as a basis for developing best practice guidelines for landslide tsunami modeling in NTHMP work.

A set of seven benchmark tests were selected [START_REF] Kirby | The NTHMP landslide tsunami benchmark workshop[END_REF]. These benchmarks are based on a subset of available laboratory data sets for solid slide experiments and deformable slide experiments and include both submarine and subaerial slides. A benchmark based on a historic field event (Valdez, AK, 1964) closed the list of proposed benchmarks. The EDANYA group (www.uma.es/edanya) from the University of Málaga participated in the workshop with the Landslide-HySEA and the Multilayer-HySEA models and presented numerical results for six out of the seven benchmark problems proposed. Only BP6, which results are included here, was not performed at that time. The present work aims to show the numerical results obtained for Multilayer-HySEA in the framework of the validation effort described above for the case of granular slide generated tsunamis for the complete set of benchmark problems.

Fifteen years ago, at the beginning of the century, solid block landslide modeling challenged researchers and was undertaken by a number of authors (see companion paper [START_REF] Macías | Multilayer-HySEA model validation for landslide generated tsunamis. Part I Rigid slides[END_REF] for references) and laboratory experiments were developed for those cases and for tsunami model benchmarking. In contrast, some early models (e.g., [START_REF] Heinrich | Nonlinear water waves generated by submarine and aerial landslides[END_REF]; [START_REF] Harbitz | Numerical simulations of large water waves due to landslides[END_REF]; [START_REF] Rzadkiewicz | Numerical simulation of submarine landslides and their hydraulic effects[END_REF]; Fine et al. (1998)) and a number of more recent models have simulated tsunami generation by deformable slides, based either on depthintegrated two-layer model equations, or on solving more complete sets of equations in terms of featured physics (dispersive, non-hydrostatic, Navier-Stokes).

Examples include solutions of 2D or 3D Navier-Stokes equations to simulate subaerial or submarine slides modeled as dense Newtonian or non-Newtonian fluids [START_REF] Ataie-Ashtiani | Numerical simulation of landslide impulsive waves by incompressible smoothed particle hydrodynamics[END_REF][START_REF] Weiss | Hybrid modeling of the megatsunami runup in Lituya Bay after half a century[END_REF][START_REF] Abadie | Numerical simulation of waves generated by landslides using a multiple-fluid Navier-Stokes model[END_REF][START_REF] Abadie | Numerical modeling of tsunami waves generated by the flank collapse of the Cumbre Vieja Volcano (La Palma, Canary Islands): Tsunami source and near field effects[END_REF][START_REF] Horrillo | A simplified 3-D Navier-Stokes numerical model for landslide-tsunami: Application to the Gulf of Mexico[END_REF], flows induced by sediment concentration [START_REF] Ma | Numerical simulation of tsunami waves generated by deformable submarine landslides[END_REF], or fluid or granular flow layers penetrating or failing underneath a 3D water domain (for example, the two-layer models of [START_REF] Macías | The Al-Borani submarine landslide and associated tsunami. A modelling approach[END_REF] or [START_REF] Brunet | The Lituya Bay landslide-generated mega-tsunami. Numerical simulation and sensitivity analysis[END_REF] where a fully coupled non-hydrostatic SW-Savege-Hutter is used or those of [START_REF] Ma | A two-layer granular landslide model for tsunami wave generation: Theory and computation[END_REF]; [START_REF] Kirby | [END_REF] in which the upper water layer is modeled with the non-hydrostatic σ-coordinate 3D model NHWAVE [START_REF] Ma | Shock-capturing non-hydrostatic model for fully dispersive surface wave processes[END_REF]. For a more comprehensive review of recent modeling work, see Yavari-Ramshe and [START_REF] Yavari-Ramshe | Numerical modeling of subaerial and submarine landslide-generated tsunami waves-recent advances and future challenges[END_REF]. A number of recent laboratory experiments have modeled tsunamis generated by subaerial landslides made of gravel (Fritz et al. (2004), [START_REF] Ataie-Ashtiani | Laboratory investigations on impulsive waves caused by underwater landslide[END_REF], [START_REF] Heller | Impulse product parameter in landslide generated impulse waves[END_REF], [START_REF] Mohammed | Physical modeling of tsunamis generated by three-dimensional deformable granular landslides[END_REF]) or glass beads [START_REF] Viroulet | Tsunami generated by a granular 375 collapse down a rough inclined plane[END_REF]. For deforming underwater landslides and related tsunami generation, 2D experiments were performed by Rzadkiewicz et al. (1997), who used sand, andAtaie-Ashtiani and[START_REF] Ataie-Ashtiani | Laboratory investigations on impulsive waves caused by underwater landslide[END_REF], who used granular material. Well-controlled 2D glass bead experiments were reported and modeled by [START_REF] Grilli | Modeling coastal tsunami hazard from submarine mass failures: effect of slide rheology, experimental validation, and case studies off the US East Coast[END_REF] using the model of [START_REF] Kirby | [END_REF].

The benchmark problems performed in the present work are based on the laboratory experiments of Kimmoun and Dupont (see [START_REF] Grilli | Modeling coastal tsunami hazard from submarine mass failures: effect of slide rheology, experimental validation, and case studies off the US East Coast[END_REF]) for BP4, [START_REF] Viroulet | Tsunami generated by a granular 375 collapse down a rough inclined plane[END_REF] for BP5, and [START_REF] Mohammed | Physical modeling of tsunamis generated by three-dimensional deformable granular landslides[END_REF] for BP6.

The basic reference for these three benchmarks, but also the three ones related to solid slides and the Alaska field case, all of them proposed by the NTHMP, is [START_REF] Kirby | The NTHMP landslide tsunami benchmark workshop[END_REF]. That is a key reference for readers interested in the benchmarking initiative in which the present work is based on.

The Multilayer-HySEA model for granular slides

First we consider the Landslide-HySEA model, applied in [START_REF] Macías | The Al-Borani submarine landslide and associated tsunami. A modelling approach[END_REF] and [START_REF] Brunet | The Lituya Bay landslide-generated mega-tsunami. Numerical simulation and sensitivity analysis[END_REF], which for the case of one-dimensional domains reads:

                         ∂ t h + ∂ x (hu) = 0, ∂ t (hu) + ∂ x hu 2 + 1 2 gh 2 -gh∂ x (H -z s ) = β(u s -u), ∂ t z s + ∂ x (z s u s ) = 0, ∂ t (z s u s ) + ∂ x z s u 2 s + 1 2 g (1 -r) z 2 s = gz s ∂ x ((1 -r) H -rη) -n a (u s -u) + τ P , (1) 
where g is the gravity acceleration (g = 9.81 m/s 2 ); H(x) is the non-erodible bathymetry measured from a given reference level and unchanged in time;

z s (x, t) is the granular material depth at each point x at time t; h(x, t) is the total water depth; η(x, t) is the free surface and is given by η = h + z s -H; u(x, t), u s (x, t) the averaged horizontal velocity for the water and the granular material respectively; r = ρ1 ρ2 is the ratio of densities between the ambient fluid and the granular material. n a (u s -u) defines the friction term between the fluid and the granular layers. Finally, here we will consider τ P (x, t) as the friction term given in [START_REF] Pouliquen | Friction law for dense granular flows: application to the motion of a mass down a rough inclined plane[END_REF] to be described more precisely in the next section.

System (1) presents the difficulty of considering the complete coupling between sediment and water, including the corresponding coupled pressure terms.

That made its numerical approximation more complex. Moreover, it makes also difficult to consider its natural extension to non-hydrostatic flows. Now, if ∂ x η is neglected in the momentum equation of the granular material, that is, the fluctuation of pressure due to the variations of the free-surface is neglected in the momentum equation of the granular material, then the following weakly-coupled system could be obtained:

S-W system      ∂ t h + ∂ x (hu) = 0, ∂ t (hu) + ∂ x hu 2 + 1 2 gh 2 -gh∂ x (H -z s ) = n a (u s -u), (2) 
S-H system

           ∂ t z s + ∂ x (z s u s ) = 0, ∂ t (z s u s ) + ∂ x z s u 2 s + 1 2 g (1 -r) z 2 s -g (1 -r) z s ∂ x H = -β(u s -u) + τ P , (3) 
where the first system is the standard one layer shallow-water system and the second one is the one layer reduced-gravity Savage-Hutter model [START_REF] Savage | The motion of a finite mass of granular material down a rough incline[END_REF]), that takes into account that the granular landslide is underwater. Note that the previous system could be also adapted to simulate subaerial/submarine landslides by a suitable treatment of the variation of the gravity terms. Under this formulation, it is now straightforward to improve the numerical model for the fluid phase by including non-hydrostatic effects.
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Model Equations

The Multilayer-HySEA model implements a two-phase model in order to describe the interaction between the submarine/subaerial landslide and the fluid.

In this work, a multi-layer non-hydrostatic shallow-water model is used for the evolution of the ambient water (see Fernández-Nieto et al. (2018)), and the Savage-Hutter model ( 3) is considered for the kinematics of the submarine/subaerial landslide. Both models are coupled through the boundary conditions at the sea-floor. The ratio of densities between the ambient fluid and the granular material is given by the parameter r. Usually

r = ρ f ρ b , ρ b = (1 -ϕ)ρ s + ϕρ f , (4) 
where ρ s is the typical density of the granular material, ρ f is the density of the fluid (ρ s > ρ f ), and ϕ is the porosity (0 ≤ ϕ < 1). Here, we suppose that ϕ is constant on space and time, and therefore r is also constant. Note that 0 < r < 1. Let us remark that even on a uniform material, r is difficult to can be written in compact form as

                     ∂ t h + ∂ x (hu) = 0, ∂ t (hu α ) + ∂ x hu 2 α + 1 2 gh 2 -gh∂ x (H -z s ) +u α+1/2 Γ α+1/2 -u α-1/2 Γ α-1/2 = -h (∂ x p α + σ α ∂ z p α ) -τ α ∂ t (hw α ) + ∂ x (hu α w α ) + w α+1/2 Γ α+1/2 -w α-1/2 Γ α-1/2 = -h∂ z p α , ∂ x u α-1/2 + σ α-1/2 ∂ z u α-1/2 + ∂ z w α-1/2 = 0, (5) 
for α ∈ {1, 2, . . . , L}, being L the number of layers. In the previous system, we have used the following notation: where f denotes one of the generic variables of the system, i.e., u, w and p, and, finally,

f α+1/2 = 1 2 (f α+1 + f α ) , ∂ z f α+1/2 = 1 h∆s (f α+1 -f α ) ,
σ α = ∂ x (H -z s -h∆s(α -1/2)) , σ α-1/2 = ∂ x (H -z s -h∆s(α -1)) .
As depicted in Figure 1, the flow depth h is split along the vertical axis into L ≥ 1 layers and ∆s = 1/L. u α and w α are the depth averaged velocities in the x and z directions respectively. The term p α+1/2 is the non-hydrostatic pressure at the interface z α+1/2 . The free surface elevation measured from the still-water level is η = h -H + z s , where again H(x) is the unchanged nonerodible bathymetry measured from a given reference level. τ α = 0, α > 1 and τ 1 is given by

τ 1 = τ b + n a (u s -u 1 ),
where τ b is a usual Manning-type friction formula for the bottom shear stress given by

τ b = gh n 2 h 4/3 u 1 |u 1 |,
and n a (u s -u 1 ) accounts for the friction between the fluid and the granular layers. Both are only present at the lowest layer (α = 1). Finally, for α = 1, . . . , L -1, Γ α+1/2 account for the mass transfer across interfaces and are defined by

Γ α+1/2 = L β=α+1 ∂ x (h∆s (u β -ū)) , ū = L α=1 ∆su α
Here we suppose that Γ 1/2 = Γ L+1/2 = 0, that is, there is no mass transfer through the bottom nor the free-surface. In order to close the system, the following boundary conditions are considered

p L+1/2 = 0, u 0 = 0, w 0 = -∂ t (H -z s ) .
Note that the last two conditions enter into the incompressibility condition for the lowest layer (α = 1), given by

∂ x u 1/2 + σ 1/2 ∂ z u 1/2 + ∂ z w 1/2 = 0.
Observe that both models are coupled through the unknown z s , present in the equations and in the boundary condition (

w 0 = -∂ t (H -z s )).
Some dispersive properties of the system (5) were originally studied in Fernández-Nieto et al. ( 2018). Moreover, for a better-detailed study on the dispersion relation such as 'phase velocity', 'group velocity', and 'linear shoaling', the reader is referred to the companion paper [START_REF] Macías | Multilayer-HySEA model validation for landslide generated tsunamis. Part I Rigid slides[END_REF].

Finally, let us mention that in the derivation of this two-phase model, we have supposed a rigid-lid assumption concerning the free surface of the ambient fluid: that is, the pressure variations induced by the fluctuation on the free surface of the ambient fluid over the landslide are neglected.

The Landslide model

The 1D Savage-Hutter model that we consider in this work is given by the system (3). The Poulliquen-Folterre friction law τ P is given by

τ P = -g (1 -r) µz s u 2 s |u s | ,
where µ corresponds to a constant friction coefficient that is quite relevant, as it controls the motion of the landslide. Usually µ is given by the Coulomb friction law as the simpler that can be used in landslide models. However, it is well-known that a constant friction coefficient does not allow to reproduce steady uniform flows over rough beds observed in the laboratory for a range of inclination angles. To reproduce these flows, in [START_REF] Pouliquen | Friction law for dense granular flows: application to the motion of a mass down a rough inclined plane[END_REF] authors introduced an empirical friction coefficient µ that depends on the norm of the mean velocity u s , on the thickness z s of the granular layer and on the Froude number F r = us √ gzs . The friction law is given by:

• If F r ≥ β : µ(z s , u s ) = tan(δ 1 ) + (tan(δ 2 ) -tan(δ 1 )) exp - βz s d s F r , • If F r = 0 : µ(z s ) = µ start (z s ) = tan(δ 3 ) + (tan(δ 2 ) -tan(δ 1 )) exp - z s d s , • If 0 ≤ F r ≤ β : µ(z s , u s ) = µ start (z s ) + F r β γ µ stop (z s ) -µ start (z s ) , with µ stop = tan(δ 1 ) + (tan(δ 2 ) -tan(δ 1 )) 1 1 + z s d s ,
where in this expressions d s represents the mean size of grains. β = 0.136 and γ = 10 -3 are empirical parameters. tan(δ 1 ), tan(δ 2 ) are the characteristic angles of the material, and tan(δ 3 ) is other friction angle related to the behavior when starting from rest. This law has been widely used in the literature (see e.g. [START_REF] Brunet | The Lituya Bay landslide-generated mega-tsunami. Numerical simulation and sensitivity analysis[END_REF]).

Note that the two-phase system can also be adapted to simulate subaerial landslides. The presence of the term (1 -r) in the definition of the Poulilquen-120 Folterre friction law is due to the buoyancy effects, which must be taken into account only in the case that the granular material layer is submerged in the fluid. Otherwise, this term must be replaced by 1.

Numerical Solution Method

System (3) could be written in the following compact way:

∂ t U s + ∂ x F s (U s ) = G s (U s ) ∂ x H -S s (U s ) , (6) 
being

U s =   z s u s z s   , F s (U s ) =   z s u s z s u 2 s + 1 2 g (1 -r) z 2 s   , G s (U s ) =   0 g (1 -r) z s   , S s (U s ) =   0 -n a (u s -u) + τ P   .
The multi-layer non-hydrostatic shallow-water system (5) could also be expressed in a similar way:

     ∂ t U f + ∂ x F f (U f ) + B f (U f )∂ x U f = G f (U )∂ x (H -z s ) + T N H -S f (U f ), B(U f , (U f ) x , H, H x , z s , (z s ) x ) = 0, (7) 
where

U f =                  h hu 1 . . . hu L hw 1 . . . hw L                  , F f (U f ) =                   hū hu 2 1 + 1 2 gh 2 . . . hu 2 L + 1 2 gh 2 hu 1 w 1 . . . hu L w L                   , G f (U f ) =                  0 gh . . . gh 0 . . . 0                  . B f (U f )∂ x (U f
) contains the non-conservative products involving the momentum transfer across the interfaces, and S f (U f ) the friction terms:

B f (U f )∂ x (U f ) =                           0 u 3/2 Γ 3/2 u 5/3 Γ 5/2 -u 3/2 Γ 3/2 . . . -u L-1/2 Γ L-1/2 w 3/2 Γ 3/2 w 5/3 Γ 5/2 -w 3/2 Γ 3/2 . . . -w L-1/2 Γ L-1/2                           , S f (U f ) =              0 τ b + n a (u s -u 1 ) 0 . . . 0             
.

The non-hydrostatic corrections in the momentum equations are given by

T N H = T N H (h, h x , H, H x , z s , (z s ) x , p, p x ) = -                  0 h(∂ x p 1 + σ 1 ∂ z p 1 ) . . . h(∂ x p L + σ L ∂ z p L ) h∂ z p 1 . . . h∂ z p L                 
, and finally, the operator related with the incompressibility condition at each layer is given by:

B(U f , (U f ) x , H, H x , z s , (z s ) x ) =      ∂ x u 1/2 + σ 1/2 ∂ z u 1/2 + ∂ z w 1/2 . . . ∂ x u L-1/2 + σ L-1/2 ∂ z u L-1/2 + ∂ z w L-1/2     
.

The discretization of systems ( 6) and (7) becomes difficult. In this article, we have considered the natural extension of the numerical schemes proposed in Escalante et al. (2018b,a), where a splitting technique has been described. Firstly, the systems ( 6) and ( 7) can be expressed as the following non-conservative hyperbolic system:

     ∂ t U s + ∂ x F s (U s ) = G s (U s )∂ x H, ∂ t U f + ∂ x F f (U f ) + B f (U f )∂ x (U f ) = G f (U f )∂ x (H -z s ). (8) 
Both equations are solved simultaneously using the same time step, by means of a second order HLL, positivity-preserving and well-balanced, path-conservative finite volume scheme (see Castro and Fernández-Nieto ( 2012)). The synchronization of time steps is done taking into account the CFL condition of the complete system (8). A first order estimation of the maximum of the wave speed for system (8) is the following:

λ max = max(|u s | + (g(1 -r)z s , |ū| + gh).
Next, the non-hydrostatic pressure corrections p 1/2 , • • • , p L-1/2 at the vertical interfaces are computed from

   ∂ t U f = T N H (h, h x , H, H x , z s , (z s ) x , p, p x ), B(U f , (U f ) x , H, H x , z s , (z s ) x ) = 0.
That requires the discretization of an elliptic operator using standard secondorder central finite differences. The resulting linear system is solved using an iterative Scheduled Jacobi method (see [START_REF] Adsuara | Scheduled relaxation Jacobi method: Improvements and applications[END_REF]). Finally, the horizontal and vertical momentum equations at each layer are updated using the computed non-hydrostatic corrections. At this stage, the frictions S s (U s )

and S f (U f ) are also discretized (see Escalante et al. (2018b,a)). We refer the reader to Fernández-Nieto et al. ( 2008) for the discretization of the Coulomb friction term.

The resulting numerical scheme is well-balanced for the water at rest solution and is linearly L ∞ -stable under the usual CFL condition related to the hydrostatic system. It is also worth mentioning that the numerical scheme is positive preserving and can deal with emerging topographies. Finally, its extension to 2D is straightforward. In this case, the computational domain is decomposed into subsets with a simple geometry, called cells or finite volumes. The numerical algorithm adapts well to GPU architectures, as is shown in Castro et al.

(2011). Moreover, the compactness of the numerical stencil and the easy and massively parallelization of the Jacobi method makes that the second step can also be implemented on GPUs (see Escalante et al. (2018b,a)). That results in much shorter computational times.

Benchmark Problem Comparisons

In this section, we show the numerical results obtained with the Multilayer-HySEA model and the comparison with the measured lab data for water waves generated by the interaction of a granular slide. In particular, BP4 deals with a 2D submarine granular slide, BP5 with a 2D subaerial slide, and BP6 with a 3D subaerial slide. The description of all these benchmarks can be found at LTMBW (2017) and [START_REF] Kirby | The NTHMP landslide tsunami benchmark workshop[END_REF]. In the following numerical simulations, unless otherwise indicated, the quantities of the parameters are expressed in units of measure of the International System of Units. Location of the sluice gate and the 4 gages (WG1, WG2, WG3 WG4) is marked.

d s = 7 • 10 -3 , δ 1 = 6 • , δ 2 = 24 • , δ 3 = 12 • , β = 0.136, γ = 10 -3 .
Figure 3 shows the comparison of model results with lab data for the four wave gauges considered. Figure 4 depicts the water free surface and the grain location 155 at several times during the numerical simulation.

The number of layers was set up to 5, although similar results can be obtained with fewer layers, for example, 3. In this case, the number of layers was increased to obtain a similar agreement with measured data as in previous benchmark problems, but the numerical results remained similar for a larger number of 160 layers. That may indicate that improving the numerical results it is not a question of the dispersive properties of the model (that improve with the number of layers) but is more likely due to some missing physics. Figure 4: Numerical profiles of the water free surface elevation and the grain layer location at times t = 0, 0.3, 0.6, 0.9 s.

Benchmark Problem 5: Two-dimensional subaerial granular slide

This benchmark is based on a series of 2D laboratory experiments performed by [START_REF] Viroulet | Tsunami generated by a granular 375 collapse down a rough inclined plane[END_REF] in a small tank at École Centrale de Marseille,

France. The simplified picture of the set-up for these experiments can be found in Figure 5. The granular material was confined in triangular subaerial cavities The granular is initially retained by a vertical gate on the dry slope. The gate is suddenly lowered, and in the numerical experiments, it should be assumed that the gate release velocity is large enough to neglect the time it takes the gate to withdraw. The front face of the granular slide touches the water surface at t = 0. The initial slide shape has a triangular cross-section over the width of the tank, with down-tank length L, and front face height B = L as the slope angle is 45 • .

For the present benchmark, two cases are considered. Case 1 defined by the following set-up: d s = 1.5 mm, H = 14.8 cm and L = 11 cm and Case 2 given by d s = 10 mm, H = 15 cm and L = 13.5 cm. The benchmark problem proposed consists in simulating the time series of free surface elevations at the four gauges WG1 to WG4 for the two test cases described above.

The same model configuration as in the previous benchmark problem is used here. The number of layers was set up to 3. The one-dimensional domain [0, 2.2] is discretized with ∆x = 0.003 m and wall boundary conditions were imposed. The simulation time is 2.5 s. We set the CF L = 0.9 and we choose the parameters given by

g = 9.81, r = 0.6, n a = 0, n m = 0.1 • 10 -3 , δ 1 = 6 • , δ 2 = 24 • , δ 3 = 12 • , β = 0.136, γ = 10 -3 .
Finally d s was set to 1.5•10 -3 and 10•10 -3 depending on the test case. Figure 6 shows the comparison for Case 1. In this case, model agreement with measured data is extremely good and most of all for the two leading waves. Figure 7 shows the comparison for Case 2. In this case, the agreement is good, but larger differences appear between model and lab measurements. Figure 8 depicts the free surface elevation and the granular layer spatial distribution at several times for Case 1. It can be observed that the agreement with lab data is much better for Case 1 than for Case 2 and also that this agreement is also better for gauges located further from the slide. This latter behavior can be explained as a consequence of the fact that the hydrodynamic component is much better resolved and simulated than the morphodynamic component (the movement of the slide material), obviously much more difficult to reproduce. Three vertical layers were employed to simulate the upper-layer water motion, although it was observed similar results with 2 layers.

In the beginning, the slide box is driven using four pneumatic pistons. Here we provide comparisons for the case of pressure in the pneumatic pistons of the landslide tsunami generator of P = 0.4 MPa (P = 58 PSI). In [START_REF] Mohammed | Physical modeling of tsunamis generated by threedimensional deformable granular landslides[END_REF], it is shown that for this test case, the landslide box velocity reached a velocity of v b = 2.3 • √ g • 0.6 = 5.58 m/2 that serve us as a constant initial condition for the x-component of u s wherever z s > 0.

The benchmark problem proposed consist in simulating the time series of free surface elevations at some wave-gauges. Here we show the data time series for the 9 wave gauges displayed in Figure 9 as red dots. The wave-gauge in coordinates (r, θ • ) are given more precisely in Table 1. We first compare the sim-

θ • 0 • 30 • 60 •
r 5.12 8.5 14 24.1 3.9 5.12 8.5 3.9 5.12

Table 1: Location of the 9 waves gauges referenced to the toe's slope.

ulated landslide velocity at impact with the measurement. In the experiment, the landslide impact velocity is 5.72 m/s at time t = 0.44 s. The computed landslide impact velocity by the model is slightly underestimated with a value of 5 m/s at the time t = 0.4 s as it can be seen in the upper panel of Figure 10. The final deposition is located at the plane bottom close to the transition of the slope as shown in the lower panel of Figure 10, which is a bit more offshore than that observed in the experiments [START_REF] Mohammed | Physical modeling of tsunamis generated by three-dimensional deformable granular landslides[END_REF]. The offshore run-out of the slide is probably due to the present models neglect of the additional friction due to the curvature change at the transition of the slope.

In [START_REF] Ma | A two-layer granular landslide model for tsunami wave generation: Theory and computation[END_REF] a similar result and discussion can be found. In Figure 11 we show the comparisons of simulated and measured tsunami waves at 9 wave gauges. Generally, the model simulates the tsunami waves well, although the wave heights are overestimated at some stations, specially those closer to the shoreline (for example, the station with θ = 30 • and r = 3.9). This effect has been also observed and discussed in [START_REF] Ma | A two-layer granular landslide model for tsunami wave generation: Theory and computation[END_REF]. By the end of some of the 225 time series the small free-surface oscillations are not captured by the model partially due to the relatively coarse horizontal grids used in the simulation. These observations can be also stated in Figure 11 for the comparisons of simulated and measured tsunami waves at some wave gauges situated at the shoreline (x = 7.53). Table 2 shows the execution times on a NVIDIA Tesla P100 GPU.
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In can be observed that including non-hydrostatic terms in the SWE-SH system results in an increase of the computational time in 2.9 times. vertical structure is considered, then larger computational times are required.

As examples for the two and three-layer systems, 3.48 and 4.66 times increase in the computational effort. 

Concluding Remarks

Numerical models need to be validated previous to their use as predictive tools. This requirement becomes even more necessary when these models are going to be used for risk assessment in natural hazards where human lives are involved. The present work aims to benchmark the novel Multilayer-HySEA model for landslide generated tsunamis produced by granular slides.

Multilayer-HySEA implements a two-phase model to describe the interaction between submarine/subaerial landslides and water. The upper phase describes the hydrodynamic component. That is done using a stratified vertical structure that includes non-hydrostatic terms to incorporate dispersive effects in the propagation of simulated waves. The motion of the landslide is then taken into account by the lower phase consisting of a Savage-Hutter model. To reproduce these flows, the friction model given in [START_REF] Pouliquen | Friction law for dense granular flows: application to the motion of a mass down a rough inclined plane[END_REF] is considered here. Both models are weakly-coupled through the boundary condition at the sea-floor.

The numerical scheme employed combines a finite volume path-conservative scheme for the underlying hyperbolic system and finite differences for the discretization of non-hydrostatic terms. The numerical model is implemented to be run in GPU architectures. From a computational point of view, the two-layer non-hydrostatic code coupled with the Savage-Hutter presents good computational times with respect to the one-layer SWE/Savage-Hutter GPU code. For the numerical simulations performed here, the wall-clock times for the nonhydrostatic model are always below 4.66 times the times for the SWE model for a number of layers less than three. We can conclude that the numerical scheme presented here is robust, extremely efficient, and can model dispersive effects generated by submarine/subaerial landslides with at a low computational cost considering that dispersive effects and a vertical multilayer structure are included in the model. Model results show a good agreement with the experimental data for the three benchmark problems considered. In particular, for BP5, but this also occurs for the other two benchmark problems. In general, it is shown a better agreement for the hydrodynamic component, compare with their morphodynamic counterpart, which is more challenging to reproduce.
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  estimate as it depends on the porosity ϕ. Typical values for r are in the interval[0.3, 0.8].The fluid modelThe ambient fluid is supposed to be modeled by a multi-layer non-hydrostatic shallow-water system proposed inFernández-Nieto et al. (2018) to account for dispersive water waves. The system, obtained by a process of depth-averaging, corresponds to a semi-discretization with respect to the vertical variable of the Euler equations. Total pressure is decomposed into a sum of a hydrostatic and a non-hydrostatic component. In this process, the horizontal and vertical velocities are assumed to have a constant vertical profile. The resulting multilayer model admits an exact energy balance, and when the number of layers increases, the linear dispersion relation of the linear model converges to the same of Airy's theory. The model proposed inFernández-Nieto et al. (2018) 
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 1 Figure 1: Schematic diagram describing the multilayer system
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 12 Figure 2: BP4 sketch showing the longitudinal cross section of thre IRPHE's precision tank.
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 3 Figure 3: Comparison of data time series (red) and numerical (blue) at wave gauges (A) WG1, (B) WG2, (C) WG3, and (D) WG4.
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 5 Figure 5: BP5 sketch of the set-up for the laboratory experiments.
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 6789 Figure 6: Comparison of data time series (red) and numerical (blue). Case 1. (A) G1, (B) G2, (C) G3, and (D) G4
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 10 Figure 10: Cross-section at y = 0 m. at the landslide impact time t = 0.4 s (up) and at t = 20 s (down)
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 1112 Figure 11: The comparisons of simulated (solid lines) and measured (dashed lines) impulse waves.
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 2 Execution times in seconds for SWE-SH and non-hydrostatic GPU implementations.

	Ratios compared with SWE-SH.