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The present work is devoted to the benchmarking of the Multilayer-HySEA model using laboratory experiment data for landslide generated tsunamis. This first part of the work deals with rigid slides and the second part, in a companion paper, with granular slides. The US National Tsunami has proposed the experimental data used Hazard and Mitigation Program (NTHMP) and established for the NTHMP Landslide Benchmark Workshop, held in January 2017 at Galveston. The first three benchmark problems proposed in this workshop dealt with rigid slides, simulated as a moving bottom topography, that must be imposed as a prescribed boundary condition and are used here to benchmark the Multilayer-HySEA model. This new model of the HySEA family consists of an efficient hybrid finite volume/finite difference implementation on GPU architectures of a non-hydrostatic multilayer model. A brief description of model equations, its dispersive properties, and the numerical scheme is included. Then, results for the three NTHMP benchmark problems dealing with rigid slides are presented with a description of each benchmark problem.

Introduction

Considerable effort has been made in the past concerning model development and benchmarking for seismically induced tsunamis. In particular, under the auspice of the NTHMP, the 2011 Galveston benchmarking workshop [START_REF] Horrillo | Performance benchmarking tsunami models for NTHMP's inundation mapping activities[END_REF] and the 2015 Portland workshop for tsunami currents [START_REF] Lynett | Inter-model analysis of tsunami-induced coastal currents[END_REF] were organized. However, for landslide generated tsunamis, both model development and benchmarking efforts have advanced at a slower pace. In 2003 an NSF sponsored landslide tsunami workshop was organized in Hawaii, and a similar follow-up workshop took place at Catalina Island in 2006. Since then, no similar large and comprehensive benchmarking workshop has been organized [START_REF] Kirby | The NTHMP landslide tsunami benchmark workshop[END_REF].

In its FY2009 Strategic Plan, the NTHMP required that all numerical tsunami inundation models be verified as accurate and consistent through a model benchmarking process. This was completed in 2011, but only for seismic tsunami sources and in a limited manner for idealized solid underwater landslides. However, recent work by various NTHMP states has shown that landslide tsunami hazard may be dominant along significant parts of the US coastline, as compared to hazards from other tsunamigenic sources (ten [START_REF] Brink | Assessment of tsunami hazard to the U.S. Atlantic margin[END_REF]. A set of candidate benchmarks were proposed to perform the above-mentioned validation process. These benchmarks are based on a subset of available laboratory data sets for solid slide experiments and deformable slide experiments and include both submarine and subaerial slides. A benchmark based on a historic field event (Valdez, AK, 1964) closed the list of proposed benchmarks. The EDANYA group (www.uma.es/edanya) from the University of Málaga participated in the workshop that was organized at Texas A&M University -Galveston, on January 9-11, 2017 with the Landslide-HySEA and Multilayer-HySEA models and presented numerical results for six out of the seven benchmark problems proposed. The present work aims to show the numerical results obtained for the Multxilayer-HySEA model in the framework of the validation effort described above for the case of rigid slide generated tsunamis. The benchmark problems dealing with granular slides are presented in the companion paper [START_REF] Macías | Multilayer-HySEA model validation for landslide generated tsunamis[END_REF].

Fifteen, twenty years ago, at the beginning of the century, solid block landslide modeling challenged researchers and was undertaken by a number of authors (Grilli andWatts, 1999, 2005;[START_REF] Grilli | Development of a 3D numerical wave tank for modeling tsunami generation by underwater landslides[END_REF][START_REF] Lynett | A numerical study of submarine-landslide-generated waves and run-up[END_REF][START_REF] Watts | Landslide tsunami case studies using a Boussinesq model and a fully nonlinear tsunami generation model[END_REF]Wu, 2004;[START_REF] Watts | Tsunami generation by submarine mass failure. II: Predictive equations and case studies[END_REF][START_REF] Liu | Runup and rundown generated by three-dimensional sliding masses[END_REF] and laboratory experiments were developed for those cases and for tsunami model benchmarking [START_REF] Enet | Experimental study of tsunami generation by threedimensional rigid underwater landslides[END_REF] (see also [START_REF] Ataie-Ashtiani | Laboratory investigations on impulsive waves caused by underwater landslide[END_REF]).

The benchmark problems performed in the present work are based on the laboratory experiments of [START_REF] Grilli | Tsunami generation by submarine mass failure. I: Modeling, experimental validation, and sensitivity analyses[END_REF] for BP1, [START_REF] Enet | Experimental study of tsunami generation by threedimensional rigid underwater landslides[END_REF] for BP2, and Wu (2004); [START_REF] Liu | Runup and rundown generated by three-dimensional sliding masses[END_REF] for BP3. The basic reference for these three benchmarks, but also the three ones related to granular slides and the Alaska field case, all of them proposed by the NTHMP, is [START_REF] Kirby | The NTHMP landslide tsunami benchmark workshop[END_REF].

We highly recommend checking this reference for further details on benchmark descriptions, data provided for performing them, required benchmark items, and inter-model comparison.

HySEA models for landslide generated tsunamis

The HySEA (Hyperbolic Systems and Efficient Algorithms) software consists of a family of geophysical codes based on either single layer, two-layer stratified systems or multilayer shallow water models. HySEA codes1 have been developed by EDANYA Group from the University of Malaga (UMA) for more than a decade, and they are in continuous evolution and upgrading. Concerning landslide-generated tsunamis, a stratified two-layer Savage-Hutter shallow water model, the Landslide-HySEA model, was implemented based on the model described in [START_REF] Fernández | A new Savage-Hutter type model for submarine avalanches and generated tsunami[END_REF] and incorporated to the HySEA family.

Validation of this code, comparing numerical results with the laboratory experiments of [START_REF] Heller | Waves types of landslide generated impulse waves[END_REF][START_REF] Heller | Waves types of landslide generated impulse waves[END_REF][START_REF] Fritz | Lituya Bay case: rockslide impact and wave runup[END_REF] can be found at [START_REF] Sánchez-Linares | Simulación numérica de tsunamis generados por avalanchas submarinas: aplicación al caso de Lituya Bay[END_REF]. A milestone in the verification process of this code consisted in the numerical simulation of the Lituya Bay 1958 mega-tsunami with real topo-bathymetric data [START_REF] González-Vida | The Lituya Bay landslide-generated mega-tsunami. Numerical simulation and sensitivity analysis[END_REF]. This validation was carried out under a research contract with PMEL/NOAA. The result of this project leads to NCTR (NOAA Center for Tsunami Research) to adopt Landslide-HySEA as the numerical code used to generate initial conditions for the MOST model to be initialized in the case of landslide-generated tsunami scenarios. Further applications of Landslide-HySEA can be found at de la Asunción et al. ( 2013), [START_REF] Macías | The Al-Borani submarine landslide and associated tsunami. A modelling approach[END_REF][START_REF] Iglesias | Generación y propagación de tsunamis en el mar catalano-balear[END_REF].

As the waves to be modeled in the laboratory tests proposed here are high frequency and dispersive, with a complex vertical structure. This makes it not suitable to use the two-layer Landslide-HySEA model to reproduce these experimental results. Besides non-hydrostatic effects, a richer vertical structure is required. Thus, the Multilayer-HySEA model was very recently implemented, considering a stratified structure in the simulated fluid and including non-hydrostatic terms. The multilayer model is able to take into account the full vertical structure (2D for BP1 and BP2) and 3D (for BP3).

Model Equations

The Multilayer-HySEA model implements one of the multilayer non-hydrostatic models of the family introduced and described in [START_REF] Fernández-Nieto | A hierarchy of dispersive layer-averaged approximations of Euler equations for free surface flows[END_REF] The governing equations, obtained by process of depth-averaging, correspond to a semi-discretization for the vertical variable of the Euler equations.

Total pressure is decomposed into a sum of hydrostatic and non-hydrostatic pressures. In this process, the horizontal and vertical velocities are assumed to have a constant vertical profile. The proposed model admits an exact energy balance and, when the number of layers increases, the linear dispersion relation of the linear model converges to the same of Airy's theory [START_REF] Fernández-Nieto | A hierarchy of dispersive layer-averaged approximations of Euler equations for free surface flows[END_REF]. The model proposed in [START_REF] Fernández-Nieto | A hierarchy of dispersive layer-averaged approximations of Euler equations for free surface flows[END_REF] can be written in compact form as:

                                               ∂ t h + ∂ x (hu) = 0, ∂ t (hu α ) + ∂ x hu 2 α + 1 2 gh 2 -gh∂ x H + u α+1/2 Γ α+1/2 -u α-1/2 Γ α-1/2 = -h (∂ x p α + σ α ∂ z p α ) -τ, ∂ t (hw α ) + ∂ x (hu α w α ) + w α+1/2 Γ α+1/2 -w α-1/2 Γ α-1/2 = -h∂ z p α , ∂ x u α-1/2 + σ α-1/2 ∂ z u α-1/2 + ∂ z w α-1/2 = 0, (1) 
where, for α ∈ {1, 2, . . . , L}, the following notation is used:

f α+1/2 = 1 2 (f α+1 + f α ) , ∂ z f α+1/2 = 1 h∆s (f α+1 -f α ) ,
where f denotes one of the generic variables of the system, i.e., u, w and p, and, finally,

σ α = ∂ x (H -h∆s(α -1/2)) , σ α-1/2 = ∂ x (H -h∆s(α -1)) .
As depicted in Figure 1, the flow depth h is split along the vertical axis into L ≥ 1 layers and ∆s = 1/L. The variables u α and w α are the depth-averaged velocities in the x and z direction respectively, t is time and g is gravitational acceleration. The non-hydrostatic pressure at the interface z α+1/2 is denoted by p α+1/2 . The surface elevation measured from the still-water level is

η = h -H,
where H is the still water depth. Finally, τ is a friction law term, and the terms Γ α+1/2 account for the mass transfer across interfaces and are defined by

Γ α+1/2 = L β=α+1 ∂ x (h∆s (u β -ū)) , ū = L α=1 ∆su α
In order to close the system, the following boundary conditions are considered

p L+1/2 = 0, u 0 = 0, w 0 = -∂ t H.
Note that the motion of the bottom surface can be taken into account as a boundary condition, imposing w 0 = 0. Therefore, this model can simulate the interaction with a slide in the case that the motion of the bottom is prescribed by a function, given by a set of data, or simulated by a numerical model. In the present study, we are going to consider tests where the motion of the seafloor is given by a known function (the solid moving block).

Linear dispersion relation

In this subsection, some dispersive properties of the system (1) are presented:

the phase and group velocities and the linear shoaling. The first two properties are related to the propagation of dispersive wave trains and the latter with shoaling processes.

To do so, the system (1) is linearised around the lake at rest steady-state solution. After that, a Stokes-type Fourier analysis is carried out looking for firstorder planar wave solutions. That constitutes a standard procedure to study systems that model dispersive water waves (see Escalante et al. (2018a); [START_REF] Lynett | A two-layer approach to wave modelling[END_REF]; [START_REF] Madsen | A new form of the Boussinesq equations with improved linear dispersion characteristics. Part 2: A slowing varying bathymetry[END_REF]; [START_REF] Schäffer | Further enhancements of Boussinesq-type equations[END_REF] and references therein). The phase and group velocities as well as the linear shoaling gradient are, respectively, defined as:

C = ω/k, G = C + k∂ k C, ∂ x η η = -γ ∂ x H H ,
where ω denotes the angular frequency, k the local wave-number and H the typical depth.

The measured quantities C, G and γ are solely functions of the local wavenumber and the typical depth H. Thus, one can obtain the so-called linear dispersion relation of the three measured quantities. From the Airy wave theory, one can also obtain the corresponding linear dispersion relations that state the linear theory for the considered quantities (see [START_REF] Schäffer | Further enhancements of Boussinesq-type equations[END_REF] for the Airy reference formulae).

The expressions of the phase velocity for the system (1) are given in Table 1 for the non-linear hydrostatic shallow water system (SWE) and the Multilayer-HySEA (non-hydrostatic) system with j ≥ 1 layers (NH-jL). The last two columns contains Er C (s) that means the maximum relative error of the phase velocity with respect to the Airy in a range kH ∈ [0, s] in percent:

Er C (s) = 100 • max kH∈[0,s] |C(kH) -C(kH) Airy | |C(kH) Airy | .
The main goal when deriving dispersive shallow water systems is to get the most accurate dispersive relations as possible, compared with the Airy wave theory, without increasing the complexity of the system. See [START_REF] Schäffer | Further enhancements of Boussinesq-type equations[END_REF] for a review on state of the art or a two-layer with improved dispersive relations in [START_REF] Lynett | A two-layer approach to wave modelling[END_REF], and an enhanced two-layer non-hydrostatic pressure system in Escalante et al. (2018a). In [START_REF] Fernández-Nieto | A hierarchy of dispersive layer-averaged approximations of Euler equations for free surface flows[END_REF], it was shown that when the number of layers increases, the linear dispersion relation of the linear model converges to the same of Airy's theory. Figure 2 shows this behavior and highlights the huge discrepancies between the Airy's theory and the systems (SWE) and (NH-1L). It is well known that waves generated by landslides, might present high characteristic values for kH. For the (SWE) system, it is well known that it has an accurate phase velocity in a small range of kH, and that this system is appropriate for long waves as tsunami waves, but not for dispersive waves with higher values of kH. In the same vein, the with the Airy's theory for different ranges of kH ∈ [0, s] for the non-linear hydrostatic shallow water system (SWE) and the Multilayer-HySEA (non-hydrostatic) system with j ≥ 1 layers (NH-jL).

5 and 15. However, when the number of layers, L, is set 3 (still a small value)

the system (1) leads to an excellent agreement with the Airy theory for kH up 120 to 15. The percentage errors in phase celerity are less than 0.62%, and for the group velocity is less than 1% for kH smaller than 10 (see Figure 2). Linear shoaling is also well reproduced in this same range.

The Multilayer-HySEA model presents enhanced dispersive properties. In order to have similar dispersive results like the ones obtained here using a three-125 8 layer system, at least five layers are required for multilayer models as the one presented in [START_REF] Bai | Linear shoaling of free-surface waves in multilayer non-hydrostatic models[END_REF]. Moreover, the results presented for the phase velocity with two layers in Table 1 shows that the system proposed here produces a smaller relative error for kH up to 15 compared with the two-layer system in [START_REF] Cui | Optimal dispersion with minimized Poisson equations for non-hydrostatic free surface flows[END_REF]. That means that the Multilayer-HySEA model can 130 achieve better dispersive properties than models that have similar o even more computational complexity. 

Numerical Solution Method

The discretization of system (1) is performed following the natural extension of the procedure described in Escalante et al. (2018a,b) for the one and two layer non-hydrostatic system, where a splitting technique has been proposed. Thus, in the first step, the non-conservative hyperbolic system underlying system (1)

given by the compact equation

∂ t U + ∂ x F SW (U) + B SW (U)∂ x U = G SW (U)∂ x H (2)
is discretized using a second order finite volume PVM positive-preserving wellbalanced path-conservative method [START_REF] Fernández-Nieto | On an intermediate field capturing Riemann solver based on a parabolic viscosity matrix for the two-layer shallow water system[END_REF], where the 135 following compact notation has been used:

U =                  h hu 1 . . . hu L hw 1 . . . hw L                  , F SW (U) =                    hu hu 2 1 h + 1 2 gh 2 . . . hu 2 L h + 1 2 gh 2 hu 1 w 1 . . . hu L w L                    , G SW (U) =                  0 gh . . . gh 0 . . . 0                 
. and B SW is a matrix such B SW ∂ x U involves the non-conservative products related to the mass transfer across interfaces that appear at the momentum equations. Next, the non-hydrostatic pressure vector term given by

T N H (h, ∂ x h, H, ∂ x H, p, ∂ x p)
T N H (h, ∂ x h, H, ∂ x H, p, ∂ x p) = -                  0 h (∂ x p 1 + σ 1 ∂ z p 1 ) . . . h (∂ x p L + σ L ∂ z p L ) h∂ z p 1 . . . h∂ z p L                 
, is computed solving an elliptic operator that appears when imposing the continuity equation at each layer, B(U, ∂ x U, H, ∂ x H) = 0, where

B(U, ∂ x U, H, ∂ x H) =      ∂ x u 1/2 + σ 1/2 ∂ z u 1/2 + ∂ z w 1/2 . . . ∂ x u L-1/2 + σ L-1/2 ∂ z u L-1/2 + ∂ z w L-1/2     
.

The elliptic operator is discretized using standard central finite differences.

Let us also point out that a common arrangement of the discretized variables is used (see Figure 3). The resulting linear system is solved using an iterative Jacobi method combined with a scheduled relaxation (see [START_REF] Adsuara | Scheduled relaxation Jacobi method: Improvements and applications[END_REF]; Finally, when the pressure corrections are computed, the discharges at each layer are updated. The resulting numerical scheme is well-balanced for the water at rest solution and is linearly L ∞ -stable under the usual CFL condition related to the hydrostatic system. It is also worth mentioning that the numerical scheme is positive preserving and can deal with emerging topographies. Finally, its extension to 2D is straightforward. In this case, the computational domain is decomposed into subsets with a simple geometry, called cells or finite volumes.

The numerical algorithm adapts well to GPU architectures, as is shown in [START_REF] Castro | GPU computing for shallow water flow simulation based on finite volume schemes[END_REF]. Moreover, the compactness of the numerical stencil and the natural and massively parallelization of the Jacobi method makes that the second step can also be implemented on GPUs (see Escalante et al. (2018b,a)). That results in much shorter computational times.

Benchmark Problem Comparisons

In this Section, the numerical results obtained with the Multilayer-HySEA model and the comparison with the measured lab data for waves generated by the movement of a rigid bottom surface or of a solid block are presented. In particular, BP1 deals with a 2D submarine solid slide, BP2 with a 3D submarine slide. BP3 consists of two 3D slides, one partially submerged and a second one representing a completely submarine slide. In all these cases, a moving bottom condition has been used to model the solid block movement. The description of all these benchmarks can be found at LTMBW (2017) and [START_REF] Kirby | The NTHMP landslide tsunami benchmark workshop[END_REF]. [Modified from [START_REF] Grilli | Tsunami generation by submarine mass failure. I: Modeling, experimental validation, and sensitivity analyses[END_REF].

gauges installed at locations: x = 1.175, 1.475, 1.775, and 2.075 m, the first location being nearly identical to x g = 1.168 m. The motion of the rigid slide was prescribed as a function of time as

S(t) = S 0 log(cosh(t/t 0 ))
where S 0 = u 2 t /a 0 = 2.110 m, t 0 = u t /a 0 = 1.677 s, a 0 = 0.75 m/s 2 and u t = 1.258 m/s is the terminal velocity. Figure 5 shows the prescribed acceleration, velocity and rigid slide displacement. The benchmark here consists of using the above information on slide shape, submergence, and kinematics, together with reproducing the experimental setup to simulate surface elevations measured at the four wave gauges (average of 2 replicates of experiments provided).

Then, in order to reproduce the lab experiment, we considered the onedimensional domain [-1, 10] discretized with ∆x = 0.02 m. In the vertical, three layers were considered. Similar results were obtained with more layers.

The simulated time was 4 s. CF L was set to 0.9 and g = 9. Figure 6 shows the comparison of the numerical results with the filtered lab measured data. An excellent overall agreement between them can be observed.

Some discrepancies can be seen after draw-down in all the gauges. This behavior could also be observed, except for the last gauge, at [START_REF] Grilli | Tsunami generation by submarine mass failure. I: Modeling, experimental validation, and sensitivity analyses[END_REF] results. These authors explained that this behavior could be due to unwanted surface tension effects. For the numerical simulations, the two-dimensional computational domain [-1, 10] × [-1.8, 1.8] is considered and discretized with ∆x = ∆y = 0.02 m and the number of layers was set up to 3. Similar results were observed using more layers. The simulated time was 4 s. We set the CF L = 0.9 and g = 9.81.

Outflow boundary conditions are imposed at x = -1, x = 10 and wall boundary conditions at y = -1.8, y = 1.8.

The benchmark test proposed consists in reproducing the slide shape and complete experimental set-up in one hand and using the information about sub- and d = 120 mm) will be presented first, then, as data for the seven experiments were provided, the comparison for the remaining five cases will also be presented. [START_REF] Enet | Experimental study of tsunami generation by threedimensional rigid underwater landslides[END_REF].

d (
g 1 g 2 g 3 g 4

(x 0 ,0) (1469,350) (1929,0) (1929,500)

Table 5: Wave gauge locations (x, y) in mm, as shown in Figure 7. where an excellent agreement can be observed. Figure 9 shows the comparison for the second required case, d = 120 mm, in the 3 gauges with data provided (gauge g 3 was not available). Good agreement can also be observed. Finally,

Figure 10 shows the comparison for the five remaining cases provided by Enet and Grilli. In all cases (for all submergences), a good agreement between simu-245 lated results and measured lab data can be observed. The block movement was provided by means of a polynomial fitting to measured data, giving the horizontal distance as:

x 0,t = x (0,t=0) + (a t 3 + b t 2 + c t) cos β with β = arctan(1/2) and x (0,t=0) = -2∆. The polynomial coefficients for the two cases proposed are given in Table 7. Figures 13 and 14 show the numerical results obtained for the subaerial test case, first presenting the comparison for the wave gauges (Fig. 13) and then for the runup gauges (Fig. 14). The same comparison has been performed for the submerged test case, and it is presented in Figures 15 and16. The agreement for the wave gauges is quite good for WG1 in both cases. For WG2, just in front of the block, an overshoot after the first depression wave is observed in both cases. For the runup, the qualitative agreement is quite good, with the larger discrepancies in RG3 for the submarine test case. 

Concluding Remarks

Validation of numerical models is a first unavoidable step before their use as predictive tools. This requirement is even more necessary when the developed models are going to be used for risk assessment in natural events where human lives are involved. The present work is the first step in this task for the Multilayer-HySEA model, a novel dispersive multilayer model of the HySEA suite developed at the University of Malaga. This model considers a stratified vertical structure and includes non-hydrostatic terms in order to incorporate dispersive effects in the propagation of waves in a homogeneous, inviscid, and incompressible fluid. The numerical scheme employed, combines a finite volume path-conservative scheme for the underlying hyperbolic system and finite differences for the discretization of non-hydrostatic terms. A GPU implementation of the multilayer model is carried out. From a computational point of view, the two-layer non-hydrostatic code presents good computational times with respect to the one-layer SWE GPU code. For the numerical simulations carried out, the non-hydrostatic wall-clock times are no higher than 4.45 SWE times for a number of layers less than three. It can be stated that the scheme presented here is efficient and can model dispersive effects with a low computational cost considering that dispersive effects and a vertical multilayer structure are included in the model. Model results show a good agreement with the experimental data for the three benchmark problems considered.

In particular, for BP2, but this also occurs for the other two benchmark problems, we have shown that a one-layer, hydrostatic or non-hydrostatic, model is not able to reproduce the complexity in the observed lab data considered in the proposed benchmarks. The waves to be modeled in the test cases proposed are high frequency and dispersive. Hence, it is at least necessary a two-layer structure and non-hydrostatic terms int the model to be used in order to capture the dynamics of the generated waves. As pointed out in [START_REF] Kirby | The NTHMP landslide tsunami benchmark workshop[END_REF], non-hydrostatic multilayer models, like the one used here, can perform as well as Navier-Stokes equation models but at much lower computational cost as has

Figure 1 :

 1 Figure 1: Schematic diagram describing the multilayer system

Figure 2 :

 2 Figure 2: Relative error of (A) the phase velocities, (B) the group velocities, and (C) comparison with the reference shoaling gradient, with respect to the Airy theory for the described multilayer systems.

Figure 3 :

 3 Figure 3: Arragement of discrete variables in the multilayer model discretization algorithm
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  Escalante et al. (2018a,b)).

5. 1 .

 1 Benchmark Problem 1: Two-dimensional submarine solid block This benchmark problem is based on the 2D laboratory experiments of Grilli and Watts (2005) which were performed at the University of Rhode Island. Refer to the above-mentioned work to get a detailed description of the present benchmark. Figure 4 depicts the sketch of the laboratory experiment design. The 2D slide model is semi-elliptical, lead-loaded, and rolling down a smooth slope with θ = 15 deg. (2 mm above the slope), in between two vertical side walls, 20 cm apart. The water depth is h 0 = 1.05 m over the flat bottom part. The slide dimensions were length B = 1 m, maximum thickness T = T ref = 0.052 m, and width w = 0.2 m. The model initial submergence d was varied in experiments and the free surface elevation recorded at 4 capacitance wave

Figure 4 :

 4 Figure 4: BP1. Sketch of main parameters and variables for wave generation by 2D rigid slide.

Figure 5 :

 5 Figure 5: BP1. Prescribed acceleration, velocity and displacement of the solid slide.

  81. Outflow open boundary conditions are used. In order to capture turbulent processes, following Ma et al. (2012) the complete Navier-Stokes viscous stress tensor is used, where the turbulent kinematic viscosity is estimated by the Smagorinsky subgrid model, with C s = 0.2 (Smagorinsky turbulent coefficient) and k s = 0.01 (bottom roughness height).

Figure 6 :Figure 7 :

 67 Figure 6: BP1. Comparison of filtered data time series (red) and numerical (blue) at wave gauges (A) g 0 , (B) g 1 , (C) g 2 , and (D) g 3 .

  mergence and kinematics to replicate numerically Enet and Grilli's experiments for d = 61 and d = 120 mm to simulate surface elevations measured at the four wave gauges (average of 2 replicates of experiments) and present comparisons of the model with experimental results. Enet and Grilli (2007) performed experiments for 7 initial submergence depths d. They are listed in Table 4, together with values of related slide parameters and some measured tsunami wave characteristics. Here, the numerical results corresponding to the two NTHMP required experiments (for d = 61

Figure 8

 8 Figure 8 shows the comparison of the Multilayer-HySEA model numerical results with measured data for the first case, d = 61 mm, in the four gauges,240

Figure 8 :Figure 9 :

 89 Figure 8: Comparison of data time series (red) and numerical (blue) at wave gauges (A) g 1 , (B) g 2 , (C) g 3 , and (D) g 4 for the case d = 61 mm.

Figure 10 :

 10 Figure 10: Comparison of data time series (red) and numerical at wave gauges for the cases (A) d = 80 mm, (B) d = 100 mm, (C) d = 140 mm, (D) d = 149 mm, and (E) d = 189 mm.

Figure 11

 11 Figure 11 shows the comparison for the four models considered of the numerical results with the measured data at gauge g 4 for the case d = 189 mm. It can be observed that a model vertical structure considering only one layer is 255

Figure 11 :

 11 Figure 11: Comparison of data time series (red) and numerical at wave gauge g 4 for the case d = 189 mm and different numerical models.

For

  each case, measured free surface elevations for two wave gauges placed at (x, y) = (1.83, 0) (in m) and (x, y) = (1.2446, 0.635), where x is the distance to the initial coastline and y is the distance to the central cross-section (see location at Fig.12lower panel). Also measured runup for each case is given at runup gauges 2 and 3 in Figure12lower panel, lying on the slope at a distance 0.305 m and 0.611 m from the central cross-section, respectively.The two-dimensional computational domain[-2, 6] × [-1.85, 1.85] is discretised with ∆x = 0.02 m and the number of layers was set up to 3. Similar results were observed if more layers are considered. The final time is 4 s. CFL number was set to 0.9 and g = 9.81. The same boundary conditions, as in the previous case, were imposed. In order to capture turbulent processes, as in benchmark 1, the complete Navier-Stokes viscous stress tensor is used with the same subgrid model and coefficients.

Figure 12 :

 12 Figure 12: Definition sketch for BP3 laboratory experiments. Here for a submerged (∆ < 0) slide. Upper panel vertical cross section, lower panel plan view.

Figure 13 :Figure 14 :Figure 15 :Figure 16 :

 13141516 Figure 13: Comparison of data time series (red) and numerical (blue) at wave gauges (A) WG1 and (B) WG2 for the subaerial case.

Table 1 :

 1 Phase velocity expressions and maximum of the relative error Er

	Model			Phase velocity	Er C (5) Er C (15)
	(SWE)				gH	73.63 % 123.61 %
	(NH-1L)			gH	1 4 (kH) 2 1 + 1	3.02 %	16.95 %
	(NH-2L)		gH	1 + (kH) 2 16 1 + 3(kH) 2 8 + (kH) 4 256	0.71 %	10.67 %
	(NH-3L)		1 + 5(kH) 2 54 1 + 5(kH) 2 12 + 5(kH) 4 + (kH) 4 1296 46656 432 + 1(kH) 6	0.31 %	0.62 %
	(NH-5L)	1+	1+ 9(kH) 2 3(kH) 2 25 20 + 21(kH) 4 + 63(kH) 4 2510 3 + 1010 2 + 21(kH) 6 3(kH) 6 2510 4 + 1010 4 + 9(kH) 8 (kH) 8 1010 7 1010 9 2010 6 + (kH) 10	0.11 %	0.11 %

one layer non-hydrostatic pressure system (NH-1L) can improve these results, but again, poor linear dispersive results are achieved in a range of kH between Multilayer System -Phase velocity -Errors for kH up to 5 and 15 C (s) compared

Table 2 :

 2 Values for variables defining setup configuration.

		g 0	g 1	g 2	g 3
	x	1.234 1.549 1.864 2.179
	x = x/h 0 1.175 1.475 1.775 2.075

Table 3 :

 3 Gauge positions in dimensional and non-dimensional units.
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In this benchmark, two items remained not completely determined: they are the initialization of the numerical experiment, and the second one is how and where the solid moving block must stop. Other small issues related to the description of the benchmark were put forward in

[START_REF] Macías | HySEA model. landslide benchmarking results[END_REF] 
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Table 4 :

 4 Measured and curve-fitted slide and wave parameters for the 7 experiments performed by

	mm)	61	80	100	120	140	149	189
	x g (mm) (measured)	551	617	696	763	846	877	1017
	x g (mm) (theoretical)	560	630	705	780	854	888	1037
	η 0 (mm)	13.0	9.2	7.8	5.1	4.4	4.2	3.1
	R u (mm)	6.2	5.7	4.4	3.4	2.3	2.7	2.0
	C m	0.601 0.576 0.627 0.679 0.761 0.601 0.576
	C d	0.473 0.509 0.367 0.332 0.302 0.364 0.353
	a 0 (m/s)	1.20	1.21	1.19	1.17	1.14	1.20	1.21
	u t (m/s)	1.70	1.64	1.93	2.03	2.13	1.94	1.97
	t 0 (s)	1.42	1.36	1.62	1.74	1.87	1.62	1.63
	S 0 (m)	2.408 2.223 3.130 3.522 3.980 3.136 3.207

Table 6 :

 6 Table6shows the execution times on a NVIDIA Tesla P100 GPU. In can be Execution times in seconds for SWE and non-hydrostatic GPU implementations.

	observed that including non-hydrostatic terms in the NLSW equations results in
	an increase of the computational time in 2.65 times. If a richer vertical structure
	is considered, then larger computational times are required. As examples for the
	two and three-layer systems, 3.3 and 4.45 times increase in the computational
	effort.		
		Runtime (s) Ratio
	SWE	23.08	1
	1L-NH	61.20	2.65
	2L-NH	76.35	3.30
	3L-NH	102.93	4.45
	Ratios compared with SWE.		

Table 7 :

 7 Polynomial coefficients defining slide motion.

https://edanya.uma.es/hysea

been shown here.
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