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Adaptive Detection of Coherent Radar Targets in the
Presence of Noise Jamming

Pia Addabbo , Member, IEEE, Olivier Besson , Danilo Orlando , Senior Member, IEEE,
and Giuseppe Ricci , Senior Member, IEEE

Abstract—In this paper, we devise adaptive decision schemes
to detect targets competing against clutter and smart noise-like
jammers (NLJ) which illuminate the radar system from the side-
lobes. Specifically, the considered class of NLJs generates a pulse of
noise (noise cover pulse) that is triggered by and concurrent with
the received uncompressed pulse in order to mask the skin echo
and, hence, to hide the true target range. The detection problem is
formulated as a binary hypothesis test and two different models
for the NLJ are considered. Then, ad hoc modifications of the
generalized likelihood ratio test are exploited where the unknown
parameters are estimated by means of cyclic optimization proce-
dures. The performance analysis is carried out using simulated
data and proves the effectiveness of the proposed approach for
both situations where the NLJ is either active or switched off.

Index Terms—Adaptive radar detection, alternating estimation,
generalized likelihood ratio test, electronic countermeasures,
electronic counter-countermeasures, noise cover pulse, noise-like
jammers.

I. INTRODUCTION

E LECTRONIC countermeasures (ECMs) are active tech-
niques aimed at protecting a platform from being detected

and tracked by the radar [1]. This is accomplished through two
approaches: masking and deception. Noncoherent jammers or
noise-like jammers (NLJs) attempt to mask targets generating
nondeceptive interference which blends into the thermal noise
of the radar receiver. As a consequence, the radar sensitivity is
degraded due to the increase of the constant false alarm rate
threshold which adapts to the higher level of noise [1], [2]. In
addition, this increase makes it more difficult to discover that
jamming is taking place [3], [4]. On the other hand, the coherent
jammers (CJs) transmit low-duty cycle signals intended to inject
false information into the radar processor. Specifically, they are
capable of receiving, modifying, amplifying, and retransmitting
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the radar’s own signal to create false targets maintaining radar’s
range, Doppler, and angle far away from the true position of the
platform under protection [1]–[3], [5].

Nowadays, radar designers have developed defense strate-
gies referred to as electronic counter-countermeasures (EC-
CMs) which are aimed at countering the effects of the enemy’s
ECM and eventually succeeding in the intended mission. Such
techniques can be categorized as antenna-related, transmitter-
related, receiver-related, and signal-processing-related depend-
ing on the main radar subsystem where they take place [3]. The
reader is referred to [3, and references therein] for a detailed
description of the major ECCM techniques.

The first line of defense against jamming is represented by
the radar antenna, whose beampattern can be suitably exploited
and/or shaped to eliminate sidelobe false targets or to atten-
uate the power of NLJs entering from the antenna sidelobes.
In this context, famous antenna-related techniques capable of
preventing jamming signals from entering through the radar
sidelobes are the so-called sidelobe blanking (SLB) and sidelobe
canceling (SLC) [6]. In particular, suppression of NLJs can be
accomplished via an SLC system. SLC uses an array of auxiliary
antennas to adaptively estimate the direction of arrival and the
power of the jammers and, subsequently, to modify the receiving
pattern of the radar antenna placing nulls in the jammers’ direc-
tions. SLB and SLC can be jointly used to face with NLJs and
CJs contemporaneously impinging on the sidelobes of the victim
radar [7]. In [6] it is also shown that a data dependent threshold,
based on [8], outperforms a cascade of SLC and SLB stages.
The detector proposed in [8] is a special case of the more general
class of tunable (possibly space-time) detectors which have been
shown to be an effective means to attack detection of mainlobe
targets or rejection of CJs notwithstanding the presence of NLJs
and clutter [8]–[20]. As a matter of fact, such solutions can be
viewed as signal-processing-related ECCMs. A way to design
tunable receivers relies on the so-called two-stage architecture;
such schemes are formed by cascading two detectors (usually
with opposite behaviors in terms of selectivity): the overall one
declares the presence of a target in the cell under test only when
data survive both detection thresholdings [9]–[12], [16]–[20].
Such detectors can also be used as classifiers: in this case, the
first stage is less selective than the second one and it is used to
discriminate between the null hypothesis and the alternative that
a structured signal is present. In case of detection, the second
stage is aimed at discrimination between mainlobe and sidelobe
signals, as explicitly shown in [17] for the adaptive sidelobe
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Fig. 1. Operating principle of NCP.

blanker (ASB). Adaptive detection and discrimination between
useful signals and CJs in the presence of thermal noise, clutter,
and possible NLJ has also been addressed in [21]. Therein the
CJ is assumed to belong to the orthogonal complement of the
space spanned by the nominal steering vector (after whitening
by the true covariance matrix of the composite disturbance). This
approach, based on a modified adaptive beamformer orthogonal
rejection test (ABORT), see also [20], [22], allows to investigate
the discrimination capabilities of adaptive arrays when the CJ
is not necessarily confined to the “sidelobe beam pattern,” but
might also be a mainlobe deception jammer. Another approach
to deal with CJ is presented in [23], [24], where the CJ is modeled
exploiting the subspace paradigm. A network of radars can be
exploited to combat ECM signals. In this case, it is reasonable
that, for a given CUT, only a subset of the radars receives ECM
signals (CJs) as considered in [25].

Herein, we address adaptive detection in presence of noise
cover pulse (NCP) jamming. The NCP is an ECM technique
belonging to the class of noise-like jamming. Specifically, this
kind of ECM generates a pulse of noise that is triggered by and
concurrent with the received uncompressed pulse (see Fig. 1).
To this end, several received radar pulses are used to estimate
the pulse width (PW) and the pulse repetition interval (PRI) to
predict the arrival time instant of the next pulse of the victim
radar. The transmitted noise power is strong enough to mask the
skin echo even after the radar performs the pulse compression,
which is used to enhance the range resolution. It follows that,
since the length of the transmitted pulse is much higher than
the duration of a range bin, the NCP creates an extended-range
return spread over many range bins that hides the true target
range. Thus, it becomes of vital importance for a radar system
to counteract the effects of an NCP attack. An ECCM technique
against NCP is represented by the cover pulse channel (CPC)
[26], which consists in using an auxiliary physical channel to
track the NCP transmission rather than the skin return from the
target. The main drawbacks of this technique are the degradation
of the high-range resolution associated with the narrow pulses
which result from the compression process and the exploitation
of additional hardware resources. In order to overcome such
limitations, in this paper we devise a signal-processing-related
ECCM capable of detecting targets which compete against a
NCP, while satisfying the original system requirements on range

resolution. Besides, the proposed solution by its nature can
reside in the signal processing unit of the system without the
need of additional hardware. From a mathematical point of view,
we formulate the detection problem as a binary hypothesis test
where primary data (namely those containing target returns)
are formed by a set of range bins which is representative of
the uncompressed pulse length and such that target return is
located in only one bin whereas all the primary range bins are
contaminated by the NCP. As for the NCP, we consider two
models. In the first case, the NCP is represented as a rank-one
modification of the interference covariance matrix (ICM), while
in the second case the presence of the NCP is accounted for by
including a deterministic structured component in all the range
bins. Moreover, we assume that a set of training samples are
available to estimate the clutter and noise components of the
ICM. These data are collected using a suitable number of guard
cells surrounding those under test and related to the uncom-
pressed pulse length. Then, we derive adaptive architectures
exploiting ad hoc modifications of the generalized likelihood
ratio test (GLRT) design criterion where the unknown parame-
ters are estimated resorting to an alternating procedure. Specifi-
cally, we leverage the cyclic optimization paradigm described in
[27]–[29]. Finally, we present numerical examples which high-
light the effectiveness of the proposed solutions also in compar-
ison with existing architectures which are somehow compatible
with the considered problem.

The remainder of the paper is organized as follows: next sec-
tion is devoted to the problem formulation and to the description
of the two different models for the NCP. Section III contains the
derivation of the detection architectures, whereas Section IV
provides the performance assessment of the detectors (also in
comparison to natural competitors). Concluding remarks and
future research tracks are given in Section V.

A. Notation

In the sequel, vectors and matrices are denoted by boldface
lower-case and upper-case letters, respectively. The symbols
det(·), Tr (·), etr{·}, (·)∗, (·)T , (·)† denote the determinant,
trace, exponential of the trace, complex conjugate, transpose,
and conjugate transpose, respectively. As to numerical sets, R
is the set of real numbers, RN×M is the Euclidean space of
(N ×M)-dimensional real matrices (or vectors if M = 1), C
is the set of complex numbers, and CN×M is the Euclidean
space of (N ×M)-dimensional complex matrices (or vectors if
M = 1). IN stands for the N ×N identity matrix, while 0 is
the null vector or matrix of proper dimensions. Let f(x) ∈ R

be a scalar-valued function of vector argument, then ∂f(x)/∂x
denotes the first derivative of f(·) with respect to x arranged in
a column vector. The Euclidean norm of a vector is denoted
by ‖ · ‖. The (k, l)-entry (or l-entry) of a generic matrix A
(or vector a) is denoted by A(k, l) (or a(l)). Finally, we write
x ∼ CNN (m,M) if x is an N -dimensional complex normal
vector with mean m and positive definite covariance matrix M .



Fig. 2. Range bins partitioning.

II. PROBLEM STATEMENT

Assume that the radar is equipped with a uniformly-spaced
linear array (ULA) of N identical and isotropic sensors with
inter-element distance equal to λ/2, λ being the wavelength
corresponding to the radar carrier frequency. For each sensor,
the incoming signal is downconverted to baseband and, then,
convolved with a conjugate time-reversed copy of the transmit-
ted waveform (matched filter). The output of this filter is sampled
to form the range bins of the area under surveillance. Thus, each
range bin is represented by an N -dimensional complex vector.
In what follows, we assume that the signal received from the cell
under test (CUT) can be interference only, i.e., thermal noise,
clutter, and a possible NCP jamming, or a noisy version of the
signal backscattered by a coherent target.

As stated in Section I, the NCP is an ECM technique belonging
to the class of noise-like jamming. Commonly, on the radar side,
the action of the NCP jammer leads to an increase of the noise
level over many range bins hiding the true target range.

In order to model this situation, we denote by ī the integer
indexing the CUT and by Ω = {̄i−H1, . . . , ī+H2} a set of
integers indexing the range bins contaminated by the NCP jam-
mer which also includes the CUT. The number of range bins after
and before the CUT that are contaminated by the NCP jammer
is not necessarily the same due to possible uncertainty in the PW
and PRI estimates. Moreover, such parameters are not known at
the radar receiver, but an educated guess is possible. Thus, in the
following we do not address the problem of determining H1 and
H2, but assume that H1 and H2 and, hence, H = H1 +H2 + 1,
the number of contaminated cells, is known. Additionally, we
assume that a set of K ≥ N secondary data, representative of
thermal noise plus clutter only, is collected by the radar using a
number of guard cells reflecting the length of the uncompressed
pulse (see Fig. 2).

With the above model in mind, denote by zī ∈ CN×1, zi ∈
CN×1 with i ∈ Ω \ {̄i}, and rk ∈ CN×1 with k = 1, . . . ,K,
the vector containing the returns from the CUT, the vectors
contaminated by NCP jammer, but free of target components,
and the secondary data, respectively. For further developments
we assume that such vectors are statistically independent. Then,
the problem of detecting the possible presence of a coherent
return from a given cell is formulated in terms of the following
hypothesis test
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

H0 :

⎧
⎨

⎩

zī ∼ CNN

(
0,M + qq†) ,

zi ∼ CNN

(
0,M + qq†) , i ∈ Ω \ {̄i},

rk ∼ CNN (0,M) , k = 1, . . . ,K,

H1 :

⎧
⎨

⎩

zī ∼ CNN

(
αv(θT ),M + qq†) ,

zi ∼ CNN

(
0,M + qq†) , i ∈ Ω \ {̄i},

rk ∼ CNN (0,M) , k = 1, . . . ,K,

(1)

where
• α ∈ C is an unknown deterministic factor accounting for

target response and channel effects;
• v(θT ) =

1√
N
[1 ejπ sin(θT ) . . . ejπ(N−1) sin(θT )]T ∈ CN×1

is the known steering vector of the target with θT the angle
of arrival of the target1: in the following, for brevity, we
omit the dependence of v on θT ;

• M ∈ CN×N is the unknown positive definite covariance
matrix of thermal noise plus clutter;

• q ∈ CN×1 is an unknown vector representing the contribu-
tion to the noise covariance matrix of the NCP jamming.

Some definitions that will be used in the next developments
for problem (1) are now in order. Let ZΩ,̄i = [z ī−H1

· · ·
zī−1 zī+1 · · · z ī+H2

],Zα,̄i = [zα,̄i ZΩ,̄i]withzα,̄i = z ī − αv,
and Z ī = [z ī ZΩ,̄i]. Then, the probability density functions
(PDFs) of Z ī under H0 and H1 are given by

f0(Z ī; q,M) =
1

[πN det (M + qq†)]H

× etr
{
− (M + qq†)−1

Z īZ
†
ī

}
(2)

and

f1(Z ī;α, q,M) =
1

[πN det (M + qq†)]H

× etr
{
− (M + qq†)−1

Zα,̄iZ
†
α,̄i

}
, (3)

respectively, whereas the PDF of R = [r1 · · · rK ] under both
hypotheses has the following expression

f(R;M) =
1

[πN det (M)]K
etr
{−M−1RR†} . (4)

Finally, let us define the likelihood function of the unknown
parameters under Hi, i = 0, 1, as

L0(q,M) = f0(Z ī; q,M), (5)

L1(α, q,M) = f1(Z ī;α, q,M). (6)

Now, we formulate the detection problem from another per-
spective. Specifically, observe that the radar system, at each
dwell, collects a realization of the NCP. Thus, it is reasonable to
compare (1) with another detection problem formulated as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H0 :

⎧
⎪⎨

⎪⎩

zī ∼ CNN (βq,M) ,

zi ∼ CNN (βiq,M) , i ∈ Ω \ {̄i},
rk ∼ CNN (0,M) , k = 1, . . . ,K,

H1 :

⎧
⎪⎨

⎪⎩

zī ∼ CNN (αv + βq,M) ,

zi ∼ CNN (βiq,M) , i ∈ Ω \ {̄i},
rk ∼ CNN (0,M) , k = 1, . . . ,K,

(7)

where
• β ∈ C and βi ∈ C are unknown deterministic factors rep-

resentative of the different jammer amplitudes;
• q ∈ CN×1 is an unknown deterministic vector representing

the contribution of the NCP jamming.

1Note that the steering corresponds to a ULA with half-wavelength spacing.



Again, we have that
• α ∈ C is an unknown deterministic factor accounting for

target response and channel effects;
• v ∈ CN×1 is the known steering vector of the target;
• M ∈ CN×N is the unknown positive definite covariance

matrix of thermal noise plus clutter.
Furthermore, in this case, the PDF of Z ī, under Hl, l = 0, 1,
exhibits the following expression

f(zī,ZΩ,̄i; lα, β, βi, i ∈ Ω \ {̄i},M , q) =
1

[πN det(M)]H

exp

{

−Tr

[

M−1

(

(z ī − lαv − βq)(z ī − lαv − βq)†

+
∑

i∈Ω\{̄i}
(zi − βiq)(zi − βiq)

†
)]}

, (8)

while the likelihood functions under Hl, l = 0, 1, are given by

L0(β, βi, i ∈ Ω \ {̄i},M , q)

= f(zī,ZΩ,̄i; 0, β, βi, i ∈ Ω \ {̄i},M , q),

L1(α, β, βi, i ∈ Ω \ {̄i},M , q)

= f(z ī,ZΩ,̄i;α, β, βi, i ∈ Ω \ {̄i},M , q). (9)

III. DETECTOR DESIGNS

In this section, we devise adaptive decision schemes for
problems (1) and (7). To this end, observe that we cannot apply
the Neyman-Pearson criterion since parameters α, β, βi, M
and q are not known. For this reason, we have to resort to ad
hoc solutions. In particular, we adopt the two-step GLRT-based
design procedure: first we derive the GLRT for known M ; then
we obtain an adaptive detector replacing the unknown matrix
M with an estimate based on secondary data. Thus, the main
problem to solve is to discriminate between the interference-
only-hypothesis H0 and the signal-plus-interference-hypothesis
H1 based on z ī and ZΩ,̄i only (for known M ).

A. An Adaptive Architecture for Problem (1)

The GLRT for known M is given by

maxα,q L1(α, q,M)

maxq L0(q,M)

H1
>
<H0

η, (10)

where η is the threshold2 to be set according to the desired value
of the probability of false alarm (Pfa).

Maximization of the PDF under H0 can be conducted using
the following identities

det
(
M + qq†) = det (M) det

(
IN +M−1/2qq†M−1/2

)

= det (M)
(
1 + u†u

)
, (11)

2Hereafter, η denotes any modification of the original threshold.

where u = M−1/2q and

Tr
[(
M + qq†)−1

Z īZ
†
ī

]

= Tr
[
M−1/2

(
IN + uu†)−1

X īZ
†
ī

]

= Tr
[(
IN + uu†)−1

X īX
†
ī

]

= Tr

[

X īX
†
ī
− uu†

1 + u†u
X īX

†
ī

]

(12)

where the last equality in equation (12) is obtained us-
ing the matrix inversion lemma while X ī = M−1/2Z ī =
M−1/2[z ī ZΩ,̄i] = [xī XΩ,̄i]. Maximization under the H1

hypothesis is conducted using identity (11), but replacing (12)
with

Tr
[(
M + qq†)−1

Zα,̄iZ
†
α,̄i

]

= Tr

[

Xα,̄iX
†
α,̄i

− uu†

1 + u†u
Xα,̄iX

†
α,̄i

]

where Xα,̄i = M−1/2Zα,̄i = [xα,̄i XΩ,̄i] and, in particular,

xα,̄i = M−1/2(z ī − αv). It follows that the likelihood func-
tions under H0 and H1 can be re-written as

L0(q,M) =
1

[πN det (M) (1 + u†u)]H

× etr

{

−X īX
†
ī
+

uu†

1 + u†u
X īX

†
ī

}

(13)

and

L1(α, q,M) =
1

[πN det (M) (1 + u†u)]H

× etr

{

−Xα,̄iX
†
α,̄i

+
uu†

1 + u†u
Xα,̄iX

†
α,̄i

}

,

(14)

respectively.
Now, we focus on the maximization of the PDF under H0.

To this end, observe that u, borrowing the approach developed
in [30], can be represented as u =

√
pu0 with p = u†u =

‖u‖2 > 0 and, hence, ‖u0‖ = 1. For future reference, we also
define by S the N -sphere centered at the origin with unit radius;
thus, condition u†

0u0 = ‖u0‖2 = 1 is equivalent to u0 ∈ S.
It follows that

max
q

L0(q,M) =
1

[πN det (M)]H
etr
{
−X īX

†
ī

}

×max
u0,p

1

(1 + p)H
etr

{
pu0u

†
0

1 + p
X īX

†
ī

}

.

Thus, for known u0, maximizing L0 with respect to p is tanta-
mount to maximizing

g(p) =
1

(1 + p)H
exp

{
p

1 + p
u†
0X īX

†
ī
u0

}

(15)



with respect to p ≥ 0. It can be shown that the maximum is
attained at

p̂ =

⎧
⎪⎨

⎪⎩

u†
0X īX

†
ī
u0

H
− 1, if

u†
0X īX

†
ī
u0

H
> 1,

0, otherwise,

(16)

and is given by

max
p≥0

g(p)

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

[
H

u†
0X īX

†
ī
u0

]H

× exp{u†
0X īX

†
ī
u0 −H}, if

u†
0X īX

†
ī
u0

H
> 1,

1, otherwise.
(17)

Now, we let

h(x) =

⎧
⎪⎪⎨

⎪⎪⎩

[
H

x

]H

ex−H , x ∈ (H,+∞),

1, x ∈ [0, H],

and observe that it is a strictly increasing function of x over
[H,+∞) (and constant over [0, H]). It follows that to maximize
L0 with respect to u it is sufficient to plug the maximizer of
u†
0X īX

†
ī
u0 with respect to u0 into maxp≥0 g(p). Using the

Rayleigh-Ritz theorem [31], we obtain

max
u0∈S

u†
0X īX

†
ī
u0 = λ1

(
X īX

†
ī

)
, (18)

where λ1(·) denotes the maximum eigenvalue of the matrix
argument and a maximizer for u0 is a normalized eigenvector of
the matrix X īX

†
ī

corresponding to λ1(X īX
†
ī
). Thus, we can

conclude that

max
q

L0(q,M) =
1

[πN det (M)]H
etr
{
−X īX

†
ī

}

×

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡

⎣
H

λ1

(
X īX

†
ī

)

⎤

⎦

H

× exp
{
λ1

(
X īX

†
ī

)
−H

}
, if

λ1

(
X īX

†
ī

)

H
> 1,

1, otherwise.
(19)

As for the optimization problem under H1, let us compute the
logarithm of the likelihood function (14) neglecting the terms
independent of α and u to obtain

g(α, p,u0) = −H log(1 + u†u)

− Tr

[(

IN − uu†

1 + u†u

)

SΩ,̄i

]

− Tr

[(

IN − uu†

1 + u†u

)

Sα,̄i

]

= −H log(1 + u†u) +
u†SΩ,̄iu

1 + u†u

+

∣
∣
∣x

†
α,̄i

u
∣
∣
∣
2

1 + u†u
− x†

α,̄i
xα,̄i − Tr

[
SΩ,̄i

]

= −H log(1 + p) +
p

1 + p
u†
0SΩ,̄iu0

+
p

1 + p
|x†

α,̄i
u0|2 − x†

α,̄i
xα,̄i − Tr

[
SΩ,̄i

]
,

(20)

where SΩ,̄i = XΩ,̄iX
†
Ω,̄i

and Sα,̄i = xα,̄ix
†
α,̄i

.
It follows that maximizingL1(α, q,M)with respect toα and

q is tantamount to

max
α,p,u0

g(α, p,u0). (21)

However, this joint maximization with respect to α, p, and
u0 is not an analytically tractable problem at least to the best of
authors’ knowledge3. For this reason, we resort to a suboptimum
approach relying on alternating maximization [27]–[29]. Specif-
ically, let us assume that u0 = u

(n)
0 and p = p(n) are known,

then it is not difficult to show that

α(n) = argmax
α

g
(
α, p(n),u

(n)
0

)

= argmin
α

x†
α,̄i

[

IN − p(n)

1 + p(n)
u
(n)
0 (u

(n)
0 )†

]

xα,̄i

=

v†
0

[

IN − p(n)

1 + p(n)
u
(n)
0 (u

(n)
0 )†

]

xī

v†
0

[

IN − p(n)

1 + p(n)
u
(n)
0 (u

(n)
0 )†

]

v0

, (22)

where v0 = M−1/2v. Now, let us exploit α(n) to estimate u0

and p, namely to solve the problem

max
p,u0∈S

g
(
α(n), p,u0

)
. (23)

To this end, following the same line of reasoning as for H0, we
obtain that
[
p(n+1)

u
(n+1)
0

]

= arg max
p,u0∈S

g
(
α(n), p,u0

)

=

[
max{λ1(SΩ,̄i + xα(n) ,̄ix

†
α(n) ,̄i

)/H − 1, 0}
b1

]

,

(24)

where we remember that λ1(·) is the maximum eigenvalue of
the matrix argument, xα(n) ,̄i is obtained replacing α with α(n)

in xα,̄i, and b1 is a normalized eigenvector corresponding to

λ1(SΩ,̄i + xα(n) ,̄ix
†
α(n) ,̄i

).

3As a matter of fact, applying the classical maximum likelihood approach to
g(α, p,u0) leads to difficult equations regardless the parameter optimization
order as it stems from the expressions of the iterative parameter estimates given
below.



Iterating the above estimation procedure, we come up with
the following nondecreasing sequence

L1(α
(0), q(0),M) ≤ L1(α

(0), q(1),M)

≤ L1(α
(1), q(1),M) ≤ · · · ≤ L1(α

(n), q(n),M), (25)

where we start using for q(0) a normalized steering vector from
a sidelobe direction and q(i) = p(i)M1/2u

(i)
0 , i = 1, . . . , n.

Since the likelihood under H1 is bounded from the above with
respect to α, p, u0, the nondecreasing sequence (25) converges
as n diverges and, hence, a suitable stopping criterion can
be defined. For example, a possible strategy might consist in
continuing the procedure until

‖q(n) − q(n−1)‖ < εq and/or |α(n) − α(n−1)| < εα. (26)

Another approach might be that the alternating procedure ter-
minates when n > Nmax with Nmax the maximum allowable
number of iterations. We will use the latter stopping criterion
with Nmax chosen in the next section.

To prove that the likelihood is bounded from the above, we
re-write g as the sum of three (bounded above) functions, namely
as

g(α, p,u0) =−H log(1 + p)− Tr
[
SΩ,̄i

]
+

p

1 + p
u†
0SΩ,̄iu0

+
p

1 + p
|x†

α,̄i
u0|2 − x†

α,̄i
xα,̄i

= g1(p) + g2(p,u0) + g3(α, p,u0) (27)

with

g1(p) = −H log(1 + p)− Tr
[
SΩ,̄i

]
, (28)

g2(p,u0) =
p

1 + p
u†
0SΩ,̄iu0, (29)

g3(α, p,u0) =
p

1 + p
|x†

α,̄i
u0|2 − x†

α,̄i
xα,̄i. (30)

Then, it is sufficient to observe that
• g1(p) ≤ 0, ∀p ≥ 0;
• ∀p ≥ 0,u0 ∈ S the second term g2(p,u0) can be trivially

upperbounded as

g2(p,u0) =
p

1 + p
u†
0SΩ,̄iu0

≤ u†
0SΩ,̄iu0(≤ λ1(SΩ,̄i)) (31)

and the right-most hand side attains a maximum since it is
a continuous function of u0 over a compact set (u0 belongs
to the N -sphere with unit radius);

• the third term can be re-written as

g3(α, p,u0) = −x†
α,̄i

(

IN − p

1 + p
u0u

†
0

)

xα,̄i;

since the matrix IN − p
1+pu0u

†
0 is positive definite ∀p ≥ 0

and u0 ∈ S, it follows that g3(α, p,u0) ≤ 0, ∀α ∈ C, p ≥
0,u0 ∈ S.

Finally, M can be estimated using secondary data R as

M̂ =
1

K
RR†. (32)

Algorithm 1: Procedure to compute the decision statistic of
R-NCP-D.

Input: z ī, ZΩ,̄i, R, u(0)
0 , p(0), v

Output: Decision statistic of R-NCP-D
1: Compute M̂ = 1

KRR†

2: Compute X̂ ī = M̂
−1/2

[z ī, ZΩ,̄i], λ1(X̂ īX̂
†
ī), and

v̂0 = M̂
−1/2

v
3: Compute (19) with X̂ ī and M̂ in place of X ī and M ,

respectively, and denote the result by L̃0

4: Set n = 0
5: Compute α(n) using (22) with X̂ ī and v̂0 in place of

X ī and v0, respectively
6: If n < Nmax go to step 7 else go to step 9
7: Compute p(n+1) and u

(n+1)
0 using (24) with X̂ ī and

v̂0 in place of X ī and v0, respectively
8: Set n = n+ 1 and go to step 5
9: Return L1(α

(n), p(n)u
(n)
0 ,M̂)/L̃0

This decision scheme is referred to in the following as random
NCP detector (R-NCP-D). The steps to compute the decision
statistic of R-NCP-D are summarized in Algorithm 1.

B. An Adaptive Architecture for Problem (7)

In this case, the GLRT for known M is given by

max
α,β,βi,i∈Ω\{̄i},q

L1(α, β, βi, i ∈ Ω \ {̄i},M , q)

max
β,βi,i∈Ω\{̄i},q

L0(β, βi, i ∈ Ω \ {̄i},M , q)

H1
>
<H0

η. (33)

Focusing on the maximization of the PDF under H0, we
observe that maximizing L0 is tantamount to maximizing4

w(β, βi, i ∈ Ω \ {̄i}, q)

= etr

{

−M−1

[

(z ī − βq)(z ī − βq)†

+
∑

i∈Ω\{̄i}
(zi − βiq)(zi − βiq)

†
]⎫
⎬

⎭
(34)

Furthermore, it can be proved that

min
β

(z ī − βq)†M−1(z ī − βq)

= z†
ī
M−1z ī −

z†
ī
M−1qq†M−1zī

q†M−1q
(35)

and

min
βi

∑

i∈Ω\{̄i}
(zi − βiq)

†M−1(zi − βiq)

=
∑

i∈Ω\{̄i}

(

z†
iM

−1zi − z†
iM

−1qq†M−1zi

q†M−1q

)

. (36)

4Note that this optimization is a special case of one of the instances considered
in [23].



Thus, the maximization of w with respect to β and βi leads to

max
β,βi,i∈Ω\{̄i},q

w(β, βi, i ∈ Ω \ {̄i}, q)

= max
q

exp

[
z†
ī
M−1qq†M−1zī

q†M−1q
− z†

ī
M−1zī

+
∑

i∈Ω\{̄i}

(
z†
iM

−1qq†M−1zi

q†M−1q
− z†

iM
−1zi

)⎤

⎦

= max
q

exp

⎧
⎨

⎩

q†M−1
[
z īz

†
ī
+
∑

i∈Ω\{̄i} ziz
†
i

]
M−1q

q†M−1q

−
⎛

⎝z†
ī
M−1zī +

∑

i∈Ω\{̄i}
z†
iM

−1zi

⎞

⎠

⎫
⎬

⎭

= max
u

exp

⎧
⎨

⎩

u†
[
xīx

†
ī
+
∑

i∈Ω\{̄i} xix
†
i

]
u

u†u

−
⎛

⎝x†
ī
xī +

∑

i∈Ω\{̄i}
x†
ixi

⎞

⎠

⎫
⎬

⎭

= exp {λ1(S1)− Tr (S1)} (37)

where S1 = xīx
†
ī
+
∑

i∈Ω\{̄i} xix
†
i and we used the Rayleigh-

Ritz theorem [31]. We also recall that xi = M−1/2zi and u =
M−1/2q.

Thus, we conclude that the compressed likelihood under H0

is given by

max
β,βi,i∈Ω\{̄i},q

L0(β, βi, i ∈ Ω \ {̄i},M , q)

=
1

[πN det(M)]H
exp {λ1 (S1)− Tr (S1)} . (38)

As far as the maximization of the likelihood function under H1

is concerned, we first focus on α and observe that

min
α

(
(z ī − αv − βq)†M−1(z ī − αv − βq)

)

= (z ī − βq)†M−1(z ī − βq)

− (z ī − βq)†M−1vv†M−1(z ī − βq)

v†M−1v
. (39)

Thus, it turns out that

max
α

L1(α, β, βi, i ∈ Ω \ {̄i},M , q) =
1

[πN det(M)]H

× exp

{
(z ī − βq)†M−1vv†M−1(z ī − βq)

v†M−1v

− (z ī − βq)†M−1(z ī − βq)

−
∑

i∈Ω\{̄i}
(zi − βiq)

†M−1(zi − βiq)

⎫
⎬

⎭
. (40)

To the best of authors’ knowledge, the maximization of (40)
with respect to the remaining parameters cannot be conducted
in closed form; in particular, maximizing with respect to u first
makes the resulting function of β and βi difficult to optimize due
to the fact that it contains matrix-valued functions of the parame-
ters. For this reason, we exploit another alternating optimization
procedure. To this end, we first re-write the partially-compressed
likelihood as

max
α

L1(α, β, βi, i ∈ Ω \ {̄i},M , q)

=
1

[πN det(M)]H
exp [−h (u, β, βi, i ∈ Ω \ {̄i})] (41)

with

h (u, β, βi, i ∈ Ω \ {̄i}) = (xī − βu)† P⊥
v0

(xī − βu)

+
∑

i∈Ω\{̄i}
(xi − βiu)

† (xi − βiu)

(42)

where

P⊥
v0

= IN − v0v
†
0

v†
0v0

, (43)

and, for the reader ease, we recall that u = M−1/2q, xi =
M−1/2zi, xī = M−1/2zī, and v0 = M−1/2v.

Then, assuming that β = β(n) and βi = β
(n)
i are given, we

can focus on the maximization with respect to q. To this end,
setting to zero the first derivative5 of

h
(
u, β(n), β

(n)
i , i ∈ Ω \ {̄i}

)

with respect to u leads to

− β(n)∗P⊥
v0
xī +

∣
∣
∣β(n)

∣
∣
∣
2

P⊥
v0
u

−
∑

i∈Ω\{̄i}
β
(n)
i

∗
xi +

∑

i∈Ω\{̄i}

∣
∣
∣β

(n)
i

∣
∣
∣
2

u = 0; (45)

then

u(n) = argmin
u

{
h
(
u, β(n), β

(n)
i , i ∈ Ω \ {̄i}

)}

=

⎛

⎝
∣
∣
∣β(n)

∣
∣
∣
2

P⊥
v0

+
∑

i∈Ω\{̄i}

∣
∣
∣β

(n)
i

∣
∣
∣
2

IN

⎞

⎠

−1

⎛

⎝β(n)∗P⊥
v0
xī +

∑

i∈Ω\{̄i}
β
(n)
i

∗
xi

⎞

⎠ . (46)

5We make use of the following definition for the derivative of a real function
f(α) with respect to the complex argument α = αr + jαi, αr, αi ∈ R, [32]

∂f(α)

∂α
=

1

2

[
∂f(α)

∂αr
− j

∂f(α)

∂αi

]
. (44)



Algorithm 2: Procedure to compute the decision statistic of
D-NCP-D.
Input: z ī, ZΩ,̄i, R, u(0)

Output: Decision statistic of D-NCP-D
1: Compute M̂ = 1

KRR†,

2: Compute x̂ī = M̂
−1/2

zī, X̂Ω,̄i = M̂
−1/2

ZΩ,̄i,

Ŝ1 = x̂īx̂
†
ī
+ X̂Ω,̄iX̂

†
Ω,̄i

3: Compute (38) with Ŝ1 and M̂ in place of S1 and M ,
respectively, and denote the result with L̂0

4: Compute v̂0 = M̂
−1/2

v and P⊥
v̂0

= IN − v̂0v̂
†
0

v̂†
0v̂0

5: Set n = 0
6: Compute β(n+1) and β

(n+1)
i , i ∈ Ω \ {̄i}, using (47)

with x̂ī, X̂Ω,̄i, and v̂0 in place of xī, XΩ,̄i, and v0,
respectively

7: If n < Nmax go to step 8 else go to step 10
8: Compute u(n+1) using (46) with x̂ī, X̂Ω,̄i, and v̂0 in

place of xī, XΩ,̄i, and v0, respectively
9: Set n = n+ 1 and go to step 6

10: Return

exp
[
−h

(
u(n), β(n), β

(n)
i , i ∈ Ω \ {̄i}

)][
πN det(M̂)

]−H

L̂0

On the other hand, we can estimate β(n+1) and β
(n+1)
i , given

u(n), exploiting a standard least-squares result, i.e.,
[
β(n+1)

β
(n+1)
i

]

= argmax
β,βi

{
exp

[
−h

(
u(n), β, βi, i ∈ Ω \ {̄i}

)]}

=

⎡

⎢
⎢
⎢
⎣

u(n)†P⊥
v0
xī

u(n)†P⊥
v0
u(n)

u(n)†xi

u(n)†u(n)

⎤

⎥
⎥
⎥
⎦
. (47)

The iterative procedure starts by replacing u(0) with a normal-
ized steering vector from the sidelobes. Moreover, as for the
R-NCP-D, we stop alternating after a preassigned number of
iterations.

Finally, replacingM with the sample covariance matrix based
upon the secondary data, we come up with an adaptive detec-
tor referred to in the following as deterministic NCP detector
(D-NCP-D). The operations required to form the decision statis-
tic of D-NCP-D are summarized in Algorithm 2.

IV. PERFORMANCE ASSESSMENT

The aim of this section is to investigate the performance of
the proposed algorithms in terms of probability of detection
(Pd). To this end, we resort to standard Monte Carlo counting
techniques by evaluating the thresholds to ensure a preassigned
Pfa and the Pd curves over 100/Pfa and 1000 independent
trials, respectively. Data are generated according to the model

TABLE I
SIMULATION PARAMETERS SETUP

defined in problem (1), where

M = σ2
nIN + pcM c. (48)

In (48), σ2
nIN represents the thermal noise component with

power σ2
n while pcM c is the clutter component with pc the clut-

ter power and M c the structure of the clutter covariance matrix;
the clutter-to-noise ratio (CNR) is thus given by CNR = pc/σ

2
n.

In the following, we set σ2
n = 1, CNR = 20 dB, and

M c(i, j) = ρ|i−j| with ρ = 0.9 (recall that M c(i, j) is the
(i, j)th entry of M c). We recall that the victim radar is equipped
with a ULA. The target response is computed according to the
signal-to-clutter-plus-noise ratio (SCNR), whose expression is

SCNR = |α|2 v(0)†M−1v(0). (49)

As for the NCP, we assume that, when it is present, it en-
ters the antenna array response of the victim radar from the
sidelobes with a power pj such that the jammer-to-noise ratio
(JNR), defined as JNR = pj/σ

2
n, is 30 dB. In order to select the

amount of primary data, we consider system parameter values
of practical interest, namely we assume that the radar system
transmits a linear frequency modulated pulse of duration 3 μs
and bandwidth 5 MHz. Now, since the sampling time at which
the range bins are generated is 2 · 10−7 s, then the uncompressed
pulse covers 15 range bins. Using 5 additional guard cells,
we set H1 = H2 = 10. For the reader ease, all the simulation
parameters are summarized in Table I.

Finally, for comparison purposes, we also report thePd curves
of the subspace detector (SD) proposed in [23], the adaptive
matched filter (AMF) [33], which raises from a suitable modi-
fication of the derivation contained in Subsection III-B, which
consists in forcing the constraint q†M−1v = 0 as shown in the
appendix6, the adaptive coherence estimator (ACE) [34], [35]
(also known as adaptive normalized matched filter), and Kelly’s
GLRT [36]. It is also important to notice that in the presence
of NCP attack, another (heuristic) competitor would consist
in projecting data onto the orthogonal complement of the sub-
space spanned by the jammer steering vector and in exploiting
transformed data to build up a decision statistic as the AMF.
However, such architecture requires that an estimate of jammer

6Recall from Table I that the jammer is located at 35◦ with respect to the
array normal, leading to cos(θjt) = 0.07 for N = 8 and cos(θjt) = 0.03 for
N = 16, where θjt is the angle between target and jammer steering vectors in
the whitened observation space.



Fig. 3. Euclidean norm (or modulus) of the difference between the estimates
at the nth iteration and those at the (n− 1)th iteration versus the number of
iterations for cyclic optimization of Subsection III-A.

AOA should be available. Now, due to the enormous amount
of AOA estimation algorithms in the open literature, the choice
of the “right” estimation procedure would be a critical issue
affecting the detection performance. For this reason, we simplify
the analysis assuming that jammer AOA is perfectly known and
proceed by considering the following heuristic detector (HD)

∣
∣
∣
∣v(θj)

†U j

(
U †

jM̂U j

)−1

U †zī

∣
∣
∣
∣

2

v(θj)†U j

(
U †

jM̂U j

)−1

U †v(θj)

H1
>
<H0

η, (50)

where θj is the AOA of the jammer and U j ∈ CN×(N−1) is a
slice of unitary matrix such thatP⊥

j = U jU
†
j withP⊥

j = IN −
v(θj)v(θj)

†

v(θj)†v(θj)
. The curves for the likelihood ratio test with known

parameters, referred to as clairvoyant detector (CD), are also
included since they represent an upper bound to the detection
performance.

In the next subsection, we focus on the stopping criterion
and provide suitable numerical examples aimed at establishing
a reasonable iteration number for both cyclic optimization pro-
cedures.

A. Selection of the Maximum Number of Iterations

The detection performance, assessed in Subsection IV-B, are
obtained using a preassigned number of iterations. Now, in order
to select this value, in Figs. 3 and 4, we show the average norm of
the difference between the estimates at thenth iteration and their
respective values at the (n− 1)th iteration. The averages are
evaluated over 1000 independent Monte Carlo trials assuming
N = 8, K = 12, and SCNR = 20 dB. In both cases we model
q as a narrowband plane wave impinging onto the antenna array
from a direction whose azimuth, generated at random at each
Monte Carlo trial, is uniformly distributed outside the antenna
mainlobe. Inspection of the figures highlights that 10 iterations
for each procedure ensure a variation of the estimated quantities
less than or equal to 10−5 and also represent a good compromise

Fig. 4. Euclidean norm (or modulus) of the difference between the estimates
at the nth iteration and those at the (n− 1)th iteration versus the number of
iterations for cyclic optimization of Subsection III-B.

TABLE II
CFAR ANALYSIS WITH RESPECT TO THE JAMMER POWER

TABLE III
CFAR ANALYSIS WITH RESPECT TO THE CLUTTER POWER

TABLE IV
CFAR ANALYSIS WITH RESPECT TO THE JAMMER AOA

from the computational point of view. For this reason, in what
follows we adopt this number for the computation of the Pd

curves.

B. Detection Performance

In this subsection, we investigate the behavior of the proposed
architectures in terms of Pfa sensitivity to the interference
parameters and Pd versus the SCNR for two different scenarios,
which are complementary. Specifically, the former assumes a
jammer illuminating the victim radar from its sidelobes, whereas
the latter consider a surveillance area free of intentional inter-
ferers. It is important to underline that the second case does not
correspond to the design assumptions.

The sensitivity analysis results for the Pfa with respect to
jammer AOA, JNR, and CNR are summarized in Tables II–IV.
Specifically, they are obtained by setting the threshold for a
nominal scenario with Pfa = 10−3 and estimating the actual
Pfa under several instances of NCP power, NCP AOA, and
clutter power. The values reported in the tables show that the
actual Pfa of the proposed architectures does not experience a



Fig. 5. Pd versus SCNR assuming N = 8, K = 12, and a jammer at 35◦.

Fig. 6. Pd versus SCNR assuming N = 8, K = 16, and a jammer at 35◦.

Fig. 7. Pd versus SCNR assuming N = 8, K = 24, and a jammer at 35◦.

significant variation with respect to the nominal value, namely
10−3, when the interference parameters take on value in the
considered intervals. The observed trend suggests a method of
practical appeal to set the detection thresholds. In fact, the latter
can be computed resorting to a nominal scenario where the
parameters are set using reference values.

Figs. 5–7 refer to the first scenario assuming N = 8 and
different values for K. The common denominator of these
figures is that R-NCP-D, D-NCP-D, and HD (which perfectly
knows the jammer AOA) share the same performance, since the
respective curves are overlapped, and outperform the remaining
architectures except for the CD (as expected). The gain of the
R-NCP-D and D-NCP-D over the SD is about 10 dB atPd = 0.9.
On the other hand, the AMF has the worst performance with a

Fig. 8. Pd versus SCNR assuming N = 8, K = 12, and no jammers.

Fig. 9. Pd versus SCNR assuming N = 8, K = 16, and no jammers.

Fig. 10. Pd versus SCNR assuming N = 8, K = 24, and no jammers.

loss at Pd = 0.9 ranging from about 7 dB for K = 12 to about
5 dB for K = 24 with respect to the SD. The curves of ACE and
Kelly’s GLRT are in between those of SD and AMF and intersect
the latter. Comparison of the figures also points out that the Pd

curves move towards left as K increases, which means that the
Pd is an increasing function of K given the SCNR. Finally,
the loss at Pd = 0.9 of the R-NCP-D/D-NCP-D with respect to
the CD halves when K goes from K = 12, which corresponds
to a loss of about 8 dB, to K = 24, which results in a loss of
about 4 dB.

The second scenario is accounted for in Figs. 8–10, which
assume the same parameter setting as previous figures except
for the presence of the jammer. Note that the figures do not
contain the Pd curve of HD since it cannot be used in this



Fig. 11. Pd versus SCNR assuming N = 16, K = 32, and a jammer at 35◦.

scenario because the information about the jammer AOA is not
available. In this case, the curves of R-NCP-D and D-NCP-D
are no longer overlapped and, more important, the latter does
not achieve Pd = 1 at least for the considered parameter values.
The R-NCP-D continues to provide satisfactory performance
outperforming the other counterparts. In fact, the compari-
son with previous figures highlights that the performance of
R-NCP-D keeps more or less unaltered. On the other hand, for
the considered parameter values (and the considered scenario),
the SD is completely useless since the resulting Pd values are
close to zero, while the AMF and Kelly’s GLRT significantly
improve their performance as K increases ensuring about the
same Pd values of the R-NCP-D for K = 3N .

Finally, the comparison between Fig. 11 and Fig. 6 allows
to appreciate the performance variations due to both N and K
when their ratio is constant. In fact, Fig. 11 assumes N = 16
and K = 32, namely twice the analogous values of Fig. 6. It can
be noted that all the considered architectures except for the SD
provide higher Pd values than those of Fig. 6; the performance
of SD seems insensitive to the considered parameter change.

Summarizing, the above analysis singles out the R-NCP-D as
an effective mean to face attacks of smart NLJs which transmit
noise-like signals to cover the skin echoes from the platform
under protection. As a matter of fact, the R-NCP-D outperforms
all the other competitors either in the presence or absence of a
noise cover pulse.

V. CONCLUSION

In this paper, two new detection architectures to account
for possible NCP attacks have been proposed and assessed.
Specifically, the first approach consists in modeling the NLJ
contribution as a covariance component, while the second solu-
tion considers the realizations of the NLJ and handles them as
deterministic signals. Ad hoc modifications of the GLRT have
been devised for both scenarios where the unknown parameters
are computed through alternating estimation procedures. The
behavior of the two architectures has been first investigated
resorting to simulated data adhering the design assumptions of
the first approach and, then, they have been tested on data where
the NCP is turned off. The analysis has singled out the R-NCP-D
obtained with the first approach as the recommended solution

for adaptive detection in the presence of clutter and NCP, since
it can guarantee satisfactory performance in both the considered
situations at the price of an additional computational load with
respect to its competitors due to the iterations necessary to reach
a stationary point through the alternating maximization.

Finally, future research tracks might encompass the applica-
tion of the herein presented approach to the case of range-spread
targets possibly embedded in non-Gaussian clutter.

APPENDIX A
ALTERNATIVE DERIVATION OF THE AMF

In this Appendix, we modify the derivation contained in
Subsection III-B by imposing the constraint u†v0 = 0, namely
the target steering vector and the NCP signature are orthogonal in
the whitened space. For the reader convenience, let us recall that
u = M−1/2q, S1 = [xīx

†
ī
+
∑

i∈Ω\{̄i} xix
†
i], v0 = M−1/2v,

xi = M−1/2zi, xī = M−1/2zī.
Now, under H0, the maximization with respect to β and

βi of w (given by (34)) leads to (35) and (36), respectively.
Thus, assuming the orthogonality constraint, it is possible to
reformulate the maximization of w with respect to u as

max
u:u†v0=0

exp

{
u†S1u

u†u
− Tr [S1]

}

. (51)

Let U ∈ CN×N−1 be a slice of unitary matrix, namely U †U =
IN−1, with columns forming a basis for the orthogonal comple-
ment of the subspace spanned by v0. Given the orthogonality
constraint, it follows that u can be expressed in terms of a
linear combination of the columns of U , i.e., u = Uγ with
γ ∈ C(N−1)×1 the coordinate vector. Then, maximization (51)
can be recast as

max
u:u†v0=0

exp

{
u†S1u

u†u
− Tr [S1]

}

= exp

{

max
γ

γ†U †S1Uγ

γ†γ
− Tr [S1]

}

= exp
{
λ1

(
U †S1U

)− Tr [S1]
}
, (52)

where the last equality is due to the Rayleigh-Ritz theorem [31].
Thus, the solution to the constrained optimization problem,
under H0, is

max
β,βi,i∈Ω\{̄i},q

L0(β, βi, i ∈ Ω \ {̄i},M , q)

=
1

[πN det (M)]H
exp

{
λ1

(
U †S1U

)− Tr [S1]
}
. (53)

On the other hand, under H1, we can start from the partially-
compressed likelihood with respect to α, given by (41). In fact,
it is possible to show that, after optimization of the likelihood
function with respect to α, β, and βi, we obtain

max
α,β,βi,i∈Ω\{̄i},q

L1(α, β, βi, i ∈ Ω \ {̄i},M , q)

=
1

[πN det (M)]H
exp

{
u†P⊥

v0
xīx

†
ī
P⊥

v0
u

u†P⊥
v0
u
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iuu

†xi
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ī
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x†
ixi

⎞

⎠

⎫
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⎭

=
1

[πN det (M)]H
exp

⎧
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⎩

u†S1u

u†u
−
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⎝x†
ī
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v0
xī

+
∑
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x†
ixi

⎞
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(54)

where the last equality comes from the orthogonality condition
between u and v0. Thus, it follows that

max
u:u†v0=0

max
α,β,βi,i∈Ω\{̄i}

L1(α, β, βi, i ∈ Ω \ {̄i},M , q)

=
1

[πN det (M)]H

× exp

⎧
⎨

⎩
λ1(U

†S1U)−
⎛

⎝x†
ī
P⊥

v0
xī +

∑

i∈Ω\{̄i}
x†
ixi

⎞

⎠

⎫
⎬

⎭

(55)

where, again, the last equality comes from [31]. The final expres-
sion for the constrained GLRT-based architecture is obtained
combining (53) and (55). Precisely, taking the log-likelihoods,
the “constrained test (33)” is statistically equivalent to

x†
ī
P v0

xī

H1
>
<H0

η, (56)

whose decision statistic, after replacing M with the sample
covariance matrix based on secondary data, coincides with that
of the AMF.
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