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Jérome Lohéac*
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Abstract

We consider the controllability of a one dimensional heat equation with nonnegative bound-
ary controls. Despite the controllability in any positive time of this system, the unilateral
nonnegativity control constraint causes a positive minimal controllability time. In this article,
it is proved that at the minimal time, there exists a nonnegative control in the space of Radon
measures, which consists of a countable sum of Dirac impulses.
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1 Introduction and main results

In the recent years, controllability of partial differential equation with nonnegative control or with
nonnegative state constraint has attracted many researchers [10, 13}, 2, [4, [T4]. In the present paper,
we are going to see, for one dimensional heat equation with nonnegative boundary control, that
there exists a minimal controllability time, and that at this minimal time there exists a nonnegative
control in the space of Radon measure which is the sum of a countable number of Dirac masses.

*Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France (jerome.loheac@univ-lorraine.fr).



Note that the existence of a minimal controllability time, and the existence of a nonnegative control,
at the minimal controllability time, in the space of Radon measure were already proved in [10].
Hence, the main novelty of this paper is the fact that this minimal time control can be taken as a
countable sum of Dirac masses.

In order to precisely state the main result of the paper, we consider the one dimensional heat
equation with boundary controls, whose state y is given by

y(tax) =0y (p(:r)@zy(t,x))+q(x)y(t,:c) (t>03 Te (071))v (11&)
with boundary conditions,

apy(t,0) + a10,y(t,0) =0 (t>0), (1.1b)
Boy(t,1) + B10.y(t, 1) = u(t) (t>0) (1.1c)

and initial condition
y(0,2) = °(x) (z € (0,1)). (1.1d)

We assume that p € C2([0,1]) is positive on [0,1], ¢ € C([0,1]), |ao| + 1] > 0 and |Bo| + |B1] > 0.
Precise regularity condition on the initial state y° and on the control u will be given later.
Let us also define the set of positive steady state

Si={yeH?(0,1) | 3ueR] s.t. apy(0) +a10,5(0) =0, Boy(1)+ p10,5(1) =1
and  0; (p(2)0,y(x)) +q(x)y(x) =0 (Ve (0, 1))} (1.2)

Indeed, by linearity, it is easy to see that S} is an open half line and is given by S7 = Ry!, with
y' e H%(0,1) solution of

9 (p(2)0,5" (2)) + q(x)7'(x) =0 (2 € (0,1)),

with boundary conditions
aoy'(0) + 18,5 (0) =0 and By’ (1) + f19,5' (1) = 1.

It has been shown in [7] that for every y° € L?(0,1), every time T > 0 and every m € N, there
exists a control u € C™([0,7]) such that the solution of satisfies y(T,-) = 0, and it is a trivial
exercise to see that the same result holds for every target in S;. We also refer to [15] for some
results on the controllability of the heat equation with steady state targets.

The controllability problem considered in this article is the following. Given some 3° € L2(0,1)
and some target y' € S, find the minimum of the time 7' > 0 such that there exists a nonnegative
control u € L?(0,T) steering the solution of from 3° to y! in time 7. This type of control-
lability problem has already been considered in [I0]. The results of [I0] can be extended to the
Proposition below (see Appendix [A|for its proof). Before stating this result, let us define the
operator L e £(D(L),L*(0,1)) by

D(L) ={y e H*(0,1) | aoy(0) +a19,y(0) =0 and Boy(1l)+ B19.y(1) =0}, (1.3a)
Ly =0, (p(2)0:y(2)) + q(x)y(z)  (yeD(L)). (1.3b)

Proposition 1.1. For every y° € L?(0,1) and every y* € SF, if one of the following condition is
satisfied,

e 0eSH or



e [ is m-dissipative,

then there exist a time T > 0 and a control u € L?(0,T) steering the solution of the system (1.1)
from y° to y' in time T';

We thus define,

(0, ') = inf {T>0 | Jue L*(0,T) s.t. u >0
and the solution y of (|1.1)) satisfies y(7,-) = yl} , (1.4)
note that if there does not exist such time 7' > 0 (i.e., ' is not reachable from y° with nonnegative
controls), we set T(y°,y') = oo.
Finally, it can be shown, using similar arguments as the one used in [I0] (see Appendix , that in
the minimal time T, required to steer y° to ¢! with nonnegative controls, there exists a nonnegative
control u in the space of Radon measures steering 3° to 4! in time 7. We thus introduce the space

of Radon measure M([0,T']), which are identified to Radon measures on R with support included
in the compact set [0,7] c RR.

On the other hand, it has been shown in [IT], that more precise results hold for finite dimensional
control systems. More precisely, given N € N*, A e My(R) and B ¢ R", we consider the (finite
dimensional) control system

Y (t) = AY (t) + Bu(t)  (t>0), (1.5a)

with initial condition
Y(0)=Y%eR". (1.5b)

Similarly, we define the set of positive steady state,
21 ={YeR" | JueR] s.t. AY + Bi=0} (1.6)
and the minimal controllability time,

O %Y ={T>0 | JueL?*(0,T)s.t. u>0
and the solution Y of (1.5)) satisfies Y (T') = Yl}7 (1.7)

with ©(Y? Y!) = oo if Y'! is not reachable from Y in any time 7 > 0. In [II], assuming that the
pair (A, B) is controllable, it has been shown that,

e if YO Y1 eX* then (Y2, Y1) < oo,
o if 6(A) c R +iR and V! € £*, then O(Y?,Y"!) < oo for every Y0 e RY,

e ifo(A)cR,andif YO and Y € R” are such that O(Y% Y1) < oo, then there exist t1,...,t, €
[O,Q(YO,Yl)] and my,...,my € Ry such that the measure control u = ZZ=1 my0y, steers the
solution of (T.5)) from Y to Y in time ©(Y",Y!), where n < [(N +1)/2] e IN.

The goal of this paper is to pass to the limit as N — oo to obtain the following result for the
infinite dimensional system ([L.1)). This strategy will lead to Theorem [1| below.



Theorem 1. Lety° € L?(0,1) and y' € S} and assume that T(y°,y*) < oo (i.e., y' is reachable from

ﬂv*
y" with nonnegative controls). Then there exist an increasing sequence (T;)iemn+ € [O,I(yo,yl))
and a sequence (m;)ien+ € (RN such that the control we M([0,T(y°,y")]) defined by

u(t) = imian(t) (t < [0,T(°,y")]). (18)

steers the solution of from y° to y* in time T(3°,y') (in , 0, denotes the atomic mass
located at time T ).

Furthermore, we necessarily have lim; o 7; = T(y°,4%), (my;)ienv+ € €%, and this control u is the
unique control, steering y° to y' in time T(y°,y"), in the set

M;([0,T(y°,y")]) = {i pide, | (pi)ien € (B)™, (my)iens € 0, (0;)ienve € [o,T(yO,yl)J’N*}

i=1

of purely impulsive and nonnegative Radon measure.

Paper organization. We will first recall some well-known properties on Sturm-Liouville prob-
lems in Section [2| In this section, we will also recall the notion of solution for the problem
with Radon measure controls. The proof of Theorem [I] is contained in Section [3] In Section [4]
numerical illustrations of this result are displayed. In particular, in Section we consider
with p = 1, ¢ = 0 and Dirichlet boundary control, in Section [4.2] we consider the axisymmetric
heat equation in the unit ball of R® with Dirichlet boundary control, and finally, in Section
we consider a coupled system of two 1D heat equations. Note that even if Theorem [I| does not
apply to the systems considered in Sections [1.2] and [£:3] we will see in these paragraphs that the
results obtained can be adapted to these examples. Finally, Section [f] concludes this paper with
some open questions and remarks. Note also that the results adapted from [10] [I1] are given in
Appendices [A] to [C] In particular, in Appendix [A] we prove Proposition in Appendix [B] we
show that if T(y°,y') < oo, then there exist a nonnegative Radon measure control steering y° to y
in time 7'(3°, %), and in Appendix [C} we show that the infimum time T(y",y') does not depend
on the regularity (L? or measure) of the control as soon as the target state belong to the set of
positive steady states S .

Notations. Dealing with classical sets, IN is the set of nonnegative integers, N* = IN \ {0}, R is
the set of real numbers, R, the set of nonnegative real numbers, and R} = R, \ {0}. For every
n e IN*, M, (R) is the set of nxn real matrices, and for M € M,,(R), ker M denotes the null space
of M. For every s € R, |s] is the integer part of s. We define L?(0, 1) the set of square integrable
real functions defined on (0,1) and for every T'> 0, L*(0,T) is the set of integrable real functions
defined on (0,7). The set ¢! (respectively ¢*°) is the set of summable (respectively uniformly
bounded) sequences (¢, )nen € R™". For every k ¢ N and every T > 0, C*([0,T]) denotes the set
of k-differentiable real function defined on [0,7]. Finally, the time derivative is denoted with a
dot and the space derivative with 0.

2 First considerations

Some results on Sturm-Liouville problems. It is well-known (see e.g. [6] or [IL Theo-
rem 2.29]) that the operator L, defined by , is self-adjoint and posses a sequence (—\p,)pen+ €
RN of distinct eigenvalues satisfying Ay < -+ < Ay < Apy1 < ... with A\, > o0 as n — oco. Fur-
thermore, to each eigenvalue —J\,, corresponds a single eigenfunction ¢,, and the sequence of



eigenfunction {¢,, }nen forms an orthogonal basis of L2(0,1). Note also that, for every n € IN, since
n is a nontrivial solution of a second order ordinary differential equation, we necessarily have
Ozon(1) £0,if By £0, or v, (1) #0, if 51 0.

Solution notion of with Radon measure controls. The notion of solution of
with measure controls can be defined either by the transposition method or with the help of the
spectral properties of L. Let us first recall that due to the Riesz Theorem, the set of Radon
measure on [0,7], M([0,7]) can be identified to the topological dual of continuous function on
[0,T']. Furthermore, M([0,7]) is a Banach space when endowed with the norm

b oy =sup{ [ e®dut) | peC® (TN} (weM(.T]).

Definition by transposition. For this notion, we refer for instance to [5]. Given y° € L2(0,1)
and u € M([0,T]), we will say that y is solution of (1.1)) in the sense of transposition if for every
0 e C%([0,T] = [0,1]) satisfying

app(t,0) + a10,¢(t, 1) = Bop(t, 1) + S10z(t,1) =0 (te[0,T)),
we have,
0= fOT fol (=o(t,z) = 0y (p(2) 0ot ) — q(2)p(t, ) y(t,z) dedt
’ fol y(T,2)p (T, ) do - [Olyo(x)¢(07x)d:c - pé? fOTw(t, 1) du(t), (2.1a)

if B; 0, or

o:fOTfol(_¢(t,x)—az(p(x)aw(t,z))-q(x)<p(t,x))y(t7x)dxdt
+[0 y(T’x)@(T>$)dx—fo yo(%)w((),w)dwpéi)fo Owp(t, 1) du(t), (2.1b)

if By # 0. This allows to define a week solution of (1.1) y in L*=(0,7;H°(0,1)) for every s > 3/2
(see e.g. [10, §2.2]) and the traces at times ¢ = 0 and ¢ = T has to be understood in the sense

of .

Definition with spectral decomposition. Note also that taking ¢ solution of ¢ = —Ly
with (7)) = ¢, for n e N* and ¢,, the n'® eigenfunction of L, we have ¢(t) = e *» (T, and
injecting this relation in (2.1]), we obtain,

1 1 T
fo y(va)wn(w)dx—e‘A"Tfo yo(w)%(w)dxﬂnfo e (T du(t), (2.2)
with
Mo, s
B Y,pn(1), if B #0.
Bo

Since, as already recalled, the sequence {@, },en+ forms an orthogonal basis of L?(0,1), the re-
lations (2.2)) gives a definition of the trace of y at time ¢ = T and also defines the controllability
problem, i.e., given y' € L?(0,1), find u € M([0,T]) such that (2.2) holds, for every n ¢ N*, with
y(T.) =y



Remark 2.1. Let us make some comments on the sequence (v, ),. As already mentioned, we have
p(1) >0 and ¢, (1) # 0 (respectively Oz, (1) #0) if 51 # 0 (respectively By # 0). This in particular
ensures that ~, # 0 for every n € IN*. Note also that we are dealing with an admissible boundary
control operator (see e.g. [16] for this notion). Hence, if ¢,, is normalized so that |¢,[r2¢0,1) =1

2
OIn

An
In the rest of this paper, we will assume that ||¢n[r20,1) = 1 for every n e IN™.

< 00.

for every n e IN*, we have ¥°° |v,|? = +oo and o7,

3 Proof of Theorem [

Let us recall that we have assumed that y' € S is reachable from y° with nonnegative controls
and that according to Appendices [B] and [C] we have,

T(y°,y') =min T
T>0,
Ju e M([0,7]) s.t. w>0 and y solution of (I.1]) satisfies y(T") = y.

Taking notion of solution with spectral decomposition (2.2, the minimization problem above

becomes
min 7T
T>0,
Ju e M([0,T]) s.t. u>0 and (3.1)

T
Vi- e Ty= gy [T T du(n), (e,
0

where, for every n € IN*, ~y,, is given by (2.3, and we have set

1 1
Vi [y @ea@ds and Y0 = [0 (@)pn(e) da. (3:2)
0 0
For every N € IN*, let us define,

Ty(y°y') =min T
T3>0,
Ju e M([0,7T]) s.t. u>0 and (33)

T
Ynl - eiAnTYr?: In f e D du(t), (ne{l,...,N}).
0

Using the results contained in [T, it is easy to prove the following lemma.

Lemma 3.1. Let y° € L?(0,1) and y* € S} and assume that T(y°,y') < co. Then we have for
every N € IN*, Ty (y°,y') < Tver (0%, yY) < T(3°,9%), and there exist n € {1,...,[(N +1)/2]},
7:11\7,...,7:,1,\/ e [0, Tn (%, y') and m{v,...,ﬁzf]\/ € IR, such that the control uy € M([0,T 5 (% y")])
defined by

n
~ N
un(t) = 3mi v (t)  (te[0.Tn(y’,y")])
i=1
is a minimizer of (3.3)).
Furthermore, this control uy is the unique minimizer of (3.3)), there exists a constant C(y°,y')
(only depending on y° and y') such that,

myY <C(y’y')  (NelN),

™M=

=1



and there exists 5 = (VN ]1, .-, [VN]n) € RY such that

()20 (te[0,Tn(y"y")]) and
{i’iN | ie{l,...,n} and ﬁlqutO}c{te[O,IN(yO,yl)] | 1/)(1?):0},

N
where ’lp(t) — z ,yne—)\n(zn,_t) [w]lv]n.

n=1

Proof. For every N € IN*, let us define,

-2 0 - 0 "
av=| T D [eMa@®) and By=| L |eRY. (3.4)
0 -0 _)\N YN

It is then obvious that the minimization problem (3.3) is exactly the minimization problem

Tn(y’y') =min T
T>0,
Ju e M([0,T]) s.t. u>0 and the solution Y of Y = AxY + Byu,
with initial condition Y (0) = (YIO, e 7Yje,)T ,
satisfies: Y (T) = (Y, .. .,YI\I,)T ,

where the reals YJ’ are defined in .

Note that if u € M([0,T]) is a nonnegative control steering the solution y of from 3° to y!
in time 7 > 0, then this control also steers the solution of Y = AxY + Byu from Y° to Y in time
T. Since T(y°,y') < o0, such a time T > 0 and a control exist, and this ensures, according to [L1],
that the minimization problem admits a minimum. The fact that T (y°, y') < Tns1 (1%, y') <
T(y°,y') is obvious, the upper bound on the sum of the mZ¥ can be obtained as in Appendix (in
particular, one can chose C(y,y') = ePolZ(* ") (6|>‘°|Z(y0’yl)|<yo,tpo)| + |(y1,cpo)|)/|’yo|), and the
other claims of Lemma directly follows from the results contained in [11 § 5.2]. O

For every N € IN*, let us now define the sequences m”~ = (ml¥ );en+ € £! and 7V = (7V) jen+ € £
by,

; and (NeN* ieN"),

~ N ap -
m; if 1 <,
N _ MYy 77.
0 otherwise

Nk if i <n,
! Tn(%y') otherwise

where n = n(N), mY and 7V are defined in Lemma It is obvious that we have,
[ <CG% YY) and [TV < TGS yY) (N eNY),
here also, C(y°,%") is defined by Lemma

Lemma 3.2. Up to an extraction, the sequences (m™ ) e+ € (N and (V) yenve € (()N are
respectively convergent to sequences m®™ € {1 and 7% € £°° (satisfying 0 < m® and 0 < 77° < T(y°,y')
for every i € IN*). In addition, the control u,, € M([0,T(y°,y")]) given by

1umiwwm (t € [0,7(°,y")])

is a control steering y° to y' in time T(y°,y*).



Proof. In order to have more compact notations, we set T = T(y",y*), T = Tn(¥°,y") and, for
(i,n) € {0,1} x IN*, Y, is defined by (3.2).

By compactness and diagonal extraction, it is easy to see that there exists a convergent subse-
quence of (m",7™) yen+ in €1 x £°. Furthermore, this limit (m>,7°) trivially satisfies 0 < m{®
and 0 < 77° < T for every ¢ € N*. Since (I y)new is an increasing sequence bounded from above
by T, we have that this sequence is convergent to some T € [0,T].

Hence, it remains to prove that the control u_, steers y° to y* in time 7. To this end, we will first

show that the control u steers y° to y! in time T_... We observe that,

o0
N
Yn1 - e_)‘”ZNYT? =Y Z méve_’\"(ZN_Ti ) (neIN*, N >n).
i-1

Taking the limit N — oo, we deduce that

n

yl_ e—AnLQYT? =T Z m;oe—xn(zw—r{"’) (n e N*).
=1

1=

Indeed, it is easy to see that for every n € IN*, the map (T,7,m) € Ry x £*° x {1 > e 2Ty 4
Yo 250 mie 2 (T=7) ¢ R is continuous. This ensures that the nonnegative control u, steers y°
to y1 in time T .. But T, < T and T is the minimum of the minimization problem 7 we
conclude that T =T. O

In the sequences (7;°); and (m;°); given in the above lemma, it can happen that 7° = 77 for
some indexes ¢ # j, or m;° = 0 for some indexes i. But with a simple re-indexing, we have shown
that there exist I = I(y°,y') e Nu {oo} and two sequences (7;);1....; and (m;)i=1, s such that,

(7;): is a nondecreasing sequence in [0, T(y%,y")], XL, m; is finite, m; > 0 for every i, and

I
V! - e LWy 0 o 3 S A ) (neNY).
i=1

In the case that all masses m; are null, we set I = 0 and by convention Z?zl mye M (T y")-7) = .
In the next lemma, we will show that we necessarily have I = oo and lim;_.. 7; = T(y°,y') as
soon as y° # yl.

Lemma 3.3. Let y° € L?(0,1) and y' € S} such that ° # y' and T(y°,y') < 0. Then,
1. I>0;

2. there does not exist I € IN*, 0< 7 <--- <717 <T(y",y") and ma,...,m; € R} such that the
control u = Zf:o m;6,, steers y° to y* in time T(y°,y');

3. if there exist 0 < 7y < --- < 1; < --- < T(3°,9y%) and (m;)ienv+ € L1 such that m; > 0 for
every i € IN, and the control w = ¥, ym;d,, steers y° to y' in time T(y°,y'), then we have
lim; oo 7 = T(3°, 91).

Proof. We set T =T (y°,y'). Before entering the core of the proof, let us recall that according to
Remark we have assumed that the sequence {¢,, } e+ forms an orthonormal basis of L2(0,1),
from which, we conclude that 57 |v,|*> = +00 and 302 A2 |, |% < co.

Proof of the t claim. If I =0, we have ;! = e**LY? for every n e N*. Hence, if T = 0, we
deduce that y' = y° which is forbidden by assumption, and if T # 0, we have y* = ¥°°, V1o, €
L2(0,1)\D(L) and %22, e LY %, € D(L), leading to a contradiction.

Proof of the @“d claim. We consider the two possible situations, 77 <7 and 77 =T.



o If 77 < T, then ¥,°, (E_A"'IY,,?-F’WL Z{:o mie_)‘"@_”))gon e D(L), but y' = ¥,V lp, €
L%(0,1)\D(L).

o If 7y =T, then y ", (Yn1 —eMIY0 Zf:ol mie_’\"'(z‘”)) ©n € L2(0,1), but my X001 Ynon ¢
L2(0,1).

Thus, in both cases, we have obtained a contradiction.

Proof of the @d claim. Since (7;);n+ is an increasing and bounded sequence, there exists
O € (0,T] such that © = lim; . 7;. Let us assume by contradiction that © < T and let T ¢
(©,T). We then have Y22, mje (L) = e An(T=T) 5%y o=An(T=74) from which, we deduce that
Yoy (€LY 4y, 152 me e @_”)) ¢n € D(L), which contradicts the fact that y' € L2(0,1) \
D(L). O

In order to complete the proof of Theorem [T} it remains to prove the uniqueness of this control
in the space of purely impulsive Radon measures. To this end, we will use the following lemma.

Lemma 3.4. Let T >0, (0)reve € ([0, TN and assume that 0y # 0; for every j k. Then, the

family {('yne_’\“(T_gk))mlN* LIV is free in RY, where we have set

ek = qpe A (T-00) (ke N*,ne IN*).
Proof. Assume by contradiction that there exist N € N* and a',...,a" € R not all null such that
Y ke A (T=0) = 0 for every n e N*.
This in particular implies that the matrix

,.yle—Al (T—@l) ’Yle_Al(T_oN)

M= : : e Mn(R)
e AN (T=01) e I (T=0x)

is not invertible. This also implies the existence of ¥ = (1,...,%x)7 € RY {0} such that
W eker M7, that is to say,

N
S e T =0 (ke {l,...,N}),
n=1

Defining the map ¢ : t € [0,T] = TN ¢l e (T ¢ R, we deduce that ¢ admits N distinct
roots. According to [9, Exercice 13 p. 154], the function v is either null or admits at most N -1
roots (counted with their multiplicity), we deduce that ¥ = 0, and finally with the controllability
of the pair (A, By) (defined by ), we deduce that we necessarily have ¢! = 0. This leads to
a contradiction with the fact that ¢~ # 0. O

We are now in position to prove the uniqueness of this control in the space of purely im-
pulsive Radon measures. Indeed, if there exist two sequences, (71, 7i)ien+, (M, Ti)ienws € (R X
[0, 7(y°,4")))N" such that the controls @ = Y52, ;07 and u = ¥, m;d,, steer y° to y' in time
T(y°,y'), we have,

Tn Z,uie_’\”(T‘ei) =0 (neN"),

i=1
where 92'#:9]‘ foriq&j, {ei,iEN*}Z{Ti,Z'E]N*}U{%i,iEIN*}, and Wi = Z m; — Z m]‘. Thus,
jeIN* jeIN*
Tj=9i 7:]':011

by application of Lemma [3.4] we deduce that we necessarily have p; =0 for every 4, that is to say
that, u = 4.



4 Numerical example

4.1 Dirichlet 1D heat

We consider the system (1.1) with p =1, ag = g =1 and a1 = 1 = 0. For this system, the set
of positive steady states is given by SF = {x €[0,1] »av | ve R}}. It is also classical that the
corresponding eigenvalues and normalized eigenvectors of the operator L defined by (1.3)) are

A =—(nm)?  and @, (x) = V2sin(nmz)  (ze€[0,1]) (neIN™).

We also have
Tn =~ x@n(l) = (_1)n+1 2nm (n € IN*)'

This in particular implies that for every y° € L2(0,1) and every y' € S¥, we have T(3°,y') < oo (see
Proposition and the result of Theorem [l applies. Furthermore, as observed in Section |3| the
minimal time control u given by Theorem [I] can be approximated by the sequence of minimizers
of .

For the numerical simulation, we consider y'(z) = 2 € S7 and y°(z) = cos(wz) € L?(0,1), and
we have

Y, = folyo(x)wn(;v)dgg _ W .

vie [M@enm e CITV2 0 ey,

In order to numerically solve , we use the sequential quadratic programming method of the
optimization toolbox of matlab. On Figure |1} we display the values of Ty = T (3%, y'), 7N and
mY with respect to N. Recall that for some given N € IN*, the optimal control of is a some
of at most [(N +1)/2]| Dirac masses and for i > [ (N +1)/2], we have set 7{¥ = T, and m®¥ = 0.

On Figure [2| we display the control obtained for N = 20 equality constraints. On this figure,
we also display the observation B of the adjoint . As stated in Lemma we observe that
Bl (t) > 0 for every t € [0,Ty], and that Dirac masses are located in the set of times ¢ € [0, Ty ]
such that B},¢(t) = 0. The minimal time obtained with N =20 is T, ~ 0.075091. We also display
on Figure [3] the corresponding state trajectories.

4.2 Dirichlet 3D spherical heat

Let us consider the heat equation

y(t,z) = Ay(t,z) (t>0,ze), (4.1a)
y(t,x) =u(t,z) (t>0, ze00), (4.1b)

with © the unit ball of R®. Note that for every y° e L2(Q) and every y' € L?(Q) solution of
Ay'

yl

0 in Q,
on 0f),

Il
Sl

for some positive @ € L?(02), we have, by application of the results contained in [I0], that the
solution of (4.1)) can be steered from y° to y' with a nonnegative control w. Furthermore, this

10
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Dirac impulses.)
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State between initial time ¢ = 0 and time ¢ = 0.005955 State between times ¢ = 0.005955 and ¢ = 0.048372
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3+ initial state (real) 4 3+ b
25 | , 25 | g
2 L ] 2 L i

3+ 3 F
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2+ 2+

-0.5 B -0.5 4
-1k 4 -1k 1
. . . . . . . .
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
z x
State between times ¢ = 0.066186 and ¢ = 0.069755 State between times ¢ = 0.069755 and final time ¢ = 0.075091
3.5 T T
target state (projected) ———

3+ target state (real) g
2.5 + b
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T x

Figure 3: State trajectory obtained for N = 20 equality constraints for the system, the initial
and target conditions given in Section [I.I] The corresponding minimal time control is given in
Figure[2] and the minimal time obtained is 0.075091. (On each plot, the color goes from blue (the
state at the minimal time of the plot) to red (the state at the maximal time of the plot). The
initial (respectively target) projected state is Y2 | Y, for i = 0 (respectively i = 1).)

requires a minimal time T = T(y°,y') > 0, and there exists a non-negative control u € M (9 x
[0,T]), steering y° to y' in time T.

In addition, if y° and y' are radially symmetric, i.e., y°(x) = y°(|z|) and y*(z) = y*(|z|), then
the control w can be chosen radially symmetric, i.e., u(t,x) = u(t). We then have that y(t,-) is

12



radially symmetric for every ¢, and y defined by y(¢,|2|) = y(t,«) is solution of

y(t,r) = %ar (2°0,y(t,2)) (t>0,z¢(0,1)), (4.2a)
0,y(t,0)=0 (t>0), (4.2b)
y(t,1) = u(t) (t>0), (4.2¢)
y(0,2) = °(z) (z€(0,1)). (4.2d)

Even if (4.2) does not fit the requirement made for (1.1f), it is however classical that the solution
of (4.2)) can be decomposed as

oo o t
y(t,z) = Z ane_)‘"tcpn(x) + Z Y / e_)‘"(t_s)u(t) dt o, (z),
n=1 n=1 0

where for every n € IN*, we have set
A\, = —(nm)?, on(x) =V2nmsinc(nrz) (z€[0,1]) and A, = —0ppn(1) = (-1)""'V2nr.
In addition, it is classical that the operator L defined by

D(L) ={y € Hz(0,1) | 92y(0) =y(1) =0},

Ly- (g: €(0.1) > 50 (0ry(r) € ]R)) e12,(0,1)  (yeD(L)),

is self-adjoint for the scalar product (y,z) = f01 y(2)z(z)z?dz. In the above definition, we
have used L2,(0,1) = {y: (0,1) >R | ]01 ly(x)|? v2dx < oo} and H%(0,1) = {y: (0,1) > R |
dy € L2,(0,1) and 02y € L2, (0,1)}. One can also check that {y,}nen+ is an orthonormal
basis of Lﬁz (0,1). In addition, one can see that the set of positive steady states of is
S ={z€[0,1]»v | veR}}. With this operator L, one can also check that the conclusions of
Theorem [1| also holds. In particular, for every 1° € Liz (0,1) and every y' € S, there exists a
minimal time 7'(y°,y") required to steer y° to y' with nonnegative controls and furthermore, at
time T(y°, %), there exists a nonnegative purely impulsive control u steering y" to y' in time
T(y°,y') and this control can be approximated by sequence of minimizers of .

For the numerical simulation, we consider y'(z) =1 € 8§} and y°(z) = cos(rz) € L?,(0,1) and
we have,

-1

ifn=1,
1 22

Y, = f Y0 (2) o (z) 2?da = Var and
0 (-1)"V2n .
W OthGrWlse
n?-1)m
1 -1 n+1\/§ .
Yn1 = fo v (z) o, (2) 2%da = 7( )nﬂ' (neIN™).

Here also, in order to numerically solve , we use the sequential quadratic programming method
of the optimization toolbox of matlab. On Figure 4l we display the values of T = T (v", %),
TZ»N and mzN with respect to N. Recall that for some given N € IN*, the optimal control of
is a some of at most | (NN + 1)/2] Dirac masses and for i > (N +1)/2], we have set 7¥ = T, and

m =0.
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Figure 4: Illustration of the convergence of Ty, N and mfv as N — oo for the control system

1
given in Section [{.2}

On Figure [5] we display the control obtained for N = 20 equality constraints. On this figure,

we also display the observation B} of the adjoint ¢. As stated in Lemma 3.1, we observe that
NU(t) >0 for every t € [0,7 ], and that Dirac masses are located in the set of times ¢ € [0,y ]
such that B,¢(t) = 0. The minimal time obtained with N =20 is T, ~ 0.103882. We also display

on Figure [] the corresponding state trajectories.
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Figure 5: Minimal time control and corresponding adjoint obtained for N = 20 equality constraints
for the system, the initial and target conditions given in Section [4.2] The corresponding state
trajectory is given in Figure |§|, and the minimal time obtained is 0.103882. (Arrows stand for
Dirac impulses.)

4.3 Coupled heat system

For this example we consider the coupled heat equation given by

o1 (t,x) = O2y1(t,x) +ya(t, x) (t>0,2€(0,1)), (4.3a)
U2 (t,x) = D2ya(t, ) (t>0,z€(0,1)), (4.3b)
y1(t,0) =y1(t,1) =y2(¢,0) =0 (t>0), (4.3¢)
ya(t,1) = u(t) (t>0), (4.3d)
y1(0,2) = y) (x) (z€(0,1), (4.3¢)
y2(0,2) = o () (z€(0,1). (4.3f)

For this system, we observe that the set of positive steady states is given by
Si={ze[0,1] » (ua(l-27), 6uz) | ueR}}.
Let us also define the operator L by
D(L) = (H?(0,1) n Hy(0,1)) x (H*(0,1) n H)(0,1)),
L(y1,y2) = (391 + 2, D7y2) (y1,92) € D(L).

One can see that L is m-dissipative. In addition, according to [8], the system is null con-
trollable. However, it is not proved that for every y?,y5 € L?(0,1), the system is null controllable
with continuous controls. This fact is required to prove the existence of a time 7' > 0 and a non-
negative control u € L?(0,7T') steering the solution of from y° = (3?,49) € L2(0,1) x L?(0,1)
to y' = (y1,y1) €S} in time T. In other words, this fact is required to prove that T(y°,y') < co.

Note also that the operator L is not diagonalizable. However, defining for every n € IN*, ¢,
and A, as in Section [4.1] we observe that

L(gOmO) :_)\n(@mo) and L(Ov@n) :_)\n(oﬁpn)"'(@mo)'

It is also trivial that {(¢n,0)}, e U {(0,n)}, e+ i an orthonormal basis of L2(0,1) x L?(0,1).
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Figure 6: State trajectory obtained for N =20 equality constraints for the system, the initial and
target conditions given in Section[f.2] The corresponding minimal time control is given in Figure 5]
and the minimal time obtained is 0.103882. (On each plot, the color goes from blue (the state
at the minimal time of the plot) to red (the state at the maximal time of the plot). The initial
(respectively target) projected state is Y0 ; Y;ip,, for i = 0 (respectively i = 1).)

As previously, if u € M([0,T]) is a control steering some initial condition 3° = (¢,99) to a

16



target y' = (yi,ys) in some time T > 0, then we have, for every n e N,
T
Yll,n _e T (Y10n 4 TYz(fn) = Yn ./o (T - t)e—)\n(T—t) du(t)
T
Y e Ty0 o / e T gy (1),
’ ’ 0

where for every n € IN*, Yki,n = 01 yi(2)pn(x)dz (with i € {0,1} and k € {1,2}), and 1, is defined
as in Section In particular, for an impulsive control, u = ¥.;2; m;0,,, we have,

Yll,n - eiAnT (Ylo,n + TYQ?n) =Tn Z mZ(T - Ti)eiA(TiTi)a
=0
Yy = e TV, =y om0,
=0

Assuming that null controllability of (4.3 holds with continuous controls, one can repeat the
development made in Section [3] to conclude that similar result hold. In particular, for every
v = (9,99) € L?(0,1)x L?(0,1) and every y' = (y},vs) € S7, there exists a minimal time 7(y°,y')
required to steer 4° to y' with nonnegative controls. Furthermore, at time 7'(y°,y'), there exists
a nonnegative purely impulsive control u steering 3° to y! in time T(y°,y') and this control can
be approximated, as N — oo, by sequence of minimizers of the minimization problem

Ty(y°y') =min T
T3>0,
Jue M([0,T]) s.t. u>0 and Vne{l,...,N}.

Yl1 —e T (Ylom + TYQO,n) =Yn Z m; (T - Tl-)e*/\(T’T") and (4.4)
i=0

n

oo
“An T30 “An(T-T;
-e Yo n =V Y, mi€ (7o),
i=0

}/‘21

,n

Note that applying the results of [I1], we obtain that the control minimizing is a sum of at
most N Dirac masses.

For the numerical example, we consider yi (z) = z(1 - z?), ya(z) = 6z, y?(z) = —z and y3(z) =
cos(mx), we then have, for every n e N*,

Ve NEN

yo -+ /2 ¥*© vl
1,n n ) 1,n (TL7T)3 )
o (Le ()R i (D)6
Zn (n2-1)mr 2n nmw '

As for the previous examples, in order to numerically solve , we use the sequential quadratic
programming method of the optimization toolbox of matlab. On Figure[7], we display the values of
Ty=Txn"yb), TZ»N and mfv with respect to N. Recall that for some given N € IN*, the optimal
control of is a some of at most N Dirac masses and for i > N, we have set 7{¥ = T and
m =0.

On Figure |8, we display the control obtained for N = 7 equality constraints (unfortunately, I
did not succeed to have convergence to a minimizer of for N > 7). On this figure, we also
display the observation B9 of the adjoint ). As for the previous examples, we observe that the
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Figure 8: Minimal time control and corresponding adjoint obtained for IV = 7 equality constraints
for the system, the initial and target conditions given in Section The corresponding state
trajectory is given in Figures El and and the minimal time obtained is 0.319723. (Arrows stand
for Dirac impulses.)
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Figure 9: State trajectory (y; left and yo right) obtained for N = 7 equality constraints for the
system, the initial and target conditions given in Section [£:3] The corresponding minimal time
control is given in Figure[§] and the minimal time obtained is 0.319723. The state for final times
is displayed in Figure (On each plot, the color goes from blue (the state at the minimal time
of the plot) to red (the state at the maximal time of the plot). The initial (respectively target)
projected state is Yh_, Y} ngn, for i = 0 (respectively i = 1) and for j € {1,2}.)

adjoint observation is of constant sign, and that Dirac masses are located on times when the adjoint
observation vanishes (these facts were expected from [I1]). The minimal time obtained with N =7
is Ty ~ 0.319723. We also display on Figures El and [10| the corresponding state trajectories.
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Figure 10: Figure |§| continued.

5 Conclusion and open questions

In this paper, we have shown, for one dimensional heat equation, that steering an initial state
to some positive target state with a nonnegative control requires some minimal time 7. At this
minimal controllability time T, there exists a nonnegative control, steering the initial state to the
target state in time T, in the space of Radon measures which is a countable sum of Dirac masses. In
addition, the minimal time T" and the associated purely impulsive control can be obtained through

a sequence of minimization problems of finite dimension.

Some open questions are listed below.
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Uniqueness of the minimal time control. It has been shown that the minimal time control
is unique in the space of purely impulsive controls. It remains to show that any control at the
minimal time do not have a continuous part. This will give the uniqueness of the minimal time
control in the space of Radon measures.

Adjoint state at the minimal control time. For the finite dimensional system , it has
been shown in [IT] that at the minimal time T, there exists an adjoint state 1"V such that its
observation B}, %" has a constant sign on [0,7 ], and such that the time impulses of the minimal
time control are located in the set of times when the adjoint observation vanishes. Such a result
has not been proved for the continuous heat equation. If we aim to prove such a result, by passing
to the limit N — oo, we need some compactness properties on the sequence (¢Yn (L)), A better
understanding of relation between adjoint observation and minimal time control would be nice, in
particular for developing more powerful numerical methods.

Convergence rate. We have seen that the minimal time 7'y, and minimal time control ulN
minimizers of (3.3) converges to the minimal time and control T' and u, minimizers of (3.1)).
Estimations of the convergence are unknown.

Coupled heat system. For the coupled heat system considered in Section [4.3] it has been seen
that Theorem (1| also applies, provided that null controllability of (4.3) could be achieved with the
help of continuous controls. As far as I know, this is an open problem.

A Controllability with nonnegative controls
Let us first recall that, according to [7], for every y° € L?(0,1), every time T > 0, there exists a

control v € C°([0,T]) such that the solution of (T.1]) satisfies y(T,-) = 0. By duality there exists
Cr > 0 (depending only on T') such that for every z' e L2(0,1), the solution z of

—2(t,x) = Oy (p(2)0:2(t,x)) z + q(x)2(t, x) (te(0,T), z€(0,1)),
0= apz(t,0) + a10,2(t,0) (t€(0,7)),
0=0602(t,1) + B10,2(t,1) (te(0,7)),

2(T,x) = 2" (z €(0,1)),

satisfies,
12(0,) | 20,1y € Cr[[2(t, )| 10,7y,
if ,61 * 0, or

[2(0,-) £2¢0,1) € Crl|022(t, 1) | 21 (0,19,

if By # 0. By duality, this means that the control u steering y° to 0 in time 7" can be chosen so that
|ul 20,7y € C7lly° | £2(0,1)- It is then trivial exercise to see that for every y' € 87, the control u
steering y" € L?(0,1) to y* can be chosen so that

H’u, — ul ||L°°(0,T) < CTHyO - yl HL2(071)’

where u! > 0 is the control associated to the steady state y'.

When L is dissipative. When L is dissipative, it is a classical exercise to show that for every
7> 0 and every k ¢ IN*, we have Cj, < % Meaning in particular, for every y' € S7 and every
yY € L?(0,1), that taking 7 > 0 and taking k € N* sufficiently large, we have

C
HU_U1HL°°(0,T) < ?T”yo —Z/1HL2(0,1) <u!
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(here again u' € R} is the control associated to the steady state y').
This in particular means that, by taking k = k(y°,y',7) sufficiently large, there exists a non-
negative control steering y° to y' in time k7.

General situation. When L is not dissipative, it is not possible to use the previous argument.
However, we can use a quasi-static approach combined with a compactness argument. Indeed,
given 7 > 0, y¥, y' € S7, with associated control u® and u!, for some K € IN*, we define, for every
ke{l,...,K-1}, y*/K ¢ S* the steady state associated to the control u®+ %ul. By taking K large
enough such that %Hy1 ~ 4% z2¢0,1) < min{u®,u'}, there exists a nonnegative control uy, steering

y*I5 to yF+D/K in time 7. Then by concatenating these controls, we have found a nonnegative
control steering y° to y! in time K.

B Existence of a nonnegative minimal time control in the
space of Radon measures

The proof of this fact follows the one of [10, Theorems 2.1 and 3.1] or [I1}, Proposition 5.1.7]. Indeed,
if 4 and y! € L?(0,1) are such that T(y",y') < oo (i.e., y' is reachable form y° with nonnegative
controls), then there exists a nonincreasing sequence (Tj)gew € [T(y°,4%), 0)N such that T}, —
T(y°,y') as k — oo and such hat for every k € IN, there exists a nonnegative control uy € L2(0,T})
steering the solution y; of from y° to ' in time T}. In addition, since the operator L defined
by is symmetric and diagonalizable, we pick an eigenvalue A € R of L and ¢ € D(L) ~ {0} an
associated eigenfunction. Let us define for every i € {0,1}, Y* = (4", ¢)12(0,1),12(0,1)- Since uy is a
control steering y° to y! in time T}, we deduce that, uy shall satisfy , with y(7,-) = ¥, i.e.,

Yl _ )\TW,YO T
et f FATED, (1)t (ke N),
vy 0
1
MWoq), g0,
with ~ = b (recall that in both situations, we have v # 0).
p(1)
_678190(1)7 if /80#:0
0

This ensures that (since ug > 0 and e*(Tx=8) > ek for every ¢ € [0, T}]),

1 AT 1D
/Tk ug(t) dt < T M.
O ]

Finally, since (T} ) is a nonincreasing sequence, we obtain (by extending uy, by 0 on (T, Tp)) that,

INTo Moy 0] + [y

(keIN),
ol

lurllzrco,m) <e

that is to say that the sequence (uy)y is uniformly bounded in L'(0,7T,) and hence, is up to the
extraction of a subsequence, vaguely convergent to some Radon measure u € M([0,Tp]) (see e.g.,
[3, Corollary 31.3 p. 206]). Since uy > 0 and suppug c [0,T] for every k € IN, we easily deduce
that we necessarily have u > 0 and suppu c [0,7(y°, y!)].

It remains to check that u is indeed a control steering 3° to y! in time T'(y°,y'). This can be
deduced by taking the limit k - oo in or (with T = Ty, and du(t) = ug(¢)dt).
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C No gap situation

Let y° € L?(0,1) and y' € S and assume that T(y",y') < oo, i.e. y" can be steered to y!' with a
nonnegative L? control. Recall that T(y",y') is defined by (1.4)), i.e.,

T°,y") = inf{T >0 | JueL*(0,T) s.t. u>0
and the solution y of (1.1)) satisfies y(7,-) = yl},

The aim of this paragraph is to show that we have T'(y°,y' =T ,,(y°,y"), where we have set

Tr(@°y") =inf{T>0 | Jue M([0,T]) s.t. u>0
and the solution y of (1.1)) satisfies y(T),-) = yl},

Obviously, we always have 0 < T,(y°,y*) < T(y°,y"). Arguing as in [I1, Proposition 5.1.11]
and using comments contained in Appendix [A] we can prove that, given a time 7' > 0 and a
nonnegative control u € M([0,T]) steering y° to y' in time T, and given any ¢ > 0, there exists a
control u € L?(0,T +¢) steering y° to y' in time T'+¢. This fact shows that T(y°,y') = T, (v°, y*).

Remark C.1. When y! is not a positive steady state, it has been shown (on some finite dimensional
systems) in [1T] that an infimum gap could occur (i.e., T(y°,y") < T (y°,y')). Let us refer to [12]
for general no gap condition for finite dimensional control systems.
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