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Abstract8

Given an undirected graph, in the AVD (edge-colouring) Conjecture, the goal is to find9

a proper edge-colouring with the least number of colours such that every two adjacent10

vertices are incident to different sets of colours. More precisely, the conjecture says that,11

a few exceptions apart, every graph G should admit such an edge-colouring with at most12

∆(G) + 2 colours. Several aspects of interest behind this problem have been investigated13

over the recent years, including verifications of the conjecture for particular graph classes,14

general approximations of the conjecture, and multiple generalisations.15

In this paper, following a recent work of Sopena and Woźniak, generalisations of the
AVD Conjecture to digraphs are investigated. More precisely, four of the several possible
ways of generalising the conjecture are focused upon. We completely settle one of our four
variants, while, for the three remaining ones, we provide partial results.

Keywords: AVD Conjecture; proper edge-colourings; digraphs.16

1. Introduction17

One of the most central notions of graph theory is that of proper edge-colourings. Given18

an undirected graph G, a proper k-edge-colouring φ of G is an assignment φ : E(G) →19

{1, . . . , k} of colours to the edges such that no two adjacent edges (i.e., incident to a20

same vertex) get assigned the same colour. We are usually interested in determining the21

chromatic index χ′(G) of G, which refers to the smallest k such that G admits a proper22

k-edge-colouring. Perhaps the most important result regarding the chromatic index of23

graphs is Vizing’s Theorem [8], which states that, for every graph G, we have χ′(G) ∈24

{∆(G),∆(G) + 1} (where ∆(G) denotes the maximum degree of a vertex in G). Even25

though that result means the chromatic index of any graph is one of only two possible26

values, it is important to recall that determining the chromatic index of a graph is an27

NP-complete problem in general [4].28

In several contexts, it might be convenient to have edge-colourings of graphs that are not29

only proper, but also have additional properties. When considering such a stronger form30

of proper edge-colourings, an interesting question is about the least number of additional31

colours needed to construct one for any given graph.32

In this work, we are mostly interested in proper edge-colourings that allow to distinguish33

adjacent vertices according to their respective sets of incident colours. More precisely,34

IThis work has been partially supported by the ANR project DISTANCIA (ANR-17-CE40-0015).
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given a proper edge-colouring φ of a graph G, for every vertex u, we can compute S(u),35

which is the set of colours assigned by φ to the edges incident to u. Note that, by the36

properness of φ, we always have |S(u)| = d(u). Now, we say that φ is distinguishing if,37

for every edge uv, we have S(u) 6= S(v). We denote by ndi(G) (where “ndi” stands for38

“neighbour-distinguishing index”) the least k such that G admits a distinguishing proper39

k-edge-colouring (if any). Actually, it is easy to see that ndi(G) is defined if and only if40

G has no connected component isomorphic to K2 (just consider a proper edge-colouring41

assigning a distinct colour to every edge). Thus, regarding those notions, we are interested42

in nice graphs, which are the graphs with no connected component isomorphic to K2.43

We employ the simple terminology and notations above for the sake of the current44

work’s legibility. It is worth mentioning, however, that this terminology and these notations45

vary from one work to another in the literature. In particular, our notion of distinguishing46

edge-colouring is sometimes called adjacent vertex-distinguishing edge-colouring, neighbour-47

distinguishing edge-colouring, adjacent strong edge-colouring or 1-strong edge-colouring.48

Our parameter ndi is sometimes written χ′avd and called the adjacent vertex-distinguishing49

chromatic index. Even more different terms and notations are used in some works.50

Clearly, we have χ′(G) ≤ ndi(G) for every nice graph G. Regarding the concerns51

above, a natural question to ask is how large can ndi(G) be in general. It can be noted52

that ndi(C5) = ∆(C5) + 3 = 5, where C5 denotes the cycle of length 5. However, it is53

believed that C5 should be the only nice graph G for which ndi(G) is that large. This leads54

to the following conjecture raised by Zhang, Liu, and Wang in 2002 [11].55

AVD Conjecture. For every nice connected graph G 6= C5, we have ndi(G) ≤ ∆(G) + 2.56

Comparing the AVD Conjecture to Vizing’s Theorem, the conjecture indicates that,57

in general, at most two additional colours might be necessary to turn a normal proper58

χ′(G)-edge-colouring of a graph G into a distinguishing one.59

Several interesting results towards the AVD Conjecture have been obtained since its60

introduction. In particular, the conjecture was verified for bipartite graphs and subcubic61

graphs [2]. It was also proven in [1], that every nice graph G verifies ndi(G) ≤ 3∆(G). We62

refer the interested reader to [6] for more details.63

In graph theory, a common line of research is, given a particular problem defined on64

undirected graphs, to wonder about its counterparts on digraphs. Regarding the AVD65

Conjecture, this is a promising prospect due to the numerous generalisations that can be66

considered. Indeed, by a proper arc-colouring of a digraph D, note that every vertex u can67

now be associated two sets S+(u) and S−(u) of incident colours, where S+(u) is the set68

of colours assigned to the arcs out-going from u, and S−(u) is the set of colours assigned69

to the arcs in-coming to u. Recall that, in the directed context, a proper arc-colouring70

φ of D verifies that two arcs out-going from a same vertex are assigned distinct colours,71

and similarly for two arcs in-coming to a same vertex. Under that definition, note that an72

arc out-going from u and an arc in-coming to u can be assigned the same colour. Note73

also that, because φ is proper, we have |S+(u)| = d+(u) and |S−(u)| = d−(u), which is74

reminiscent of the similar property of proper edge-colourings of undirected graphs.75

For a digraph D, its chromatic index χ′(D) is the least k such that D admits proper76

k-arc-colourings. By the definition of proper arc-colourings, note that we always have77

χ′(D) ≥ ∆∗(D) = max{∆+(D),∆−(D)}, where ∆+(D) and ∆−(D) denote the maximum78

out-degree and maximum in-degree, respectively, over all vertices of D. In contrast with79

the undirected context of Vizing’s Theorem, it is known that the chromatic index of a80

digraph D is always precisely the natural lower bound ∆∗(D) (see, e.g. [10]).81
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Since every vertex gets assigned two sets of colours in any proper arc-colouring φ of82

a digraph, there are plenty of ways of considering that two adjacent vertices are distin-83

guished by φ, and thus, many possibilities for defining a directed counterpart to the AVD84

Conjecture. To the best of our knowledge, this line of research was not considered until85

quite recently, by Sopena and Woźniak in [7]. In their variant of the problem, they consider86

that two adjacent vertices u and v are distinguished by a proper arc-colouring when either87

S+(u) 6= S+(v) or S−(u) 6= S−(v). They conjectured that every digraph D admits such a88

distinguishing proper arc-colouring using at most ∆∗(D) + 1 colours, and they proved that89

2∆∗(D) colours are enough to construct one.90

In the line of the investigations initiated by Sopena and Woźniak, we consider several91

directed variants of the AVD Conjecture. Specifically, we consider four variants, in which,92

for every two adjacent vertices, we ask that a single of the two set parameters differs.93

Precisely, our general terminology is as follows. Let D be a digraph, and φ a proper arc-94

colouring of D. To each of the set parameters S+ and S−, we associate a sign, namely95

+ and −, respectively. Now, for any two signs α, β ∈ {+,−}, we say that φ is (α, β)-96

distinguishing if, for every arc ~uv of D, the set parameter of u associated to α is different97

from the set parameter of v associated to β. We denote by ndiα,β(D) the least k such that98

D admits an (α, β)-distinguishing proper k-arc-colouring (if any).99

Note that this general terminology encapsulates a series of four colouring problems, each100

of which has behaviours that are more or less reminiscent of the original AVD Conjecture.101

In terms of colouring behaviours, note that the (+,−) version is the closest to the original102

problem, as, by a proper arc-colouring of a digraph, assigning a colour to an arc ~uv affects103

S+(u) and S−(v) which are precisely the two set parameters that are required to be different.104

From this perspective, the (+,+) and (−,−) versions are a bit farther from the original105

conjecture, while the (−,+) version is the most distant. Still, for all four of the versions,106

recall that the number of colours needed in a distinguishing proper arc-colouring is strongly107

dependent on the chromatic index.108

Observation 1.1. Let α, β ∈ {+,−}. For every digraph D such that ndiα,β(D) is defined,109

we have χ′(D) ≤ ndiα,β(D).110

Although our four variants of the AVD Conjecture have their own peculiar behaviours,111

we feel that, in general, for any of the variants, ∆∗(D)+2 colours should always be enough112

to construct a desired distinguishing proper arc-colouring. Our goal in this paper is to113

provide evidence towards this intuition. Section 2 is dedicated to investigating the (+,+)114

and (−,−) versions of the AVD Conjecture, while Section 3 is dedicated to the (+,−)115

version, and Section 4 is dedicated to the (−,+) variant. We provide a tight result on the116

(+,−) variant, while we provide partial results for the other variants.117

2. The (+,+) and (−,−) versions118

Note that a (+,+)-distinguishing proper arc-colouring of a given digraph D directly119

yields a (−,−)-distinguishing proper arc-colouring of D̃, the digraph obtained from D by120

reversing the direction of each arc. We can thus focus on the (+,+) version of the AVD121

Conjecture in this section, as these results apply to the (−,−) version as well, through this122

arc reversing operation.123

First off, we note that all digraphs admit a (+,+)-distinguishing proper arc-colouring.124

In other words, we do not need a notion of nice digraphs in this context.125

Proposition 2.1. Every digraph admits a (+,+)-distinguishing proper arc-colouring.126
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Proof. Let D be any digraph with arcs a1, . . . , am. Consider the arc-colouring φ that sets127

φ(ai) = i for every i ∈ {1, . . . ,m}. Clearly, φ is proper. It is also (+,+)-distinguishing,128

since, for every vertex u with an out-going arc ai, only the set S+(u) contains i.129

Note that, for any directed cycle D of odd length, we have ∆∗(D) = 1, but we need130

to use ∆∗(D) + 2 = 3 colours (two consecutive arcs must be assigned distinct colours in131

any (+,+)-distinguishing proper arc-colouring of a directed cycle). We believe this is the132

maximum value of ndi+,+(D) for a digraph D.133

Conjecture 2.2. For every digraph D, we have ndi+,+(D) ≤ ∆∗(D) + 2.134

Towards Conjecture 2.2, for every digraph D, we can easily establish an upper bound on135

ndi+,+(D) that is linear in ∆∗(D) by exploiting its relationship with proper edge-colourings136

of und(D), the undirected graph underlying D.137

Proposition 2.3. For every digraph D, we have ndi+,+(D) ≤ 2∆∗(D) + 2.138

Proof. Let G be the undirected multigraph obtained from D by replacing each arc by an139

edge. Note that G might indeed have parallel edges, but the maximum multiplicity µ(G)140

of its edges is 2. Also, ∆(G) ≤ ∆−(D)+∆+(D) ≤ 2∆∗(D). Now, by Vizing’s Theorem [9],141

there is a proper edge-colouring φG of G using ∆(G) +µ(G) = ∆(G) + 2 colours. We infer142

φG to an arc-colouring φD of D by simply transferring the colour of an edge in G to the143

corresponding arc in D. By the properness of φG, note that φD is also proper. Also, for144

every arc ~uv of D, we get that no arc out-going from v is assigned colour φD( ~uv), and thus,145

S+(u) 6= S+(v) since φD( ~uv) 6∈ S+(v). Thus, φD is also (+,+)-distinguishing. Since φD146

uses at most 2∆∗(D) + 2 colours, the result follows.147

Using a different approach, we can slightly improve the upper bound in Proposition 2.3.148

Theorem 2.4. For every digraph D, we have ndi+,+(D) ≤ 2∆∗(D) + 1.149

Proof. The proof is by induction on k, the number of vertices with out-degree at least 1. If150

k = 1, then D has only one vertex with out-going arcs, in which case D is an out-star. In151

this case, a (+,+)-distinguishing proper ∆∗(D)-arc-colouring φ is obtained by assigning a152

distinct colour to each arc of D. Indeed, φ is clearly proper, and we have S+(v) = ∅ for153

every leaf v of D and S+(u) 6= ∅ for the center u.154

Assume the claim holds for k up to some value x, and consider that D has x+1 vertices155

with out-degree at least 1. Let us consider u to be any vertex with out-degree at least 1, and156

out-going arcs ~uv1, . . . , ~uvd (where d ≥ 1). Consider D′ = D − { ~uv1, . . . , ~uvd} the digraph157

obtained from D by removing all arcs out-going from u. By the induction hypothesis, D′158

has a (+,+)-distinguishing proper (2∆∗(D)+1)-arc-colouring φD′ (since ∆∗(D) ≥ ∆∗(D′)),159

which we would like to extend to a (+,+)-distinguishing proper (2∆∗(D)+1)-arc-colouring160

φD of D, i.e., to the arcs ~uv1, . . . , ~uvd. Note that assigning a colour to any arc ~uvi only161

affects S+(u). Thus, our goal is to assign colours to the ~uvi’s in a proper way, so that the162

resulting S+(u) is different from S+(w) for every neighbour w of u in D. Note that there163

are at most 2∆∗(D) such neighbours w around u.164

For every arc ~uvi, in terms of properness, the colour assigned to ~uvi must differ from165

the colours assigned to the at most ∆∗(D) − 1 other arcs in-coming to vi. Since we are166

using a set of 2∆∗(D) + 1 colours, there are at least ∆∗(D) + 2 colours that can, from that167

point of view, freely be assigned to ~uvi. For every i ∈ {1, . . . , d}, let us denote by Li the168

set of these colours. Our goal now, is to choose distinct elements (to ensure properness)169

from L1, . . . , Ld, one from each of the Li’s, in such a way that the union of these elements170

avoids the sets of colours of the at most 2∆∗(D) neighbours of u. This is something that171

can always be done, according to the following claim:172
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Claim 2.5. Let L1, . . . , Ld be d ≥ 1 sets each containing at least d + 2 elements. Then,173

there are at least 2d+ 1 different combinations e1, . . . , ed of elements, such that ei ∈ Li for174

every i ∈ {1, . . . , d}, and all the ei’s are distinct.175

Proof of the claim. The proof is by induction on d. For d = 1, we have |L1| = 3. Every176

single element of L1 is a correct choice as e1, and thus, there are three correct combinations.177

Assume now that the claim holds for every d up to some x, and assume d = x+1. Without178

loss of generality, we may assume 1 ∈ L1. Set L′2 = L2 \ {1}, . . . , L′d = Ld \ {1}. By the179

induction hypothesis, we can produce 2(d − 1) + 1 = 2d − 1 combinations e′2, . . . , e′d of180

distinct elements from the L′i’s (one from each set). Each such combination e′2, . . . , e
′
d,181

together with 1, yields a combination 1, e′2, . . . , e
′
d that is valid for L1, . . . , Ld. Thus, we182

already know how to generate 2d − 1 different combinations of distinct elements from183

L1, . . . , Ld, all of which contain the element 1.184

All that remains to do is to generate two more combinations. To ensure this, we exhibit185

two such different combinations not containing the element 1. To that aim, let us choose186

arbitrary distinct elements e2, . . . , ed different from 1 from L2, . . . , Ld. This is possible187

since each Li has size at least d + 2. Now, since L1 also has size at least d + 2, there are188

at least three elements e1, e′1, e′′1 that are different from e2, . . . , ed. At least two of e1, e′1, e′′1189

must be different from 1. These two elements together with e2, . . . , ed yield our remaining190

two different combinations. ♦191

Now, by Claim 2.5, we can choose a combination e1, . . . , ed of distinct elements from192

L1, . . . , Ld (where ei ∈ Li for every i ∈ {1, . . . , d}) such that no w of the at most 2∆∗(D)193

neighbours of u in D verifies S+(w) = {e1, . . . , ed}. To finish the extension of φD′ to φD,194

it now suffices to set φD( ~uvi) = ei for every i ∈ {1, . . . , d}.195

3. The (+,−) version196

In this section, we focus on the (+,−) version of the AVD Conjecture, in which, by a197

proper arc-colouring of a digraph, it is required that S+(u) 6= S−(v) holds for every arc198

~uv. Recall that this distinction condition is, out of the four ones we are considering, the199

closest to the original distinction condition behind the original AVD Conjecture. Indeed,200

by a proper arc-colouring φ of some digraph, for every arc ~uv the colour φ( ~uv) contributes201

to both S+(u) and S−(v), which are precisely the two set parameters that are asked to202

differ for u and v in the (+,−) version.203

Compared to the (+,+) version, there are digraphs admitting no (+,−)-distinguishing204

proper arc-colourings. The smallest such digraph is a single arc ~uv, as S+(u) = S−(v) in205

any proper arc-colouring. Actually, the case of such a pathological arc can be generalised206

in the following way. We say that an arc ~uv of a digraph is lonely if d+(u) = d−(v) = 1.207

Note that, indeed, ndi+,−(D) is not defined for every digraph D containing a lonely arc. It208

turns outs that lonely arcs are the only source of non-colourability in the (+,−) version.209

That is, if we define a (+,−)-nice digraph as a digraph D with ndi+,−(D) being defined,210

then being (+,−)-nice is equivalent to having no lonely arcs.211

Proposition 3.1. A digraph is (+,−)-nice if and only if it has no lonely arc.212

Proof. Consider any digraph D, and let us denote by a1, . . . , am its arcs in an arbitrary213

fashion. Let φ be the arc-colouring of D where φ(ai) = i for every i ∈ {1, . . . ,m}. Clearly214

φ is proper. We claim φ is (+,−)-distinguishing if and only if D has no lonely arc. Indeed,215

consider an arc ~uv. If d+(u) 6= d−(v), then for sure S+(u) 6= S−(v) since |S+(u)| 6= |S−(v)|.216

Thus, assume d+(u) = d−(v). If d+(u) = d−(v) ≥ 2, then, if we denote by v′ another217
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out-neighbour of u, we have φ( ~uv′) ∈ S+(u) and φ( ~uv′) 6∈ S−(v), and thus S+(u) 6= S−(v).218

The only remaining case is when d+(u) = d−(v) = 1, which is precisely the case where ~uv219

is lonely, and we necessarily have S+(u) = S−(v) by any proper arc-colouring of D.220

We are actually able to prove a tight general upper bound on ndi+,−(D) for (+,−)-nice221

digraphs D. We prove that bound right away, because most of the remarks we can raise222

on the (+,−) version of the AVD Conjecture actually follow from our proof scheme.223

Our proof relies on an equivalence between the (+,−) version and particular cases of224

the original AVD Conjecture. This equivalence is with respect to the following notions225

and definitions. For a digraph D, by the bipartite graph associated to D, we refer to the226

undirected bipartite graph B(D) constructed as follows:227

• The two partite classes of B(D) are V + and V −.228

• For every vertex u of D, we add a vertex u+ to V + and a vertex u− to V −.229

• For every arc ~uv of D, we add the edge u+v− to B(D).230

In some sense, B(D) is obtained from D by splitting the out-going part and the in-231

coming part of every vertex. Note that B(D) is always balanced, in the sense that |V +| =232

|V −|. Also, we can infer some additional properties of B(D) from properties of D.233

Observation 3.2. For every digraph D:234

• ∆(B(D)) = ∆∗(D).235

• B(D) is nice if and only if D is (+,−)-nice.236

Proof. The first item is because, for every vertex u of D, the value of d+(u) (in D) equals237

the value of d(u+) (in B(D)), and similarly d−(u) equals d(u−). The second item is because238

an isolated edge u+v− in B(D) corresponds to a lonely arc ~uv in D, and vice versa.239

We are now ready to prove our main result in this section.240

Theorem 3.3. The (+,−) version of the AVD Conjecture is equivalent to the (original)241

AVD Conjecture in bipartite graphs.242

Proof. The notion of the associated bipartite graph is the key behind this equivalence.243

Indeed, finding a (+,−)-distinguishing proper k-arc-colouring of some (+,−)-nice digraph244

is equivalent to finding a distinguishing proper k-edge-colouring of some nice undirected245

bipartite graph.246

• Let D be a (+,−)-nice digraph, and consider the (nice, by Observation 3.2) bipartite247

graph B = B(D) associated toD. Let φB be a distinguishing proper k-edge-colouring248

of B. Consider the k-arc-colouring φD of D obtained by setting φD( ~uv) = φB(u+v−)249

for every arc ~uv. Note that φD is proper because φD( ~uv) 6= φD( ~uv′) when v 6= v′ since250

φB(u+v−) 6= φB(u+v′−) (by the properness of φB), and, similarly, φD( ~uv) 6= φD( ~u′v)251

when u 6= u′ since φB(u+v−) 6= φB(u′+v−). Also, φD is (+,−)-distinguishing because252

S+(u) 6= S−(v) for every arc ~uv of D since, in B, S(u+) 6= S(v−) (by φB being253

distinguishing). Thus, φD is a (+,−)-distinguishing proper k-arc-colouring of D.254
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• Let B be a nice bipartite graph. Denote by (U, V ) the bipartition of B. If necessary,255

add isolated vertices to B so that 1) B is balanced, and 2) there is an ordering of256

the vertices in U and V such that U = {u1, . . . , un}, V = {v1, . . . , vn}, and uivi is257

not an edge for every i ∈ {1, . . . , n}. Under those conditions, let D be the digraph258

constructed from B by adding a vertex wi for every i ∈ {1, . . . , n}, and an arc ~wiwj259

for every edge uivj of B. Clearly, B is the bipartite graph B(D) associated to D260

(where U plays the role of V + and V plays the role of V −). We now have the desired261

equivalence by the arguments used to deal with the previous case.262

The equivalence established in the proof of Theorem 3.3 has a series of consequences263

on the (+,−) version of the AVD Conjecture. In particular, the fact that ndi+,−(D) =264

ndi(B(D)) and ∆∗(D) = ∆(B(D)) hold for every (+,−)-nice digraph D yields some side265

results. For instance, it is known that there exist nice bipartite graphs G with ndi(G) =266

∆(G) + 2, see [2]. In the same paper, the authors proved that ∆(G) + 2 is actually the267

maximum value of ndi(G) for a nice bipartite graph G. In other words, the AVD Conjecture268

holds for nice bipartite graphs. For our problem, these remarks directly imply:269

Corollary 3.4. For every (+,−)-nice digraph D, we have ndi+,−(D) ≤ ∆∗(D) + 2. Fur-270

thermore, this upper bound cannot be decreased in general.271

4. The (−,+) version272

We now consider the (−,+) version of the AVD Conjecture, in which two vertices u273

and v that are adjacent through an arc ~uv are required, by a proper arc-colouring, to verify274

S−(u) 6= S+(v). Recall that this version is, in some sense, the variant we are considering275

that is the farthest from the original conjecture. This is mainly because the colour φ( ~uv)276

of an arc ~uv by an arc-colouring φ of a digraph contributes nothing to S−(u) and S+(v),277

which are the parameters of u and v that must differ.278

In the present context, again, not all digraphs admit (−,+)-distinguishing proper arc-279

colourings. To see this is true, consider the case of a digraph D containing an arc ~st280

such that d−(s) = 0 (source) and d+(t) = 0 (sink). Clearly, D does not admit a (−,+)-281

distinguishing proper arc-colouring, since we always have S−(s) = ∅ = S+(t). Note that282

the situation remains unchanged if we add the arc ~ts to D, since, here, we would always get283

S−(s) = α = S+(t), when assigning a colour α to ~ts. If D has two such adjacent vertices,284

we say that D has a bad configuration. Again, in this variant, a (−,+)-nice digraph is a285

digraph D for which ndi−,+(D) is defined. Actually, bad configurations are the only reason286

why some digraphs are not (−,+)-nice:287

Proposition 4.1. A digraph is (−,+)-nice if and only if it has no bad configuration.288

Proof. Let D be any digraph with arcs a1, . . . , am, and let φ be the arc-colouring of D289

where φ(ai) = i for every i ∈ {1, . . . ,m}. We claim that φ, which is clearly proper, is290

(−,+)-distinguishing if and only if D has no bad configuration. Indeed, let us focus on an291

arc ~uv. If d−(u) 6= d+(v), then S−(u) 6= S+(v) because |S−(u)| 6= |S+(v)|. So, let us assume292

that d−(u) = d+(v). If d−(u) = d+(v) ≥ 2, then S−(u) 6= S+(v) due to there being at least293

one arc out-going from v that is not in-coming to u. The same holds if d−(u) = d+(v) = 1294

and the arc in-coming to u is different from the arc out-going from v. So, there are only295

two cases remaining: 1) d−(u) = d+(v) = 1 and ~vu is an arc, and 2) d−(u) = d+(v) = 0.296

In both cases, D has a bad configuration, and φ cannot be (−,+)-distinguishing.297
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We note that there are (−,+)-nice digraphs D with ndi−,+(D) = ∆∗(D) + 2. Every298

odd-length directed cycle is an example of such a digraph. We think this might be the299

maximum value of ndi−,+(D) for a (−,+)-nice digraph D, which would be reminiscent of300

the AVD Conjecture.301

Conjecture 4.2. For every (−,+)-nice digraph D, we have ndi−,+(D) ≤ ∆∗(D) + 2.302

Towards Conjecture 4.2, contrarily to what was done in Section 2, note that using303

proper edge-colourings does not yield a linear upper bound (in ∆∗(D)) on ndi−,+(D) for304

every (−,+)-nice digraph D, as the distinction condition in the (−,+) version, in some305

sense, asks arcs at distance 2 to be different. Instead, an upper bound on ndi−,+(D) can be306

expressed, for instance, as a function of the strong chromatic index χ′s(und(D)) of und(D),307

which is the smallest number of colours in an edge-colouring of und(D) where no two edges308

at distance at most 2 get assigned a same colour. Such an upper bound would be quadratic309

in ∆∗(D) (see, for instance, [3]).310

Using different arguments, for every (−,+)-nice digraph D, we provide an upper bound311

on ndi−,+(D) that is linear in ∆∗(D). Just as in Section 3, this is by exploiting some312

relationship between an arc-colouring of D and an edge-colouring of B(D), the bipartite313

graph associated to D. However, note that using the relationship is not so natural in the314

present context. Indeed, by a proper edge-colouring of B(D), having S(u+) 6= S(v−) is not315

so relevant regarding D, as, when transposing the edge-colouring to an arc-colouring of D,316

this would yield S+(u) 6= S−(v), which is not required in the (−,+) version. Also, it might317

be that we want S+(u) and S−(v) to differ in D, while S(u+) and S(v−) are not required318

to differ in B(D) because u+v− is not an edge. To deal with such issues, we will consider319

distinguishing proper edge-colourings of B(D) verifying strong distinction conditions.320

Before proceeding with the proof, it is important to point out that lonely arcs, though321

they do not prevent ndi−,+(D) to be defined for a (−,+)-nice digraph D, have a peculiar322

behaviour (they yield isolated edges in B(D)) that will force us to handle them separately.323

In particular, we will make use of the following property of lonely arcs:324

Observation 4.3. Removing a lonely arc from a digraph cannot create new lonely arcs.325

Proof. Let D be a digraph, and let D′ = D − ~uv be the digraph obtained from D by326

removing a lonely arc ~uv. Assume D′ has a lonely arc ~xy which is not lonely in D. Then,327

either u = x or v = y. In the first case, we deduce that u has out-degree 2 inD, while, in the328

second case, we deduce that v has in-degree 2 in D. In both cases, we get a contradiction329

to the loneliness of ~uv.330

We are now ready to prove our main result in this section.331

Theorem 4.4. For every (−,+)-nice digraph D, we have ndi−,+(D) ≤ 3∆∗(D).332

Proof. Let L be the set of all lonely arcs of D, and set D′ = D − L. By Observation 4.3,333

D′ has no lonely arcs. Let B = B(D′) be the bipartite graph associated to D′. By334

Observation 3.2, D′ is nice, and ∆ = ∆(B) ≤ ∆∗(D′) ≤ ∆∗(D). Recall that the bipartition335

of B is denoted by (V +, V −). Note that B may have several connected components. In336

what follows, we need to dedicate a special care to some of them. Specifically, a connected337

component of B is said to be bad if it is a star with center in V + (and at least two leaves,338

in V −, since B is nice). In what follows, we obtain a (−,+)-distinguishing proper 3∆-arc-339

colouring φD of D by first colouring the edges of the non-bad connected components of340

B (and transferring the assigned colours to corresponding arcs in D), then colouring, in341
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D, the arcs corresponding to edges of the bad connected components of B, and eventually342

colouring the lonely arcs of D.343

We start by constructing a proper 3∆-edge-colouring φB of the non-bad connected344

components of B, such that all vertices v ∈ V + verify S(v) ∈ X while all vertices v ∈ V −345

verify S(v) ∈ Y, for some disjoint sets X ,Y of subsets of {1, . . . , 3∆}. To achieve this, we346

split {1, . . . , 3∆} into the three smaller sets R = {1, . . . ,∆}, B = {∆ + 1, . . . , 2∆}, and347

G = {2∆ + 1, . . . , 3∆} of colours, which we assign as follows.348

Let us focus on a non-bad connected component of B. Abusing the notation, let us349

denote by B this connected component. Recall that there are at least two edges in B, since350

B is nice. Pick an arbitrary vertex u∗ ∈ V +. This defines a partition of V (B) into layers351

V0, . . . , Vd, where every Vi contains the vertices of B that are at distance exactly i from352

u∗. Since B is not bad, we have d ≥ 2. Note that V0 = {u∗}, that every edge of B joins353

vertices in two consecutive Vi’s, that every vertex in some Vi with i 6= 0 has a neighbour354

in Vi−1, and that the union of all Vi’s with even index is exactly V + while the union of all355

Vi’s with odd index is exactly V −. Given an edge uv with u ∈ Vi and v ∈ Vi+1, we say356

that uv is downward from the point of view of u, while it is upward from that of v.357

For every i ∈ {1, . . . , d}, we split Vi into V ′i and V ′′i , where V
′
i contains the vertices358

of Vi with no downward edges, while V ′′i contains the vertices in Vi with downward edges.359

Note that V ′′d = ∅, and recall that V ′′1 6= ∅ since B is not bad. We now construct φB by360

assigning colours in R, B, and G to some sets FR, FB, and FG of edges of B, that are361

defined as follows:362

• For all i ∈ {0, . . . , d − 1} with i ≡ 0 mod 4, add all edges in E(B[Vi ∪ V ′i+1]) to FR,363

and all edges in E(B[Vi ∪ V ′′i+1]) to FG.364

• For all i ∈ {1, . . . , d− 1} with i ≡ 1 mod 4, add all edges in E(B[Vi ∪ Vi+1]) to FB.365

• For all i ∈ {1, . . . , d − 1} with i ≡ 2 mod 4, add all edges in E(B[Vi ∪ V ′i+1]) to FR,366

and all edges in E(B[Vi ∪ V ′′i+1]) to FB.367

• For all i ∈ {1, . . . , d− 1} with i ≡ 3 mod 4, add all edges in E(B[Vi ∪ Vi+1]) to FG.368

Note that FR ∪ FB ∪ FG = E(B). Furthermore, each of B[FR], B[FB], and B[FG]369

induces a subgraph of B with maximum degree at most ∆. By Vizing’s Theorem, B[FR]370

admits a proper ∆-edge-colouring with colours from R, B[FB] admits a proper ∆-edge-371

colouring with colours from B, and B[FG] admits a proper ∆-edge-colouring with colours372

from G. Altogether, this yields a proper 3∆-edge-colouring φB of B with colours from373

R∪ B ∪ G.374

In terms of vertex colours, by φB, we get:375

• S(u∗) has either elements from both R and G only (case where V ′1 6= ∅ and V ′′1 6= ∅)376

or elements from G only (case where V ′1 = ∅).377

• Consider a vertex u ∈ V1. On the one hand, if u ∈ V ′1 , then S(u) contains only one378

element, from R. On the other hand, if u ∈ V ′′1 , then S(u) contains exactly one379

element from G and at least one element from B (and no element from R).380

• More generally, for every u ∈ Vi with i > 1:381

– Assume i ≡ 0 mod 4. On the one hand, if u ∈ V ′i , then S(u) ⊆ G. On the other382

hand, if u ∈ V ′′i , then S(u) contains at least one element from G, and perhaps383

elements from R (and no elements from B).384
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– Assume i ≡ 1 mod 4. On the one hand, if u ∈ V ′i , then S(u) ⊆ R. On the other385

hand, if u ∈ V ′′i , then S(u) contains at least one element from G, and at least386

one element from B (and no elements from R).387

– Assume i ≡ 2 mod 4. On the one hand, if u ∈ V ′i , then S(u) ⊆ B. On the other388

hand, if u ∈ V ′′i , then S(u) contains at least one element from B, and perhaps389

elements from R (and no elements from G).390

– Assume i ≡ 3 mod 4. On the one hand, if u ∈ V ′i , then S(u) ⊆ R. On the other391

hand, if u ∈ V ′′i , then S(u) contains at least one element from B, and at least392

one element from G (and no elements from R).393

It is then easy to check that φB is distinguishing, since vertices in V + and in V − have394

sets of colours in disjoint sets X and Y. In particular, the fact that V ′′1 6= ∅ (because B is395

not bad) implies that S(u∗) contains at least one element from G.396

By applying the arguments above to all the non-bad connected components of the397

whole of B, we get φB, a partial distinguishing proper 3∆-edge-colouring of the non-bad398

connected components of B. By arguments used in the proof of Theorem 3.3, the properties399

of φB remain when transforming φB to a partial arc-colouring φD′ of D′. In particular,400

φD′ is proper and uses at most 3∆ colours, and, for every arc ~uv such that at least one of401

u and v does not belong to a bad connected component of B, we have S−(u) 6= S+(v).402

Our goal now is to extend φD′ to a (−,+)-distinguishing proper (3∆∗(D))-arc-colouring403

φD of D. To that aim, note that two types of arc configurations remain to be coloured404

in D: 1) the configurations corresponding to the bad connected components of B, and 2)405

the lonely arcs. Extending the colouring to such configurations can be proved to always406

be possible, via, essentially, counting arguments.407

First, consider a bad connected component in B. By definition, this connected compo-408

nent is a star with unique vertex u+ in V + being its center, and being adjacent to k ≥ 2409

leaves v−1 , . . . , v
−
k in V −. Back in D, this corresponds to a vertex u with out-neighbours410

v1, . . . , vk, where u has no other out-going arcs while all the vi’s have no other in-coming411

arcs. For every vi, note that if all arcs in-coming to u and all arcs out-going from vi412

have already been coloured, then S−(u) 6= S+(vi). This is because either both u− and v+i413

belong to non-bad connected components of B (in which case the distinction comes from414

how B was edge-coloured), because v+i is the center of a bad connected component in B415

whose associated bad configuration in D was treated earlier (in which case the distinction416

comes from the upcoming counting arguments), or because u− is a leaf in a bad connected417

component of B whose associated bad configuration in D was treated earlier (in which418

case the distinction comes from similar arguments as in the previous case). Thus, when419

colouring the arcs ~uv1, . . . , ~uvk, we only need to make sure that 1) all arcs out-going from420

u are assigned distinct colours, that 2) for every vi and every out-neighbour w of vi, the421

resulting set S−(vi) is distinct from the set S+(w), and that 3) the resulting set S+(u) is422

distinct from the set S−(w) of every in-neighbour w of u. Since d+(vi) ≤ ∆∗(D) for every423

vi, regarding the second condition, there is a set Li of at least 2∆∗(D) colours that can be424

freely assigned to ~uvi without violating that condition. We are now in a weaker condition425

than that of the statement of Claim 2.5: we have sets L1, . . . , Ld of at least 2∆∗(D) ele-426

ments, and we have to find a combination e1, . . . , ed of their elements such that all ei’s are427

distinct, each ei lies in Li, and the set {e1, . . . , ed} is different from S−(w) for each w of428

the at most ∆∗(D) in-neighbours w of u in D. By Claim 2.5, there is a such combination429

e1, . . . , ed, and we can correctly extend the arc-colouring by setting φD( ~uvi) = ei for every430

i ∈ {1, . . . , d}.431
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Once no configuration corresponding to a bad connected component of B remains in432

D, we are left with assigning a colour to each of the lonely arcs in L. Let us focus on a433

lonely arc ~uv of L that remains to be coloured. Recall that having S−(u) 6= S+(v) does434

not depend on how φD( ~uv) is chosen; that distinction condition is either already met by435

previous colouring arguments, or will be met by how other lonely arcs will be coloured436

later on. By definition of a lonely arc, recall that ~uv is the only arc in-coming to v and437

the only arc out-going from u. Hence, at the moment, S+(u) = S−(v) = ∅, and assigning438

a colour to ~uv will completely determine S+(u) = S−(v). Also, since v has no other arc439

coming in and u has no other arc going out, assigning any colour to ~uv cannot break the440

properness of φD. So, we just need to assign any colour to ~uv so that S+(u) is different441

from S−(w) for every w such that ~wu is an arc, and so that S−(v) is different from S+(w)442

for every w such that ~vw is an arc. There are at most ∆∗(D) such w for u, while there443

are at most ∆∗(D) such w for v, hence at most 2∆∗(D) constraints in total. Since we are444

using a set of 3∆∗(D) colours, there is a free one that we can assign to ~uv by φD, without445

raising conflicts in terms of properness or distinction.446

Once all lonely arcs of L have been treated that way, φD is a (−,+)-distinguishing447

proper (3∆∗(D))-arc-colouring of D.448

5. Conclusion449

Our goal in this paper was to investigate directed counterparts of the AVD Conjec-450

ture where, by a proper arc-colouring of a digraph, adjacent vertices are required to be451

distinguished by a given one of their two set parameters. For each of the four resulting452

variants, we believe that, for any nice (specific to the variant) digraph D, there should be453

a proper (∆∗(D) + 2)-arc-colouring which is as desired. We verified this for the (+,−)454

variant (Corollary 3.4), while we only verified weaker statements for the other variants455

(Theorems 2.4 and 4.4).456

An interesting aspect of this line of research lies in the differences between the original457

AVD Conjecture and each of the four variants, and also in the differences between these458

four variants. For instance, the notion of nice digraphs varies greatly from one variant to459

another. Also, the effects of colouring an arc in the four variants are more or less distant460

from the effects of colouring an edge in the original conjecture. In terms of inherent461

hardness, the (+,−) version of the AVD Conjecture seems to be the easiest one, as we462

proved it is equivalent to a very restricted case of the original conjecture (Theorem 3.3).463

We have the feeling that the (−,+) version should be the hardest one, particularly due to464

the fact that the colouring mechanisms are a bit less local.465

Regarding further work, of course the most important direction would be to tackle466

Conjectures 2.2 and 4.2. It could also be interesting to investigate our four variants of the467

AVD Conjecture in restricted classes of digraphs such as tournaments or acyclic digraphs.468

Lastly, as mentioned earlier, distinguishing adjacent vertices by a single set parameter is469

only one possible way for defining a directed counterpart to the AVD Conjecture, but470

playing with combinations of the two set parameters, just like Sopena and Woźniak did471

in [7], might lead to other interesting problems as well.472
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