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Progressing towards more reliable numerical solutions in the simulation of plasma for magnetic confinement
fusion has become a critical issue for the success of the ITER operation. This requires developing rigorous
and efficient methods of verification of the numerical simulations in any relevant flow regimes of the opera-
tion. The paper introduces a new formulation of the PoPe1 method, namely the independent Projection on
Proper elements method (iPoPe) to quantify the numerical error by performing a data-driven identification
of the mathematical model from the simulation outputs. Based on a statistical postprocessing of the outputs
database, the method provides a measure of the error by estimating the distance between the (numerical)
effective and (analytical) theoretical weights of each operator implemented in the mathematical model. The
efficiency of the present method is illustrated on turbulent edge plasma simulations based on a drift-reduced
Braginskii fluid model in realistic magnetic geometries. Results show the effective order of the numerical
method in these multiscale flow regimes as well as the values of the plasma parameters which can be safely
simulated with respect to a given discretization. In this sense, the method goes one step further than the
Method of Manufactured Solution (MMS2–4), recently introduced in fusion, and provides an efficient verifica-
tion procedure of the numerical simulations in any regimes, including turbulent ones that could be generalized
to other scientific domains.

PACS numbers: Valid PACS appear here
Keywords: PoPe, verification method, edge plasma modelling, TOKAM3X

I. INTRODUCTION

Fusion based on magnetic confinement aims at produc-
ing carbon-free electric power by using the energy liber-
ated by fusing deuterium and tritium nuclei at extremely
high temperatures (107-108K), within a plasma confined
by magnetic fields in machines of toroidal shape known
as tokamaks. The success of future fusion experiments
in reactors like ITER is conditioned by our capability
to both ensure the quality of plasma confinement in the
core, and to control the heat and particle fluxes on the
wall. During the operation, optimized plasma scenarii
will have to be found to satisfy conflicting constraints
between the fusion ignition that requires the plasma to
be sufficiently heated, fueled and confined, and the heat
exhaust on the tokamak wall to avoid undue damage.
Such scenarii still remain uncertain, largely owing to an
incomplete understanding of the mechanisms at play.

The difficulty to generate a global description based
on experimental measurements in tokamaks requires per-
forming complementary numerical simulations. With the
increasing performance of numerical codes and of the
computational resources, such simulations are becoming
a competitive way to investigate fusion plasmas physics
as well as to design optimized plasma scenarii during
tokamak operation. However, their reliability is still ac-
knowledged by the international community as being a
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critical issue whose a rigorous assessment can be carried
out by using the Verification & Validation procedure (V
& V5). The verification procedure aims to check the cor-
rect implementation of the mathematical model in the
code whereas the validation procedure checks the ability
of the numerical solutions to describe the true physics.

Developed by the computational fluid dynamics com-
munity, the Method of the Manufactured solutions MMS
(see e.g. Ref2–4) has been recently introduced in fusion
to verify the implementation of a discretized solution
procedure6,7. In this method, a manufactured analyti-
cal function is imposed as the solution of the problem
by adding a corrective source term into the mathemat-
ical model. The method then works very similarly to a
Richardson Extrapolation8 based on mesh and time step
sensitivity study. The error between the numerical solu-
tion provided by the code and the imposed manufactured
solution is screened when varying mesh and time step
sizes. The method is generally applied on smooth and
rather simple solutions in laminar regimes to be easily
derived. In addition, the method must ensure that the
error clearly decreases towards zero as the discretization
becomes small and that the theoretical order of conver-
gence can be attained. However, these analytical solu-
tions are clearly not representative of production runs.

The Projection on Proper elements method (PoPe) has
been introduced in Ref.1 and allows data-driven fluid and
kinetic model identification using simulations outputs.
Investigations have been conducted in Ref.9, in which
different noises were added to the simulations outputs
to mimic noise in diagnosis of real experiments. Studies
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have not yet been pursued in that direction as the main
aim of developing (i)PoPe was to perform codes verifica-
tion and models reduction. The estimation of the error
in the simulation relies on a statistical measure of the
distance between (numerical) effective and (analytical)
theoretical weights of the various operators implemented
in the mathematical model to solve. Unlike the MMS, it
is enabled to address any flow regimes, including turbu-
lence, and in that sense goes one step further than the
MMS classically used.

Regarding the investigation and simulation of the edge
turbulence, despite the exponential growth of computer
speed along with significant improvements in computer
technology, kinetic simulations remain extremely costly
from the computational point of view, even if pioneer-
ing full-f gyrokinetic simulations of the edge start ap-
pearing in the fusion community, addressing physical
phenomena of fundamental interest for fusion opera-
tion like transport barrier formation10,11. As a conse-
quence, fluid approach based on Braginskii equations12

and drift ordering13 remains a standard one near the
wall where the temperature is lower and the collisional
mean free path significantly smaller than in the core.
Various 3D codes already exist in the community, gen-
erally based on first and second-order finite-differences
/ finite-volumes numerical schemes (see a recent re-
view of most of these codes in Refs.7). Let’s mention
BOUT++ [US, UK]14, GBS [CH]15, CYTO [Dan, UK]16

and TOKAM3X17[FR] for the most commonly used in
the international community. In this paper, we will con-
sider TOKAM3X, which is co-developed in our team.
TOKAM3X has been formerly verified on smooth so-
lutions using the MMS17. The MMS study had to be
performed on one equation at a time, using smooth solu-
tions in space and time with respect to the discretization
(e.g. ∝ cos(2πt) sin(2πr/a) sin(θ) sin(ϕ)). Moreover, the
verification method was applied exclusively in a simple
geometry (slab or limiter with circular cross section),
and by prescribing simplified boundary conditions (usu-
ally Dirichlet’s). It is thus quite far from the turbulent
regimes targeted by the code, and under these condi-
tions, some operators might not be involved in the solu-
tion, leading to an incomplete verification of the equa-
tions. However, the convergence rates of the whole nu-
merical scheme was recovered with this procedure, ex-
cepted a slight deviation on the vorticity equation. In
addition, TOKAM3X was benchmarked with other codes
of the fusion community by simulating seeded blobs dy-
namics in simple geometries18. It has been also punc-
tually validated with respect to plasma equilibria mea-
sured in TORE-SUPRA at various limiter positions and
known as MISTRAL test case19. Three-dimensional tur-
bulent fluid solutions have been recently investigated for
various magnetic equilibria in limited6 and for the first
time in diverted geometry20, and have shown the capacity
of TOKAM3X to provide original results in qualitative
agreement with respect to experimental measurements
and theoretical expectations. However, a rigorous point-

by-point validation with experiments remains unreach-
able due to resolution limits, to the incompleteness of
the physical model, and the error margins of experimen-
tal measurements.

In this paper, we investigate the numerical error using
a new release of PoPe, named iPoPe, on two turbulent
solutions provided by TOKAM3X in both limited and
diverted magnetic geometries. The physical parameters
values, the mesh size and the geometries make these so-
lutions significant of production solutions usually consid-
ered with this code. A brief overview of the TOKAM3X
numerical ingredients is first provided in Sec. II. The
new formulation of the PoPe method previously detailed
in Ref.1, named the independent PoPe (iPoPe) method
together with the associated verification procedure are
provided in Sec. III. The main features of the two 3D tur-
bulent solutions analysis are then introduced in Sec. IV.
A first study of iPoPe’s weights and residuals is shown
in Sec. V, before doing a scan onto the space resolution
in Sec. VI as well as on the perpendicular diffusion coef-
ficient in Sec. VII. The impact of the time discretization
is out of the scope of this paper but final concluding re-
marks and discussions are provided in Sec. VIII.

II. A SHORT OVERVIEW OF THE TOKAM3X FLUID
MODEL

TOKAM3X provides a first principle description of
cross-field turbulence that allows to simulate turbulence
self-consistently without any scale separation between
fluctuations and geometrical scales of the device. The
code is based on a drift-reduced Braginskii model, asso-
ciated to a set of boundary conditions (Bohm conditions
in the parallel condition) at the target plates. All de-
tails concerning the mathematical model and numerical
schemes can be found in Ref.17.

A. The mathematical model

Under some hypothesis and ordering detailed in Ref.17,
four dimensionless conservation equations are derived for
the electronic density N , the ionic parallel momentum Γ,
the electrostatic potential Φ and the parallel current j‖
which defines the parallel advection velocity for electrons.
They write as:

∂tN + ~∇ ·
(
N~ue

)
= SN + ~∇ · (DN

~∇⊥N)

∂tΓ + ~∇ ·
(

Γ~ui
)

= −∇‖P + ~∇ · (DΓ
~∇⊥Γ)

η‖Nj‖ = −N∇‖φ+∇‖N
∇.~j = 0

(1)

where SN is a volumetric source term driving the par-
ticle flux, where ‖ and ⊥ define the direction parallel

and perpendicular to the magnetic field ~b = ~B/|| ~B|| with

~ue,i = ue,i‖
~b+ ~ue,i⊥ , and where η‖ is the normalized paral-

lel collisional resistivity of the plasma. The last equation
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corresponds to the charge balance when using the quasi-
neutrality assumption (∇.~j = 0). It is treated through
the vorticity W such that:

∂tW + ~∇ · (W~ui) = ~∇ ·
(
N
(
~ui∇B − ~ue∇B

)
+ j‖~b

)
+

~∇ · (DW
~∇⊥W )

W = ~∇ ·
(

1
B2 (~∇⊥φ+ 1

N
~∇⊥N)

) (2)

In all equations, effective diffusion in the cross-field
direction account for collisional transport, and it crudely
models the impact of turbulent small scales. Diffusion
in the parallel direction has been neglected with respect
to the parallel convection. DN,Γ,W are kept constants in
the present model, and are usually equal or smaller than
0.1.

Boundary conditions are defined as follows:

• At the core and at the external wall and in the per-
pendicular direction, homogeneous Neumann con-
ditions are imposed for all variables, ∂⊥(·) = 0.

• In the Scrape-Off Layer (SOL, where magnetic field
lines intercept the target plates (limiter or diver-
tor)) and in the parallel direction, usual Bohm
boundary conditions are used21 . They model the
physics of the sheath located next to the limiter
wall and in which quasi-neutrality is no longer
valid. An isothermal sonic velocity u ≥ ±cs and
the parallel current j‖ are imposed on the two op-
posite sides of the target plates that leads in the
dimensionless form to:

|Γ| ≥ N (3)

j‖ = ±N(1− exp(Λ− φ)) ' ±N(Λ− φ) (4)

where Λ is the sheath floating potential.

The condition on the parallel gradient of the potential
used to solve Eq. 1 is derived from Eq. 4 and using the
generalized Ohm’s law (Eq. 1) and writes as follows:

∇‖φ = ±η‖N(Λ− φ) +
∇‖N
N

(5)

For N , the second normal derivative is imposed to zero.

B. Numerical details

The equations shown above correspond to those of a
compressible adiabatic gas flow in the parallel direction
(fast scales). In the perpendicular direction, they cor-
respond to those of an incompressible flow, dominated
by turbulent processes. Thus, the algorithm has been
constructed to split the discretization of the parallel and
perpendicular directions.

The numerical approximation is based on an ad-
vanced second-order accurate finite-differences/finite-
volumes method. It is associated to a 2nd-order WENO
reconstruction used for the advection terms when deal-
ing with shocks. The code is multithreated using a hy-
brid OpenMP/MPI parallelization. A multidomain de-
composition allows us to map the physical space into a
set of rectangular subdomains keeping a structured flux-
surfaces aligned mesh in any versatile geometries. For
the time evolution, a semi-implicit scheme based on a
first-order operator splitting is used. Such a scheme is
adapted for advancing the parallel current terms associ-
ated to an extremely fast dynamics and thus requiring an
implicit treatment. In the charge balance equation, the
three spatial directions are coupled. As a consequence,
the vorticity operator to invert is fully 3D and badly
conditioned due to small values of the parallel resistiv-
ity in tokamak plasma (η‖ ≈ 10−5 − 10−8, normalized
values). This particularity has till now hindered the use
of an efficient iterative scheme. Being time-independent,
this operator is currently inverted before the time loop
using a direct method (LU decomposition) included in
the PASTIX library22.

III. THE IPOPE METHOD IN A NUTSHELL:
DECOMPOSITION ONTO A RELEVANT BASIS PLUS
AN ERROR

The independent Projection on Proper elements
(iPoPe) method has been extended from the PoPe
method recently detailed in Ref.1. Based on statistics
done on the outputs data of the code, these methods en-
able to provide an estimate of the numerical error carried
out by simulations in any flow regimes by measuring the
distance between the theoretical set of equations and the
effective set extracted from the simulation outputs. In
this sense they can be interpreted both as data-driven
model identification tools and as powerful tools for codes
verification. To describe the method in a general way
an advection-diffusion equation of any scalar variable Ψ,
shaped to be significant of turbulence fluid codes in fu-
sion, is considered:

∂tΨ =~∇ · (DΨ
~∇⊥Ψ)− ~∇ · (Ψ~u) + SΨ (6)

where ~u is the advection velocity parallel to the magnetic
field line, DΨ is the diffusion coefficient in the perpendic-
ular direction and SΨ is a source term. We can immedi-
ately rewrite Eq.( 6) in a more compact form using the
Einstein’s convention on indexes.

{∂tΨ}th = with{Oi}th (7)

{Oi}th = [~∇ · (DΨ
~∇⊥Ψ), − ~∇ · (Ψ~u), SΨ]

For i = 1, 2, 3, {Oi}th names the three operators on the
right hand side of Eq.( 6) and using the three associated
weights with = [+1,+1,+1].
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In the following, notations “{.}th”, “{.}ef”, “{.}ol”
stand for “theoretical”, ”effective” and ”off-line” eval-
uation of the operators, respectively.

A. The iPoPe procedure

Three steps are actually required :

1. The identification and measurement of the actual
unknowns of the problem from the code outputs.
In a time evolving equation such as Eq.( 7), the
main unknown is the time derivative of Ψ. Its mea-
surements performed with finite-differences provide
the ”effective” time evolution of the system simu-
lated by the simulation code, and noted {∂tΨ}ef .
In order to avoid additional error introduced by
iPoPe, a high-order finite-differences scheme is re-
quired. A fourth-order scheme Eq.( 8) is used
for TOKAM3X as this code used a second-order
scheme and forth-order has been proved to be accu-
rate enough with respect to the fastest time scales.
Such computation can be performed iteratively,
without storing the solution at different time steps
between t− 2∆t and t+ 2∆t.

{∂tΨ}ef (t) =

2∑
j=−2

c(j)Ψ(t+ j∆t) +O(∆t4) (8)

c(−2 : 2) = [+1,−8, 0,+8,−1]/(12∆t)

2. The computation of each operator in the model
concerned in post-processing and with high accu-
racy.
Similarly to the previous point, while TOKAM3X
makes use of second-order methods in space, the
”off-line” estimate uses a sixth-order scheme. This
sixth-order has been chosen using Fig. 2 and Fig. 3,
showing that going to higher order would not
change significantly the results of the computa-
tions. This is a key aspect of the verification pro-
cess which writes as:

‖{Oi}th − {Oi}ol‖ � ‖{Oi}th − {Oi}ef‖ (9)

so that

{Oi}ol ' {Oi}th (10)

3. A projection method to decompose the dynamics
{∂tΨ}ef onto the operators {Oi}ol.
We finally project each operator independently of
each other by, in the following order, computing
the total residual εto, then projecting operators one
at a time to get effective weights wief and finally

computing the effective residual εef :

εto = {∂tΨ}ef − {∂tΨ}th (11)

= {∂tΨ}ef − ωith{Oi}ol
ωief = ωith + εto × {Oi}ol/||{Oi}ol||2 (12)

εef = {∂tΨ}ef − ωief{Oi}ol (13)

B. iPoPe versus PoPe

Unlike for iPoPe, with the PoPe method1 all operators
were projected at once by solving the following linear
system based on the least mean square algorithm:

AtA wef = At{∂tΨ}ef (14)

where the P × I matrix A is defined as

A(p, i) ≡ {O(p)i}ol (15)

Each column of the matrix A is the evaluation of the
ith operator from the set of I operators in the tested
equation. These evaluations are performed for P points
labelled by the index p. P is defined by the discretiza-
tion used to solve the equation with the code that we
want to verify in the first place. Usually P � I, so that
a large number of points can be considered in order to
reduce the statistical error in the estimation of wef . For
TOKAM3X, typically, we have P = Nr×Nθ×Nϕ×Nt �
106 for a unique simulation. Nevertheless, in order to in-
troduce a time dependence in wef , we usually use Nt sets
of Nr ×Nθ ×Nϕ ≥ 104 points.

The matrix AtA is of size I × I, 3 × 3 in the case of
Eq.( 6), and can be solve at very low computational cost.
The residual is then recovered by explicitly computing:

{∂tΨ}ef −A wef = εef (16)

According to the least mean square approach, weights
wief are determined under the constraint of minimizing

||εef ||2. Other systems than (14) can be build to perform
minimization of εef under different norms and/or more
constraints.

The interest of iPoPe with respect to PoPe, it is that it
does not require to build the matrices A and AtA nor the
right hand side At{∂tΨ}ef . This can lead to several opti-
misation from a computational point of view and remove
any constraint of solvability of the linear system. Indeed,
to get reliable outputs from PoPe, one has to insure that
this linear system is not singular or that its condition
number is not too high. Thus, iPoPe is no longer based
on an optimization problem. It does not minimize the
L2-norm of the residual but directly interpret the total
error εto on each operator as a “worst case senario”. Last
but not least, in the case of an equilibrium, {∂tΨ}ef = 0,
the trivial solution of Eq.( 14) is wef = 0, regardless of

if ~∇ · (DΨ
~∇⊥Ψ) − ~∇ · (Ψ~u) + SΨ = 0. In such case

one should either: 1) rewrite the theoretical equation,
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removing term ∂t as it has a strictly null contribution
and projecting using another operator as the right hand
side, or 2) search for the kernel of the same linear system.
Using iPoPe instead of PoPe, this situation is avoided.

Both PoPe and iPoPe lead to the interpretation of the
effective time derivative of a given code {∂tΨ}ef as a sum
of operators {O}iol, each weighted by wief , plus a resid-
ual εef . In the case of PoPe, the effective residual has
no linear dependency with respect to the operators of
the equations, while the effective residual of iPoPe can
have linear dependencies and it is a worst case scenario
in that sense. Ideally, wef = wth and εef = 0. Such
weights plus residual decomposition is relevant since ef-
fective weights define the nature of the equation. They
control the behaviour of the system theoretically, thus
numerically. Compared to a Principal Component Anal-
ysis, this approach decomposes the unknown onto a basis
of vectors with obvious physical meanings, the operators.

A way to illustrate the independency of the projection
step with iPoPe is to study a simple error, such as the
use of a diffusion coefficient two times higher than the-
oretically expected. Using PoPe, this would be directly
identified with w1

ef = 2 instead of the value w1
th = 1, and

without impacting εef = 0. Here with iPoPe, one would
recover w1

ef = 2 again, but other weights wief could be

affected if εto × Oiol 6= 0. Then the condition εef = 0
could be likely to vanish. When projecting the second
and the third operators using iPoPe, the first one is not
taken into account, despite the fact the first one would
have captured the entire error. The projection of one
operator is thus independent of the other operators and
in that sense this is a worst case scenario of expressing
the complete error on each operator. Finally the com-
putations of each weight wief could even be performed in
parallel as it only depends on εto and on the i-th operator.

Both PoPe and iPoPe descriptions, weights plus resid-
ual, are the decomposition of the same dynamic: bijec-
tions exist between 1) the actual dynamics ({∂tΨ}ef ), 2)
the PoPe decomposition and 3) the iPoPe decomposition.
Still, PoPe concentrates more information in the weights
as the residual is under constraint of L2-norm minimiza-
tion while iPoPe tends to keep more information in the
residual.

Analysing the weights would give absolute confidence if
{Oi}ef , operators effectively calculated within the code
under study, were “exact”. As we discretize solutions
over a finite number of degrees of freedom, each of them
having a finite accuracy, operators {Oi}ef usually dif-
fer from theoretical expression of operators {Oi}th. The
theoretical expression of operators being not usually ac-
cessible, we do not compare {Oi}ef to {Oi}th but rather
to {Oi}ol, a set of operators computed in post-processing
using a greater accuracy than for {Oi}ef , as already ex-
pressed in Eq.( 9). This point is important to be able
to associate the residual εef to an error of the code and
not to an error in the verification process. In the present
case, authors considered sufficient the sixth-order esti-
mation of operators as ||with{Oi}ol|| = ||∂tX|| in Fig. 2

and Fig. 3 shows a discrepancy between sixth-order and
fourth-order significantly smaller compared to the dis-
crepancy between second-order and fourth-order. An in-
teresting point is that if {Oi}ef = {Oi}ol ∀ i ∈ [1, 3] in
Eq.( 6), then necessarily εef = 0 and one can only study
the correctness of wef = wth and not if the computation
of operators is correct itself. Off-line greater accuracy is
easily obtained and at a reasonable computational cost
because for off-line computations we do not have to take
care of any stability with respect to time integration.

It is interesting to note that for time explicit numer-
ical schemes the time step is defined in order to ensure
small variations of the system between two integration
time steps. As the solution is generally not changing sig-
nificantly between two time steps, it is not mandatory
to verify each time step of the code. A reasonable fre-
quency of verification would be the frequency used to
save diagnosis in order to then investigate physics. In-
deed, this is the relevant time scale for the variations of
the system. For explicit numerical scheme it might be
of the order of 0.1 − 5% of the time steps computed by
the code. For TOKAM3X, the time integration constant
chosen is ∆tnumeric = 1 while a conservative frequency of
∆tdiag = 50 has been chosen for diagnosis saving and ver-
ification. Thus only 2% of the time integration step are
verified while still being representative of the dynamic.
It is worth to recall that the time derivative used by
(i)PoPe is nevertheless computed using a time step of
∆tnumeric = 1. Combining the lower cost of off-line es-
timation and the small fraction of time step verified, the
overall computational cost is then negligible, less than
1%.

C. Definitions and (i)PoPe indexes

Using again the assumption {Oi}ol = {Oi}th, we get
six useful definitions:

• {∂tΨ}th = with{Oi}ol is the theoretical time evo-
lution of the system. This is the evolution theo-
reticians would work on analytically, including no
source of errors and uncertainties induced by any
numerical solver.

• {∂tΨ}ef = wief{Oi}ol + εef is the effective time
evolution of the system simulated by the code. It
includes numerical errors due to approximations by
numerical methods. It could even contain possible
bugs if the code was not correct.

• {∂tΨ}po = wief{Oi}ol is the effective time evolution
of the system without taking into account εef , but
only defined by the effective weights. If ||εef || has a
small impact on the dynamics but the coefficients
wief are not close enough to with, then it would be
the expression theoreticians should use to interpret
the results instead of of {∂tΨ}th = with{Oi}ol.
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• εto = {∂tΨ}ef −{∂tΨ}th is the total residual which
contains the full discrepancy between the theoreti-
cal and the effective evolution. As a rule of thumbs,
the smaller is ||εto||, the better is the simulation.
When choosing numerical methods and resolutions
of the discretization, this criterion should be the
first to minimize.

• εef = {∂tΨ}ef − {∂tΨ}po is the effective residual
which does not contain any linear dependency with
respect to {Oi}ol when using PoPe, as introduced
in Eq.( 16). In order to take {∂tΨ}po as the effec-
tive equations of the model, one has to insure εef
has an acceptable impact on the general dynam-
ics. Studies of the evolution of the residual due to
linear operators (Oi(εef )), coupling due to non lin-
ear operators ((Oi(X, εef )) and tracking different
statistical momenta (< εmef >r,θ,φ,t) are advised.

• εco = {∂tΨ}po − {∂tΨ}th is the residual carried by
the discrepancy between wief and with, a residual
that could be partially compensated by changing
the parameters used to run the code if they can be
simulated. One can notice that εto = εef + εco.

Finally, one can define the “(i)PoPe index” such
as I(i)PoPe = −log10(||εto||2/||{∂t}ef ||2). Using the
weights of the operators would lead to I(i)PoPe =

mini(−log10(|wief − with|)). According to these defini-
tions, a perfect simulation would lead to εto → 0 and
wief → with so I(i)PoPe → ∞, while in practice the
I(i)PoPe index is always finite. To give a physical meaning
to the values of the (i)PoPe index is however an ongoing
work. Measuring the discrepancy between the theoret-
ical and the effective values of the operators weights is
easier than predicting the impact of this discrepancy on
the solution. In some cases, predicting the behavior of
the error could be as challenging as predicting the be-
havior of the system without the error. This point will
be discussed again in Sec. VIII.

IV. TURBULENT SOLUTION ANALYSIS

In this section we present general properties of turbu-
lent solutions. A special attention is given to limiter con-
figuration for which an extensive convergence study with
respect to discretization has been performed. In both
limited (Fig. 4a and Fig. 4b) and diverted (Fig. 4c and
Fig. 4d) geometries, we recover characteristic features of
turbulent regimes such as blobs of different sizes, exhibit-
ing a clear and well known ballooning in the transport.
Such turbulent systems can be described by decompos-
ing the solution, in space and time, using the sum of an
equilibrium plus a perturbation. In Sec. IV A, such equi-
librium is studied while in Sec. IV B, high frequencies in
space and time are studied.

A. Impact of the discretization on the self-organised
plasma equilibrium

In this subsection we focus on the averaged quanti-
ties of the main unknowns, the density N , the electric
field Φ, the vorticity W and the ionic parallel momen-
tum Γ. Averages are performed over time for a dura-
tion of 50000 ω−1

c and the two angles around the mid
plane with θ ∈ [−π/4,+π/4], focusing on the low field
side, and φ ∈ [0, π], describing half of the torus which
is thus taken as π-periodic by definition. Only remains
the radial dimension r, normalised to the minor radius.
In order to estimate the consistency of any patterns, al-
ways two curves are shown, results of a simulation us-
ing a “regular” discretization (64× 512× 32) and a “re-
fined” discretization (96 × 768 × 48), see Tab. III. The
time span used for averaging is regarded as long enough
not to be dazzled by fast and local reorganisation such
as avalanches but is still subject to the slow dynamic
of converging towards the equilibrium. It reveals den-
sity profiles with two slopes: one within and one out-
side the close fields lines area (r < 1) for both meshes
(Fig. 1a). Two slopes are also present in the electric
field profiles (Fig. 1b). While no discrepancy can be seen
in the Scrape-Off Layer, a slightly different ∂rΦ can be
seen in the edge. This might lead to a slightly faster
poloidal rotation but it did not seem to significantly im-
pact the density profile as ∂2

rΦ are quite similar. Indeed,

the vorticity W = ~∇ · ( 1
B2 (~∇⊥φ + 1

N
~∇⊥N)) is based

on second derivatives of the density and electric fields,
and both resolutions are in fair agreement (Fig. 1c). Fi-
nally, the parallel ionic momentum exhibits an offset. It
is important to recall that we focus on an average per-
formed in the most turbulent part of the poloidal sec-
tion, θ ∈ [−π/4, π/4]. It appears that an offset does not
impact, for example, the contribution of the divergence
of the the parallel ionic momentum along the field lines
~∇· (Γ ~b) in the density equation, as seen in Fig. 1e. Nev-
ertheless the equilibrium of Γ is quite sensitive as it is
a balance between two very large contributions nearly
cancelling each other plus some corrections. Any modifi-
cations of the mesh or the geometry leads to modification
of the equilibrium. Fig. 1f shows the impact of increasing
resolution on the Γ = 0 contour. High resolutions push
the stagnation lines further away from the limiter, even
crossing the equator on the low field side.

B. Dynamic of small scales

The intensity of the dynamic is easily quantified by
calculating the L2-norm of {∂tΨ}ef , the effective time
derivative of the solution simulated. Depending on the
dimensions included in the norm and the dimension
on which the norm is applied, this allows to recover
spacial structure, time traces or even a single value. In
particular one can easily test the condition Eq.( 9) when
comparing norms of {∂tΨ}ef to norms of {∂tΨ}th. As
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(a) Density N . (b) Electric field Φ.

(c) Vorticity W . (d) Parallel ionic momentum Γ.

(e) ~∇ ·
(

Γ ~b
)

(f) Γ = 0 contour. Nr = 32 −, 48 - -, 64 −., 96 ..

FIG. 1: Plots of radial profiles of averaged quantities: N (a), Φ (b), W (c), Γ (d) and ~∇ ·
(

Γ ~b
)

(e). The averaging

is carried out over (t, θ, φ) ∈ ([0, 50000], [−π/4, π/4], [0, π]). Regular mesh: O, refined mesh: /; see Tab. III. In (f),
2D contours of Γ = 0 for (t, φ) ∈ ([0, 50000], [0, π]). DN = 0.003 and parameters given in Tab. IV.
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(a) Variation of the intensity of the full dynamic
||∂tX(r, θ, φ, t)||2 with Nr.

(b) Variation of the intensity of the mode-0 dynamic
|| < ∂tX >θ,φ (r, θ, φ, t)||2 with Nr.

FIG. 2: Plots of the ratio of the L2-norm of the off-line evaluations of {∂tN}ol (red), {∂tΓ}ol (green), {∂tW}ol
(blue) over their respective effective measurement {∂t×}ef as a function of Nr. Off-line computations based on

second-order (4), fourth-order (B), and sixth-order (5) approximations. Parameters Tab. IV excepted DN = 0.003.

(a) Intensity of the full dynamic ||∂tX(r, θ, φ, t)||2.
(b) Intensity of the mode-0 dynamic

|| < ∂tX >θ,φ (r, θ, φ, t)||2.

FIG. 3: Ratio of the L2-norm of off-line evaluations of {∂tN}ol (red), {∂tΓ}ol (red), {∂tW}ol (blue) divided by the
respective effective measurement {∂tx}ef of the simulation using the best mesh. Off-line computations use

second-order (4), fourth-order (B), sixth-order (5) approximations. Effective measurements from TOKAM3X
output uses circles (©). Parameters Tab. IV excepted DN = 0.003.

‖{Oi}th‖ can not be computed, we simply study the
convergence of ‖{Oi}ol‖ computed off-line with high
order schemes.

Fig. 2a shows the L2-norms of {∂tΨ}ol,
||{∂tΨ}ol(r, θ, φ, t)||2r,θ,φ,t, for Ψ = N,Γ,W depend-
ing on the resolution. The norms are calculated at
orders 2, 4 and 6, and are normalized to the L2-norm
of {∂tΨ}ef . At each order, and for each variable, the

ratio decreases when increasing the resolution, thus
{∂tΨ}ef converges towards {∂tΨ}ol. Comparing the
norms {∂tΨ}ol at different orders, one can see the gap
between sixth-order and fourth-order decreases with
respect to the improvement of the mesh resolution
while being significantly smaller than the gap between
fourth-order and second-order. For such a reason, we
consider the sixth-order computation to be close enough
to the errorless theoretical computation in order to do
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(a) Density. (b) Time derivative of the density.

(c) Density. (d) Time derivative of the density.

FIG. 4: Instantaneous 2D plots of density and its time derivative in turbulent regime and in arbitrary units. (a, b)
limited geometry, (c, d) diverted geometry. DN = 0.003 and parameters given in Tab. IV.

the approximation {Oi}th ' {Oi}ol. Increasing the
order of the off-line measurement would not significantly
change the results of this study. Further, Fig. 2a shows
that using a sixth-order off-line evaluation leads to a
stronger dynamics ×1.3 to ×1.7 than the one computed
by TOKAM3X. This difference is not related to a
problem of conservation as TOKAM3X is based on a
conservative numerical scheme. The source driving the
system is then totally transported towards the edges by
the radial flux. ||∂tX||2 should not be confused with the
intensity of radial flux which has a direction as ||∂tX||2
is more relevant of the direction less buoyancy of the
system, buoyancy which increases when smaller smaller
scales are described.

Similarly to Fig. 2a, Fig. 2b shows the L2-norms of
the mode-0 of {∂tΨ}ol defined by < {∂tΨ}ol >θ,φ, then
|| < {∂tΨ}ol >θ,φ (r, θ, φ, t)||2r,θ,φ,t, for Ψ = N,Γ,W and

depending on the resolution. As the mode-0 is the main
contribution to the equilibrium, it is interesting to see
the norms of the reconstructed dynamics at order six is
only overestimated by a factor ×1.1 to ×1.4. This means
that most of the discrepancy between the theoretical and
effective dynamics comes from small scales in space and
time.

In the second series of plot, Fig. 3, the norm of the
theoretical dynamic computed at different order is not
normalized with respect to the effective dynamic at
the considered mesh resolution but it is normalized
with respect to the effective dynamic using the finest
mesh (see Tab. III). Also, the effective dynamic is
plotted. On top of the fact that increasing the mesh
resolution increases the concordance between effective
and theoretical dynamics, these series of plots show the
absolute value of the norm 2 also increases with respect
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to the mesh resolution. The focus on the mode 0 reveals
the same qualitative behavior while quantitatively, the
effect is significantly smaller.

The highlighted discrepancies at small scales are better
shown using 2D plots in Fig. 5. The diffusion operator of
the density equation is displayed when computed off-line
at different orders (Fig. 5a using a unique simulation on
a regular mesh (see Tab. III)). Also, using a sixth-order
off-line scheme, four simulations using different meshes
are compared (Fig. 5b). On the one hand, increasing
the order of the numerical scheme increases the inten-
sity of the operator which can be much more peacked
locally. On the other hand, increasing the mesh resolu-
tion also increases the intensity of the operator but it
also changes the size and number of structures. In fact,
simply using a simulation computed on a given mesh and
then recomputing the density operator at different orders
does not show any new self consistent organisation of the
solution since the solution is not recomputed but only
diagnosed. On the contrary, comparing different simu-
lations using the same numerical scheme (TOKAM3X
second-order) but different meshes allows to access new
self organised regimes. In the present case, the new self
organised regimes include more structures of smaller size.

This last study can be displayed using probability
density function of the effective dynamic. Fig. 6 allows
to quantify the strong deviation for rare / intense events
with respect to the mesh.

In each sensitivity analysis of this section, it has been
shown that the equilibrium (or mode 0) of the solution
can be considered as fairly resolved while the small scales
tend to be underestimated with respect to the number
of small structures and their intensity. Also, the error
on the density equation is smaller than on the paral-
lel ionic momentum, itself lower than the error of the
vorticity equation. Knowing that the spectrum of the
vorticity is flatter than the one of the parallel momen-
tum, itself flatter than the one of the density, we also
draw the conclusion that the essential part of the error
comes from the small scales. The simulations under in-
vestigation would benefit of an higher-order discretiza-
tion scheme and/or an increased mesh resolution. In any
case, the total radial transport flux would be the same as
TOKAM3X is based on a conservative numerical scheme
and a transport driven by a source. Still, the small scale
self-organisation could be different, using a different num-
ber of structures of different size, with edges of different
shape and steepness, also moving at different velocities or
in different directions. Over the parameters used, no ev-
idence of a possible qualitative regime change has been
seen, only quantitative changes. Still, as turbulence is
intrinsically non-linear and populates small scales, ex-
trapolation of results is a tricky task.

(a) second-order (left), fourth-order (center), and sixth-order
(right).

(b) 32× 256× 16 (left), 48× 384× 24 (left-center),
64× 512× 32 (right-center), and 96× 768× 48 (right).

FIG. 5: 2D plots of the diffusion operator of the density
N computed in post-processing. (a) Impact of the

discretization scheme order for a 64× 512× 32 mesh.
(b) Impact of the mesh size for a sixth-order numerical
scheme. Zoom on the low field side in the poloidal plane

(R,Z).

FIG. 6: Probability density function of {∂tN}ef
measured from four simulations of TOKAM3X using

different meshes (see Tab. III). Right figure focuses on
{∂tN}ef = 0.
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(a) Time and φ averages of |{∂tN}ef | (b) Time and φ averages of |εto|

(c) Time and φ averages of {∂tN}ef (d) Time and φ averages of εto

FIG. 7: 2D plots of averaged quantities: Fig. 7a = |∂tN |, Fig. 7b = |εto|, Fig. 7c = ∂tN and Fig. 7d = εto.
The averaging is performed for (t, φ) ∈ ([0, 50000], [0, π]). Limiter geometry, DN = 0.003 and

parameters given in Tab. IV

V. ERROR QUANTIFICATION OF TWO TYPICAL 3D
TURBULENT SIMULATIONS IN DIVERTOR AND
LIMITER CONFIGURATIONS

In order to interpret (i)PoPe results, one has to
look first at residuals (Sec. V A) and then at weights
(Sec. V B). Indeed, if a too large residual is measured,
then weights would be of a secondary importance because
a large residual means that a large part of the dynamic
is not captured by the operators used for the projection.
Both residuals and weights are computed using projec-
tions of 3D subsets of points in (r, θ, φ), points taken at
a given time t. It induces a time dependence for the
weights of operators and also for any norm of residuals.
In Tab. I, a sense of the variability in the time series is
given by the first and last ninth deciles.

A. Residuals structure and statistics

To understand and then decide if a residual is ac-
ceptable, one can use either the total residual εto =
{∂tX}ef−{∂tX}th or the effective residual εef in order to
compare it to to either the theoretical dynamic {∂tX}th
or the effective dynamic {∂tX}ef . In this study, as we
already emphasized, the ratio between ||{∂tX}ef ||2 and
||{∂tX}th||2 can go up to ×1.7 on a regular mesh. Here
we focus on the ratio ||εto||2/||{∂tX}ef ||2 which also con-
tains information about {∂tX}th by the definition of εto.
Tab. II contains the mean value, first and ninth deciles
over time of the ratio of each of the four equations. The
equation on the electric field Φ shows an error of less than
20% in both geometry as well as a relative narrow dis-
tribution of the ratio around its mean value (very close
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first and ninth deciles). Evolution equations of the den-
sity, parallel ionic momentum and vorticity contain sig-
nificantly higher discrepancy, without any surprise com-
pared to the ×1.7 ratio ||{∂tX}th||2/||{∂tX}ef ||2. With
respect to the study of the ratio, we recover here a similar
hierarchy of errors, the vorticity being the most impacted
by the numerical error, then the parallel momentum, and
last the density. The equation determining the electric
field not including any time derivative, it discards an im-
portant source of error while still not being exempted of
errors.

Residual and dynamic lay in a 4D space (r, θ, φ, t)
and can be studied with a deeper insight than just some
statistics of a ratio. Fig. 7 reveals 2D structures in the
poloidal plane of the density equation for a limiter geom-
etry. Fig. 7a points out that the activity of the dynamics
|{∂tN}ef | is mostly located in the edge and in particular
on the low field side where the transport is more impor-
tant. Directly comparing with Fig. 7c where we remove
the absolute value of the diagnosis, computing simply
{∂tN}ef , we draw the conclusion that the simulation is
at equilibrium as < {∂tN}ef >φ,t' 0 and thus the dy-
namic seen in Fig. 7a is not due to any equilibrium still
building in the simulation. The norm of the total error
measured by |εto| (Fig. 7b) contains a distribution sim-
ilar to |{∂tN}ef | plus a peak of error at the top of the
limiter and in its vicinity. Indeed, the top of the lim-
iter is crossed by strong variations of the different fields.
Finally it is also important to measure that on average
the contribution of errors tends to zero, < εto >φ,t' 0 in
Fig. 7d.

Even if residuals are significant, no extreme value have
been found already knowing the difficulties of simulating
small scales. A study of each operator’s weight in each
equation is then meaningful.

B. Weights statistics

The amplitude of weights are also given using 3 values:
the first decile, the mean and the ninth decile. The W
equation which requires the inversion of a Laplacian is
quite well solved, both in limiter and divertor configu-
ration. The three other equations, ∂tN , ∂tΓ and ∂tW
have quite similar behaviour. In particular the diffusion
operator has a weight always higher than the theoretical
value, suggesting some numerical diffusion. According
to the considered mesh and plasma parameters, the di-
vertor configuration seems to be closer to the theoretical
values. The E × B contribution has a value nearly two
time smaller than the theoretical one while the operator
for the parallel transport is very close to the theoretical
value.

FIG. 8: Ratio of ||εto||2/||{∂tX}ef ||2 for each equation,
with respect to Nr using four different meshes (Tab. III)

in a limiter configuration.

VI. ACTUAL ORDER OF THE NUMERICAL SCHEME

Four meshes have been used to recover the actual
order of the numerical scheme when simulating pro-
duction simulations, see Tab. III. The “regular” mesh
has been used for a large number of simulations in
different studies. Such mesh allows the version of
TOKAM3X used for this study to run efficiently across
many core/nodes while requiring a reasonable amount
of RAM. Indeed, TOKAM3X uses an implicit solver
based on the inversion of a large ill conditioned 3D
matrix. The “refined” mesh is defined using a scaling
factor ×6/4 with respect to the number of points in each
dimension, ×6/4 being the maximum we could offer
ourselves for such a study. The “coarse” mesh is not the
smallest one allowing for qualitative simulations but it
is a configuration which have been significantly used in
the past.

Fig. 8 the ratio of ||εto||2/||{∂tX}ef ||2 is displayed with
respect to the mesh resolution for each of the equations.
While TOKAM3X is based on a second-order WENO
scheme, we only recover a first-order convergence. This
point is due to the fact that the WENO scheme can
locally downgrade its approximation to a first-order
when encountering large gradients. In addition to
this, as seen in Sec. IV, the solution has a constrained
spectrum because of the resolutions limitations. This
second point implies that changing the resolution one
also slightly changes the regime of the simulation, going
to more turbulent dynamics. Having more turbulent
dynamics then tends to increase the numerical error and
to degrade the order of the scheme just below 1.



13

Equation Operator Limiter divertor

W = ~∇ ·
(

(~∇⊥Φ)/B2
)

0.954 : 0.957 : 0.961 0.963 : 0.967 : 0.972

~∇ ·
(

(~∇⊥ lnN)/B2
)

0.964 : 0.974 : 0.984 0.988 : 0.996 : 1.004

∂tN = ~∇ ·
(
DN ~∇⊥N

)
3.741 : 4.448 : 5.169 1.589 : 1.711 : 1.852

−~∇ ·
(

Γ ~b
)

0.975 : 1.005 : 1.037 1.093 : 1.149 : 1.204

−~∇ · (N~uE) 0.570 : 0.681 : 0.799 0.528 : 0.579 : 0.626

−~∇ ·
(
N~uion∇B

)
0.816 : 0.915 : 1.017 0.997 : 1.009 : 1.021

∂tΓ = ~∇ ·
(
DΓ

~∇⊥Γ
)

3.039 : 3.551 : 4.163 1.776 : 1.885 : 1.994

−~∇ ·
(

Γ2/N~b
)

1.023 : 1.046 : 1.070 1.041 : 1.088 : 1.140

−~∇ · (Γ~uE) 0.492 : 0.574 : 0.672 0.480 : 0.526 : 0.575

−~∇ ·
(
Γ~uion∇B

)
0.929 : 1.015 : 1.102 0.901 : 0.941 : 0.975

−∇‖ (2N) 0.816 : 0.882 : 0.935 0.250 : 0.299 : 0.356

∂tW = ~∇ ·
(
DW ~∇⊥W

)
2.181 : 2.521 : 2.906 1.404 : 1.522 : 1.624

−~∇ ·
(

ΓW/N~b
)

1.296 : 1.731 : 2.156 1.598 : 2.137 : 2.625

−~∇ · (W~uE) 0.606 : 0.664 : 0.728 0.581 : 0.631 : 0.688

2~∇ ·
(
N~uion∇B

)
0.915 : 0.937 : 0.954 0.995 : 0.996 : 0.998

1/η‖~∇ ·
[(
∇‖log (N)−∇‖Φ

)
~b
]

0.779 : 0.829 : 0.876 0.897 : 0.919 : 0.940

TABLE I: Table summarizing the model equations together with their respective weights for “reference simulations”
described in Tab. IV except DN = 0.003. Weights are given with the value of the first decile, the mean and the

ninth decile. The source SN that should be present in the equation “∂tN” is not taken into account as the
verification is performed on a subsets of points where this source is strictly null.

.

Equation Limiter divertor

W 0.16 : 0.17 : 0.19 0.17 : 0.18 : 0.20

∂tN 0.50 : 0.70 : 0.89 0.83 : 0.95 : 1.08

∂tΓ 0.84 : 1.14 : 1.44 1.52 : 1.73 : 1.94

∂tW 1.04 : 1.37 : 1.76 1.79 : 2.19 : 2.60

TABLE II: Table of the ratio between the total residual
εto and the off-line estimation {∂tX}ol computed at the
sixth-order For the W equation, the right hand side W
is taken as the theoretical reference. DN = 0.003 for the

limiter geometry, otherwise parameters given in
Tab. IV. Measurement are given with the value of the

first decile, the mean and the ninth decile.

Nr Nθ NΦ number of points scaling to ref
coarse 32 256 16 131072 2/4

medium 48 384 24 442368 3/4
regular 64 512 32 1048576 4/4 ref
refined 96 768 48 3538944 6/4

TABLE III: Resolutions for meshes used in the limiter
geometry. The same ratio is kept between r, θ and φ

dimensions for the different meshes.

Convergence can also be qualitatively measured look-
ing at the weight of each operator in each equation,
Fig. 9a, Fig. 9b, Fig. 9c and Fig. 9d. Each plot has been
constructed using four simulations in limiter geometry,
DN = 0.003 and parameters given in Tab. IV. Often,
like for the equation of the electric field (Fig. 9a), weights
clearly converge but towards a value slightly off with re-
spect to the theoretical value. For this particular equa-
tion, similarly to the residual study, we recover a good
agreement with the theoretical value of weights. The den-
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(a) W equation’s weights with respect to Nr. (b) ∂tN equation’s weights with respect to Nr.

(c) ∂tΓ equation’s weights with respect to Nr. (d) ∂tW equation’s weights with respect to Nr.

FIG. 9: The color legend is based on the following sequence of operator listed in Tab. I: red up triangles = 1st,
green circles = 2sd, blue crosses = 3rd, cyan squares = 4th, magenta down triangles = 5th. Four meshes are used in

a limiter configuration, see Tab. III. DN = 0.003, other parameters Tab. IV.

sity equation (Fig. 9b) and the parallel momentum equa-
tions both behave according to the same trends (Fig. 9c):
the diffusion operator (red) is overestimated by a factor
4 for a regular mesh while the divergence of the E × B
(blue) is underestimated by 30%. Weights of the vortic-
ity equation’s operators are mostly converging and stay
within a narrower range than the density and parallel mo-
mentum except the last operator, the divergence of the
parallel current (magenta) which is an extremely steep
operator.

VII. STUDY OF THE NUMERICAL DIFFUSION

In this section, a sensitivity analysis is conducted by
varying the parameter DN , the diffusion coefficient of the
density equation. As in the previous section, we use four

different mesh resolutions detailed in Tab. III to better
understand trends. This coefficient has a strong impact
on the solution as it controls the spectrum of the density.
Decreasing DN increases the amplitude of high frequency
modes corresponding to small structures, thus flatten the
spectrum. As the density is coupled to the ionic parallel
momentum, the vorticity and the electric field, control-
ling the spectrum of the density allows to control the
spectrum of each system’s unknowns. It is important to
recall that for any value of DN , TOKAM3X is able to
perform a simulation with almost perfect conservation as
it is based on a conservative scheme and as long as the
time step of the explicit part of the numerical scheme
satisfies the CFL condition. Nevertheless, we point out
that requesting a given DN in the input of a computation
code does not insure that the output will indeed embed
the theoretical value.
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Fig. 10a is the key figure of this section as it expresses
the effective weight of DN with respect to its theoret-
ical weight. One can clearly see a saturation effect, a
plateau defining a minimal value for DN effective, start-
ing at around DN = 10−2 for the mesh prescribed. As
seen on Fig. 9b, one can see on Fig. 10a that the satura-
tion level of the plateau depend on the mesh resolution,
a better discretization leads to a lower plateau. This
is easily understood as a high resolution mesh can bet-
ter describe the dynamics of smaller structures. In this
way, this plot allows to estimate a numerical diffusion
threshold with respect to the numerical scheme and the
discretization. Such analysis also expresses that the sim-
ulations using DN ∈ [0.0003, 0.003] should not differ too
much as the effective DN is almost constant. Prior to
study other graphs, it is worth to notice for the high-
est value studied, DN = 0.5, the system is not turbulent.
This is why the value of operators’ weight does not follow
the same trend as for the range DN ∈ [0.0003, 0.05]. In-
deed, weights of other operators can also be influenced by
the value of DN because the spectrum of each unknown
depend on DN . For the density equation, the E × B
advection term would be the second most impacted one,
systematically underestimated, see Fig. 10c. The WENO
scheme used to discretize this non linear term tends to
smooth the intensity of the E × B contribution, not by
underestimating the overall radial transport as this ra-
dial transport is always respected by such a conservative
scheme, but locally, by decreasing the mixing effect of
blobs. Once again, the saturation level depend on the
discretization used: the mesh with the highest number
of degree of freedom handles better the non-linear dy-
namic considered as its weight is closer to the theoretical
value of 1. Also the saturation effect appears at lower

values of DN for higher resolutions. Operator −~∇ · (Γ ~b)
(Fig. 10b) and operator −~∇ · (N~uion∇B) (Fig. 10d) of the
density equation appear to be much less sensitive. Still
the value of weights in the range of DN ∈ [0.0003, 0.003]
tends be constant, emphasising the similarities between
any simulations using DN ≤ 0.003.

As the model strongly couples each variable, the value
of DN is likely to also impact operators’ weight of other
equations by impacting the spectrum of other unknowns.

Indeed, the diffusive operator ~∇ · (DΓ
~∇⊥Γ) of the mo-

mentum equation also tends to be over represented com-
pared to the theoretical value, see Fig. 11a. Similarly to

−~∇·(N~uE) in ∂tN , the operator −~∇·(Γ~uE) in ∂tΓ strug-
gles to reach the theoretical amplitude of 1, see Fig. 11b.
Nevertheless, the vorticity equation determining the elec-
tric field is not significantly impacted, see Fig. 11c and
Fig. 11d. In all four cases, we also recover trends with
respect the mesh resolution and plateaus in the range of
DN ∈ [0.0003, 0.003].

Similar trends are also observed in diverted geometry.

Both a numerical diffusion (for ~∇ · (DN
~∇⊥N) in the

density equation (Fig. 12a) and for ~∇ · (DΓ
~∇⊥Γ) in the

moment equation (Fig. 12c)) as well as an underestima-

tion of the E × B contribution (in the density equation
(Fig. 12b) and the momentum equation (Fig. 12d)) are
present in the form of plateaus.

As a conclusion, numerical methods, mesh and state
of the system matter to estimate the error.

VIII. SUMMARY

This paper introduces iPoPe, a data-mining method
derived from PoPe. Using the output of a simulation,
both methods allow to do a posteriori error estimate by
recovering the equations effectively used in a simulation.
Their direct results are the effective value of the weights
corresponding to the various terms prescribed in the
mathematical model plus an additional error term called
the residual.

iPoPe method is successfully applied here to fluid
simulations of edge plasma in tokamak. It shows its
capability to address realistic geometries and bound-
ary conditions, as well as any flow regime including
turbulence, by analysing the state-of-the-art 3D code
TOKAM3X. It extends in that sense the verification
usually performed by the Method of the Manufactured
Solutions while not requiring any dedicated simulations
but merely a computational overhead of 1% for each
simulation verified. However, the challenging part is
to interpret (i)PoPe results. Indeed measuring the
discrepancy between the theoretical and the effective
values of the operators weights is easier than predicting
the impact of this discrepancy on the solution. In some
cases, predicting the behavior of the error could be as
challenging as predicting the behavior of the system
without the error.

Besides the zero-error case, the ideal situation is when
the numerical error can be expressed analytically. If
it can be expressed analytically, this expression can be
found using (i)PoPe by adding new operators in the pro-
jection step. The determination of those new operators
should be guided by the properties of their weights (aver-
age and standard deviation with respect to time) and the
norm of the total residual. Two cases are thus possible:

• The analytical expression obtained for the error
does not contradict the basic assumptions driving
the model and neither changes the nature of the dy-
namics. In this case, the error can be considered as
being part of the theoretical model, and it becomes
acceptable. It is the case when the error is related
to numerical diffusion or to the use of a flux limiter
when it remains low or well-separated with respect
to the space and time scales of interest. It could be
seen as diffusive subgrid models taking into account
a physics at a scale not present in the theoretical
model.
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(a) Weight of ~∇ ·
(
DN ~∇⊥N

)
in ∂tN . (b) Weight of −~∇ ·

(
Γ ~b
)

in ∂tN .

(c) Weight of −~∇ · (N~uE) in ∂tN . (d) Weight of −~∇ ·
(
N~uion∇B

)
in ∂tN .

FIG. 10: Sensitivity analysis of different operators’ weight when variating DN , the diffusion coefficient of the density
equation. Four mesh resolutions are used: 32× 256× 16 red triangles (4), 48× 384× 24 green circles (◦),

64× 512× 32 blue crosses (×) and 96× 768× 48 cyan squares (�). Limiter geometry, other parameters Tab. IV.

• The error is not acceptable because no analytical
expression could capture it, or it is in too strong in-
teraction with the theoretical dynamics of the sys-
tem. Moreover, it cannot be minimised at an ac-
ceptable cost. In this case second case, (i)PoPe pro-
vides a measurement of such artefact and it could
be used to guide the methodological choices by an-
swering the following questions: which is the most
appropriate discretization approach? how to al-
locate the degrees of freedom in space and time?
which algorithm could minimize the error? An op-
erator can be isolated in the splitting, and then
solved using a similar discretization but with an
higher order, or a different discretization like a
pseudo-spectral approach. Another solution can be
to periodically filter the error, similarly to a dealias-

ing filter used in pseudo-spectral algorithms. It is
worth to mention a study23 of growth rates depend-
ing on a narrow resonance where the numerical er-
ror is large (100% or (i)PoPe = 0) but somehow
orthogonal to the process studied, and thus with a
low impact on the features of the simulated solu-
tion.
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(a) Weight of ~∇ ·
(
DΓ

~∇⊥Γ
)

in ∂tΓ. (b) Weight of −~∇ · (Γ~uE) in ∂tΓ.

(c) Weight of ~∇ ·
(

(~∇⊥Φ)/B2
)

in W equation. (d) Weight of ~∇ ·
(

(~∇⊥ lnN)/B2
)

in W equation.

FIG. 11: Sensitivity analysis of different operators’ weight when variating DN , the diffusion coefficient of the density
equation. Four mesh resolutions are used: 32× 256× 16 red triangles (4), 48× 384× 24 green circles (◦),

64× 512× 32 blue crosses (×) and 96× 768× 48 cyan squares (�). Limiter geometry, other parameters Tab. IV.
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(a) Weight of ~∇ ·
(
DN ~∇⊥N

)
in ∂tN . (b) Weight of −~∇ · (N~uE) in ∂tN .

(c) Weight of ~∇ ·
(
DΓ

~∇⊥Γ
)

in ∂tΓ. (d) Weight of −~∇ · (Γ~uE) in ∂tΓ.

FIG. 12: Sensitivity analysis of different operators’ weight when varying DN , the diffusion coefficient of the density
equation. Diverted geometry, other parameters Tab. IV.
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Appendix A: Data used for simulations

Geometry Limiter Divertor

A 3.4 2.8
ρ? = ρL/a 1/256 1/256

Lϕ π/2 π/2

η‖(B0/en0) 10−5 10−5

DN , DΓ , DW (ρ2
LωC) 5 · 10−3 5 · 10−3

S0
N (ρ−3

L ωC) 4 · 10−3 4 · 10−3

Nψ (edge) 32 40
Nθ (edge) 512 350
Nψ (SOL) 32 40
Nθ (SOL) 512 350

Nψ (divertor leg) 32
Nθ (divertor leg) 16

Nψ (PFR) 9
Nθ (PFR) 16

Nϕ 32 32

TABLE IV: Table of the reference simulations with
associated parameters.
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