
HAL Id: hal-02613685
https://hal.science/hal-02613685

Submitted on 17 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Two-Dimensional Stochastic Rotation Dynamics for
Fluid Simulation

Benoît Crespin, Cong Tam Tran, Manuella Cerbelaud, Arnaud Videcoq,
Emmanuelle Darles

To cite this version:
Benoît Crespin, Cong Tam Tran, Manuella Cerbelaud, Arnaud Videcoq, Emmanuelle Darles. Two-
Dimensional Stochastic Rotation Dynamics for Fluid Simulation. Journal of Computer and Commu-
nications, 2020, 08 (02), pp.27-38. �10.4236/jcc.2020.82003�. �hal-02613685�

https://hal.science/hal-02613685
https://hal.archives-ouvertes.fr

Journal of Computer and Communications, 2020, 8, 27-38
https://www.scirp.org/journal/jcc

ISSN Online: 2327-5227
ISSN Print: 2327-5219

Two-Dimensional Stochastic Rotation
Dynamics for Fluid Simulation

Benoît Crespin1,2*, Công Tâm Tran1,2, Manuella Cerbelaud3,
Arnaud Videcoq3, Emmanuelle Darles4

1University Limoges, XLIM/ASALI, UMR CNRS, Limoges, France
2Center for Mathematical Modeling, Santiago, Chile
3University Limoges, IRCER, UMR CNRS, Limoges, France
4University Poitiers, XLIM/ASALI, UMR CNRS, Poitiers, France

Abstract
This paper presents a new method for fluid simulation based on Stochastic
Rotation Dynamics. The SRD model relies on a particle-based representation,
but does not consider incompressibility. We generalize this model by intro-
ducing additional computation steps in order to handle this type of behavior,
and also two-way coupling between the fluid and immersed objects. As a
proof of concept, our method is implemented on the CPU to produce differ-
ent types of simulations such as dam-break flood, falling droplets and mixing
of two fluids.

Keywords
Computer Graphics, Fluid Simulation, Particle Systems

1. Introduction

Fluid simulations in Computer Graphics seek to provide an approximate solu-
tion to the Navier-Stokes equations (NSE) which represent the motion of a fluid.
These equations can have different formulations, in the general form, they ex-
press the total time derivative of the velocity iv of a single particle of fluid i as:

21i
i i

i i

Dv Fp v
Dt m

ν
ρ

= − ∇ + ∇ + (1)

where iρ represents the density of the particle, ip is pressure, im is mass,

and ν is the kinematic viscosity. The term 1
i

i

p
ρ
∇ accounts for the accelera-

How to cite this paper: Crespin, B., Tran,
C.T., Cerbelaud, M., Videcoq, A. and Darles,
E. (2020) Two-Dimensional Stochastic Rota-
tion Dynamics for Fluid Simulation. Jour-
nal of Computer and Communications, 8,
27-38.
https://doi.org/10.4236/jcc.2020.82003

Received: January 23, 2020
Accepted: February 17, 2020
Published: February 20, 2020

Copyright © 2020 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

DOI: 10.4236/jcc.2020.82003 Feb. 20, 2020 27 Journal of Computer and Communications

https://www.scirp.org/journal/jcc
https://doi.org/10.4236/jcc.2020.82003
https://www.scirp.org/
https://doi.org/10.4236/jcc.2020.82003
http://creativecommons.org/licenses/by/4.0/

B. Crespin et al.

tion of the particle due to pressure differences inside the fluid, which generally

dominate all other forces. The term 2
ivν∇ represents the acceleration due to

friction forces between particles with different velocities, where ν is usually
determined empirically to provide a realistic behavior. Finally, F represents ex-
ternal forces pushing the fluid, e.g. gravity. Existing particle-based methods have
to cope with several problems when solving NSE. The first is the nearest
neighbor’s search, since at each iteration, we must determine the interactions of
each particle with its closest neighbors. Collision detection and handling are also
important to prevent particles to cross boundaries or to simulate two-way
coupling with rigid objects immersed in the fluid. Finally, for incompressible
fluids such as water, extra care must be taken to guarantee that the overall vo-
lume stays approximately constant during the simulation. Stochastic Rotation
Dynamics [1] [2] [3] [4] is known to provide a generally good approximation to
Equation (1) under certain conditions. It relies on a particle-based representa-
tion and a grid of regular square cells containing the particles. At each time step,
particles are stored into a single cell, and particles in the same cell contribute to
the center of mass velocity of this cell. The velocity of a particle at the next time
step is updated by combining the center of mass velocity of its associated cell
and a random rotation. However, this model is generally not able to reproduce
the behavior of incompressible fluids, as the number of particles inside a cell
does not stay constant.

After presenting existing particle-based methods in the next section, we
present in Section 3 a generalization of the SRD model introducing additional
computation steps, called local repulsion and cell pressure steps, in order to
handle incompressibility. We also present a two-way coupling method that
process collisions between the fluid and immersed objects. The implementation
of our method on the CPU and the results we obtained are discussed in Section
4, including different types of simulations such as dam-break flood, falling
droplets and mixing of two fluids.

2. Particle-Based Fluid Simulations

The Smooth Particle Hydrodynamics model (SPH) was proposed for water si-
mulation by Muller et al. in 2003 [5], and is now one of the most popular me-
thods in Computer Graphics. A complete survey of this approach can be found
in [6]. The main idea is that each quantity iA associated to particle i (i.e. vis-
cosity, density, etc.) can be approximated by interpolating quantities at neigh-
boring particles j with a kernel function W which depends on the distance ij



between i and j:

()j
i j

j j

m
A A W ij

ρ∑


 (2)

The nearest neighbors’ search usually relies on a grid with fixed-size cells and
represents approximately 80% of the total computation time. The algorithm then

DOI: 10.4236/jcc.2020.82003 28 Journal of Computer and Communications

https://doi.org/10.4236/jcc.2020.82003

B. Crespin et al.

runs as follows at each time step and for each particle: compute density, then
compute pressure, viscosity and external forces, and finally apply these forces to
update velocity and position. To handle collisions with fixed or moving objects,
most existing works make use of additional particles located at boundaries,
which contribute to density and pressure computations and prevent penetration
of fluid particles inside solid objects. Different methods were also proposed to
guarantee incompressibility, where the main idea is to constrain density compu-
tation to reach a desired target value before pressure forces are applied.

Particle-In-Cell (PIC) [7] and Fluid-Implicit-Particle (FLIP) [8] are hybrid
models that rely both on a particle system and on a grid with fixed-size cells (see
[9] for a complete survey). As with SPH, particles are used to represent the fluid
with their own position and velocity, but density, pressure and viscosity forces
are computed at fixed positions in cells. These positions are usually defined at
the midpoint of each edge (staggered Marker and Cell, or MAC). At each time
step, velocities must be interpolated from particles to cells, and forces from cells
back to particles. PIC and FLIP approaches essentially differ in the interpolation
scheme, which can introduce dissipation, artificial viscosity and/or visible noise
at the interface. Both approaches are combined in [10] to alleviate these prob-
lems and enforce incompressibility, which can be more easily achieved than with
SPH. However, pressure computations now require to solve a large linear equa-
tions system on the grid, representing usually more than 1/3 of the total simula-
tion time. Collision handling with boundaries can be achieved directly using the
grid by marking cells as empty (or air), fluid or solid; for moving objects boun-
dary particles can be used as with SPH.

A specific type of particle-based models can be found in the field of human
crowds simulations [11] [12] [13]. Here two-dimensional particles represent in-
dividuals whose goal is to reach a specific destination, but at the same time must
also avoid collisions with obstacles or other individuals. These approaches rely on
concepts very similar to those found in PIC/FLIP methods mentioned above to
handle density, friction, incompressibility, collision detection, etc. Such systems
can be used for example to simulate the behavior of large, dense crowds evacuating
a building, which indeed closely resembles to particle dynamics in a fluid.

The Stochastic Rotation Dynamics model (SRD), also known as Multi Particle
Collision Dynamics (MPCD), was first introduced in [1] for fluid simulation at
mesoscopic scale (for material larger than the nanoscale size in condensed mat-
ter physics). As in SPH or PIC/FLIP methods, fluid particles are defined by their
position ir and their velocity iv , and are distributed in a regular cubic grid. We
note 0a the linear size of each grid cell (or SRD cell), and γ the desired aver-
age number of fluid particles inside a cell. At each iteration, a collision step and a
streaming step are successively applied.

During the collision step and for each SRD cell, a rotation is applied to the
velocities of each particle i inside this cell:

() () () ()()roti iv t t v t v t v tα+ ∆ = + − (3)

DOI: 10.4236/jcc.2020.82003 29 Journal of Computer and Communications

https://doi.org/10.4236/jcc.2020.82003

B. Crespin et al.

where t∆ is the time step between two iterations, v is the center of mass veloc-
ity for this cell, and rotα represents a two-dimensional rotation of angle α .
This angle can be chosen randomly within a given interval, hence the name
“stochastic”. Figure 1 shows the decomposition of this computation for a single
cell. Before the collision step, a translation can be applied to all particles with a
random vector within the interval []0 02, 2a a− . This extra computation for-
bids particles to always interact with the same neighbors in order to restore the
Galilean invariance assumption [2], but was not found to have a significant im-
pact in our work where the neighborhood of a particle changes rapidly.

During the streaming step, particles are simply advected by:

() () ()i i ir t t r t v t t+ ∆ = + ∆ (4)

Finally, some extra steps are needed to compute collisions and interactions
between particles and solid objects immersed in the fluid. For example, repulsive
interaction forces are explicitly computed between particles and solid grains to
avoid inter-penetration in [3].

The SRD approach is designed for applications in condensed matter physics,
and it provides a good approximation to Equation (1) if sufficiently small values
are chosen for the grid resolution 0a and the time step t∆ . Its major advan-
tage over the methods presented above is its very simple formulation, and also
the fact that it does not need an expensive nearest neighbor search. However, it
also suffers several weaknesses for applications in Computer Graphics. The main
issue is that the number of particles inside an SRD cell can be very different from
the desired value γ , leading to compressibility effects when adding gravity. As a
result, it is hardly possible with SRD to achieve regular fluid simulations such as
water jets, falling droplets, dam-break flood, etc.

To overcome these problems, our approach combines the simplicity of the
SRD model with specific modifications designed to take other phenomena into
account. These modifications, inspired by PIC/FLIP methods, are presented in
the next section.

3. 2D SRD for Fluid Simulation: Our Approach

Figure 2 summarizes the computation of a complete-time step with our approach,

Figure 1. Collision step inside an SRD cell described by Equation (3): (a) Initial velocities iv at time t; (b) Average veloc-

ity v assigned to each particle; (c) Rotation of iv v− by a random angle α ; (d) Final velocities at time ()t t+ ∆ .

DOI: 10.4236/jcc.2020.82003 30 Journal of Computer and Communications

https://doi.org/10.4236/jcc.2020.82003

B. Crespin et al.

Figure 2. Summary of our algorithm: (a) Initial positions and velocities; (b) Local repulsion; (c) SRD
collision step; (d) Computation of pressure gradient at the center of each cell; (e) Modification of ve-
locities based on pressure; (f) Final positions.

starting with positions and velocities for the particles at time t (2a). First a local
repulsion step is used to avoid particle clustering (2b), then we apply the SRD
collision step described earlier (2c). To handle pressure effects, a pressure gra-
dient is computed for each cell (2d) and is used to modify the local velocity of
each particle (2e). Finally, we use this velocity to advect particles to their next
position at time t t+ ∆ (2f). The following paragraphs focus on the computa-
tion of local repulsion and pressure forces, which are the key modifications we
add to the original SRD method. We also describe how to handle collisions with
fixed or moving objects.

3.1. Local Repulsion

The original SRD model does not prevent particles to lie too close to each other,
which can generate particle clustering. The purpose of our local repulsion step is
to displace particles such that they keep a minimal distance Lr between them.
This parameter can be computed from the size of a cell 0a and the desired av-
erage number of particles inside a cell γ :

2
02
3L

a
r

γ
= (5)

For each particle i, we first need to find which are its closest neighbors, thanks
to a classical nearest neighbor search [6]. As this search is limited within radius

Lr , which is lower than 0a , we only consider particles located inside the same

DOI: 10.4236/jcc.2020.82003 31 Journal of Computer and Communications

https://doi.org/10.4236/jcc.2020.82003

B. Crespin et al.

cell and its 8 neighboring cells. Let ij


 denote the vector from i to another par-
ticle j. If the distance ij


 between i and j is lower than Lr , then we add a dis-

placement vector d to particle j, whereas i is displaced by −d:

1
2
L

L

ijr ijd
r ij

 
 = −
 
 

 

 (6)

The velocities of i and j are also modified, using d v− ∆ and d v∆ respec-
tively, where v∆ is a user-defined parameter (set to 0.1 in our implementa-
tion). The whole process can be repeated multiple times to ensure that all par-
ticles will eventually reach their correct position, as illustrated in Figure 2(b). In
practice, our experiments showed that this simple approach converges very
quickly, generally with only 3 runs.

3.2. Cell Pressure

Once the local repulsion completes, the velocity of each particle is updated using
the SRD collision step (Equation (3)). However advecting particles at this stage is
not sufficient to handle pressure differences inside the fluid, for example, if we
apply a gravity force. As shown in Figure 3 (top) many particles can still enter a
single cell, hence volume conservation is not guaranteed. To tackle this problem
our cell pressure step defines a velocity field on the cell grid from the center of
mass velocity v, which should stay divergence-free, i.e. 0v∇⋅ = . First, we
compute the divergence ,x yd at each grid cell:

Figure 3. Top row: dam-break simulation using cell pressure computation, captured at frames 250 (a), 350 (b), 450 (c) and 650
(d). Bottom row (e-h): dam-break simulation using only local repulsion, captured for the same frames, where the loss of volume
becomes visible.

DOI: 10.4236/jcc.2020.82003 32 Journal of Computer and Communications

https://doi.org/10.4236/jcc.2020.82003

B. Crespin et al.

()0 ,
, 1, 1, , 1 , 1

2 x y
x y x y x y x y x y

a r
d v v v v

t + − + −

−
= − + −

∆
 (7)

where ,x yr represents the density ratio between the number of particles located
inside the cell and the desired number γ . The pressure ,x yp in each cell can be
found by solving a linear equations system on the grid, as in PIC/FLIP methods.
Our implementation uses the Jacobi method [14] and starts by setting 0

, 0x yp = .
The following recurrence formula is applied during k iterations:

()1 1 1 1
, , 2, 2, , 2 , 2

1
4

k k k k k
x y x y x y x y x y x yp d p p p p− − − −

+ − + −= + + + + (8)

In practice, if a cell does not contain any particle, we set its pressure , 0k
x yp =

at each iteration. From the scalar pressure values, we can then compute the
pressure gradient ,x yp in each cell by:

1, 1,
,

, 1 , 10 ,2
x y x y

x y
x y x yx y

p ptp
p pa r

+ −

+ −

− ∆
=  − 

 (9)

Finally, the velocity iv of each particle is linearly interpolated with the pres-
sure gradient ,x yp using the density ratio ,x yr of its associated cell:

() (), , ,1i x y i x y i x yv r v r v p= − + −
 (10)

The number of iterations k for the Jacobi method can be chosen between 5
and 40, depending on the desired compromise between computation time and
precision. In all our experiments, the value 10k = was sufficient to ensure vo-
lume conservation, as shown in Figure 3 (bottom).

3.3. Collision Handling

As noted previously, most existing works in fluid simulation use additional par-
ticles to handle collisions with objects. We apply the same technique for fixed
boundaries, for example on the walls of the simulation box (see Figure 4(a)).
These solid particles do not move but are considered during the local repulsion
step to prevent fluid particles to cross a wall. However, it may still happen that a
fluid particle flows out of the simulation box: in this case, we simply displace it
back inside. We can also reduce its velocity in order to generate an adhesion

Figure 4. (a) Solid particles covering the bottom wall of the simulation box. (b and c) Ball falling inside the fluid at rest. (d) Ball
flying up with the flow.

DOI: 10.4236/jcc.2020.82003 33 Journal of Computer and Communications

https://doi.org/10.4236/jcc.2020.82003

B. Crespin et al.

effect on the surface, or mirror its velocity in the opposite direction to generate a
bouncing effect.

In the case of a moving object, we also have to create a set of solid particles on
its boundaries at the beginning of the simulation. In the following, we take the
example of a simple ball represented by a circle, coated with solid particles on its
perimeter. We also store its position and its velocity bv , used to advect the ball
at each iteration. If a fluid particle enters the object during the local repulsion
step, it will bounce or adhere to the surface as in the fixed case. Solid particles
are marked with a boolean value if they interact with at least one fluid particle,
i.e. if they are within distance Lr (represented in red in Figure 4(c)). At the
end of this step, a fraction of the velocity of each marked particle is added to the
velocity bv , again using a user-defined parameter v∆ set to 0.1 in our imple-
mentation. This generates a two-way coupling between the fluid and the object.
During the cell pressure stage, solid particles are considered when computing
divergence and pressure. This is especially important for the cells where a void is
induced by the presence of the ball (represented in green in Figure 4(c)), which
would otherwise lead to incorrect results. Finally, we can also simulate a
buoyancy effect by reducing the gravity force applied to the ball depending on
the number of marked particles on its boundary, roughly approximating the area
of the fluid displaced by the ball.

Figure 4(b) and Figure 4(d) show two examples of our results. More compli-
cated objects can also be handled with this approach, as long as their boundary
can be discretized with solid particles. However, if the shape is not circular its
orientation must also be taken into account, and the two-way coupling in this
case should include a rotation matrix.

4. Results and Discussion

The fully animated version of the examples presented in this paper is available
on video: https://bit.ly/336hb8R. Our CPU implementation running with
Processing [15] contains approximately 500 lines of code, and can be downloaded
here: https://bit.ly/31v8dk5. The code is structured into three basic classes:
• In the main class we define all the parameters, initialize the objects corres-

ponding to particles and cells, then run the simulation iterations in an infi-
nite loop. This loop also includes the interactions with the user (keyboard or
mouse) and the rendering.

• The Particle class first declares the attributes of a particle such as its position,
velocity, the index of its associated cell, etc. The computation of the local re-
pulsion and SRD collision steps is defined here, as well as the application of
the gravity and the pressure force, and finally the advection of a particle be-
fore the next iteration.

• The Cell class declares the attribute of a cell, including its position and a list
of the particles it contains. All the code needed for cell pressure computation
is defined here, such as average velocity, divergence, pressure, pressure gra-

DOI: 10.4236/jcc.2020.82003 34 Journal of Computer and Communications

https://doi.org/10.4236/jcc.2020.82003
https://bit.ly/336hb8R
https://bit.ly/31v8dk5

B. Crespin et al.

dient and density ratio. An integer value is also used to characterize if the cell
is empty, has an empty cell neighbor, or is surrounded by non-empty cells.

• An additional Ball class defines the behavior of the moving ball discussed in
Section 1.

The two main parameters in our model are the size of a cell 0a and the de-
sired average number of particles inside a cell γ , even if other parameters can
be tweaked. As an example in Figure 5 shows different configurations for the
dam break simulation with varying values for 0a and γ , that can be com-
pared with Figure 3 where 0 10a = and 5γ = . If γ is very low, as in the
first and third images, the simulation loses precision but the overall behavior is
conserved. In all our experiments the other parameters are set as follows: the
unit size is 1 pixel, the simulation box has size 640 by 640, the time step

0.1t∆ = , the gravity is set to 9.81, the number of iterations for the local repul-
sion step to 3, and the number of Jacobi iterations for the cell pressure step

10k = .
Table 1 gives the computation time per iteration measured for the dam break

simulation with different 0a and γ values, as well as the percentage of time
spent to compute local repulsion and cell pressure. As can be observed the re-
pulsion step represents the main bottleneck for our CPU implementation, with
more than 75% of the computation time. This can be explained by the fact that
this step depends on the number of particles and makes use of an expensive
nearest neighbor search. It is worth noticing that this percentage looks similar in
SPH-based simulations, where the same bottleneck influences the simulation.

Figure 5. Dam-break simulation with different input parameters. From left to right: ()0 20, 2a γ= = ()0 40, 10a γ= =

()0 10, 2a γ= = ()0 10, 10a γ= = .

Table 1. Computation times with different 0a and γ values.

0a γ #particles #cells
Time per

iteration (ms)
% repulsion

% cell
pressure

 2 260 1024 0.8042989 76% 13%

40 10 376 256 1.8230367 96% 1%

20 5 660 1024 2.6646383 90% 4%

10 2 1134 4096 3.9304664 78% 12%

10 10 6114 4096 44.856846 96% 1%

DOI: 10.4236/jcc.2020.82003 35 Journal of Computer and Communications

https://doi.org/10.4236/jcc.2020.82003

B. Crespin et al.

On the contrary, the cell pressure step mostly depends on the number of cells
and only has a limited impact on the total computation.

Different problems with our method are noticeable in some of the pictures
presented in this paper. For example, the resolution of the grid can become visi-
ble at the interface between the fluid and the empty space, creating an aliasing
effect as in the right image of Figure 5. Small bumps can also be observed on
this interface, as in the left image of Figure 6 where the surface at rest is not
perfectly flat. Another issue is that, due to the stochastic nature of the SRD me-
thod, our simulations exhibit non-symmetric behaviors, e.g. in Figure 6 where
the droplet falling exactly at the center of the box generates different patterns on
each side. In this case, the non-uniform distribution of particles inside the drop-
let also plays a part. One final issue is our local repulsion step which creates a
rather rigid behavior in high pressure regions deep inside the fluid, where par-
ticles tend to wriggle to resist gravity.

On the other hand, despite its inherent approximations, our method succeeds
at reproducing some interesting effects observed in fluid dynamics with
dam-break flood or a falling droplet simulations. For example, realistic liquid
sheets, i.e. particles in the air appearing linked by a cohesive force, are visible in
Figure 4 and Figure 6. This behavior is rather surprising since our method does
not specifically address the surface tension phenomenon that drives this type of
effect. Figure 7 shows how our method is also able to generate vortices. Here the
gravity is set to 0 and the fluid is separated into two populations of green and
blue particles, depending on their initial position in the box. After the green particles

Figure 6. Droplet falling inside a volume of fluid, repelling particles on both sides and generating liquid sheets in the air.

Figure 7. Vortex created at the interface between colored particles. Here gravity is set to 0 and the fluid is separated into two pop-
ulations of green and blue particles. After the green particles are slowly pushed downwards, two vortices appear.

DOI: 10.4236/jcc.2020.82003 36 Journal of Computer and Communications

https://doi.org/10.4236/jcc.2020.82003

B. Crespin et al.

are slowly pushed downwards, two typical vortices start to appear.

5. Conclusions

The approach presented in this paper is based on the Stochastic Rotation Dy-
namics model, which by nature leads to instabilities because of the random rota-
tion used in Equation (3). However, by extending this simple approach with ad-
ditional steps related to pressure and collision handling, it is possible to obtain
convincing results that faithfully reproduce the behavior of incompressible flu-
ids. As a proof of concept, our method was implemented on the CPU to create
different types of simulations such as dam-break flood, falling droplets and
mixing of two fluids.

In future work, we would like to investigate further how our approach could
be used to simulate viscous fluids, by modifying the angle parameter α in Eq-
uation (3) to damp the velocity of particles colliding inside a cell. The time step
parameter could also play a part here since it directly impacts the overall number
of SRD collisions.

We also wish to address the problems described in Section 4. The main im-
provement concerns the local repulsion step, which currently represents more
than 75% of the total computation time and leads to instabilities in high pressure
regions. This goal could be achieved through a parallelized GPU implementa-
tion, which is already available for compressible fluids [16]. This would reduce
the cost of the nearest neighbor search and allow an increased number of par-
ticles in our simulations.

Acknowledgements

This work is supported by institutional grants from the LabEX SigmaLim (ANR-
10-LABX-0074-01) and by the MIRES Federation.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Malevanets, A. and Kapral, R. (1999) Mesoscopic Model for Solvent Dynamics. The

Journal of Chemical Physics, 110, Article No. 8605.
https://doi.org/10.1063/1.478857

[2] Ihle, T. and Kroll, D.M. (2001) Stochastic Rotation Dynamics: A Galilean-Invariant
Mesoscopic Model for Fluid Flow. Physical Review E, 63, Article ID: 020201.
https://doi.org/10.1103/PhysRevE.63.020201

[3] Padding, J.T. and Louis, A.A. (2006) Hydrodynamic Interactions and Brownian
Forces in Colloidal Suspensions: Coarse-Graining over Time and Length Scales.
Physical Review E, 74, Article ID: 031402.
https://doi.org/10.1103/PhysRevE.74.031402

[4] Shakeri, A., Lee, K.-W. and Pschel, T. (2018) Limitation of Stochastic Rotation Dy-

DOI: 10.4236/jcc.2020.82003 37 Journal of Computer and Communications

https://doi.org/10.4236/jcc.2020.82003
https://doi.org/10.1063/1.478857
https://doi.org/10.1103/PhysRevE.63.020201
https://doi.org/10.1103/PhysRevE.74.031402

B. Crespin et al.

namics to Represent Hydrodynamic Interaction between Colloidal Particles. Physics
of Fluids, 30, Article ID: 013603. https://doi.org/10.1063/1.5008812

[5] Muller, M., Charypar, D. and Gross, M. (2003) Particle-Based Fluid Simulation for
Interactive Applications. In: ACM SIGGRAPH/Eurographics Symposium on Com-
puter Animation, 154-159.

[6] Ihmsen, M., Orthmann, J., Solenthaler, B., Kolb, A. and Teschner, M. (2014) SPH
Fluids in Computer Graphics. Eurographics State-of-The-Art Reports, 21-42.

[7] Evans, M.W. and Harlow, F.H. (1957) The Particle-in-Cell Method for Hydrody-
namic Calculations. Technical Report LA-2139, Los Alamos Scientic Lab, N. Mex.

[8] Brackbill, J.U., Kothe, D.B. and Ruppel, H.M. (1988) Flip: A Low-Dissipation, Par-
ticle-in-Cell Method for Fluid Flow. Computer Physics Communications, 48, 25-38.
https://doi.org/10.1016/0010-4655(88)90020-3

[9] Bridson, R. (2015) Fluid Simulation for Computer Graphics. 2nd Edition, Taylor &
Francis, New York.

[10] Zhu, Y. and Bridson, R. (2005) Animating Sand as a Fluid. ACM Transactions on
Graphics, 24, 965-972. https://doi.org/10.1145/1073204.1073298

[11] Treuille, A., Cooper, S. and Popović, Z. (2006) Continuum Crowds. ACM Transac-
tions on Graphics, 25, 1160-1168. https://doi.org/10.1145/1141911.1142008

[12] Narain, R., Golas, A., Curtis, S. and Lin, M.C. (2009) Aggregate Dynamics for Dense
Crowd Simulation. ACM Transactions on Graphics, 28, 122:1-122:8.
https://doi.org/10.1145/1618452.1618468

[13] Berglund, J. and Ristic, R. (2015) High-Density Real-Time Virtual Crowds via Un-
ilaterally Incompressible Fluid Simulation. Technical Report, KTH, School of Engi-
neering Sciences (SCI).

[14] Fernando, R. (2004) GPU Gems: Programming Techniques, Tips and Tricks for
Real-Time Graphics. Pearson Higher Education, London.

[15] Reas, C. and Fry, B. (2014) Processing: A Programming Handbook for Visual De-
signers and Artists. The MIT Press, Cambridge, MA.

[16] Tran, C.T., Crespin, B., Cerbelaud, M. and Videcoq, A. (2018) Colloidal Suspension
by SRD-MD Simulation on GPU. Computer Physics Communications, 232, 35-45.
https://doi.org/10.1016/j.cpc.2018.06.004

DOI: 10.4236/jcc.2020.82003 38 Journal of Computer and Communications

https://doi.org/10.4236/jcc.2020.82003
https://doi.org/10.1063/1.5008812
https://doi.org/10.1016/0010-4655(88)90020-3
https://doi.org/10.1145/1073204.1073298
https://doi.org/10.1145/1141911.1142008
https://doi.org/10.1145/1618452.1618468
https://doi.org/10.1016/j.cpc.2018.06.004

	Two-Dimensional Stochastic Rotation Dynamics for Fluid Simulation
	Abstract
	Keywords
	1. Introduction
	2. Particle-Based Fluid Simulations
	3. 2D SRD for Fluid Simulation: Our Approach
	3.1. Local Repulsion
	3.2. Cell Pressure
	3.3. Collision Handling

	4. Results and Discussion
	5. Conclusions
	Acknowledgements
	Conflicts of Interest
	References

