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Abstract 
This paper presents a new method for fluid simulation based on Stochastic 
Rotation Dynamics. The SRD model relies on a particle-based representation, 
but does not consider incompressibility. We generalize this model by intro-
ducing additional computation steps in order to handle this type of behavior, 
and also two-way coupling between the fluid and immersed objects. As a 
proof of concept, our method is implemented on the CPU to produce differ-
ent types of simulations such as dam-break flood, falling droplets and mixing 
of two fluids. 
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1. Introduction 

Fluid simulations in Computer Graphics seek to provide an approximate solu-
tion to the Navier-Stokes equations (NSE) which represent the motion of a fluid. 
These equations can have different formulations, in the general form, they ex-
press the total time derivative of the velocity iv  of a single particle of fluid i as: 

21i
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i i

Dv Fp v
Dt m
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ρ

= − ∇ + ∇ +                    (1) 

where iρ  represents the density of the particle, ip  is pressure, im  is mass, 

and ν  is the kinematic viscosity. The term 1
i

i

p
ρ
∇  accounts for the accelera-
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tion of the particle due to pressure differences inside the fluid, which generally  

dominate all other forces. The term 2
ivν∇  represents the acceleration due to 

friction forces between particles with different velocities, where ν  is usually 
determined empirically to provide a realistic behavior. Finally, F represents ex-
ternal forces pushing the fluid, e.g. gravity. Existing particle-based methods have 
to cope with several problems when solving NSE. The first is the nearest 
neighbor’s search, since at each iteration, we must determine the interactions of 
each particle with its closest neighbors. Collision detection and handling are also 
important to prevent particles to cross boundaries or to simulate two-way 
coupling with rigid objects immersed in the fluid. Finally, for incompressible 
fluids such as water, extra care must be taken to guarantee that the overall vo-
lume stays approximately constant during the simulation. Stochastic Rotation 
Dynamics [1] [2] [3] [4] is known to provide a generally good approximation to 
Equation (1) under certain conditions. It relies on a particle-based representa-
tion and a grid of regular square cells containing the particles. At each time step, 
particles are stored into a single cell, and particles in the same cell contribute to 
the center of mass velocity of this cell. The velocity of a particle at the next time 
step is updated by combining the center of mass velocity of its associated cell 
and a random rotation. However, this model is generally not able to reproduce 
the behavior of incompressible fluids, as the number of particles inside a cell 
does not stay constant. 

After presenting existing particle-based methods in the next section, we 
present in Section 3 a generalization of the SRD model introducing additional 
computation steps, called local repulsion and cell pressure steps, in order to 
handle incompressibility. We also present a two-way coupling method that 
process collisions between the fluid and immersed objects. The implementation 
of our method on the CPU and the results we obtained are discussed in Section 
4, including different types of simulations such as dam-break flood, falling 
droplets and mixing of two fluids. 

2. Particle-Based Fluid Simulations 

The Smooth Particle Hydrodynamics model (SPH) was proposed for water si-
mulation by Muller et al. in 2003 [5], and is now one of the most popular me-
thods in Computer Graphics. A complete survey of this approach can be found 
in [6]. The main idea is that each quantity iA  associated to particle i (i.e. vis-
cosity, density, etc.) can be approximated by interpolating quantities at neigh-
boring particles j with a kernel function W which depends on the distance ij


 

between i and j: 

( )j
i j

j j

m
A A W ij

ρ∑


                       (2) 

The nearest neighbors’ search usually relies on a grid with fixed-size cells and 
represents approximately 80% of the total computation time. The algorithm then 
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runs as follows at each time step and for each particle: compute density, then 
compute pressure, viscosity and external forces, and finally apply these forces to 
update velocity and position. To handle collisions with fixed or moving objects, 
most existing works make use of additional particles located at boundaries, 
which contribute to density and pressure computations and prevent penetration 
of fluid particles inside solid objects. Different methods were also proposed to 
guarantee incompressibility, where the main idea is to constrain density compu-
tation to reach a desired target value before pressure forces are applied. 

Particle-In-Cell (PIC) [7] and Fluid-Implicit-Particle (FLIP) [8] are hybrid 
models that rely both on a particle system and on a grid with fixed-size cells (see 
[9] for a complete survey). As with SPH, particles are used to represent the fluid 
with their own position and velocity, but density, pressure and viscosity forces 
are computed at fixed positions in cells. These positions are usually defined at 
the midpoint of each edge (staggered Marker and Cell, or MAC). At each time 
step, velocities must be interpolated from particles to cells, and forces from cells 
back to particles. PIC and FLIP approaches essentially differ in the interpolation 
scheme, which can introduce dissipation, artificial viscosity and/or visible noise 
at the interface. Both approaches are combined in [10] to alleviate these prob-
lems and enforce incompressibility, which can be more easily achieved than with 
SPH. However, pressure computations now require to solve a large linear equa-
tions system on the grid, representing usually more than 1/3 of the total simula-
tion time. Collision handling with boundaries can be achieved directly using the 
grid by marking cells as empty (or air), fluid or solid; for moving objects boun-
dary particles can be used as with SPH.  

A specific type of particle-based models can be found in the field of human 
crowds simulations [11] [12] [13]. Here two-dimensional particles represent in-
dividuals whose goal is to reach a specific destination, but at the same time must 
also avoid collisions with obstacles or other individuals. These approaches rely on 
concepts very similar to those found in PIC/FLIP methods mentioned above to 
handle density, friction, incompressibility, collision detection, etc. Such systems 
can be used for example to simulate the behavior of large, dense crowds evacuating 
a building, which indeed closely resembles to particle dynamics in a fluid. 

The Stochastic Rotation Dynamics model (SRD), also known as Multi Particle 
Collision Dynamics (MPCD), was first introduced in [1] for fluid simulation at 
mesoscopic scale (for material larger than the nanoscale size in condensed mat-
ter physics). As in SPH or PIC/FLIP methods, fluid particles are defined by their 
position ir  and their velocity iv , and are distributed in a regular cubic grid. We 
note 0a  the linear size of each grid cell (or SRD cell), and γ  the desired aver-
age number of fluid particles inside a cell. At each iteration, a collision step and a 
streaming step are successively applied. 

During the collision step and for each SRD cell, a rotation is applied to the 
velocities of each particle i inside this cell: 

( ) ( ) ( ) ( )( )roti iv t t v t v t v tα+ ∆ = + −                 (3) 
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where t∆  is the time step between two iterations, v is the center of mass veloc-
ity for this cell, and rotα  represents a two-dimensional rotation of angle α . 
This angle can be chosen randomly within a given interval, hence the name 
“stochastic”. Figure 1 shows the decomposition of this computation for a single 
cell. Before the collision step, a translation can be applied to all particles with a 
random vector within the interval [ ]0 02, 2a a− . This extra computation for-
bids particles to always interact with the same neighbors in order to restore the 
Galilean invariance assumption [2], but was not found to have a significant im-
pact in our work where the neighborhood of a particle changes rapidly. 

During the streaming step, particles are simply advected by: 

( ) ( ) ( )i i ir t t r t v t t+ ∆ = + ∆                     (4) 

Finally, some extra steps are needed to compute collisions and interactions 
between particles and solid objects immersed in the fluid. For example, repulsive 
interaction forces are explicitly computed between particles and solid grains to 
avoid inter-penetration in [3]. 

The SRD approach is designed for applications in condensed matter physics, 
and it provides a good approximation to Equation (1) if sufficiently small values 
are chosen for the grid resolution 0a  and the time step t∆ . Its major advan-
tage over the methods presented above is its very simple formulation, and also 
the fact that it does not need an expensive nearest neighbor search. However, it 
also suffers several weaknesses for applications in Computer Graphics. The main 
issue is that the number of particles inside an SRD cell can be very different from 
the desired value γ , leading to compressibility effects when adding gravity. As a 
result, it is hardly possible with SRD to achieve regular fluid simulations such as 
water jets, falling droplets, dam-break flood, etc. 

To overcome these problems, our approach combines the simplicity of the 
SRD model with specific modifications designed to take other phenomena into 
account. These modifications, inspired by PIC/FLIP methods, are presented in 
the next section. 

3. 2D SRD for Fluid Simulation: Our Approach 

Figure 2 summarizes the computation of a complete-time step with our approach,  
 

 
Figure 1. Collision step inside an SRD cell described by Equation (3): (a) Initial velocities iv  at time t; (b) Average veloc-

ity v assigned to each particle; (c) Rotation of iv v−  by a random angle α ; (d) Final velocities at time ( )t t+ ∆ . 
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Figure 2. Summary of our algorithm: (a) Initial positions and velocities; (b) Local repulsion; (c) SRD 
collision step; (d) Computation of pressure gradient at the center of each cell; (e) Modification of ve-
locities based on pressure; (f) Final positions. 

 
starting with positions and velocities for the particles at time t (2a). First a local 
repulsion step is used to avoid particle clustering (2b), then we apply the SRD 
collision step described earlier (2c). To handle pressure effects, a pressure gra-
dient is computed for each cell (2d) and is used to modify the local velocity of 
each particle (2e). Finally, we use this velocity to advect particles to their next 
position at time t t+ ∆  (2f). The following paragraphs focus on the computa-
tion of local repulsion and pressure forces, which are the key modifications we 
add to the original SRD method. We also describe how to handle collisions with 
fixed or moving objects. 

3.1. Local Repulsion 

The original SRD model does not prevent particles to lie too close to each other, 
which can generate particle clustering. The purpose of our local repulsion step is 
to displace particles such that they keep a minimal distance Lr  between them. 
This parameter can be computed from the size of a cell 0a  and the desired av-
erage number of particles inside a cell γ : 

2
02
3L

a
r

γ
=                           (5) 

For each particle i, we first need to find which are its closest neighbors, thanks 
to a classical nearest neighbor search [6]. As this search is limited within radius 

Lr , which is lower than 0a , we only consider particles located inside the same 
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cell and its 8 neighboring cells. Let ij


 denote the vector from i to another par-
ticle j. If the distance ij


 between i and j is lower than Lr , then we add a dis-

placement vector d to particle j, whereas i is displaced by −d: 

1
2
L

L

ijr ijd
r ij

 
 = −
 
 

 

                        (6) 

The velocities of i and j are also modified, using d v− ∆  and d v∆  respec-
tively, where v∆  is a user-defined parameter (set to 0.1 in our implementa-
tion). The whole process can be repeated multiple times to ensure that all par-
ticles will eventually reach their correct position, as illustrated in Figure 2(b). In 
practice, our experiments showed that this simple approach converges very 
quickly, generally with only 3 runs. 

3.2. Cell Pressure 

Once the local repulsion completes, the velocity of each particle is updated using 
the SRD collision step (Equation (3)). However advecting particles at this stage is 
not sufficient to handle pressure differences inside the fluid, for example, if we 
apply a gravity force. As shown in Figure 3 (top) many particles can still enter a 
single cell, hence volume conservation is not guaranteed. To tackle this problem 
our cell pressure step defines a velocity field on the cell grid from the center of 
mass velocity v, which should stay divergence-free, i.e. 0v∇⋅ = . First, we 
compute the divergence ,x yd  at each grid cell: 

 

 
Figure 3. Top row: dam-break simulation using cell pressure computation, captured at frames 250 (a), 350 (b), 450 (c) and 650 
(d). Bottom row (e-h): dam-break simulation using only local repulsion, captured for the same frames, where the loss of volume 
becomes visible. 
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( )0 ,
, 1, 1, , 1 , 1

2 x y
x y x y x y x y x y

a r
d v v v v

t + − + −

−
= − + −

∆
             (7) 

where ,x yr  represents the density ratio between the number of particles located 
inside the cell and the desired number γ . The pressure ,x yp  in each cell can be 
found by solving a linear equations system on the grid, as in PIC/FLIP methods. 
Our implementation uses the Jacobi method [14] and starts by setting 0

, 0x yp = . 
The following recurrence formula is applied during k iterations: 

( )1 1 1 1
, , 2, 2, , 2 , 2

1
4

k k k k k
x y x y x y x y x y x yp d p p p p− − − −

+ − + −= + + + +             (8) 

In practice, if a cell does not contain any particle, we set its pressure , 0k
x yp =  

at each iteration. From the scalar pressure values, we can then compute the 
pressure gradient ,x yp  in each cell by: 

1, 1,
,

, 1 , 10 ,2
x y x y

x y
x y x yx y

p ptp
p pa r

+ −

+ −

− ∆
=  − 

                    (9) 

Finally, the velocity iv  of each particle is linearly interpolated with the pres-
sure gradient ,x yp  using the density ratio ,x yr  of its associated cell: 

( ) ( ), , ,1i x y i x y i x yv r v r v p= − + −
                  (10) 

The number of iterations k for the Jacobi method can be chosen between 5 
and 40, depending on the desired compromise between computation time and 
precision. In all our experiments, the value 10k =  was sufficient to ensure vo-
lume conservation, as shown in Figure 3 (bottom). 

3.3. Collision Handling 

As noted previously, most existing works in fluid simulation use additional par-
ticles to handle collisions with objects. We apply the same technique for fixed 
boundaries, for example on the walls of the simulation box (see Figure 4(a)). 
These solid particles do not move but are considered during the local repulsion 
step to prevent fluid particles to cross a wall. However, it may still happen that a 
fluid particle flows out of the simulation box: in this case, we simply displace it 
back inside. We can also reduce its velocity in order to generate an adhesion  

 

 
Figure 4. (a) Solid particles covering the bottom wall of the simulation box. (b and c) Ball falling inside the fluid at rest. (d) Ball 
flying up with the flow. 
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effect on the surface, or mirror its velocity in the opposite direction to generate a 
bouncing effect. 

In the case of a moving object, we also have to create a set of solid particles on 
its boundaries at the beginning of the simulation. In the following, we take the 
example of a simple ball represented by a circle, coated with solid particles on its 
perimeter. We also store its position and its velocity bv , used to advect the ball 
at each iteration. If a fluid particle enters the object during the local repulsion 
step, it will bounce or adhere to the surface as in the fixed case. Solid particles 
are marked with a boolean value if they interact with at least one fluid particle, 
i.e. if they are within distance Lr  (represented in red in Figure 4(c)). At the 
end of this step, a fraction of the velocity of each marked particle is added to the 
velocity bv , again using a user-defined parameter v∆  set to 0.1 in our imple-
mentation. This generates a two-way coupling between the fluid and the object. 
During the cell pressure stage, solid particles are considered when computing 
divergence and pressure. This is especially important for the cells where a void is 
induced by the presence of the ball (represented in green in Figure 4(c)), which 
would otherwise lead to incorrect results. Finally, we can also simulate a 
buoyancy effect by reducing the gravity force applied to the ball depending on 
the number of marked particles on its boundary, roughly approximating the area 
of the fluid displaced by the ball. 

Figure 4(b) and Figure 4(d) show two examples of our results. More compli-
cated objects can also be handled with this approach, as long as their boundary 
can be discretized with solid particles. However, if the shape is not circular its 
orientation must also be taken into account, and the two-way coupling in this 
case should include a rotation matrix. 

4. Results and Discussion 

The fully animated version of the examples presented in this paper is available 
on video: https://bit.ly/336hb8R. Our CPU implementation running with 
Processing [15] contains approximately 500 lines of code, and can be downloaded 
here: https://bit.ly/31v8dk5. The code is structured into three basic classes: 
• In the main class we define all the parameters, initialize the objects corres-

ponding to particles and cells, then run the simulation iterations in an infi-
nite loop. This loop also includes the interactions with the user (keyboard or 
mouse) and the rendering. 

• The Particle class first declares the attributes of a particle such as its position, 
velocity, the index of its associated cell, etc. The computation of the local re-
pulsion and SRD collision steps is defined here, as well as the application of 
the gravity and the pressure force, and finally the advection of a particle be-
fore the next iteration. 

• The Cell class declares the attribute of a cell, including its position and a list 
of the particles it contains. All the code needed for cell pressure computation 
is defined here, such as average velocity, divergence, pressure, pressure gra-
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dient and density ratio. An integer value is also used to characterize if the cell 
is empty, has an empty cell neighbor, or is surrounded by non-empty cells. 

• An additional Ball class defines the behavior of the moving ball discussed in 
Section 1. 

The two main parameters in our model are the size of a cell 0a  and the de-
sired average number of particles inside a cell γ , even if other parameters can 
be tweaked. As an example in Figure 5 shows different configurations for the 
dam break simulation with varying values for 0a  and γ , that can be com-
pared with Figure 3 where 0 10a =  and 5γ = . If γ  is very low, as in the 
first and third images, the simulation loses precision but the overall behavior is 
conserved. In all our experiments the other parameters are set as follows: the 
unit size is 1 pixel, the simulation box has size 640 by 640, the time step 

0.1t∆ = , the gravity is set to 9.81, the number of iterations for the local repul-
sion step to 3, and the number of Jacobi iterations for the cell pressure step 

10k = . 
Table 1 gives the computation time per iteration measured for the dam break 

simulation with different 0a  and γ  values, as well as the percentage of time 
spent to compute local repulsion and cell pressure. As can be observed the re-
pulsion step represents the main bottleneck for our CPU implementation, with 
more than 75% of the computation time. This can be explained by the fact that 
this step depends on the number of particles and makes use of an expensive 
nearest neighbor search. It is worth noticing that this percentage looks similar in 
SPH-based simulations, where the same bottleneck influences the simulation.  

 

 
Figure 5. Dam-break simulation with different input parameters. From left to right: ( )0 20, 2a γ= =  ( )0 40, 10a γ= =   

( )0 10, 2a γ= =  ( )0 10, 10a γ= = . 

 
Table 1. Computation times with different 0a  and γ  values. 

0a  γ  #particles #cells 
Time per  

iteration (ms) 
% repulsion 

% cell  
pressure 

 2 260 1024 0.8042989 76% 13% 

40 10 376 256 1.8230367 96% 1% 

20 5 660 1024 2.6646383 90% 4% 

10 2 1134 4096 3.9304664 78% 12% 

10 10 6114 4096 44.856846 96% 1% 
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On the contrary, the cell pressure step mostly depends on the number of cells 
and only has a limited impact on the total computation. 

Different problems with our method are noticeable in some of the pictures 
presented in this paper. For example, the resolution of the grid can become visi-
ble at the interface between the fluid and the empty space, creating an aliasing 
effect as in the right image of Figure 5. Small bumps can also be observed on 
this interface, as in the left image of Figure 6 where the surface at rest is not 
perfectly flat. Another issue is that, due to the stochastic nature of the SRD me-
thod, our simulations exhibit non-symmetric behaviors, e.g. in Figure 6 where 
the droplet falling exactly at the center of the box generates different patterns on 
each side. In this case, the non-uniform distribution of particles inside the drop-
let also plays a part. One final issue is our local repulsion step which creates a 
rather rigid behavior in high pressure regions deep inside the fluid, where par-
ticles tend to wriggle to resist gravity. 

On the other hand, despite its inherent approximations, our method succeeds 
at reproducing some interesting effects observed in fluid dynamics with 
dam-break flood or a falling droplet simulations. For example, realistic liquid 
sheets, i.e. particles in the air appearing linked by a cohesive force, are visible in 
Figure 4 and Figure 6. This behavior is rather surprising since our method does 
not specifically address the surface tension phenomenon that drives this type of 
effect. Figure 7 shows how our method is also able to generate vortices. Here the 
gravity is set to 0 and the fluid is separated into two populations of green and 
blue particles, depending on their initial position in the box. After the green particles  

 

 
Figure 6. Droplet falling inside a volume of fluid, repelling particles on both sides and generating liquid sheets in the air. 
 

 
Figure 7. Vortex created at the interface between colored particles. Here gravity is set to 0 and the fluid is separated into two pop-
ulations of green and blue particles. After the green particles are slowly pushed downwards, two vortices appear. 
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are slowly pushed downwards, two typical vortices start to appear. 

5. Conclusions 

The approach presented in this paper is based on the Stochastic Rotation Dy-
namics model, which by nature leads to instabilities because of the random rota-
tion used in Equation (3). However, by extending this simple approach with ad-
ditional steps related to pressure and collision handling, it is possible to obtain 
convincing results that faithfully reproduce the behavior of incompressible flu-
ids. As a proof of concept, our method was implemented on the CPU to create 
different types of simulations such as dam-break flood, falling droplets and 
mixing of two fluids. 

In future work, we would like to investigate further how our approach could 
be used to simulate viscous fluids, by modifying the angle parameter α  in Eq-
uation (3) to damp the velocity of particles colliding inside a cell. The time step 
parameter could also play a part here since it directly impacts the overall number 
of SRD collisions. 

We also wish to address the problems described in Section 4. The main im-
provement concerns the local repulsion step, which currently represents more 
than 75% of the total computation time and leads to instabilities in high pressure 
regions. This goal could be achieved through a parallelized GPU implementa-
tion, which is already available for compressible fluids [16]. This would reduce 
the cost of the nearest neighbor search and allow an increased number of par-
ticles in our simulations. 
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