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Correcting for misclassification and
selection effects in estimating net survival
in clinical trials
Juste Aristide Goungounga1, Célia Touraine1,2, Nathalie Grafféo3,4, Roch Giorgi5* and the CENSUR working
survival group

Abstract

Background: Net survival, a measure of the survival where the patients would only die from the cancer under
study, may be compared between treatment groups using either “cause-specific methods”, when the causes of
death are known and accurate, or “population-based methods”, when the causes are missing or inaccurate. The
latter methods rely on the assumption that mortality due to other causes than cancer is the same as the expected
mortality in the general population with same demographic characteristics derived from population life tables. This
assumption may not hold in clinical trials where patients are likely to be quite different from the general population
due to some criteria for patient selection.

Methods: In this work, we propose and assess the performance of a new flexible population-based model to
estimate long-term net survival in clinical trials and that allows for cause-of-death misclassification and for effects of
selection. Comparisons were made with cause-specific and other population-based methods in a simulation study
and in an application to prostate cancer clinical trial data.

Results: In estimating net survival, cause-specific methods seemed to introduce important biases associated with
the degree of misclassification of cancer deaths. The usual population-based method provides also biased
estimates, depending on the strength of the selection effect. Compared to these methods, the new model was
able to provide more accurate estimates of net survival in long-term clinical trials.

Conclusion: Finally, the new model paves the way for new methodological developments in the field of net
survival methods in multicenter clinical trials.

Keywords: Cause of death, Cancer clinical trials, Life tables, Excess hazard model, Net survival, Selection bias

Background
Recent advances in treatment have extended the expected
survival of cancer patients up to and even beyond ten years
after diagnosis [1]. This leads to a non-negligible risk of
death due to other causes than the cancer of interest, more
particularly for older patients. In this context it is of import-
ance to account for the competing causes of death, and
methods have been developed to estimate the specific sur-
vival of the cancer of interest while estimating the specific

survival function(s) of the other(s) cause(s) of death [2]. In
this context, estimation of cancer-specific survival can be
interpreted as the survival for cancer patients in presence
of other cause(s) of death. Another approach relies on the
estimation of net survival, representing the survival that
would be observed if the cancer under study were the only
cause of death [3]. A main interest of this latter approach,
is to be interpreted as the survival from cancer in the ab-
sence of other causes of death. [4].
Estimation of net survival is performed using either

“cause-specific methods” or “population-based methods”.
Cause-specific methods consider as censored all deaths
from noncancer-specific causes and estimate net survival
with classical estimators such as Kaplan-Meier (KM)
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estimator or the Cox-model-based estimator [5]. They
assume independence between cancer-related and
cancer-unrelated mortality and require accurate information
on the causes of death. However, cause of death information
do include errors and are sources of misclassifications [6, 7].
In several studies, the rate of misclassification was found to
be very low (2 to 7%) up to 5 years of follow-up but this rate
became much more important (up to 20%) with long-term
follow-up [8]. These rate changes reflect the difficulty of
identifying the cause of death over long follow-ups [9], and
therefore make inappropriate the use of methods requiring
knowledge of the cause of death to estimate net survival
(the same reasoning applies in the competing risk setting to
estimate cause-specific functions). Furthermore, cause-
specific methods rely on the assumption of independ-
ence between the censoring process and the occur-
rence of death from the cancer of interest [5, 10]. A
classic example of violation of this assumption con-
cerns age because it has an impact on both death
from the cancer of interest and death from other
causes (called herein “other-cause mortality”), leading
to biased estimations of net survival [5]. To limit this
particular source of bias, Pohar-Perme et al. [11] pro-
posed an approach based on the inverse probability of
censoring weighting that uses the Nelson-Aalen esti-
mator (each individual estimation is weighted by the
inverse probability of the expected survival [12]).
One solution to avoid cause-of-death misclassification is

to use population-based methods. Indeed, such methods
account for the competing causes of death by adjusting for
the population survival rate obtained from population life
tables. They rely on the assumption that mortality due to
other causes than cancer of interest is the same as the ex-
pected mortality in the general population with same
demographic characteristics derived from general popula-
tion life tables. The observed hazard (λO) is then considered
as the sum of the hazard due to the cancer of interest, the
excess hazard (λE), plus the hazard derived from the
other-cause of death than cancer of interest ( λP); this latter
quantity is not estimated but drawn from the general popu-
lation life tables. The net survival is then the survival func-
tion that derives from the excess hazard function and this
relation may be expressed as: SEðtÞ ¼ exp½−R t0λEðuÞdu�. It can
be estimated non-parametrically (e.g., Pohar-Perme estima-
tor [12] and doubly robust estimator [13]) or parametrically
(e.g., Estève et al. [14], Giorgi et al. [15], or Remontet et al.
[16] regression models). Simulation studies have shown that
Pohar-Perme estimator and regression model adjusted on
demographic covariates have good performances in
estimating net survival [17]. The main assumption of
population-based methods is that other-cause mortal-
ity in the studied group is comparable to that of the
general population [9, 18]. However, patients included

in a cancer trial are rather selected. Therefore, they
are neither representative of all patients diagnosed
with the same cancer nor representative of the gen-
eral population (different characteristics and different
other-cause mortality), even within the same area of
residence, and their other-cause mortality as derived
from the general population life tables will be surely
biased (underestimated or overestimated). To our
knowledge, only Cheuvart and Ryan [19] have proposed a
population-based regression model to analyze long-term
cancer clinical trial that accounts for this type of bias.
They introduced a rescaling parameter that allows the
mortality from other causes of the studied group to differ
from the mortality of the general population. However, i)
the baseline hazard is a piecewise exponential, which is
not very flexible and requires potentially a high number of
parameters to estimate in case of long-term follow-up;
and ii) the approach relies on grouped-data, which is
source of loss of information.
The present article proposes a new flexible

population-based model to estimate long-term net sur-
vival in clinical trials and that allows for cause-of-death
misclassification and for effects of selection. Comparisons
with other cause-specific and population-based methods
are carried out to examine the new-model limits.
The article is organized as follows. The Methods sec-

tion describes parametric and non-parametric estimators
of net survival as well as the new model and the simula-
tion study. The Results section presents the results of
simulations performed with different combinations of
proportion of misclassification / degree of selection ef-
fect. This section also shows an application to data from
a clinical trial on prostate cancer patients. The article
ends with a discussion of the findings.

Methods
Models and estimators of net survival
Data settings, assumptions and notations
To estimate net survival, two setting are defined accord-
ing to cause of death information. When one considers
that this information is available for each patient, net
survival is estimated in “cause-specific setting”. But if
cause of death information is unavailable, or if one wants
to get rid of cause of death, net survival is estimated in
“population-based setting”. In this context, cause of
death information is indirectly obtained by matching the
observed data with other-cause hazard drawn from gen-
eral population life tables. Indeed, the tables contain
daily hazard rate λPi for each matched individual i from
the general population of interest. The main assumption
to consider that, is the fact that the cancer part in the
whole mortality is negligible. In consequence, the
other-cause hazard of the studied sample is equal to that
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of general population of interest. In these two settings
the common assumption is that excess hazard and
other-cause hazard are independent.
Furthermore, in the two settings, net survival may be

estimated using non-parametric estimators or paramet-
ric models; the latter allow estimating and testing effects
of covariates on the excess mortality.
Some well-known estimators presented in the next

sub-section (Kaplan-Meier, Nelson-Aalen, Cox) were
firstly developed in the overall cause of death setting.
For simplicity reason, we present their adaptation dir-
ectly in the cause-specific setting, where the main
change concerns the event indicator.

Non-parametric estimators of net survival
Here, we present briefly the properties of 1) one
cause-specific method, 2) one mixed population-based
and cause-specific method, and 3) one population-based
method. The first is the popular Kaplan-Meier (KM) es-
timator in the cause-specific setting with right-censoring
of the times to death from non-cancer causes. The sec-
ond uses an adaptation of the Nelson-Aalen estimator to
account for the informative censoring problem and uses
other-cause mortality information from population life
tables. The third is the Pohar-Perme (PP) estimator, a re-
liable estimator of net survival in population-based
studies.

The Kaplan-Meier estimator Estimation of net survival
in the cause-specific setting leads to consider deaths
from cancer as events and to right censor deaths from
other causes and live patients. The KM estimator of net
survival is then:

ŜKME tð Þ ¼
Y
ti ≤ t

1−
Z t

0

dNE uð Þ
Y uð Þ

� �
In this equation, n is the number of patients, NEðtÞ

¼Pn
i¼1 NE;iðtÞ is the number of cancer-related deaths

up to the time t obtained by summing up the individual
counting processes NE, i(t), and Y ðtÞ ¼Pn

i¼1 l½ti≥ t� is
the at-risk process just before time t (i.e., alive or not
censored patients; the at risk process counts the subjects
who did not experience the event by time t and, thus,
who are still “at risk” of experiencing the event).

A Weighted Nelson-Aalen estimator In the
cause-specific setting, Pohar-Perme et al. proposed an
adaptation of the Nelson-Aalen estimator [12]. When
the assumption of independence between the censoring
process and the cancer death process is violated, mainly
due to age, the censoring becomes informative. Using
the inverse probability of censoring weighting approach
on the Nelson-Aalen estimator [12], Pohar-Perme et al.

derived an asymptotically unbiased estimator of the net
survival:

ŜwNAE tð Þ ¼ exp −
Z t

0

dNw
E uð Þ

Yw uð Þ
� �

In this equation, Nw
E ðtÞ ¼

Pn
i¼1N

w
E;iðtÞ and YwðtÞ

¼Pn
i¼1Y

w
i ðtÞ are, respectively, the weighted aggregated

counting process and the at-risk process. More precisely,

dNw
E;iðtÞ ¼ dNE;iðtÞ

SP;iðti−Þ and Yw
i ðtÞ ¼ Y iðtÞ

SP;iðt−Þ, where each of com-

ponents are weighted, respectively, by SP, i(ti−) and SP, i(t
−) the inverse of the individual expected survival derived
from population life tables obtained respectively at times
ti− and t−. Thereafter, we called this estimator, with
these types of weights, the weighted Nelson-Aalen
(wNA) estimator.

The Pohar-Perme estimator The PP estimator [12] is a
reliable non-parametric estimator of net survival devel-
oped to overcome some assumptions of excess hazard
modeling. It corresponds to the difference between the
Nelson-Aalen estimate and the cumulative population of
the patients still at risk at each death, where the at-risk
process and the counting process are weighted to give
greater weight to subjects with high risk of other-cause
mortality. The PP estimator of net survival is:

ŜPPE tð Þ ¼ exp −
Z t

0

dNw uð Þ
Yw uð Þ −

Z t

0

Xn
i¼1

Yw
i uð ÞλPi uð Þdu

Yw uð Þ

26664
37775

0BBB@
1CCCA

where NwðtÞ ¼PNw
i ðtÞ is the sum of the individual all-

cause counting process Nw
i ðtÞ and with dNw

i ðtÞ ¼ dNiðtÞ
SpiðtÞ ,

which, as Yw
i ðtÞ , is weighted by the inverse of the indi-

vidual expected survival. This latter quantity and the
general population other-cause mortality λP are derived
from population life tables.
Among these non-parametric estimators, only the KM

estimator is a purely cause-specific estimator because, in
our case of cause-specific setting, it uses only cancer
specific death information. Though used in the
cause-specific setting, the wNA estimator uses also the
population other-cause mortality to correct the estima-
tion of net survival. The PP estimator is used only in
population-based settings; it needs the other-cause mor-
tality and the vital status to provide an estimate of net
survival.

Parametric and semiparametric models

Cox model In the cause-specific setting, the semipara-
metric Cox proportional hazards model expresses the
excess hazard at time t as: λE(t, X) = λE, 0(t) exp(β

TX)
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where λE, 0(t), the baseline excess hazard at time t, and β
corresponds to the proportional linear effect of covariate
X on the baseline excess hazard estimated separately
through the semiparametric approach.
One solution to derive the baseline cumulative excess

hazard function from the Cox model was given by Bre-
slow [20]. Using Breslow estimator with cancer death as
status indicator δi, the baseline cumulative excess hazard
function ΛE, 0(t) may be estimated with the expression
applied to times ti at which the events take place:

Λ̂E;0 tð Þ ¼
Xn
i¼1

1 ti≤ tð ÞΔiP
j∈R tið Þe

bβTX j

In this equation, RðtÞ denotes the risk at time t of all

individuals still at risk of death from cancer at time t, β̂
corresponds to the effect of covariates and Δi corre-
sponds the indicator of death due to the cancer of inter-
est. In this formula, we estimate unadjusted cumulative

excess hazard by setting β̂ ¼ 0 [21].
The corresponding net survival from Breslow’s estima-

tor is therefore:

ŜCoxE t;Xð Þ ¼
Xn
i

exp −Λ̂E;0 tð Þ exp cβTXi

� �� �
;

where Λ̂E;0 corresponds to the baseline cumulative ex-

cess hazard function estimated separately from β̂.

The new flexible model The new model is an extension
of the flexible parametric excess hazard model proposed
by Giorgi et al. [15]. It is based on the seminal excess
hazard model of Estève et al. [14] where the observed
hazard of a patient i at time ti is:

λO tijXið Þ ¼ λE;0 tið Þ exp βTXi
� 	þ λPi tijZið Þ

and where the baseline excess hazard (λE, 0) is mod-
elled by a piecewise constant function; β represents the
effects of the vector of covariates X including demo-
graphic variables Z (such as age at diagnosis, year of
diagnosis, sex, of the individual i).
In the model of Giorgi et al. [15], the baseline excess

hazard and the time-dependent covariates are both mod-
elled using specific B-spline functions. More precisely,
for a higher degree of flexibility, Giorgi et al. used quad-
ratic B-splines (order 3) and two interior knots.
For simplicity, only the case of proportional hazard ef-

fects of prognostic covariates is considered. The simpli-
fied version of Giorgi’s model is then:

λO tijXið Þ ¼
X2
j¼−2

ν jΒ j;3 tið Þ
" #

exp βTXi

 �þ λP tijZið Þ

where vj are the spline coefficients, Bj, 3(ti) the value at

time ti of the j th B-spline of order 3 and degree 2, X the
vector of covariates with proportional hazard effects β,
and λPi the other-cause hazard of individual i, at age ai
+ ti in year yi + ti.
In agreement with Cheuvart and Ryan [19], we consid-

ered that the other-cause mortality of a participant in a
clinical trial may be corrected by multiplying the popula-
tion hazard obtained from the life table by a scale par-
ameter α. This parameter is the average effect of
selection on the other-cause mortality in the trial partici-
pants. This effect in the general population with same
demographic characteristics equals 1 (α = 1). The new
flexible model we call the “rescaled B-spline” model
(RBS) can be written as follows:

λO tijXið Þ ¼
X2
j¼−2

ν jΒ j;3 tið Þ
" #

exp βTXi

 �þ αλP tijZið Þ

To estimate the parameters of the RBS model, we used
the maximum likelihood procedure. The log-likelihood
of the RBS model can be written:

li β; v; αð Þ ¼
Xn
i¼1

− exp βiXi

 � Z t

0

X2
j¼−2

ν jΒ j;3 tið Þ
 !

dt−αΛp tijZið Þ

þδi log λE tijXið Þ þ αλP tijZið Þð Þ

where, given an individual i, observation δi = 1 is the in-
dicator of death from any cause, α the scale parameter
of the instantaneous other-cause mortality λP, and ΛP

the cumulated value of λP over all the follow-up dur-
ation. The rescaled cumulative population hazard αΛP

may not be a constant as in the classical additive excess
hazard model. In addition, the scale parameter α will be
considered in the estimation process. For mathematical
convenience and because all patients may die from an-
other cause than the cancer under study, it is assumed
that α > 0 and constant over time. The maximization of
the log-likelihood was performed using optim function
in R based on Byrd method for non-linear optimization
problems with box constraints [22]. The estimates of net
survival were derived from the cumulative excess hazard
calculated by derivation of the corresponding estimate of
the excess hazard function. The confidence interval of
the net survivals was obtained with a Monte-Carlo
method [17]. The R code that implements these estima-
tion procedures is available on request from the authors.

The simulation study
We carried out a simulation study to assess the perform-
ance of the RBS model in estimating the net survival in
clinical trials and compare this performance with those
of previous models and estimators used in clinical trials.
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The simulation design
The simulation considered a randomized clinical trial
that would compare treatment vs. placebo effects. The
French general-population life-table was used to con-
struct a “corrected” life table that would correspond to
other-cause mortality of trial participants. The “cor-
rected” life table mortality rates were the mortality rates
of the initial life table multiplied by the scale parameter
α. This “corrected” life table was then used to generate
TP, the individual time-to-death from another cause than
cancer in a trial. For each patient, we generated also TE,
the time-to-death from cancer and TC, the time to
right-censoring (see the Data generation section). All the
times TE, TP and TC were generated independently from
each other. An individual observed time-to-death TO

was then the smallest of TP, TE, and TC. In addition, as
in Grafféo et al. [23], from these generated times, we in-
ferred a time-to-death TN in the net survival setting
where the patients would only die from cancer. Thus, TN

is the smallest of TE and TC.
In this simulation, the causes of death were considered

as known; thus, TN and well-classified cancer-specific
causes of death can be used with the KM estimator to
obtain a gold standard (GS) estimator of the net survival;
that is, the survival that would be obtained if cancer
were the only possible cause of death (Table 1).
Various scenarios were built by combining various

values of α with various proportions of cause-of-death
misclassification. Within each scenario, 1000 datasets of
1000 patients each were simulated.

Data generation

Adjusted excess mortality In this simulation, for sim-
plicity, the patients were considered to be of same sex.

Trial group (placebo or treatment) covariates and age at
diagnosis were independently generated. The treatment
group was generated so as to obtain 50% of patients in
each trial group. The age at diagnosis was obtained from
a uniform distribution so as to obtain 25% of patients
aged 24 to 45 years old, 50% aged 46 to 64 years, and
25% aged 65 to 70 years. We assumed a linear effect βage
= 0.05 for the effect of centered age on the excess haz-
ard. The beneficial effect of the treatment on the excess
hazard of death was βtreatment = − 0.5.
In all scenarios, a generalized Weibull distribution [23]

was assumed for the distribution of the baseline excess
hazards and the individual times-to-death from cancer
TE were generated using the inverse transformation
method to account for covariate effects [23]. The time to
right-censoring TC was generated from a uniform distri-
bution U∼½0; b� with b chosen so as to obtain a censoring
rate of 50%.

Rescaled other-cause mortality TP, the time-to-death
from another cause (i.e., the other-cause mortality in the
general population multiplied by a scale parameter that
depends on the characteristics of the trial participants)
was generated using the French life table survexp.fr
available in the eponymous R package [24]. This life
table is stratified by age, sex, and year of cancer diagno-
sis. For each patient i, the “rescaled” other-cause mortal-
ity rate was considered as αλP(ai + ti, Zi), where α is the
selection effect and λP(ai + ti) the general population
other-cause mortality at age ai + ti adjusted on demo-
graphic covariates Z as derived from the life table.
Four scenarios were considered for the other-cause

mortality of cancer patients in clinical trials: (1) patients
comparable to the general population in terms of
other-cause mortality (α = 1); (2) patients more robust

Table 1 Subset of simulated data in cause-specific and population-based settings

Patient Observed data Other simulated times-to-event Data in the
net survival
setting

TO Vital
status

Death from
cancer

0%
misCoD

20%
misCoD

30%
misCoD

TP TE TC Death from another
cause

TN StatusN

1 4.61 1 0 0 0 1 4.61 11.27 15.00 1 11.27 1

2 9.21 1 1 1 1 1 63.78 9.21 15.00 0 9.21 1

3 7.83 1 1 1 1 0 65.06 7.83 15.00 0 7.83 1

4 12.47 1 1 1 0 1 58.17 12.47 15.00 0 12.47 1

5 15.00 0 0 0 0 0 52.64 25.12 15.00 0 15.00 0

We present a short excerpt to clarify the use of simulation data with each estimation method. Column “Patient” shows an identifier. The simulated data include: (i)
observed data: time-to-death (TO), the vital status (1 if death from any cause, 0 alive), the cause of death (1 if due to cancer, 0 otherwise or alive). The table
considers three degrees of cause-of-death misclassification (misCoD 30, 20, and 0% a highly improbable setting); (ii) simulated times-to-death: from other cause
(TP), and from cancer (TE), the time from censoring (TC); (iii) data observed if cancer were the only possible cause of death: the time to death TN (the smallest of TE
and TC) and the vital status in the net survival setting where cancer is the only possible cause of death
For example, the case of Patient 4, should be classified as death from cancer because the time-to-death from cancer (12.47 years) is lower than the time from
censoring (15 years) and corresponds to the smallest of TP, TE and TC. This case would have been classified as “death from other cause” (i.e., 0% misCoD = 0) if he
were followed-up to 58.17 years. In Column “20% misCoD”, the cause of death is wrongly coded “death from other cause”. In the latter case, 20% of all cancer
deaths are misclassified as deaths from other causes
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than the general population (α = 0.5); (3) patients frailer
than the general population (α = 2); and (4) patients
much more frail than the general population (α = 4).

Misclassification of the cause of death Three condi-
tions were considered regarding the proportion of errors
in identifying the causes of death. These conditions are
useful to compare cause-specific with population-based
methods in realistic settings. Indeed, in many clinical tri-
als with medium- to long-term follow-ups (10 to 15
years), it is difficult to obtain accurate causes of death.
The simulation considered three cause-of-death mis-
classification rates: (i) 0%, a rare condition where all in-
formation on cancer-related death is true; (ii) 20% of
misclassification beyond 5 years of follow-up, which
means that 20% of deaths from cancer are wrongly at-
tributed to another cause; and (iii) 30% of misclassifica-
tion beyond 5 years of follow-up. Actually, in active
follow-ups in clinical trials, the causes of death over
short-term follow-ups (e.g., 5 years) are rather reliable.
To sum up, Scenarios 1 to 4 and conditions i to iii

were designed to: a) assess the performance of the esti-
mators in case of no misclassification and no selection
effect; b) assess the bias due to misclassification with
cause-specific approaches and examine then the interest
of population-based estimators; c) assess the perform-
ance of the new RBS model in correcting for selection
bias alone; and, d) assess the performance of the
cause-specific methods in presence of selection effect
and misclassification.

Performance criteria
The theoretical net survival in each of the treatment and
the placebo group is the average of the individual net
survivals. Thus, the theoretical net survival can be
written:

SE; j tð Þ ¼ 1
nj

Xn j

i¼1

exp −Λ0 tð Þ exp βage � ageij þ βtreatmentZij

� �h i
nj is the number of patients in each group j and Λ0(t)

is the excess cumulative baseline hazard from the gener-
alized Weibull distribution.
The performance in estimating the net survival is

established on: (1) the bias 1
m

Pm
j¼1 ŜM;E; jðtÞ−SE; jðtÞ ,

where ŜM;E; jðtÞ is the mean of net survival estimates by
model or estimator M at time t in group j, SE, j(t) is the
theoretical net survival at time t in group j, and m is the

number of simulations; (2) the relative bias (R. Bias) ð
1
m

Xm
j¼1

ŜM;E; jðtÞ � SE; jðtÞ
SE; jðtÞ Þ � 100; (3) the root mean square

error
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
m

Pm
j¼1 ðŜM;E; jðtÞ−SE; jðtÞ Þ2

q
; (4) the empirical

coverage rate (ECR); i.e., the proportion of samples in
which the 95% confidence interval of the estimated net
survival at time t in group j contains SE, j(t). These statis-
tical indicators were calculated at 5, 10, and 15 years of
follow-up. We also calculated the performances of co-
variates (centered age and treatment) effects estimated
by Cox and RBS models using bias, root mean square
error and ECR.

Results
Simulation results
In this section, we present the simulation results. We
provide only the results relative to the placebo group
(because the effects of cause-of-death misclassification
were not different between the treatment and the pla-
cebo group) and at 5, 10, and 15 years of follow-up. The
performance criteria of each method by scenario are
shown in Table 2. The corresponding net survival curves
are presented in Fig. 1. The results relative to the esti-
mation of Cox and RBS models’ parameters are shown
in Table 3. The boxplots of Cox and RBS models’ param-
eters estimated in all scenarios are presented in Add-
itional files 1, 2 and 3.

No selection effect and no cause-of-death misclassification
(scenario 1a)
Scenario 1a allowed evaluating the performance of
cause-specific vs. population-based methods in a theor-
etical setting. As expected, the estimates of net survival
obtained with all methods had very small bias. Whatever
the estimator, the ECR was close to 95%. In comparison
with the root mean square error (RMSE) obtained with
the GS (KM estimator applied to data where patients
would only die from cancer, i.e. net survival setting), the
RMSEs of the KM, Cox, and wNA estimators were simi-
lar, whereas the RMSEs obtained with population-based
methods were slightly higher. For example, at 15 years
follow-up, the RMSEs were: 0.016 with GS, 0.018 with
KM, 0.016 with Cox, 0.016 with wNA, 0.020 with PP,
and 0.036 with RBS). Otherwise, Cox and RBS parame-
ters estimates had good performances and globally better
in Cox than RBS model (Table 3).

No selection effect but presence of cause-of-death
misclassification (scenario 1b)
As expected, increasing the proportion of cause-of-death
misclassification resulted in increased biases with KM
and wNA estimators. With 30% misclassification, the
differences in terms of bias between the GS and each of
KM, Cox, and wNA were, respectively, 0.072, 0.063 and
0.067. The ECRs with KM, Cox, and wNA estimators
were close to 0 when the misclassification was 30%.
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Table 2 Performance in terms of net survival of various methods in various scenarios

Method & Misc. Bias × 100 5-year net survival Bias ×100 10-year net survival Bias ×100 15-year net survival

R.Bias RMSE ECR R.Bias RMSE ECR R.Bias RMSE ECR

Scenario 1 (α = 1)

Gold standard 0.012 (0.827 a) 0.0145 0.012 94.7 0.017 (0.667 a) 0.254 0.015 95.0 0.025 (0.575 a) 0.043 0.016 95.2

CSS methods

KM & 0% 0.126 0.152 0.012 94.5 0.434 0.650 0.016 93.5 0.778 1.353 0.018 92.8

KM & 20% 0.126 0.152 0.012 94.5 3.296 4.941 0.036 42.9 4.993 8.683 0.052 13.8

KM & 30% 0.126 0.152 0.012 94.5 4.803 7.200 0.050 10.2 7.245 12.60 0.074 0.4

Cox & 0% 0.036 0.043 0.011 95.7 0.036 0.053 0.015 97.6 0.046 0.080 0.016 97.7

Cox & 20% 0.036 0.043 0.011 95.7 2.869 4.301 0.032 60.6 4.144 7.206 0.041 38.5

Cox & 30% 0.036 0.043 0.011 95.7 4.364 6.54 0.045 23.8 6.366 11.071 0.065 4.7

wNA & 0% 0.027 0.032 0.012 94.4 0.089 0.133 0.015 94.6 0.143 0.248 0.016 94.3

wNA & 20% 0.027 0.032 0.012 94.4 2.991 4.484 0.033 50.7 4.432 7.707 0.047 21.3

wNA & 30% 0.027 0.032 0.012 94.4 4.520 6.776 0.047 14.8 6.726 11.697 0.069 1.8

PNS methods

PP −0.359 −0.434 0.014 94.5 −0.574 −0.860 0.017 95.9 −0.999 −1.737 0.020 94.0

RBS −0.102 −0.123 0.015 94.2 −0.445 −0.667 0.025 92.3 −0.459 −0.790 0.037 93.1

Scenario 2 (α = 0.5)

Gold standard −0.005 (0.787 a) − 0.006 0.011 95.4 0.022 (0.644 a) 0.034 0.013 96.8 0.048 (0.576 a) 0.083 0.014 96.7

CSS methods

KM & 0% 0.061 0.077 0.011 95.3 0.234 0 .363 0.014 96.7 0.437 0.758 0.015 94.7

KM & 20% 0.061 0.077 0.011 95.3 3.111 4.830 0.033 42.9 4.702 8.163 0.049 13.8

KM & 30% 0.061 0.077 0.011 95.3 4.636 7.198 0.048 9.5 6.984 12.449 0.071 0.4

Cox & 0% 0.033 0.041 0.010 97.2 0.041 0.063 0.013 97 0.071 0.123 0.014 98.0

Cox & 20% 0.033 0.041 0.010 97.2 2.876 4.465 0.031 65.6 4.173 7.244 0.044 44.6

Cox & 30% 0.033 0.041 0.010 97.2 4.377 6.796 0.045 30.4 6.404 11.118 0.065 7.0

wNA & 0% −0.038 −0.048 0.011 95.3 −0.113 −0.175 0.014 96.8 −0.210 −0.364 0.014 97.2

wNA & 20% −0.038 −0.048 0.011 95.3 2.804 4.354 0.033 50.5 4.130 7.170 0.047 23.8

wNA & 30% −0.038 −0.048 0.011 95.3 4.351 6.756 0.045 14.8 6.458 11.21 0.066 1.8

PNS methods

PP 0.897 1.139 0.015 88.0 1.731 2.687 0.022 82.9 2.618 4.545 0.031 67.4

RBS −0.023 −0.029 0.012 94.9 −0.303 − 0.470 0.019 91.8 −0.251 − 0.435 0.028 90.1

Scenario 3 (α = 2)

Gold standard 0.008 (0.827 a) 0.009 0.012 95.6 0.016 (0.667 a) 0.023 0.015 95.9 0.057 (0.575 a) 0.099 0.016 95.7

CSS methods

KM & 0% 0.233 0.281 0.012 94.3 0.818 1.226 0.017 93.2 1.513 2.631 0.023 87.2

KM & 20% 0.233 0.281 0.012 94.3 3.624 5.433 0.039 38.7 5.611 9.758 0.058 11.7

KM & 30% 0.233 0.281 0.012 94.3 5.116 7.670 0.053 8.8 7.830 13.617 0.079 0.2

Cox & 0% 0.036 0.043 0.011 97.3 0.062 0.092 0.015 98.5 0.113 0.196 0.017 98.5

Cox & 20% 0.036 0.043 0.011 97.3 2.877 4.313 0.032 65.1 4.175 7.260 0.044 45.1

Cox & 30% 0.036 0.043 0.011 97.3 4.347 6.517 0.045 29.4 6.386 11.106 0.065 7.3

wNA & 0% 0.136 0.164 0.012 94.5 0.484 0.725 0.016 95.0 0.919 1.598 0.020 94.5

wNA & 20% 0.136 0.164 0.012 94.5 3.329 4.991 0.036 44.3 5.087 8.846 0.053 18.1

wNA & 30% 0.136 0.164 0.012 94.5 4.842 7.259 0.050 13.0 7.347 12.777 0.075 0.8

PNS methods
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With 30% misclassification, the differences in RMSE be-
tween GS and each of KM, Cox, and wNA estimates at
15 years follow-up were, respectively, 0.058, 0.049, and
0.053. As the population-based methods did not use the
cause of death information, we can compare directly
their results with those of cause-specific methods. In this
scenario, the performances of the PP and the RBS esti-
mator were better than those obtained with the
cause-specific methods in case of no selection effect (α
= 1) and 20 to 30% misclassification.
In summary, in Scenario 1 and with α= 1, the perform-

ance of the RBS regression model in net survival estima-
tion was better than that of another model. However,
Cox model parameters (effect of age and treatment) esti-
mates were very slightly impacted in terms of relative
bias, RMSE and ECR (Table 3).

Presence of selection effect but no cause-of-death
misclassification (scenarios 2a, 3a, 4a)
With cause-specific methods KM and wNA, the bias in
the estimate of the net survival increased with the increase
of α (the effect of selection). The bias with the RBS was
much more important than with the GS. The bias with PP
was much more important than with the GS. The esti-
mates of net survival obtained with the RBS model had
higher RMSEs than those obtained with wNA or KM and
the estimates obtained with PP had higher values than

those obtained with the other methods. The ECRs ob-
tained with KM and wNA were far from 95%, the nominal
value; they approached zero with PP with the increase of
the selection effect; i.e., with the increase of α values over
1. The ECRs obtained with Cox and RBS models remained
stable and close to their nominal values (Table 2). Besides,
Cox model parameters (effect of age and treatment) esti-
mates were not impacted in terms of relative bias, RMSE,
ECRs than that of RBS (Table 3).

Presence of selection effect and cause-of-death
misclassification (scenarios 2b, 3b, 4b)
In Scenarios 2 to 4 with 20% or 30% cause-of-death mis-
classification, the biases in the estimates of net survival
obtained with each of KM, Cox, and wNA were 3 to 4
times more important than those obtained with the GS.
The biases obtained with the RBS model did not change
much. The ECRs of the estimate of net survival obtained
with KM, Cox, or wNA was close to 0 when the
cause-of-death misclassification was 30%. With 30% mis-
classification at 15 years, the differences between the
RSME obtained with GS and each of the tree
cause-specific methods (KM, Cox, wNA) were 0.073,
0.048 and 0.069 (Scenario 4b). However, Cox model pa-
rameters (effect of age and treatment) estimates were
slightly impacted in terms of relative bias, RMSE, ECRs
than that of RBS.

Table 2 Performance in terms of net survival of various methods in various scenarios (Continued)

Method & Misc. Bias × 100 5-year net survival Bias ×100 10-year net survival Bias ×100 15-year net survival

R.Bias RMSE ECR R.Bias RMSE ECR R.Bias RMSE ECR

PP −2.784 −3.366 0.031 50.7 −4.693 −7.035 0.049 27.1 −6.831 −11.88 0.070 8.2

RBS −0.284 −0.343 0.021 93.4 −0.667 −1.000 0.036 92.7 −0.668 −1.161 0.053 94.0

Scenario 4 (α = 4)

Gold standard 0.012 (0.727 a) 0.015 0.012 95.1 0.082 (0.644 a) 0.127 0.016 95.8 0.083 (0.575 a) 0.144 0.017 95.8

CSS methods

KM & 0% 0.493 0.626 0.013 93.2 1.633 2.535 0.023 80.6 2.812 4.890 0.034 66.0

KM & 20% 0.493 0.626 0.013 93.2 4.335 6.731 0.046 25.2 6.775 11.782 0.070 6.1

KM & 30% 0.493 0.626 0.013 93.2 5.754 8.934 0.059 6.7 8.867 15.42 0.090 0.3

Cox & 0% 0.037 0.047 0.011 97.3 0.077 0.105 0.016 97.5 0.047 0.081 0.019 97.7

Cox & 20% 0.037 0.047 0.011 97.3 2.894 4.493 0.033 67.5 4.127 1.177 0.045 53.0

Cox & 30% 0.037 0.047 0.011 97.3 4.369 6.784 0.046 31.2 6.329 11.006 0.065 12.6

wNA & 0% 0.397 0.504 0.013 93.7 1.315 2.041 0.021 85.0 2.276 3.958 0.030 74.3

wNA & 20% 0.397 0.504 0.013 93.7 4.054 6.295 0.043 30.7 6.304 10.963 0.065 9.1

wNA & 30% 0.397 0.504 0.013 93.7 5.492 8.527 0.057 8.6 8.428 14.657 0.086 0.6

PNS methods

PP −7.274 −9.268 0.074 0.1 −11.690 18.152 0.118 0.00 −15.629 −27.173 0.157 0.00

RBS −0.469 −0.595 0.0311 93.1 −0.869 −1.349 0.0532 93.6 −0.934 −1.624 0.0762 93.8

a The true net survival values are provided at 5, 10, and 15 years of follow-up for each scenarios
Misc misclassification rate , RMSE root mean square error, ECR empirical coverage rate, CSS cause-specific survival, KM Kaplan-Meier, wNA weighted Nelson-Aalen,
PNS population-based net survival, PP Pohar-Perme, RBS rescaled B-spline, R.Bias relative bias
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Application to clinical trial data
To illustrate the interest of the RBS model in estimating
net survival in clinical trials and be able to compare it
with other approaches, we used data from a clinical trial
that included 506 prostate cancer patients [25] (USA,
1967–1969, data published by Andrews and Herzberg
[26]). The patients were randomly allocated to one of
four treatment regimens: placebo or 0 mg/d, 0.2 mg/d, 1
mg/d, and 5mg/d of per os diethylstilbestrol. As in pre-
vious works on these data, we gave indicator 0 to the
low-doses (0 and 0.2 mg/d) and 1 to high-doses (1 and 5
mg/d) and considered seven other covariates: age, weight
index, performance rating, history of cardiovascular dis-
ease, serum hemoglobin, size of primary lesion, and
Gleason stage/grade category [25]. However, in the para-
metric model as in the simulation study, age was cen-
tered on the median age (73 years). Because 23 patients
have missing information, 483 patients were kept for
analysis: 241 in the low-dose and 242 in the high-dose
treatment group. Concerning the stage variable, 278 pa-
tients were in stage 3 and 205 in stage 4. The median

follow-up was about 65 months and the whole follow-up
was 76months.
In estimating the net survival, population-based

methods used the USA life tables from 1967 to 1973 that
included covariates age, sex, and year of diagnosis. The
distributions of the two treatment groups were compared
using a specific log-rank-type test for net survival compar-
isons [23] and considering p < 0.05 as significance level.
The parametric cause-specific Cox and the proposed

RBS models were used to estimate the effect of treat-
ment on the excess hazard of death from prostate can-
cer. The net survival estimates over time by KM, wNA,
PP and RBS methods in placebo group and in treatment
group for all the patients are shown respectively in
Fig. 2.a and Fig. 2.b. The log-rank-type test did not find
a statistically significant difference in net survival esti-
mates by PP method between the low-dose and the high
dose group ( χ21 ¼ 3:61; p ¼ 0:057 ). At the end of the
76-month follow-up period, the estimates of net survival
in the high-dose group were: SKM = 0.682, SCox = 0.662,
SwNA = 0.684, SPP = 0.478, and SRBS = 0.565. The

a b c d

e f g h

i j k l

m n o p

q r s t

Fig. 1 Gold standard (GS) net survival distribution and those estimated by the KM, the Cox and the wNA methods without and with
misclassification of the cause of death (0, 20 and 30%) with selection effect equals 1, 0.5, 2 and 4. Each panel compares one method to the GS:
(a)-(d) for KM; (e)-(h) for Cox; (i)-(l) for WNA; (m)-(p) for PP; (q)-(t) for RBS
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Table 3 Performance in terms of parameters estimation (β̂age; β̂treatment; α̂Þ with rescaled B-spline (RBS) and Cox model in various
scenarios

Method &
Misc.

Scenario 1 (α = 1) Scenario 2 (α = 0.5) Scenario 3 (α = 2) Scenario 4 (α = 4)

RBias RMSE ECR RBias RMSE ECR RBias RMSE ECR RBias RMSE ECR

β̂age(βage = 0.05)

CSS methods

Cox & 0% 0.528 0.392 94.5 0.360 0.388 95.7 0.170 0.389 94.8 0.802 0.388 94.8

Cox & 20% 0.552 0.392 94.4 0.355 0.389 96.3 0.128 0.391 95.2 0.709 0.389 94.6

Cox & 30% 0.612 0.392 94.7 0.446 0.388 96.1 0.141 0.391 95.1 0.832 0.389 94.6

PNS methods

RBS −0.489 0.444 96.4 −1.749 0.295 97.1 0.417 0.686 94.04 2.006 1.065 91.7

β̂treatment(βtreatment = − 0.5)

CSS methods

Cox & 0% 0.869 0.392 94.8 −0.075 0.388 95.5 0.245 0.389 94.8 −0.311 0.388 93.9

Cox & 20% 1.027 0.392 95.2 0.042 0.389 95.3 0.710 0.391 94.6 −0.044 0.389 93.7

Cox & 30% 0.820 0.392 94.7 −0.271 0.388 95.3 0.773 0.391 95.8 0.095 0.389 94.3

PNS methods

RBS 1.920 0.234 95.6 3.209 0.155 97.1 0.774 0.391 95.8 −1.083 1.032 92.3

α̂ 0.060 0.444 92.6 15.754 0.305 90.8 −5.863 0.696 93.6 −7.419 1.105 94.9

Misc Misclassification rate, RMSE root mean square error, ECR empirical coverage rate, CSS cause-specific survival, PNS population-based net survival, RBS rescaled
B-spline, RBias relative bias

a b

Fig. 2 Distributions of net survival estimations carried out with cause-specific versus population-based methods (KM, Cox, and wNA vs. PP and
RBS) in prostate cancer patients who received: (a) low-dose (solid line) diethylstilbestrol (0 and 0.2 mg/d); (b) high-dose (dashed line)
diethylstilbestrol (1 and 5mg/d)
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estimates in the low-dose group were: SKM = 0.475, SCox
= 0.498, SwNA = 0.491, SPP = 0.293, and SRBS = 0.396.
Table 4. shows results obtained with the two parametric
Cox and RBS model adjusted for the covariates. Both
models concluded to a significant reductive effect of
high-dose treatment on the excess hazard of death from
prostate cancer and to a higher estimated effect with the
RBS model vs. Cox model (Excess hazard ratio,
EHRRBShigh−dose ¼ 0:62 ½0:40; 0:96�) vs. EHRCOXhigh−dose ¼ 0:
43 ½0:30; 0:64� ) . The RBS model showed that
other-cause mortality in the trial participants was 1.51
times that of the US general population. Thus, on aver-
age, the expected mortality provided by the US life table
is 1.51 times lower compared to the appropriate
other-cause mortality in the trial participants. Correcting
for both possible cause-of-death misclassification and

effect of selection indicated that treatment effect (excess
risk reduction = 38%) was lower than using a
cause-specific Cox (excess risk reduction = 57%).

Discussion
The present work proposes a new flexible
population-based model to estimate long-term net sur-
vival in clinical trials. To account for biases due to
cause-of-death misclassification and patient selection,
the model extends the excess hazard models developed
by Estève et al. [14, 15] or Giorgi et al. [14, 15] and con-
siders settings where the other-cause mortality is differ-
ent from that of the general population of same general
characteristics.
One advantage of the new RBS model is that it cor-

rects the other-cause mortality of trial participants and
provides more precise estimates of the excess hazard
and the net survival in presence of selection. Simulation
study has shown that the RBS model provides accurate
estimates of the net survival. In the application, the RBS
model showed that, due to selection, the other-cause
mortality of trial participants was, on average, 1.51 times
that of the general population, and the treatment effect
was lower, compare to estimation obtained using
cause-specific approach. This selection problem was
already mentioned by Augustin et al. [27] who found
that the effects of recent therapeutics on net survival in
mantle-cell lymphoma patients included in a clinical trial
were different from those seen in a larger group of pa-
tients found in cancer registries and concluded that trial
patients are highly selected and may not be representa-
tive of the patients encountered in everyday practice.
However, in accordance with previous comments on
Augustin’s study [28], the present simulation study
shows that some standard population-based methods,
such as the PP estimator used by Augustin, provide
biased estimates of net survival in the presence of a se-
lection effect. Within this context, RBS model may allow
for selection and provide more accurate comparisons be-
tween trial and other patients’ survivals.
Another advantage of the RBS model is that it is more

flexible than that of Cheuvart and Ryan [19] in estimat-
ing the baseline excess hazard function. Estimating can-
cer excess hazard with the RBS model by a flexible
function instead of a step function (that represents only
discontinuous constant excess mortality rates) is more
realistic and reliable in an epidemiological or clinical set-
ting. Contrarily to cause-specific methods, the RBS, as
other population-based methods, does not require
knowing the cause of death and is thus insensitive to the
cause-of-death misclassification. In the application, the
cause of death information was used with cause specific
methods (KM, Cox, and wNA) without any indication
about its accuracy and the vital status was used with the

Table 4 Excess hazard ratios with Cox and RBS model. Results
of the application on prostate cancer data

Variable &
modalities

Cox model RBS model

EHR [95% CI] EHR [95% CI]

Treatment

High-dose DES 0.43 [0.30; 0.64] 0.62 [0.40; 0.96]

Low-dose DES

Age (centered) 0.97 [0.95; 1.00] 0.98 [0.95; 1.01]

Weight indexa

< 80 1.45 [0.75; 2.81] 2.05 [1.04; 4.05]

80–99 1.29 [0.87; 1.92] 1.73 [1.13; 2.66]

≥100

Performance rating

Limited activity 1.49 [0.87; 2.52] 1.62 [0.98; 2.66]

Normal activity

History of cardiovascular disease

Yes 0.86 [0.58; 1.28] 1.70 [1.15; 2.52]

No

Haemoglobin

< 9 g/100mL 9.13 [3.64; 22.88] 5.66 [2.12; 15.09]

9–12 g/100 mL 1.01 [0.64; 1.59] 1.32 [0.86; 2.01]

≥12 g/100 mL

Size of primary lesion

≥30 cm2 4.02 [2.62; 6.16] 3.25 [1.91; 5.50]

< 30 cm2

Gleason stage/grade category

> 10 9.58 [5.50; 16.67] 2.22 [1.31; 3.77]

≥10

Selection effect (α̂) 1.51 [0.89; 2.56]
aWeight (kg) - Height (cm) + 200 - RBS Rescaled B-spline model, CI confidence
interval, EHR excess hazard ratio, DES diethylstilbestrol – α: parameter of the
RBS model used to rescale the all-cause mortality in participants in a
clinical trial
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PP estimator and the RBS model. Also, our results from
the application have shown that net survival estimates
with cause-specific methods (KM, Cox and wNA) were
higher compared to that PP and RBS. Due to the robust-
ness of the RBS model to estimate net survival in pres-
ence of selection effect, we are more confident with the
RBS model estimates of net survival although the
follow-up in the trial was less than 10 years. Indeed, net
survival is probably overestimated using cause-specific
methods because of an underestimation of the prostate
cancer-related death. Besides, the misclassification
phenomenon is not rare in prostate cancer data because
of treatment impact [29]. The RBS model allowed rescal-
ing the estimate of the net survival in treatment and pla-
cebo groups.
Cause-specific methods performed better than

population-based methods in the absence of
cause-of-death misclassification and/or selection effect.
However, 0% misclassification is highly improbable; even
in short-term clinical trials, there is always some propor-
tion of cause-of-death misclassification because of infor-
mation unreliability [7] or because of competing causes
of death [5].
KM, wNA, and Cox model showed similar perfor-

mances in estimating net survival in the absence of
cause-of-death misclassification. In fact, KM and Cox
model should be avoided because the assumption of in-
dependence between the other-cause and cancer mortal-
ity is not met; actually, some variables, such as age, may
affect both mortalities. Thus, censoring death from other
cause than cancer could be informative. Likewise,
Pohar-Perme et al. [12] have shown that only the
Nelson-Aalen estimator is consistent (asymptotically un-
biased) in estimating the net survival using the inverse
probability of censoring weighting. Therefore, the selec-
tion bias impacts obviously the cause-specific survival
estimates with wNA because incorrect life tables are
used to calculate the weights. In a trial, when the
other-cause mortality of the participants is higher than
that of the general population, the net survival estimate
that uses a general population life table is underesti-
mated, and inversely [28]. These results are in agreement
with those of Baili et al. [30] and Stroup et al. [31]. For
prostate cancer, Stroup et al. showed that prostate can-
cer patients with early stage have better health status
than US general population. In addition, they also found
that cause-specific methods are preferable to estimate
net survival compared to population-based survival for
prostate cancer patients with early diagnosis. These
same conclusions were also found by Skyrud et al. [8] in
Norway cancer registry among prostate cancer patients.
However, in our application, the proposed model found
that the selected patients were more frail than US gen-
eral population. This can be explained by the fact that

patients included in this trial had an advanced prostate
tumor (stage 3 and 4) and were also more exposed to
comorbidities due to their high median age.
In this work, we considered identical degrees of

cause-of-death misclassification in the treatment and the
placebo group, which is a plausible assumption in real
clinical trials with long follow-up durations. This may
explain the similar performances of cause-specific
methods in the treatment and the placebo group in case
of 20 or 30% cause-of-death misclassification after a
five-year follow-up. However, as in population-based
studies, and despite long-term follow-ups, distinct de-
grees of misclassification between the treatment and the
placebo group are also possible. Some authors have
shown that identical degrees of misclassification had less
impact than distinct misclassifications on net survival es-
timation [9, 12].
Furthermore, Morisot et al [32] investigated the interest

of multiple imputation approach in the estimation of
cause-specific survival notably when a subset of cause of
death was available. In their case there is a confidence in
cause of death classification of some patients contrary to
our case where we assume it exists an overall uncertainty
on cause of death classification. Up to 50% missing values
in the “cause of death” variable, Morisot et al have recom-
mended multiple imputation method to obtain accurate
estimates of cause-specific survival, notably in not large
database. Indeed, this approach may be time-consuming
and not satisfactory if a representative percentage of
causes of death is not validated by experts. However, it is
well-know that cause of death information may be difficult
to be validate in long-term follow-up without autopsy.
The consequence could be finally a high risk for misclassi-
fication of cause of death up to 68.2% [33], resulting in
bias on net survival estimates using cause-specific method
even after multiple imputation approach.
Despite its advantages, the RBS model has the limita-

tions of most parametric excess-hazard models because
of the assumptions regarding the baseline excess hazard
and the effects of the covariates. For example, the effect
of selection on the general population mortality was as-
sumed to be multiplicative; this assumption is reasonable
from an epidemiological or clinical point of view but
may not be always met [19]. Another clinically plausible
assumption would be to consider a non-proportional ef-
fect. Also, one may consider a heterogeneous selection
effect between trial centers or individuals. For example,
in the application, the effect of selection may be consid-
ered different between hospitals of the Veteran’s Admin-
istration, and the use of a frailty model for the risk of
other-cause death could improve the RBS model. Within
this context, the works of Zahl that account for hetero-
geneity in the competing risk model may improve the
RBS model [34].
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Besides, one assumption for net survival estimation is
that TP and TE are conditionally independent on a set of
explanatory covariates [14]. This assumption may not be
verified and that raised some issues as well as in the
classical framework of competing risks [35] and in the
net survival setting resulting in informative censoring
bias [17, 36]. In latter setting we have also to consider
that general population life tables exist for each combin-
ation of demographic covariables, and observed data
contain these demographic covariables. Indeed, the
demographic covariables acts on both the excess hazard
and the population hazard. However, these covariables
are not always available on data or on general population
life tables. The impact of their absence has been showed
in Grafféo et al. [37], Danieli et al. [17] and studied by
Pavlik and Pohar-Perme [38]. As shown by Danieli et al.
[17] a regression model for excess hazard modelling ad-
justed on demographic covariables when there are
present can deal with the informative censoring prob-
lem. In the absence of some important covariables the
proposed model can be used to rescale the population
hazard and offers potential research opportunities.

Conclusion
In conclusion, the new RBS model allows estimating net
survival in clinical trials. It corrects the biases of
cause-of-death misclassification and of selection effect
on the expected mortality in the general population.
This makes it particularly useful in clinical trials with
long follow-ups. With the RBS model, the researcher ob-
tains accurate estimates of the excess hazard and, there-
fore, of net survival; however, he/she should check the
strong assumption of homogeneous selection. Finally,
the RBS model paves the way for new methodological
developments in the field of net survival methods in
multicenter clinical trials.
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