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Abstract : An efficient route was reported for synthesis of a novel 3-(4-fluorophenyl)-6-methyl-2-

(propylthio)quinazolin-4(3H)-one. The synthesized compound was prepared by a sulphur arylation 

reaction and was tested against some bacterial strains. Raman analysis was conducted on the synthesized 

derivative, which had the following properties: empirical formula (C18H17Cl N2 O), system (monoclinic), 

space group (P21/c), unit parameters cell (a = 12.7137(7) Å, b = 7.5018(4) Å, c = 17.1209(9) Å and 

β =11.0042(15)°), volume (V = 1524.42 Å3), Z = 4, temperature (150 (2) K). The single crystal structure 

was resolved and refined to (R = 0.0374, wR = 0.1040). The non-hydrogen atoms were refined 

anisotropically and the hydrogen atoms were placed theoretically. The Hirshfeld surface and fingerprint 

plots were obtained. The electrostatic potential surface (ESP) was also derived using the density 

functional theory method. 

 

Keywords : 3-(4-Fluorophenyl)-6-methyl-2-(propylthio)quinazolin-4(3H)-one ; Antibacterial ; Crystal 
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1. Introduction 

Heterocyclic derivatives have attracted considerable interest in last years for their versatile properties in 

chemistry, biology, pharmacy and medicine. The manipulation of their structures opens the way to the discovery 

of several drugs. It is well known that more than 90% of new drugs are made up of heterocyclics, which play a 

vital role as an interface between chemistry and biology [1-10]. 

Heterocyclic nitrogenous and oxygenated systems are considered to be an important line of research, thus having 

a particular interest, because of their remarkable properties. 

Among these heterocyclic are quinazolines which are nitrogen heterocycles found abundantly in organic 

molecules. They are present in many natural substances, and in a multitude of biologically active compounds. 

They are of considerable importance in the pharmaceutical field and, in fact, are found in many of the bioactive 

structures patented in recent years. Quinazoline derivatives are very attractive molecules for researchers due to 

their diverse applications, despite of that their synthesis often either requires several stages or the use of 

functionalised starting materials. The development of reactions that would allow the rapid and efficient synthesis 

of polyfunctionalised quinazolines has always been a substantial challenge for organic chemists [1,2]. 

Quinazolines have shown antibacterial and anti-inflammatory properties [3], as well as analgesic [4], anti-cancer 

[5], anti-tuberculosis [6], anticonvulsant [7], antioxidant [8], antihypertension [9] and anti-diabetes activities [10]. 

For these reasons, and based on our recent research aimed at developing a new strategy to access to heterocyclic 

agents [11-17]. Herein, we reported the synthesis of new quinazolinone derivative 3-(4-fluorophenyl)-6-methyl-

2(propylthio)quinazolin-4(3H)-one (5) with good yield (Scheme 1) and its antibacterial activity was tested. 

In addition, Raman and crystallographic study of the prepared quinazolinone derivative were conducted at room 

temperature, along with description of its Hirshfeld surface, fingerprint plots and electrostatic potential surface 

(ESP). 

 

 

 

Scheme 1. Strategy of the synthesis of 3-(4-fluorophenyl)-6-methyl-2(propylthio)quinazolin-4(3H)-one (5). 
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2. Synthesis 

We used the same strategy we described in our previous work [18]. First, 4-fluorophenylisothiocyanate (1 mmol) 

was added dropwise under stirring to a mixture of 5-methylanthranilic acid (1 mmol) in absolute ethanol (20 mL), 

followed by addition of triethylamine (1.1 mmol, 0.11 g). This mixture was refluxed for 1.5 h to ensure total 

consumption of the starting reactants (as determined by thin layer chromatography [TLC]). The mixture was 

filtered and the solvent was removed in vacuo. The resulting crude solid was recrystallised from ethanol to 

achieve the pure product. As a second step, intermediate 3 (1 mmol) was reacted with 1-propylbromide (1 mmol) 

in acetone (10 mL) containing anhydrous potassium acetate (1.5 mmol) under stirring for 10 h. After completion 

of the reaction, the mixture was filtered and the solvent removed in vacuo. The resulting solid was recrystallised 

from ethanol to give the title compound 3-(4-fluorophenyl)-6-methyl-2-(propylthio)quinazolin-4(3H)-one as a 

white crystal (yield 74%). 

3. Antibacterial activity 

Derivative 5 was assessed for the antibacterial activity against 2 g-negative bacteria, (Escherichia coli and 

Pseudomonas aeruginosa) and 2 g-positive bacteria (methicillin resistant Staphylococcus aureus [MRSA] and 

Bacillus subtilis) per the standard method [19]. 

Dimethylsulphoxide (DMSO) was used as the negative control and the antibiotic ciprofloxacin was used as the 

positive control. The minimum inhibitory concentration (MIC) as determined by preparing the derivative 5 at 

concentrations of 12.5, 18.75, 25, 38.5, 50, 75 and 100 μg/mL in DMSO, and serially diluted test samples of the 

derivative (in 200 μL) were added to 96-well microtrays. The test microorganism was added to the microtray 

wells to give a final volume of 400 μL, and the plates were incubated at 37 °C for 24 h. The MIC value was 

defined as the lowest concentration of a compound that inhibited the visible growth of bacteria. Each assay was 

performed in duplicate. 

The activity against the targeted bacterial strains is shown in Table 1. The derivative 5 was active against two 

bacteria. 

 

4. Raman spectroscopy 

The different steps of the reaction were further monitored by Raman spectroscopy. The corresponding spectra 

are depicted in Fig. 1. Qualitatively, the profile of the Raman spectrum for the final product differed significantly 

from the spectra of the initial and the intermediate products. Indeed, because of their aromatic ring vibrations, 

quinazolines are recognised to absorb strongly in the range 1650–1300 cm−1, and they typically display six bands 

of variable intensity [20,21]. In the region of less than 1000 cm−1, bands associated with the C-H out-of-plane 

deformation vibrations are observed. This could be ascribed to the additional substituent in the final product and 

would explain the difference in its spectral profile in this region with respect to both the initial and intermediate 

products. 
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Fig. 1. Raman spectrum of the derivatives 1, 3 and 5. 

5. Crystallographic characterisation 

A single crystal was selected for X-ray diffraction measurement. A Nonius_Kappa_CCD diffractometer with a 

molybdenum anticathode was used to make the full data collection. The ɸ and ω scan modes were used, and the 

completeness was about 99.9%. The DENZO-SMN program was used to reduce the data. The structure was 

solved using SIR97 [22] and the refinement of atomic parameters based on a full-matrix least squares technique 

F2 using SHELX97 [23]. The non-hydrogen atoms were refined anisotropically, and the hydrogen atoms were 

placed theoretically. All these programs were used within the WINGX package [24]. Low difference electron 

densities were detected between 0.324 and −0.232 e/Å−3. 

The crystallographic data and experimental parameters for the intensity collection are summarised in Table 2. 

For the structural data from the Cambridge Crystallographic Data Centre (CCDC), see supplementary publication 

No CCDC1979924. These data are also freely accessible from the following link: 

www.ccdc.cam.ac.uk/data_request/cif. The asymmetric unit of the title crystal structure is presented in Fig. 2. 
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Fig. 2. Asymmetric unit cell of the compound 5. 

In the crystal, the hydrogen bonds and π-π stacking interactions assure the connection between molecules. The 

hydrogen bond involves C-H⋯N, where the C-H⋯N distance is 2.614 Å. Slight π-π stacking interactions also 

occur between the rings of the molecule (3.326 Å and 3.329 Å) (Fig. 3). The C–C distances fall in the range 

1.381(7)–1.505(6) Å. The C-N distance is between 1.311(5) Å and 1.379(5) Å. The C-Cl distance is about 

1.742(5) Å. The distance between carbon and oxygen is 1.343(5) Å and 1.453(4) Å (Fig. 4). The torsion angle 

CH3-CH2-CH2-O is 61.64° and the Cl-C6H4 forms an angle of 13.53° with the molecular plane (Fig. 5). 

 

Fig. 3. View showing the connection between the molecules by C-H⋯N hydrogen bonds and π-π stacking 

interactions (dashed lines). 
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Fig. 4. View showing all the bonds length distances between atoms (Å unit) in asymmetric unit cell. Hydrogen 

atoms are omit for clarity. 

 

 

Fig. 5. View showing the torsion angle (CH3-(CH2)2-O) and angle between Cl-C6H4- and molecule plan. 

Hydrogen atoms are omit for clarity. 

6. Computational details 

6.1. Hirshfeld surface calculations 

The Hirshfeld surface and fingerprint plots of the synthesized compound were obtained using the Crystal Explorer 

3.0 package [25]. The dnorm plots were mapped with a colour scale range of −0.0432 au (blue) and 1.084 au 

(red). The red spots on the Hirshfeld surface indicate the closest interactions between the atoms named in the 

compound units. The 2D fingerprint plots were displayed using the expanded 0.6–2.8 Å. The electrostatic 

potential surface (ESP) of the title compound was calculated using density functional theory (DFT) methods at 

the B3LYP/6-311+G(d,p) level of theory using the Gaussian 09 package [26]. 

6.2. Hirshfeld surface analysis 

The Hirshfeld surfaces mapped over dnorm, shape index and curvedness for the title compound were obtained 

using Crystal Explorer 3.0 (Fig. 6). The internal and external (di and de) contact distances from the Hirshfeld 

surface to the nearest atom inside and outside enable the analysis of the intermolecular interactions through the 

mapping of dnorm. 
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Fig. 6. Hirshfeld surface mapped over (a) dnorm, (b) shape-index and (c) curvedness. 

 

The red spots on the Hirshfeld surface of the compound 5 indicate the existence of intermolecular interactions 

(intercontacts) in the crystalline environment of the title compound (Fig. 7, left). The Hirshfeld surface over dnorm 

shows that the intermolecular interactions between the name of the compound are pi-stacking interactions, and 

the units are stacked in a head-to-tail arrangement, one above the other. The intermolecular distance between the 

stacked units is of 3.31 A (Fig. 7). 

 

 

 

Fig. 7. dnorm mapped on the Hirshfeld surface for visualizing the intermolecular interactions of compound 5. 

 

The electrostatic potentials were calculated using DFT at the B3LYP/6-31+G(d,p) level of theory (Fig. 8). The 

negative region of the electrostatic potential appears in red and corresponds to hydrogen bond acceptors, while 

the positive region of the electrostatic potential appears in blue and corresponds to hydrogen-bond donors. The 

N1 atom of the quinazoline ring clearly corresponds to a hydrogen atom acceptor (Fig. 8). 

 

The two-dimensional fingerprint plots for most of the intercontacts of the title compound are shown in Fig. 9 and 

summarised in Table 3. The highest interatomic contact contributions were found between hydrogen atoms H⋯H, 

at 49.1% (Fig. 9), followed by C⋯H/H⋯C and Cl⋯H/H⋯Cl, with contributions of 49.6, 18.8, and 15.5%, 

respectively. 
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Fig. 8. EPS of the tilted compound obtained at the B3LYP/6-311+G(d,p) level. 
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Fig. 9. The two-dimensional fingerprint plots for the title compound showing the most intercontacts. 
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7. Conclusion 

Herein, we have reported the synthesis of a novel 3-(4-fluorophenyl)-6-methyl-2-(propylthio)quinazolin-4(3H)-

one (5), and its antibacterial activity has assessed against four bacterial strains. The structure of the 3-(4-

fluorophenyl)-6-methyl-2-(propylthio)quinazolin-4(3H)-one was determined by single crystal XRD studies. The 

compound crystallized in monoclinic crystal system with P 21/c space group. It exhibited hydrogen bond 

interaction C-H⋯N Slight π-π stacking interactions between rings of the molecule that assure the connection 

between molecules and stabilizes the crystal. Raman analysis of synthesized compound was investigated. 

Moreover, the contribution of these interactions was also analysed by visualizing Hirshfeld surface. In addition, 

the electrostatic potential surface (ESP) was obtained using the DFT method and the radical CH3-CH2-CH2-O- 

of the molecule is totally twisted and there is slight twisting at the molecule plane level. 
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