
HAL Id: hal-02613455
https://hal.science/hal-02613455

Submitted on 26 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards an Intelligent User-Oriented Middleware for
Opportunistic Composition of Services in Ambient

Spaces
Walid Younes, Sylvie Trouilhet, Françoise Adreit, Jean-Paul Arcangeli

To cite this version:
Walid Younes, Sylvie Trouilhet, Françoise Adreit, Jean-Paul Arcangeli. Towards an Intelligent User-
Oriented Middleware for Opportunistic Composition of Services in Ambient Spaces. 5th Workshop on
Middleware and Applications for the Internet of Things (M4IoT 2018), ACM; IFIP, Dec 2018, Rennes,
France. pp.25-30, �10.1145/3286719.3286725�. �hal-02613455�

https://hal.science/hal-02613455
https://hal.archives-ouvertes.fr

Towards an Intelligent User-Oriented Middleware for
Opportunistic Composition of Services in Ambient Spaces

Walid Younes
Walid.Younes@irit.fr

Institut de Recherche en Informatique de Toulouse, IRIT
Toulouse, France

Sylvie Trouilhet
Sylvie.Trouilhet@irit.fr

Institut de Recherche en Informatique de Toulouse, IRIT
Toulouse, France

Françoise Adreit
Francoise.Adreit@irit.fr

Institut de Recherche en Informatique de Toulouse, IRIT
Toulouse, France

Jean-Paul Arcangeli
Jean-Paul.Arcangeli@irit.fr

Institut de Recherche en Informatique de Toulouse, IRIT
Toulouse, France

ABSTRACT
Ambient and mobile systems consist of networked devices and

software components surrounding human users and providing ser-
vices. From the services present in the environment, other services
can be composed opportunistically and automatically by an intelli-
gent system and proposed to the user. This article first presents an
illustrative use case, then explores the requirements and formulates
related research questions. Next, it describes our approach aimed
at answering the requirements, based on distributed artificial intel-
ligence and multi-agent systems. It reports on the development of
a prototype solution, and analyzes the current status of our work
towards the different research questions that we have identified.

CCS CONCEPTS
• Human-centered computing → Ambient intelligence; •

Applied computing→ Service-oriented architectures; •Com-
putingmethodologies→ Self-organization;Multi-agent sys-
tems; • Software and its engineering →Middleware;

KEYWORDS
Ambient Intelligence, Connected Objects, Software Components,

Service Composition, Emergence, Self-Organization, Learning,Multi-
Agent Systems

ACM Reference Format:
Walid Younes, Sylvie Trouilhet, Françoise Adreit, and Jean-Paul Arcangeli.
2018. Towards an Intelligent User-Oriented Middleware for Opportunistic
Composition of Services in Ambient Spaces. In 5th Workshop on Middleware
and Applications for the Internet of Things (M4IoT’18), December 10–11, 2018,
Rennes, France. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/
3286719.3286725

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
M4IoT’18, December 10–11, 2018, Rennes, France
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6118-7/18/12. . . $15.00
https://doi.org/10.1145/3286719.3286725

1 INTRODUCTION
Ambient and mobile systems consist of fixed or mobile devices

connected by one or several communication networks. These de-
vices host services specified by interfaces and implemented by
software components which are independently developed, installed
and activated. Components therefore provide services and, in turn,
may require other services. They are building blocks that can be
assembled to compose applications that provides more complex
services. For example, functional components (e.g., a Polling Station
and a Report Generator) and software or hardware interaction com-
ponents (e.g., sliders, buttons, layouts, screens) can be assembled if
their services match and provide a complete and distributed voting
service.

Components (hardware and software ones) are multi-tenant and
independently managed. Due to the high mobility of devices and
users in ambient and mobile systems, components may appear
and disappear without this dynamics necessarily being foreseen.
So, these systems are open and highly unstable. Another source
of complexity is in the number of devices and software compo-
nents that causes scaling problems. In such a context, assemblies
of components are difficult to design, to maintain and to adapt.

In addition, human users are plunged into these dynamic systems
and can use the services at their disposal, depending on their needs
which themselves vary. The goal of ambient intelligence is to offer
them a personalized environment, adapted to the current situation,
anticipating their needs and providing them the right services at
the right time. This should require as little effort as possible from
users, who should at least be well assisted if they have to contribute.

We are currently developing a solution in which services are
dynamically and automatically composed in order to build compos-
ite services and so customize the environment at runtime. Unlike
the traditional “top-down mode” for building applications, compo-
sition is not driven by the user’s needs: services are built on the
fly in “bottom-up mode” from the components that are present
and available at runtime, without relying, or not necessarily, on
pre-established assembly plans (i.e., templates to be instantiated
at runtime). This composition mode is opportunistic as it profits
from the current environment at some point. In this way, compos-
ite services (realized by assemblies of components) continuously
emerge from the environment, taking advantage of opportunities as
they arise. Here, unlike the traditional SOA paradigm, the user does
not necessarily demand or search for services (in “pull mode”); on

https://doi.org/10.1145/3286719.3286725
https://doi.org/10.1145/3286719.3286725
https://doi.org/10.1145/3286719.3286725

M4IoT’18, December 10–11, 2018, Rennes, France W. Younes et al.

the contrary, services that are operational and context-adapted are
supplied to her/him in “push mode”. One objective of our project
is to explore the viability, advantages and drawbacks, as well as
the feasibility of the implementation of this somehow disruptive
programming paradigm.

The core element of our proposal is a middleware in line with
the principles of autonomic computing and the MAPE-K (Monitor,
Analyze, Plan, Execute – Knowledge) model [9]: it senses the exist-
ing components, decides of the connections (it may bind a required
service and a provided one if their interfaces are compatible), and
commands them. The main expected advantages are proactivity
and runtime flexibility in the context of openness, dynamics and un-
predictability. The purpose of this paper is first to analyze the main
requirements for the design of the assembly engine and to formu-
late several research problems, then to present the main principles
of our solution. Beyond these questions, opportunistic composition
poses several problems related to heterogeneity, security, reliability,
context management. . . that are out of the scope of this paper which
targets the realization of compositions.

The paper is organized as follows. Section 2 illustrates the prob-
lem through a use case. The concrete issues raised by the specifics
of the problem are listed as requirements. Then, research questions
are identified. Section 3 aims at positioning our work in relation to
the state of the art. Section 4 presents the main architectural prin-
ciples of our solution to address the research questions identified.
Section 5 presents the first experimental results. Finally, Section 6
concludes and analyzes the state of progress of our work.

2 USE CASE AND REQUIREMENTS
In order to illustrate and analyze the problem, then motivate

the requirements and identify the resulting research questions, we
propose first a use case.

2.1 Use case
The first step describes an opportunistic adaptive service com-

position and the second one the emergence of an unanticipated
service.

Miss Jane is a student at the university. This morning, she has
a formative assessment: the teacher asks some questions and the
students answer using a Remote Control device lent by the university
for the year. The answers are collected and presented to the teacher
who makes comments in return. For that, the teacher activates a
Quiz service implemented by three software components: a Polling
Station available on the university network, a Report Generator and a
Remote Control installed on his laptop. Then, the interaction services
provided by the students’ remote controls connect automatically
with the required service of the Polling Station component.

Unfortunately, Miss Jane has forgotten her remote control at
home. As it is, she is unable to answer. However, the user interface
which allows her to control her environment suggests the use of a
vertical slider instead of the remote control. This slider is currently
available on her smartphone and matches the required service of
the Polling Station (possibly via an adapter component). As she
agrees, Miss Jane can use it and therefore can answer the quiz ques-
tions, even though this interaction component was not originally

designed to be used with the Quiz service. Other compatible in-
teraction components (as an horizontal slider or a dimmer switch)
also available in the environment could have been proposed; then,
Miss Jane would have chosen her favorite one.

In this first step, several available components have opportunisti-
cally been assembled according to the context: even if the main ser-
vice (the Quiz service) does not functionally change, the interaction
part is partly new and not previously planned. The corresponding
assembly is depicted on the right side of Fig. 1 (we voluntarily use
an informal notation of components and connections). Note that,
in this example, we do not consider how the quiz questions are
displayed to the students.

Figure 1: Emergence of Composite Services

Let’s go to the second step. The course has now finished. Miss
Jane frequently goes to her favorite pub in the afternoon. To book
a table and order drinks, she usually makes use of an Order service
(see the left side of Fig. 1) implemented by three components (Cus-
tomer Input Interface, Menu Presentation, Order Generator) provided
by the pub and installed on her smartphone. As it’s her birthday
today, she would like to invite the other students to have a drink.
She doesn’t want to enter all the orders manually but let the oth-
ers order their drinks. Thus, she deactivates her Customer Input
Interface. Then, a new proposition is made to Miss Jane: bind her
Order Generator component with the Polling Station still available
in the environment, instead of the Customer Input Interface. After
she accepts, the new Pub4.0 service allows each student to order
her/his own drink with her/his remote control, and sends the global
order to the pub. This service actually emerges from the ambient
environment as it was not designed beforehand and is built from
non-dedicated components that are provided by different authori-
ties. The Pub4.0 service is shown in the dotted frame of Fig. 1.

2.2 Requirement analysis
Our goal is to design and implement a middleware solution able

to build applications automatically and on the fly from the software

Intelligent User-Oriented Middleware for Opportunistic Service Composition M4IoT’18, December 10–11, 2018, Rennes, France

components which are present in the surrounding environment at
the time. Components may be functional (e.g., the polling station)
or interaction ones (e.g., the slider). The main feature of the middle-
ware is to assemble components by composing their services in the
context of distribution, dynamics, openness and unpredictability,
and without the user’s needs being explicit. The resulting applica-
tions must provide useful and usable services, relevant and adapted
to the user in the current situation.

In this section, we analyze the main requirements for the design
of the composition middleware.

Automation Basically, due to the characteristics of the envi-
ronment, mainly scale and dynamics, and even if the user is
part of the process (see discussion below), the construction
of applications must be automated. Thus, the middleware has
to sense the dynamic environment, detect continuously ap-
pearances and disappearances of components (for instance,
the slider on Miss Jane’s smartphone) and assemble and dis-
assemble the components which match together. We call the
middleware Opportunistic Composition Engine (OCE).

Decision OCE must be able to make choices based on the
software components present in the environment and the
current situation. When two services can be composed, it
must decide whether to do it or not. When two services
are composed, it must be able to decide whether or not the
composition should be preserved, for example in the case
of a conflict with another application. For instance, in the
second step of the use case, OCE decides to bind the Order
Generator component with the Polling Station. If Miss Jane
made use of the Order service before the end of the course,
OCE would have to arbitrate between the Pub 4.0 and the
Quiz applications.
In order to do that, the engine must reason. As composition
is driven by the environment, OCE must decide and arbitrate
on the opportunities that arise: it must not bring out all and
anything but, as far as possible, relevant applications. But, in
the context of dynamics, openness, unpredictability, and lack
of explicit user needs, reasoning models (or assembly plans)
could only be partially given at design time. So, we aim to
explore a solution able to provide innovative, unusual and/or
unexpected applications without relying on knowledge and
rules specified in advance.

Learning As a result, to make the right decision at the right
time, OCE must build dynamically its reasoning model (and
possibly assembly plans) in order to gradually improve the
quality of the decisions and to adapt them to the environment
dynamics. In other words, OCE must learn. In a way, it must
learn to answer needs that have not been stated.
This machine learning [16] can only be partially supervised:
OCE can not have a complete set of input examples; it has
to learn from the experience, that is to say from feedback on
its decisions. It could learn about an application realized by
a component assembly in a certain situation, depending on
what has been accepted or not by the user, and if it is more
or less used thereafter. . . If OCE partially operated on the
basis of assembly plans, feedback should also be learned in
the same way and recorded dynamically. For example, the

Pub 4.0 application can be learned by OCE and proposed to
Miss Jane another time.

User control Human users are at the core of ambient and
cyber-physical systems. The fundamental function of OCE
is to build assemblies to be used by them. In the context of
automation, the sharing of decision-making responsibilities
between the assembly engine and the user is in question.
At least, OCE must inform the user of the emerging assem-
blies and help her/him in their appropriation. Furthermore,
in particular because unforeseen applications can emerge,
the user must keep a part of control on the pushed applica-
tions and her/his ambient environment. For example, Miss
Jane has to accept to bind her Order Generator component
with the Polling Station instead of the Customer Input In-
terface. Consequently, OCE must only propose applications
with their interface but not order them. Applications must
be presented in an intelligible way. For acceptance reasons,
presentation and control must be the less obtrusive and dis-
turbing as possible. Note that user control on the interactive
space is an essential requirement of the HCI domain [2].

User feedback User control on the pushed applications (accep-
tation or rejection) may constitute a quite explicit feedback
for OCE learning process, for example when Miss Jane se-
lects the vertical slider among other compatible interaction
components. The use of an application is another source of
implicit feedback, for example if Miss Jane never uses her
remote control. OCE must detect these feedback and use
them in its learning process.

Considering novelty OCE must learn from the past: it must
rely on knowledge that has been given or acquired from
its previous experiences. But it must also take into account
novel and unknown components and their services for which
no information was stored before, and consider them in the
decision process. When several services are candidates for a
composition, a trade-off must be made between those that
have already been used and novel ones on which the engine
does not have knowledge and experience.

2.3 Research questions
These requirements led us to formulate transversal research

questions:

Automation and dynamics How to automate component as-
sembly (through service composition) in the distributed envi-
ronment? How to take into account the dynamics? the scale
and the scalability?

Relevance and novelty How to determine the relevance of
service compositions? How to estimate the quality of a com-
position whether it is candidate or already in use? How to
relate the estimated quality with the current situation?
About novel unknown components: how to estimate their po-
tential value? How to overcome the user habits and integrate
them in the use?

Decision and learning How to decide about a composition
when it is possible (i.e., when interfaces match)? How to
decide between conflicting compositions?

M4IoT’18, December 10–11, 2018, Rennes, France W. Younes et al.

What solution for learning? What kind of feedback collect
from the experience? How to get it? How to extract knowl-
edge from feedback? How to memorize/forget it? How to use
this knowledge? How to manage dynamics and feedback?

User interaction How to present the emergent applications
to the user? How to be intelligible and non-obtrusive? How
usability requirements affect decision?
How can the user accept or reject the presented applications?
Can she/he edit and modify them? How can she/he affect
the decision process through feedback?
Are functional components and interaction ones manageable
in the same way? How to associate them?

There are other open problems such as service description and
matching, context detection, or situation identification. We do not
make explicit and develop them because, as our project currently
stands, we have no scientific or technical contribution to make to
these questions.

3 POSITION IN RELATION TO THE STATE OF
THE ART

The dynamic and continuously adapted ambient system we are
designing is a self-adaptive system (SAS) based on a middleware
that supports proactive bottom-up application building.

SASs automatically modify themselves, and possibly their envi-
ronment, at runtime when the resources, the context, or the user’s
behavior change [11]. Self-adaptation is basically reactive, and
context-awareness is a critical function. Proactiveness remains a
challenge. Self-adaptation is normally controlled in a MAPE–K loop
by an adaptation logic which may rely on models, rules, goals, or
utility functions. For example, “Long-Life Applications” are man-
aged using associations rules between contexts (time + location +
activity) and services [8]. In [3], authors propose a reference archi-
tecture for goal-directed structural and behavioral self-adaptation.
SASs may be more or less decentralized; when the scale grows,
decentralization improves performance. Self-organization [4] is a
decentralized form of self-adaptation where adaptation units coor-
dinate without central control in a bottom-up way.

Middleware is an abstraction layer that may provide adaptation
facilities. Service-oriented middleware basically allows for service
deployment, publication, discovery and invocation. It supports run-
time adaptation of service compositions thanks to the dynamic
selection of services and late binding. “Opportunism” resides in
the selection step, as it is the case for WComp [6]. In general, busi-
ness logic and configuration or reconfiguration rules are expressed
at design time, sometimes with a high level of abstraction [12].
They are then applied at runtime depending on the context, one
of the main problems being the selection between several concur-
rent modifications. For example, MUSIC [15] supports model-based
context-driven adaptation: plans are selected at runtime in order to
maximize the utility of applications. Note that standard middleware
offer programming abstractions to developers. On this point, our
solution differs since the developer, replaced by the engine, is not
involved in the composition process.

In the many self-adaptation solutions, the applications to be
adapted or at least the user’s needs are more or less known in
advance. Thus, existing approaches are “top-down”. For F. Morh

[13], the problem of automatic composition of services divides in
two classes depending on the “structure” is known (the goal is to
find a variant of a known process, i.e., to instantiate a template)
or not (the goal is to design a new process that satisfies logical
pre- and post- conditions). We aim at going one step further: built
new applications in “bottom-up” mode without relying on explicit
statement of user needs.

To go beyond what is planned, self-organization and intelligence
are a promising way. Razzaque et al. [14] state that most existing
middleware for the Internet of Things are unsuitable for supporting
SASs, and that enabling autonomy and reprogrammability are im-
portant challenges for which autonomous agents and intelligence
should help. In [17], authors combine multi-agent technology and
reinforcement learning to achieve adaptive Web service composi-
tion. A complementary solution is to involve the user: the user must
be put “in the loop” in order to improve and customize adaptation
or to manage automatically unsolved problems [7]. C. Evers et al.
integrate the user in the self-adaptation feedback loop through
the setting of individual preferences (parameter adjustment and
configuration) on known applications [5]. Nevertheless, balancing
automated decision and user integration in the adaptation process
remains a significant challenge.

4 OUR APPROACH
This section exposes the main features of the approach we are

taking to address the requirements and the research questions.
Our solution relies on theMulti-Agent Systems (MAS) technology

[18]. MAS mainly consist of autonomous and independent interact-
ing entities, called agents, that have a local and partial knowledge
and more or less decision and learning abilities. Basically, the MAS
function emerges from the interactions between the agents.

4.1 OCE architecture
OCE architecture overcomes the automation requirement. It

conforms to the MAS style of architecture, which addresses issues
such as scalability, dynamics and adaptiveness [1] involved by
automation. It is composed of several entities as shown in Fig. 2;
their roles are described as follows.

Figure 2: OCE architecture

Probe: It is responsible for sensing automatically the ambient
environment to detect the appearances and disappearances
of components and their services.

Intelligent User-Oriented Middleware for Opportunistic Service Composition M4IoT’18, December 10–11, 2018, Rennes, France

Factory: On request of the probe, the factory creates the agents
that manage the services when they appear.

Service agents: A service agent is attached to each service
whether it is required or provided1. Agent’s state can be
unbound (themanaged service is unbound), pending or bound.
The goal of service agents is to be as useful as possible, so to
find a suitable connection with another service present in
the environment. For that, service agents have to cooperate,
thus to communicate with each other.

Mediator: Agents may communicate by direct message pass-
ing. However, as not all agents can know each other because
of appearances, disappearances and openness, communica-
tion relies on the Mediator component which is in charge
of message delivery. This allows agents to send messages
without knowing a priori the recipients. The cooperation
protocol between agents is presented in the next section.

In order to meet the user control and feedback requirements,
she/he is put in the control loop andmay interact with OCE through
a dedicated user interface (UI). This UI presents emerging applica-
tions and allows the user at least to accept the OCE proposals or
not, even to modify them. To this end, we are developing a solution
based on model-driven engineering and model transformations [10]
(this point is out of the scope of this paper).

4.2 Interaction protocol
Decentralizing OCE architecture as aMAS leads to a new require-

ment concerning the conditions of cooperation between the agents:
to find an adequate connection, a service agent has to communi-
cate with other ones to reach an agreement. Thus, we designed
a 4-step advertisement-based interaction protocol, called ARSA,
which supports cooperation and addresses dynamics, openness and
novelty.

The four steps are detailed in the following:
(1) Advertise: In a general way, a service agent wishing to find

a connection sends an advertisement message via the “Media-
tor”. This message is non-blocking. It acts as a declaration by
the service agent to other agents that its service is present
and available for binding.

(2) Reply: A service agent which receives an advertisement
analyzes it, and may answer positively if it decides so (see
Section 4.3) by sending a non-blocking reply message; oth-
erwise, it ignores the advertisement without answering. In
such a way, the advertiser agent may receive none, one or
several replies.

(3) Select: An advertizer agent which receives a reply message
analyzes it, then drops or memorizes or selects it (it may also
select a previously memorized reply). Selection of a reply
message initiates another phase of the protocol: the adver-
tizer agent creates a binder agent which is first in charge of
the final agreement between the advertiser and the selected
agents (see further). Then it sends a select message to the
replier containing the reference of the binder agent and the
advertiser agent passes in pending state.

1When a component disappears, the agents attached to its services are put in standby
or deleted

(4) Agree: In the last step, a service agent which receives a select
message may agree. If so, it sends an agreement message to
the binder agent and blocks.

Advertisement and reply messages contain a description of the
service. In both cases, the sender agent may receive multiple mes-
sages of different types, and must therefore analyze them, decide
about them and behave accordingly. It may also receive no message,
however in that case it is not blocked.

Binder agents operate at a lower level than service agents. They
are responsible for the realization of service compositions. Behind
the UI, a binder agent collects the user acceptance or rejection
of a composition. In case of acceptance, it commands the actual
binding between the two services, then reports on its achievement
(or failure) to the service agents, and provides them the feedback.

4.3 Decision and learning
In a MAS, the agents decide of their actions. Here, to meet the

decision requirement, service agents take decisions related to the
steps of the ARSA protocol: Do I (the agent) advertise my service or
not? Do I reply or not to an advertisement? Do I select a proposal
received as a reply or not? Do I agree to establish a connection
when receiving a select message?

In general, an agent has to process a set of messages of different
types, i.e., choose the one or the ones he will answer. It depends
on several parameters, namely the agent’s state, the composition
of the set of messages, and the agent’s knowledge.

To make decisions, the agents can learn. In OCE, service agents
learn by reinforcement. “Reinforcement learning” is a kind of ma-
chine learning technique, based on iterative trail-and-error, which
supports learning from the experience without a training data set.
The learning entity receives input data and perceives a current state
s0 of the environment, then executes an action determined by a pol-
icy π , which changes the state of the environment to s1. In return,
the learning entity receives a positive or negative reinforcement
signal (reward) used to optimize the policy over time. In our case,
agent’s inputs are the ARSA messages and the perceived state is a
local view of the assembly under construction. The agent’s decision
policy considers estimated values the agent has about the others.
These values (the agent’s knowledge) are built from feedback.

Sources of feedback are multiple. Acceptance or rejection of a
service composition by the user is collected through the UI, trans-
formed into reinforcement signal, and transmitted by the binder
agents. As already said, monitoring the actual use of emergent ap-
plications could also be a potential source. Moreover, an internal
source of feedback lies in the interactions between service agents:
for example, an agent ai could learn about another agent aj if ai
receives recurrent reply messages from aj (positive feedback), or
don’t receive an expected agree message (negative feedback).

The use of reinforcement learning tends to favor the replication
of compositions that seem most profitable and maximize long-term
utility. Therefore, there is a risk of missing interesting novel oppor-
tunities. This problem is known in the literature as the exploitation
vs. exploration dilemma. One way to address this problem (while
overlooking usability issues) is to present to the user both the
application that is considered most profitable and the potentially
innovative one(s) that uses the novel component. Then, the user

M4IoT’18, December 10–11, 2018, Rennes, France W. Younes et al.

could choose the application(s) he prefers and OCE could collect
learning data from all the applications presented.

5 IMPLEMENTATION
We are developing OCE following an iterative cycle. The current

prototype version, in Java, conforms to the architecture presented
in Section 4.1 and implements the ARSA protocol. The Probe is con-
nected to a mockup which simulates the ambient environment with
its components and services (connection to theWComp component-
based middleware [6] has been experimented too). For now, the
learning mechanism is not implemented, nor is situation aware-
ness, and the prototype relies on an ad hoc solution for service
description and matching until the issue is addressed thoroughly.

6 CONCLUSION AND FUTUREWORK
This paper has presented the requirements and a MAS-based ar-

chitecture for opportunistic composition of services in dynamic and
open ambient spaces. Our approach mixes automated decentralized
decision making without explicit specification of user needs, and
user control.

Design of the solution is currently in progress. In the following,
we discuss its current status towards the research questions formu-
lated in section 2.3. Table 1, where the status are rated from none
to four +, summarizes the discussion.

Research Question Current Status
Automation + + +

Dynamics ++

Relevance +

Novelty ++

Decision ++

Learning +

User interaction ++

Table 1: Current status of our solution

Questions related to automation and dynamics are quite well
addressed. Interaction between agents is indirect and asynchronous,
and ARSA handles dynamics and openness. Besides, decentraliza-
tion facilitates scalability. However, user mobility and dynamics
could be better supported, for example with a scope control mecha-
nism that would define a perimeter around the user. In this way,
only components within the perimeter would be considered for
assembly, e.g., the polling station if Miss Jane is on the campus.

Concerning relevance and novelty, OCE is able for now to
propose operational applications, possibly integrating novel com-
ponents, but without qualitative assessment. Relevance of appli-
cations is partially supported by the user feedback given through
the UI. Additionally, internal feedback could help in agents’ deci-
sions to improve relevance. However, even if the user “in the loop”
can arbitrate and manage problems left open by OCE, presenting
relevant enough applications is a challenging issue.

OCE is currently implementing elementary decision rules. So,
the reinforcement learningmechanism used to build agents’ knowl-
edge needs to be refined. In particular, exploiting several sources
of feedback, transforming raw feedback data into knowledge, and
using this knowledge to make decisions are still open issues. An-
other challenge lies in the coordination of the agents, i.e., in the

transition from individual to collective decisions, to make together
a consistent decision.

Some questions about user interaction are partially answered
in [10]. However, taking into account extrafunctional requirements
related to user information (intelligibility, non-obtrusiveness. . .) is
a challenge we must consider in the next future.

ACKNOWLEDGEMENTS
This work is partially supported by the French region Occitanie,

the operational program FEDER-FSE Midi-Pyrénées et Garonne,
and the University of Toulouse III Paul Sabatier as part of the neO-
Campus operation.

REFERENCES
[1] J.-P. Arcangeli, V. Noël, and F. Migeon. 2014. Software Architectures and Multia-

gent Systems. In Software Architecture 2, M. Oussalah (Ed.). Wiley, Chapter 5,
171–207. https://doi.org/10.1002/9781118945087.ch5

[2] C. Bach and D. Scapin. 2003. Adaptation of ergonomic criteria to human-virtual
environments interactions. In Proceedings of Interact’03. IOS Press, 880–883.

[3] V. Braberman, N. D’Ippolito, J. Kramer, D. Sykes, and S. Uchitel. 2015. MORPH: A
Reference Architecture for Configuration and Behaviour Self-adaptation. In Proc.
of the 1st Int. Workshop on Control Theory for Software Engineering. ACM,
New York, NY, USA, 9–16. https://doi.org/10.1145/2804337.2804339

[4] G. Di Marzo Serugendo, M.-P. Gleizes, and A. Karageorgos (Eds.). 2011.
Self-Organising Software. Springer. https://doi.org/10.1007/978-3-642-17348-6

[5] C. Evers, R. Kniewel, K. Geihs, and L. Schmidt. 2014. The user in the loop: Enabling
user participation for self-adaptive applications. Future Generation Computer
Systems 34 (May 2014), 110–123. https://doi.org/10.1016/j.future.2013.12.010

[6] N. Ferry, V. Hourdin, S. Lavirotte, G. Rey, M. Riveill, and J.-Y. Tigli. 2012. WComp,
Middleware for Ubiquitous Computing and System Focused Adaptation. In
Computer Science and Ambient Intelligence. https://hal.archives-ouvertes.fr/
hal-01330474

[7] M. Gil, V. Pelechano, J. Fons, and M. Albert. 2016. Designing the Human in the
Loop of Self-Adaptive Systems. In 10th Int. Conf. on Ubiquitous Computing
and Ambient Intelligence, C. R. García, P. Caballero-Gil, M. Burmester, and
A. Quesada-Arencibia (Eds.). Springer International Publishing, 437–449. https:
//link.springer.com/chapter/10.1007/978-3-319-48746-5_45

[8] R. Karchoud. 2017. Long Life Application dedicated to smart-* usage. Ph.D. Dis-
sertation. Univ. del País Vasco (UPV) - Univ. de Pau et des Pays de l’Adour
(UPPA).

[9] J. O. Kephart and D. M. Chess. 2003. The vision of autonomic computing.
Computer 36, 1 (Jan. 2003), 41–50. https://doi.org/10.1109/MC.2003.1160055

[10] M. Koussaifi, S. Trouilhet, J.-P. Arcangeli, and J.-M. Bruel. 2018. Am-
bient Intelligence Users in the Loop: Towards a Model-Driven Approach.
In Int. Workshop "Microservices: Science and Engineering" (MSE@STAF 2018)
(Lecture Notes in Computer Science). Springer, Berlin, Heidelberg. https://hal.
archives-ouvertes.fr/hal-01815481 To appear.

[11] C. Krupitzer, F. M. Roth, S. VanSyckel, G. Schiele, and C. Becker. 2015. A survey
on engineering approaches for self-adaptive systems. Pervasive and Mobile
Computing 17 (2015), 184 – 206. https://doi.org/10.1016/j.pmcj.2014.09.009

[12] S. Loukil, S. Kallel, and M. Jmaiel. 2017. An approach based on runtime models for
developing dynamically adaptive systems. Future Generation Computer Systems
68 (2017), 365 – 375. https://doi.org/10.1016/j.future.2016.07.006

[13] F. Morh. 2016. Automated Software and Service Composition. Springer. https:
//doi.org/10.1007/978-3-319-34168-2

[14] M. A. Razzaque, M. Milojevic-Jevric, A. Palade, and S. Clarke. 2016. Middleware
for Internet of Things: A Survey. IEEE Internet of Things Journal 3, 1 (Feb 2016),
70–95. https://doi.org/10.1109/JIOT.2015.2498900

[15] R. Rouvoy, P. Barone, Y. Ding, F. Eliassen, S. O. Hallsteinsen, J. Lorenzo, A.
Mamelli, and U. Scholz. 2009. MUSIC: Middleware Support for Self-Adaptation
in Ubiquitous and Service-Oriented Environments. In Software Engineering for
Self-Adaptive Systems (Lecture Notes in Computer Science), Vol. 5525. Springer,
Berlin, Heidelberg, 164–182. https://doi.org/10.1007/978-3-642-02161-9_9

[16] S. Russell and P. Norvig. 2016. Artificial intelligence: a modern approach (3rd
ed.). Pearson.

[17] H.Wang, X.Wang, X. Hu, X. Zhang, andM. Gu. 2016. Amulti-agent reinforcement
learning approach to dynamic service composition. Information Sciences 363
(2016), 96 – 119. https://doi.org/10.1016/j.ins.2016.05.002

[18] M. Wooldridge. 2009. An Introduction to MultiAgent Systems (2nd ed.). Wiley
Publishing.

https://doi.org/10.1002/9781118945087.ch5
https://doi.org/10.1145/2804337.2804339
https://doi.org/10.1007/978-3-642-17348-6
https://doi.org/10.1016/j.future.2013.12.010
https://hal.archives-ouvertes.fr/hal-01330474
https://hal.archives-ouvertes.fr/hal-01330474
https://link.springer.com/chapter/10.1007/978-3-319-48746-5_45
https://link.springer.com/chapter/10.1007/978-3-319-48746-5_45
https://doi.org/10.1109/MC.2003.1160055
https://hal.archives-ouvertes.fr/hal-01815481
https://hal.archives-ouvertes.fr/hal-01815481
https://doi.org/10.1016/j.pmcj.2014.09.009
https://doi.org/10.1016/j.future.2016.07.006
https://doi.org/10.1007/978-3-319-34168-2
https://doi.org/10.1007/978-3-319-34168-2
https://doi.org/10.1109/JIOT.2015.2498900
https://doi.org/10.1007/978-3-642-02161-9_9
https://doi.org/10.1016/j.ins.2016.05.002

	Abstract
	1 Introduction
	2 Use Case and Requirements
	2.1 Use case
	2.2 Requirement analysis
	2.3 Research questions

	3 Position in relation to the State of the Art
	4 Our approach
	4.1 OCE architecture
	4.2 Interaction protocol
	4.3 Decision and learning

	5 Implementation
	6 Conclusion and Future Work
	References

