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Abstract

A Symbolic Monte Carlo method (SMC) is applied to the identification of radia-

tive properties of a heterogeneous semitransparent insulating material from mea-

surements of directional-hemispherical transmittance and reflectance at room

temperature. The polynomials obtained with SMC allow the development of a

complete inverse analysis which determines if the inverse problem solution ex-

ists, is unique and stable. Moreover, the numerical efficiency of the absorption

and scattering coefficients identification is improved since the radiative transfer

equation is only solved once in the overall inverse iterative procedure.

Keywords: Radiative Transfer, Symbolic Monte Carlo (SMC), Polynomials,

Radiative properties, Identification, Insulating materials

1. Introduction1

Inverse problems in radiative transfer concern many applications including2

the characterization of complex media (porous or fibrous [1, 2], combustion di-3

agnosis [3], medical imaging [4, 5], etc.). Identification methods combine spec-4

troscopic measurements with simulations based on radiative models, such as5

the radiative transfer equation (RTE), in order to infer parameters such as6
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radiative properties, temperature or species concentrations. For instance, spec-7

tral measurements of transmitted and reflected fluxes in different configurations8

(bidirectional, directional-hemispherical, hemispherical-hemispherical ...) can9

be used to identify the effective scattering and absorption properties of various10

media [6, 7, 8]. In these approaches, inversion is performed by using an itera-11

tive procedure, where at each step, direct computations and measurements are12

compared.13

In the frame of inverse radiative transfer problems, Symbolic Monte Carlo14

methods (SMC) turns out to be a powerful and efficient tool for inverse anal-15

ysis and to improve the efficiency of identification method. The principle of16

SMC consists in retaining some parameters as symbols in a Monte Carlo simu-17

lation, in order to express the observable as a simple and unbiased function of18

those symbolic parameters [9]. The observable is therefore estimated all over19

the parameter space, which is valuable for inversion analysis purpose. SMC20

(initially labeled inverse Monte Carlo method) was introduced by Dunn [10]21

and investigated for inverse problems in radiative transfer in [10, 11]. Dunn [10]22

identified the scattering albedo in an inhomogeneous medium assuming isotropic23

scattering. The approach was extended by Subramaniam et al. [11] to iden-24

tify the scattering albedo and the asymmetry factor of the phase function in25

an anisotropically scattering medium. However, the identification of absorption26

and scattering coefficients was impossible in [10, 11] as the analysis required the27

knowledge of the optical thickness. Galtier et al. [12] circumvented this diffi-28

culty by the use of null-collisions method [13] to express a radiative quantity as29

a polynomial of absorption and scattering coefficients.30

In this work, SMC algorithms presented in [12] are developed within the31

frame of inverse radiative transfer. A complete SMC framework for the iden-32

tification of absorption and scattering coefficients of heterogeneous semitrans-33

parent materials from measurements of directional-hemispherical transmittance34

and reflectance is proposed. An inverse analysis based on SMC is developed35

and advantages related to the use of SMC are highlighted: from inverse analysis36

(discussion on the well or ill-posed character of the problem), up to the fast37
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experimental identification of radiative properties, including experimental and38

numerical errors. The whole method is illustrated here in the case of a low39

density fibrous medium but the approach is not restricted to this material and40

can be used for other types of heterogeneous media.41

The paper is structured as follows. In the second section, experimental setup42

and spectroscopic measurements are presented. In the third section, details43

of the proposed Symbolic approach are given: SMC algorithm that allows to44

obtain simple polynomial forms of directional-hemispherical transmittance and45

reflectance as function of absorption and scattering coefficients is presented.46

These polynomials are then used to determine the nature (well or ill-posed) of47

the inverse problem, including experimental and numerical errors in the analysis.48

Finally, in the last section, inversion based on these polynomials is carried out49

to retrieve absorption and scattering coefficients of a Quartzel sample.50

2. Sample description and experimental measurements51

2.1. Sample description52

The medium considered is a Quartzel low density felt (Saint-Gobain Quartz)53

sample. It is used as insulation material for aircraft engines or furnace closures.54

It is also used as a support for catalysts in domestic and industrial catalytic55

heaters. Felts provided by Saint-Gobain have an estimated thickness of 11mm56

when not compressed, which corresponds, according to the material brochure, to57

an areal weight of 100 g.m−2 and an estimated density of [10; 20] kg.m−3. Low58

density felts are produced from 9 microns pure fused quartz fibers (Quartzel59

wool) with a constant diameter along their length. They are randomly oriented60

in parallel planes and are impregnated with an organic binder (PolyVinyl Alco-61

hol). In this work, anisotropy of the sample was not assessed as bi-directional62

measurements of transmittance and reflectance were not performed. Size dis-63

tribution of fibers in the medium can be modeled as a normal distribution with64

9µm mean and 2µm variance. Porosity of the studied sample is higher than65
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95% (volume fraction of fibers lower than 5%). A picture of the felt is shown in66

Figure 1.67

The studied sample is cylindrical with 24 mm diameter and 4 mm width.68

The sample is constrained between two ZnSe windows with a multilayer Broad69

Band Anti Reflectance coating in the spectral region [830; 3330] cm−1, all in a70

3D-printed sample holder specifically designed for the current apparatus.71

2.2. Experimental setup, measurements and uncertainty evaluation72

Spectroscopic measurements were carried out using a Bruker IFS 66v/S73

Fourier-transform infrared (FTIR) spectrometer. The incident radiative flux74

is provided by a Globar source for mid-infrared (MIR) spectroscopy (spectral75

range of [666; 5000] cm−1 equivalent to [2; 15] µm). An infragold A562G inte-76

grating sphere provided with a DTGS detector allows directional-hemispherical77

transmittance and reflectance measurements as illustrated in figure 2. The total78

diameter of the sphere is 75mm and the inner wall of the sphere is coated with a79

layer of diffuse reflecting gold that reflects the incoming light several times and80

scatters it uniformly around the interior of the sphere (the integrating sphere81

ensures a homogeneous spatial light intensity distribution). The apparatus is82

permanently flushed with dry air with low CO2 and H2O concentration to re-83

duce atmospheric absorption in the following spectral ranges: [3389; 4000] cm−1,84

[2222; 2398] cm−1, [1250; 2083] cm−1 and [581; 757] cm−1. Purging the integrat-85

ing sphere also ensures a constant concentration of atmospheric constituents86

over time.87

Experimental transmittance and reflectance spectra for the sample described88

above are provided as a function of wavenumbers η [cm−1] and wavelengths89

λ = 104/η [µm] in figure 3. Measurements of transmittance and reflectance are90

performed, at ambient temperature in the spectral range [700; 3700] cm−1. One91

spectrum is the result of 50 scans of the interferometer at a spectral resolution92

of 16 cm−1, and measurements illustrated in figure 3 are obtained by averaging93

100 spectra performed on the same sample over a week period. Transmittance94

(respectively reflectance) is the ratio of transmitted (respectively reflected) ra-95

4



diative heat flux by the sample to the incident one called reference. Spectra96

are obtained from two consecutive measurements. Because it is necessary to97

perform these two successive steps, atmospheric conditions vary between the98

two measurements. Despite all precautions to reduce effects of CO2 absorp-99

tion, its concentration still varied during time which induced absorption bands100

mainly near η = 2350 cm−1 (see colored band in figure 3). Transmittance and101

reflectance measurements in this absorption band will not be taken into account102

in the identification process.103

In order to estimate the uncertainty of FTIR spectroscopic measurements,104

one must take into account a large number of sources that may affect the in-105

terpretation of the spectrum. Sources of errors can be a change of ambient106

temperature, a variation of the concentration of atmospheric absorbents like107

water vapor and carbon dioxyde, an inefficient cooling of the MIR source, a108

heating of the source’s aperture, a loss of efficiency of optics, a non-linear re-109

sponse of detector, interreflections involving the sample, etc. These errors lead110

to experimental uncertainties. Measurement uncertainty is defined as:111

U = k

√√√√i=n∑
i=1

u2b,i + u2rand (1)

where ub,i are individual sources of uncertainty and urand is the uncertainty112

related to random errors. The uncertainties are wavelength-dependent, therefore113

they must be computed for the specific wavelength and the specific sample.114

Most of errors are dependent and it is difficult to quantify their associated115

uncertainties. A first approach to estimate the measurements uncertainties is116

to only take into account the effects of the detector internal noise (ub) and117

to consider that all other error sources are random (urand). In figures 3a and118

3b, error bars were obtained for each wavenumber using the detector internal119

noise and the standard-deviation of 100 measurements performed over a week120

period. The coverage factor k was taken equal to 2 in order to have an extended121

absolute uncertainty with a confidence interval of 95%. A quasi-similar approach122

was proposed by [14] for the evaluation of emissivity from transmittance and123
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reflectance measurements at ambient temperature. In the present work, absolute124

experimental uncertainties were estimated at 0.01.125

3. Identification of absorption and scattering coefficients based on126

SMC Analysis127

3.1. Model128

A schematic representation of the problem considered is given in figure 4.129

The medium (Quartzel sample) noted ∆ is at ambient temperature. An incident130

beam of intensity I0,η in the u0 direction crosses the surface S0. We define the131

surface SR (respectively ST ) corresponding to the abscissa x = 0 mm (respec-132

tively x = 4 mm) for which spectral reflectance (respectively transmittance) is133

estimated.134

The Radiative Transfer Equation (RTE) in an equivalent homogeneous ab-135

sorbing and scattering medium is considered for modeling radiative transfer in136

the fibrous material. Bidirectional measurements need to be performed if in-137

formation about anisotropy is expected. Consequently, phase function cannot138

be identified from directional-hemispherical transmittance and reflectance, and139

may be assumed either isotropic or modeled by the Delta-Eddington (DE) ap-140

proximation. In DE case, the phase function asymmetry factor gη is included141

in the reduced scattering coefficient σ
′

η = ση(1− gη) where ση is the scattering142

coefficient.143

RTE in homogeneous media has been chosen to model radiative transfer in144

Quartzel sample because of its low density, its high porosity and the random145

orientation of its fibers. The boundary conditions are given by Iη(x0,u0) =146

I0,η if x0 ∈ S0, 0 elsewhere. Using this model, absorption coefficient κη and147

scattering coefficient ση need to be identified.148

3.2. Standard forward null-collision Monte Carlo algorithm149

A forward null-collision Monte Carlo algorithm is applied to simulate radia-150

tive transfer in the medium. Null-collision algorithms [13] are needed to express151
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the radiative intensity as a polynomial of κη and ση as shown in [12]. The152

formulations, based on the integral form of the RTE, of transmitted directional-153

hemispherical transmittance Tη and reflectance Rη are given by the following154

equations:155

Tη =

∫
S0
I0,ηdS × Γη

(
(x0,u0)→ (xT ,uT )

)
∫
S0
I0,ηdS

Rη =

∫
S0
I0,ηdS × Γη

(
(x0,u0)→ (xR,uR)

)
∫
S0
I0,ηdS

(2)

where xT (or xR) is a position on the surface ST (or SR) and uT (or uR)156

is the optical path direction when it outgoes the surface ST (or SR). Γ is a157

dimensionless quantity and can be interpreted as a transmission function from158

the incident beam to the outbound surface. The determination of the transmis-159

sion function Γη is based on a forward Monte Carlo algorithm and is estimated160

recursively using the following expression:161

Γη

(
(x0,u0)→ (xT ,uT )

)
=

∫ ∞
0

β̂ηexp(−β̂ηl1)dl1 ×

(
H(x1 ∈ ∆)

[κη
β̂η
× 0 +

ση

β̂η

∫
4π

1

4π
Γη(x1,u1)du1

+
β̂η − κη − ση

β̂η
Γη(x1,u1 = u0)

]
+H(x1 /∈ ∆)H(x1 → ST )

)
(3)

where H(C) is the Heaviside function (equal to 1 if condition C is satisfied),162

β̂η = κη + ση + γη is the extinction coefficient including null-collisions [13] and163

γη is the null-collision coefficient. This expression is also valid for reflectance by164

changing index T with R.165

Standard forward null-collisions Monte-Carlo algorithms perform a large166

number NMC of independent optical path realizations indexed i. Free-paths167

are sampled according to the probability density p̂L(l) = β̂ηexp(−β̂ηl). Null-168

collisions coefficient γη introduces pure-forward scattering events. The value of169
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β̂η determines the upper bound of the real extinction coefficient βη = κη + ση170

over which the functional will be defined [13].171

Using this algorithm, the i-th optical path realization starts with the sam-172

pling of a location x0 in S0 according to a uniform probability density function173

1
S0

. A free path l1,i is then sampled according to p̂L(l1,i) and a new position174

x1,i = x0 + l1,iu0 is deduced. At this point, two approaches can be used for175

the standard algorithm.176

In the most usual approach, a step is required to statistically determine which177

type of event occurs: an absorption with probability given by
κη

β̂η
, a scattering178

given by the probability
ση

β̂η
or a null-collision with probability

β̂η − κη − ση
β̂η

.179

However, an absorption event will always lead to a null Monte Carlo weight since180

the quantities of interest are transmittance and reflectance, not absorptance (Eq181

3). Therefore, an energy partitioning approach is applied in this work as in [15].182

Following this approach, absorption attenuation is still accounted for in the183

sampling of extinction free paths according to Beer’s law β̂exp(−β̂L), but the184

statistical determination of a collision will only concern scattering and null-185

collision. A probability Ps,η for scattering, and Pn,η = 1−Ps,η for null-collision,186

is therefore introduced in the algorithm. Eq 3 becomes:187

Γη

(
(x0,u0)→ (xT ,uT )

)
=

∫ ∞
0

β̂ηexp(−β̂ηl1)dl1 ×

(
H(x1 ∈ ∆)

[
Ps,η

ση

β̂ηPs,η

∫
4π

1

4π
Γη(x1,u1)du1

+ (1− Ps,η)
β̂η − κη − ση
β̂η(1− Ps,η)

Γη(x1,u1 = u0)
]

+H(x1 /∈ ∆)H(x1 → ST )

)
(4)

where Ps,η can be expressed as:188

Ps,η =
ση

ση + γη
=

ση

β̂η − κη
(5)

Consequently, at position x1,i, scattering and null-collision events are sampled189

according to Ps,η and 1 − Ps,η. If scattering occurs at position x1,i, a new190
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direction of propagation u1 is sampled according to
1

4π
, and the transmis-191

sion function Γ is multiplied by
ση

β̂ηPs,η
. If a null-collision occurs, direction of192

propagation u1 is equal to the previous one u0 as null-collisions correspond193

to pure forward-scattering, and the transmission function Γ is multiplied by194

β̂η − κη − ση
β̂η(1− Ps,η)

. A new free path l2,i is then sampled. The algorithm loops until195

the optical path exits the medium. If the optical path exits the domain through196

the surface ST , transmittance is implemented (the associated Heaviside distribu-197

tion corresponding to the estimation of directional-hemispherical transmittance198

is HT,i = 1, and HR,i = 0). On the opposite, if the outbound surface is SR,199

reflectance is implemented (the associated Heaviside distribution correspond-200

ing to the estimation of directional-hemispherical reflectance is HR,i = 1, and201

HT,i = 0).202

For illustration, let us assume that along the i-th Monte Carlo path sample, the203

following events occur: one scattering, two null-collisions and another scattering204

before the optical path exits the medium. According to equation 4 and using205

the energy partitioning approach, the associated Monte Carlo weight for the206

estimation of transmittance is expressed in this case by:207

wT,i =
ση

β̂ηPs,η

{
β̂η − κη − ση
β̂η(1− Ps,η)

[ β̂η − κη − ση
β̂η(1− Ps,η)

( ση

β̂ηPs,η
HT,i

)]}
(6)

which, given the expression of Ps,η (Eq. 5), simplifies into:208

wT,i =

(
β̂η − κη
β̂η

)4

HT,i (7)

In general, Monte Carlo weights for the estimation of transmittance and re-209

flectance can be expressed as:210

wT,i =

(
β̂η − κη
β̂η

)Nsca,i+Nnc,i

HT,i (8)

where Nsca,i and Nnc,i are the number of scattering and null-collision events211

that occurred along the i-th optical path.212
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3.3. Symbolic Monte Carlo algorithm213

Radiative quantities can be expressed using SMC as bivariate polynomials214

of absorption coefficient κη and scattering coefficient ση [12]:215

Tη(κη, ση) =

∞∑
j=0

∞∑
k=0

ajkκ
j
ησ

k
η

Rη(κη, ση) =

∞∑
j=0

∞∑
k=0

bjkκ
j
ησ

k
η

(9)

The standard forward null-collision Monte Carlo algorithm described in previous216

section can be applied only if numerical values are affected to the absorption217

and scattering coefficients. In SMC, if κη and ση are kept under their symbolic218

form, and consequently the probability of scattering event Ps,η =
ση

β̂η − κη
(and219

1 − Ps,η for null-collision) is unknown. The choice of Ps,η becomes therefore220

arbitrary [12] (this arbitrary probability is denoted P̃s). In this work, P̃s is221

chosen equal to 0.5 for all wavenumbers. The choice of this arbitrary probability222

has an impact on the variance which is analyzed in Appendix A.223

Now, if we assume that along the i-th Monte Carlo path sample, one scattering,224

two null-collisions and another scattering events occur before the optical path225

exits the medium (i.e., Nnc,i = 2 and Nsca,i = 2), the associated Monte Carlo226

weight is expressed by:227

wSMC,T,i =
ση

β̂ηP̃s

{
β̂η − κη − ση
β̂η(1− P̃s)

[ β̂η − κη − ση
β̂η(1− P̃s)

( ση

β̂ηP̃s
HT,i

)]}
(10)

which can be rewritten as a polynomial:

wSMC,T,i =

(
ση

β̂ηP̃s

)2(
β̂η − κη − ση
β̂η(1− P̃s)

)2

HT,i (11)

More generally, the total contribution of the i-th optical path with Nnc,i null-

collision events and Nsca,i scattering events is written in the general case:

wSMC,T,i =

(
β̂η − κη − ση
β̂η(1− P̃s)

)Nnc,i
(

ση

β̂ηP̃s

)Nsca,i

HT,i (12)
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In order to introduce the symbolic MC weight ajk,i of the polynomial coefficients228

(associated to the i-th optical path), Eq. 12 is rewritten as:229

wSMC,T,i =

∞∑
j=0

∞∑
k=0

(
β̂η − κη − ση
β̂η(1− P̃s)

)j (
ση

β̂ηP̃s

)k
ajk,i (13)

where ajk,i is a non-zero coefficient only if j = Nnc,i and k = Nsca,i:230

ajk,i = δj,Nnc,i
δk,Nsca,i

HT,i (14)

where δ is the Kronecker symbol. Directional-hemispherical transmittance and231

reflectance are expressed as polynomial of absorption and scattering coefficients232

according to:233

Tη '
∞∑
j=0

∞∑
k=0

ajk

(
β̂η − κη − ση
β̂η(1− P̃s)

)j (
ση

β̂ηP̃s

)k

Rη '
∞∑
j=0

∞∑
k=0

bjk

(
β̂η − κη − ση
β̂η(1− P̃s)

)j (
ση

β̂ηP̃s

)k (15)

where coefficients ajk and bjk are estimated with SMC using the following ap-234

proximations:235

ajk ≈
1

NMC

NMC∑
i=1

ajk,i

bjk ≈
1

NMC

NMC∑
i=1

bjk,i

(16)

A flowchart of the SMC algorithm is shown in figure 5. At each optical path236

i ∈ {1, . . . , NMC}, the number of scattering Nsca,i and null-collisions events237

Nnc,i is counted in order to calculate the coefficients ajk,i and bjk,i according to238

Eq. 14. Once the NMC optical paths have been generated, the coefficients ajk239

and bjk are estimated according to Eq. 16.240

Rη and Tη are expressed as polynomial functions of ση and β̂−κη −ση, but241

it is possible to re-express Rη and Tη as a polynomials of κη and ση since the242

value of β̂ is fixed in the SMC procedure.243
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It should be emphasized that all the estimated polynomial coefficients ajk244

and bjk are independent of the wavenumbers. This is a direct consequence of the245

choice of a constant arbitrary probability P̃s. If P̃s was wavenumber-dependent,246

as many polynomials as wavenumbers would be needed. Here, one single SMC247

calculation is sufficient to express Tη and Rη as functions of κη and ση, and only248

those two polynomials are used over the full spectrum.249

3.4. Inverse analysis based on SMC polynomials250

All results presented in the following subsections were obtained usingNMC =251

106, β̂η = 20 cm−1 and P̃s = 0.5. S0 is a disk with 12mm diameter. Without252

any a priori information about scattering inside the considered material, the253

choice of P̃ s = 0.5 represents a good compromise to obtain a satisfactory accu-254

racy for both thin and thick scattering optical thickness (as discussed in [12]).255

Here, with P̃s = 0.5, the average relative standard deviation is 1.1% for trans-256

mittance and 1.0% for reflectance (maximum relative standard-deviation is 2.1%257

for transmittance and 2.6% for reflectance) and allows the identification of ra-258

diative properties in most part of the spectrum. The influence of the choice of259

P̃s = 0.5 on the standard-deviation is discussed in Appendix A.260

The functional obtained with SMC allows to efficiently estimate the quanti-261

ties (since one simulation is required), Tη and Rη, all over the parameter space:262

κη ∈ [0, 10] and ση ∈ [0, 10]. It is therefore possible to plot isovalues of trans-263

mittance and reflectance as functions of absorption and scattering coefficients264

as depicted in Figure 6.265

According to the RTE model, isolines that lead to given values of Tη and266

Rη are displayed for an infinity of couples (κη, ση). An isoline gives the range267

of possible values of κη and ση that reproduce the measured transmittance or268

reflectance. For example, the isoline Tη = 0.3 in figure 6a gives the possible269

values of absorption and scattering coefficients κη ∈ [0; 3] cm−1 and ση ∈ [0; 8.7]270

cm−1 that are compatible with this particular value of Tη.271

From those isolines, it is possible to determine if the solution of the inverse272

problem exists, and if it is unique. The first case considered in figure 7a cor-273
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responds to the measured values Tη = 0.03 and Rη = 0.18 at η = 900 cm−1.274

In figure 7a, the isoline corresponding to Tη = 0.03 is depicted in red lines,275

and the isoline corresponding to Rη = 0.18 is depicted in green lines. This276

graphical method, also called the contour intersection approach [16], allows to277

determine the absorption and scattering coefficients that are solutions of the278

inverse problem by plotting the isolines corresponding to the measurements of279

Tη and Rη. Intersections represent values of κη and ση that reproduce the280

measured transmittance and reflectance according to the RTE model. If no in-281

tersection appears, then the solution of the inverse problem does not exist. If282

several intersections are observed, then the solution exists, but is not unique.283

In figure 7a, only one intersection is obtained in the parameter space, which284

shows that the solution exists and is unique: κη = 3.90 cm−1 and ση = 7.44285

cm−1. The same conclusion can be drawn in figure 7b where measured values286

Tη = 0.01 and Rη = 0.08 at η = 1189 cm−1 are considered: κη = 7.62 cm−1287

and ση = 4.92 cm−1.288

However, even if the solution exists and is unique, the inverse problem289

can be ill-posed if the solution is unstable according to Hadamard’s defini-290

tion. Consequently, the feasibility of the identification cannot be ensured as291

long as experimental and numerical errors are not taken into account. Using292

SMC polynomials, experimental and numerical errors can be easily included293

in the analysis as illustrated in figure 7. Measurement and numerical (SMC294

standard-deviations) errors are introduced by plotting the isolines correspond-295

ing to Tη + ε(Tη), Tη − ε(Tη), Rη + ε(Rη) and Rη − ε(Rη) where ε is the total296

error at wavenumber η. The colored (orange) polygons and filled plots in fig-297

ure 7 represent the range of possible κη and ση that reproduce the measured298

transmittance and reflectance according to the RTE model, with respect to the299

estimated experimental and numerical uncertainties.300

In figure 7a, the estimated relative uncertainties of 30% for transmittance301

and 4% for reflectance are taken into account at η = 900 cm−1. Absorption302

coefficients range in the intervals [3.46; 4.50] cm−1 (relative error lower than303

15.4%) and scattering coefficients range in [6.57; 8.61] cm−1 (relative error lower304
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than 15.8%). There may be noise amplification, but the domain within which305

the couple (κη, ση) is located remains of limited size. In figure 7b, errors are306

taken into account at η = 1189 cm−1 (98% for transmittance and 10% for307

reflectance). Possible solutions of the inverse problem are not bounded as all308

absorption and scattering coefficients that are respectively greater than 6.25309

cm−1 and 3.78 cm−1 (filled bold polygon) belong to the parameter space region310

where transmittance is 0.01 ± 98% and reflectance is 0.09 ± 9.4% according to311

the RTE model. In this case, identification is not possible; others measurements312

and/or another radiative models are needed to ensure the well-posed character313

of the inverse problem.314

These examples illustrate how SMC allows to determine the existence, unic-315

ity and stability of the inverse problem solution.316

3.5. Application to a Quartzel sample317

Once the spectral range where the absorption and scattering coefficients318

identification is feasible has been determined from SMC analysis, the inverse319

procedure can be applied. Identification of κη and ση at a wavenumber η is320

performed from measurements of transmittance and reflectance and from SMC321

polynomials. Here, a Levenberg-Marquardt algorithm is used to determine κη322

and ση.323

In the inverse procedure, the two polynomials corresponding to transmit-324

tance and reflectance are used as direct model for radiation, and avoid the325

costly resolution of the RTE at each wavenumber, and each iteration of the326

inversion algorithm. Thus, only one SMC simulation is carried out during the327

inverse method, which decreases significantly the computational cost.328

Identified absorption and scattering coefficients are plotted in figure 8. Error329

bars of identified κη and ση in figure 8 are determined based on the principle330

described in figure 7. They correspond to the minimum and maximum value331

of the admissible zone with an experimental uncertainty of ±0.01 which is the332

maximal value of calculated experimental uncertainty over the whole spectrum.333

SMC analysis showed that the identification of radiative properties is impossible334
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for wavenumbers in the intervals [700; 870] and [950; 1245] cm−1. These spectral335

regions are depicted in grey in figure 8. In these regions, measured transmittance336

is lower than 0.01. It ranges within the detector internal noise which leads to337

a relative uncertainty of 100%. In this particular case, the range of possible338

absorption and scattering coefficients that are solutions of the inverse problem339

are unbounded as it was illustrated in figure 7b. The medium is optically thick340

and the RTE model turns out to be unsuitable for the identification at these341

wavenumbers. SMC showed that the identification of radiative properties is342

possible in other spectral regions i.e., [870; 950] and [1245; 3700] cm−1.343

4. Conclusion344

In the present work, SMC was applied to express directional-hemispherical345

transmittance and reflectance as polynomials of absorption and scattering co-346

efficients. An analysis based on these polynomials allows to determine if the347

radiative properties identification is feasible or not, illustrating the well or ill-348

posed nature of the inverse problem. Indeed, the contour intersection approach349

shows if the solution exists and is unique, and an analysis based on experimen-350

tal and numerical uncertainties shows if the solution is reliable or not. When351

identification is feasible, SMC polynomials combined with an optimization algo-352

rithm allows to retrieve the range of absorption and scattering coefficients that353

are solutions of the inverse problem. The approach has been applied to identify354

the radiative properties of a heterogeneous material, a Quartzel low-density felt.355

Using the SMC polynomials as direct model in the inverse iterative procedure,356

the RTE is only solved once with SMC. The numerical efficiency is therefore357

significantly improved.358

The method proposed in this paper can be applied to other kind of materials359

with different structure, density and porosity to identify potential limits of SMC.360

Moreover, it can also be applied to phase function parameters identification if bi-361

directional measurements are carried out. Indeed, SMC can be used to express362

radiative quantities as polynomials of absorption and scattering coefficients, as363
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well as phase function parameters [17]. The SMC polynomials would then allow364

the identification of phase function (in addition to absorption and scattering365

coefficients).366

In future works, the identification of radiative properties of materials at high367

temperature from spectroscopic emission measurements will be investigated.368

The experimental bench described in [18] will be used. The development of an369

efficient identification strategy at high temperature remains a challenging task370

since the ill-posed character of the inverse problem has been highlighted in [19]371

when the RTE model is chosen. The SMC framework proposed in this work will372

be developed further in order to guide inverse modeling in this context.373
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(a) (b)

Figure 1: (a) Example of a Quartzel sample. (b) Scanning Electron Microscope (SEM) picture

of Quartzel. Pictures from [20]
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Figure 2: Integrating sphere configurations for transmittance and reflectance
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(a) (b)

Figure 3: Mean measurements of (a) transmittance and (b) reflectance with their associated

uncertainties. The colored blue band corresponds to CO2 absorption band between η = 2222

and η = 2398 cm−1 where measurements are not taken into account.

19



x

TηRη

x = 0

SR

x = 4mm

ST

u0

S0I0,η

∆

Figure 4: Representation of the sample in a configuration of directional-hemispherical mea-

surement of transmittance and reflectance.
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i-th Monte Carlo sampling

Start position x0 ∈ S0. j = 0 k = 0

i = 1

Sampling of extinction position xj+k+1,i

according to Beer’s Law p̂L(l) = β̂ηexp(−β̂ηl)

Uniform sampling of ωR ∈ [0; 1] Exit of domain

ωR ∈ [0; P̃s]

Scattering

ωR ∈ [P̃s; 1]

Null-collision

j ← j + 1

Sampling of a new scattering

direction according to
1

4π
k ← k + 1

Nnc,i = j Nsca,i = k

Compute wSMC,T,i and wSMC,R,i

Equation 13

Estimation of polynomial coefficients

Equation 16

If i < NMC , i← i+ 1

If i = NMC

If xj+k+1,i ∈ ∆ If xj+k+1,i /∈ ∆

Figure 5: Symbolic Monte Carlo algorithm for the estimation of directional-hemispherical

transmittance and reflectance
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(a) (b)

Figure 6: Isovalues of directional-hemispherical (a) transmittance Tη and (b) reflectance Rη

computed with SMC as a function of absorption and scattering coefficients
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(a) (b)

Figure 7: Region of possible solution κη and ση at (a) η = 900 cm−1 and (b) η = 1189 cm−1,

when experimental and numerical uncertainties are included in the analysis.
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(a) (b)

Figure 8: Identified (a) absorption and (b) scattering coefficients using SMC polynomials and

taking into account measurements uncertainties. Colored band (in blue) in spectral range

[2222; 2398] cm−1 ([4.17; 4.5]µm) represents absorption peak by CO2 absorption. Grey bands

display spectral ranges where the identification is not feasible.
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Appendix A. Consequences of the arbitrary choice of P̃s on SMC374

standard-deviation375

With SMC, standard-deviation can be expressed as a polynomial of absorp-376

tion and scattering coefficients [12]:377

sSMC (Tη(κη, ση)) =

[
1

NMC − 1

∞∑
j=0

∞∑
k=0

∞∑
j′=0

∞∑
k′=0

(ajkaj′k′ − ajk aj′k′)

×

(
β̂η − κη − ση
β̂η(1− P̃s)

)j+j′ (
ση

β̂ηP̃s

)k+k′ ]1/2 (A.1)

where:

ajkaj′k′ =
1

NMC

NMC∑
i=1

(ajk,iaj′k′,i) (A.2)

and ajk,i are given by Eq 14 and ajk by Eq 16.378

Under pure statistical considerations, such functional expressions of standard-379

deviations present a valuable advantage: the evolution of the uncertainty with380

the considered parameters is explicit, and may provide relevant information on381

the definition of the arbitrary probability P̃s.382

In the algorithm described in subsection 3.3, absorption and scattering coeffi-383

cients are unknown and arbitrary probabilities of scattering P̃s and null-collision384

P̃n = 1− P̃s are required. The introduction of an arbitrary probability does not385

create any bias as an infinity of Monte Carlo samples would lead to an exact386

solution, but may have significant influence on the statistical uncertainties, and387

therefore the convergence speed can be altered. However, in order to ensure a388

small standard deviation, arbitrary scattering probability should be consistent389

with the statistics of the considered physics [12] and should be close to the ratio390

of the number of scattering events over the whole number of collisions given by391

equation 5.392

The influence of this choice is illustrated in figure A.9. Three SMC cal-393

culations have been carried out with three different P̃s (P̃s = 0.2, P̃s = 0.5394

and P̃s = 0.8) with NMC = 106. The three estimated SMC relative standard-395

deviation are compared over the spectrum. For P̃s = 0.5, used in this work,396
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relative standard-deviation has a maximum value of 2.1% for transmittance and397

2.6% for reflectance which is satisfactory for the identification of absorption and398

scattering coefficient. If P̃s is taken equal to 0.2, maximum relative standard-399

deviation observed over the spectrum is 0.6% for transmittance and 0.3% for400

reflectance. However, if P̃s = 0.8, maximum relative standard-deviation ob-401

served over the spectrum is close to 40% for transmittance and reflectance. For402

the studied sample, the best choice of P̃s would have been 0.2 since it is the403

closest to the real value of Ps,η =
ση

β̂ − κη
in the most part of the spectrum.404
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(a) (b)

Figure A.9: Relative standard-deviation estimated using SMC for (a) transmittance and (b)

reflectance, for different values of P̃s.
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