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Experimental evidence of absolute band gaps in phononic crystal pipes
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The vibration filtering properties of a phononic crystal pipe whose unit cell consists of two segments of different
material and cross-section are studied numerically and experimentally. Such an architected bi-material pipe leads to
an alignment of the dispersion branches in the same frequency ranges for all types of waves (flexural, longitudinal,
torsional), leading to an absolute band gap. Each motion is studied by a 1D model in which the propagation of Floquet-
Bloch waves in lossy media are considered. The numerical optimization is based on the simplex algorithm and aims
to control both the central frequency and the band width of the absolute band gap on a selected target. Experimental
characterization of a demonstrator confirms the filtering effects due to partial and absolute band gaps even in the

presence of quite high structural damping.

The mitigation of noise pollution is a major societal chal-
lenge for which extensive research has been conducted' and
NVH (Noise, Vibration and Harshness) departments have
been widely integrated notably in transportation industry.
Structure borne sound results from bending vibrations and
their couplings with other types of waves, due to the complex
geometries classically encountered in industrial systems>. An
effective reduction in the radiated sound levels then requires
to mitigate all types of waves. In this context, the approach
presented here concerns the design of "total filters" that can
be inserted into engine components acting as structural wave-
guides that transmit vibrations to other components able to
radiate sound. To reach such "total filter" features, the design
strategy is based on the concept of absolute band gap.

The control of elastic waves by periodic structures have
been dramatically developed during the last decades by us-
ing Phononic Crystals (PC)>* as analogously done for light
waves by Photonic crystals’. These systems, made of either
periodic distributions of scatterers embedded in a physic-
ally dissimilar host material or simply periodic geometries,
are driven by a particular dispersion relation showing band
gaps®’, ranges of frequencies produced by the Bragg interfer-
ences in which the propagation of waves is forbidden®. Sig-
nificant progress has been made on the control of flexural or
longitudinal waves by PCs showing different applications in-
cluding filtering™'?, wave trapping'""'?, wave-guiding'3, fo-
cusing by refracting!*!3 or scattering'® waves as well as self-
collimation'”'®, among others*. One of the main challenges
of PCs has been the design of absolute band gaps over which
the propagation of all elastic waves is forbidden, whatever
their polarisation and wave vector.

PCs with a fluid-type host medium, known as sonic
crystals®, have theoretically and experimentally reported ab-
solute band gaps in broad ranges of frequencies'®!%?°. These
systems represent the most simple PC as only longitudinal
waves are propagating in the medium. Perhaps the most
known application of sonic crystals is the design of tunable
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sound screens2!=23. However, once the host medium is a

solid, the problem becomes more complex as different po-
larisations can be excited in the system. In this case, theor-
etical evidences of absolute band gaps are also widely repor-
ted in the literature. 1D PCs exhibiting absolute band gaps
have been analysed by the transfer matrix method?* and re-
cently, 1D PCs with alternating materials in the radial and
axial directions have been used to show absolute band gaps>.
Two dimensional (2D) PC slabs consisting of either solid?®
or piezoelectric?’ inclusions placed periodically in an iso-
tropic host material have been theoretically analysed show-
ing absolute band gaps with a variable bandwidth for elastic
waves of any polarisation and incidence. Bulk 2D PCs have
been also proposed for bulk wave attenuation with solid*® or
magnetostrictive” inclusions. Using specialised genetic al-
gorithms, 2D PC formed from silicon and solid voids have
been optimized to obtain unit cell designs exhibiting absolute
band gaps for both in- and out-of-plane motions>’.

From the experimental point of view absolute band gaps
have been also reported in the literature. 2D binary solid/solid
composite media with cylindrical inclusions embedded in
an epoxy resin matrix showed dips of transmission eviden-
cing the presence of absolute band gaps®!. More recently,
the presence of absolute band gaps in pillared PC slabs
have been shown by double-vibrator three-components®” and
temperature-driven adaptive systems®>. 3D PCs made of
face centered cubic unit cells composed of a single mater-
ial have been used to experimentally show ultra-wide abso-
lute band gaps**3. Recently, 3D load-bearing architected
lattice, composed of a single material, have been designed
for presenting broadband frequency band gaps for all direc-
tions and polarizations for airborne sound and elastic vibra-
tions simultaneously*®. However, although 2D and 3D PCs
have been widely validated experimentally, less attention has
been paid to the experimental analysis of 1D case acting sim-
ultaneously on longitudinal, flexural and torsional waves. The
control of vibrations in such a 1D PCs systems can impact the
design of piping systems which can be exploited in areas such
as the automotive industry, heat exchanger tubes in chem-
ical plants, oil pipelines, marine risers, pump discharge lines,
among others®’.

In this work, we apply the concept of absolute band gap
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Figure 1. Scheme and pictures of the manufactured PC pipe. Nylon
and aluminium sections are nested by force fitting, which holds the
assembly together without the use of glue and therefore minimises
unwanted losses. (a) Experimental setup; (b) Detail of the 2 face-
to-face three-axis accelerometers; (c) view of the 2 aluminium/nylon
unit cells of the demonstrator; (d) view of the shaker excitation im-
plemented in the oblique position such that all wave types are excited.
(e) and (f) show lateral and cross sectional schematic representation
of the modeled PC pipe, respectively.

in order to design and experimentally validate 1D PCs pipes
able to mitigate longitudinal, flexural and torsional waves in
a same target band. A 1D PC pipe made of a unit cell con-
sisting of two different hollow cylinders made of aluminium
and nylon (see Fig.1) is optimised. Considering lossy con-
stitutive materials, the eigenvalue problems of the three types
of waves are analytically solved by imposing continuity con-
ditions between the different parts of the unit cell and Floquet-
Bloch periodic conditions at its extremities. The three prob-
lems are combined via a minimizing algorithm in order to
reach the geometry of the 1D PC pipe that exhibits an absolute
band gap of target central frequency and band width. Full 3D
finite element simulations and experimental caracterization of
a demonstrator of finite size are in good agreement and show
deeps in the transfer functions associated with the predicted
absolute band gap.

Figure 1(a-d) show the pictures of the 1D bi-material PC
pipe used in the experiments. A detailed scheme with the geo-
metrical parameters of the system is shown in Fig.1(e-f). Each
segment of the unit cell is assumed to be a thin-walled pipe of

annular cross-section. We define y =1, /I, as the length ratio
and B = R,/R; as the outer radius ratio. The inner radius R;
is constant for the two segments of the unit cell. These two
geometrical parameters will be used to describe the geometry
in the optimisation procedure. The 1D PC pipe is made of alu-
minium and nylon, considered as linear and isotropic elastic
materials. The nylon is characterized by its Young modulus
Ey = 2.3 GPa, its density py = 1240 kg/m> and its Poisson
ratio vy = 0.3. The aluminium characteristics are E4 = 71
GPa, py = 2170 kg/m> and v4 = 0.3.

Here we consider harmonic wave motion with the time con-
vention e'® . In what follows the subindex i = N, A and the su-
perindex w = [,¢ will represent each segment of the unit cell
and the wave type (longitudinal, /, or torsional, ¢), respect-
ively. On the one hand, the propagation of longitudinal and
torsional waves in the i-th part of the unit cell is modeled by a
1D Helmholtz equation’®

%u
S ) =0, (1)
where )’ is the displacement of the wave w of the i-th

segment of the unit cell. & = & is the wave number with

¢ = \/EY /p; the speed of the wave and E! = E; is the Young
modulus and E! = G; = E;/2(1 + ;) is the shear modulus.

On the other hand, flexural waves are described using the
Timoshenko’s beam theory3%#° that takes into account shear
deformation and rotational inertia effects. Even this frame-
work is based on low frequency assumptions, it makes it pos-
sible to analyse the propagation at higher frequencies or for
thicker beams than with the Euler-Bernoulli’s theory. Follow-
ing Timoshenko assumption, the flexural displacement v; sat-
isfies the motion equation
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where k;, S;, and [; are the shear coefficient, the cross-section
area and quadratic moment, respectively. In order to obtain
the eigenvalue problem whose solutions give the complex
dispersion relation, k, = k(®)l;,; /7, we apply the continuity
boundary conditions at the interfaces between each segment
of the unit cell as well as the Floquet-Bloch periodic condi-
tions at its extremities (see Supplementary materials for more
details). The resulting set of equations leads to a linear system
M(w,ky,). B = 0 where for each given @ of a frequency range
of interest, the values of k; satisfying det(M)=0 are found
numerically to provide the dispersion relation. By solving
each 1D model this way, we obtain the dispersion relations
for all types of waves in the PC pipe. Solutions obtained by
the previous semi-analytical methodology are compared to
reference solutions provided by 3D elasticity finite element
simulations (solid mechanics COMSOL package).

Figure 2(a) shows the real part of the dispersion relation for
a PC pipe with the following geometry: /;,; = 0.1 m, y = 0.2,



R; =8 mm and 8 = 0.5. Coloured dots (each colour a wave
type) represent the results obtained from the semi-analytical
model while gray circles represent the FEM reference solu-
tions. Results are in very good agreement and so the semi-
analytical modeling is well validated. However, some dis-
agreements appear for flexural waves at high frequencies (dis-
persion branch just under 20kHz) due to the expected limit-
ations of the Timoshenko’s beam model. Anyway, the dis-
persion relation obtained for this geometrical layout exhibit a
wide absolute band gap in the range [3-10]kHz.

Figure 2(b) shows the evolution of the band gaps as 3
changes. Each coloured patch in the plot encloses the fre-
quencies between the lower and the upper edge of the band
gap. Results indicate that B essentially controls band gaps
bandwidth and has a relatively weaker effect on their central
frequencies. Such tendancy has already been observed in the
case of monolitic corrugated beams*!.

Analogously, Fig.2(b) shows the evolution of the band gaps
as Y changes. Both the central frequency and width display
non monotonous variations of the same range. In particular,
some optimal band widths appear around y = 0.2. Finally
Y has a more complex effect on the band gap features that
do not follow any clearly identifiable law. Anyway, there are
some configurations for which all band gaps overlap creating
an absolute band gap. This feature is obtained in the range
[4— 10] kHz for y = 0.2, for example. In this case, the second
flexural band gap and the first longitudinal and torsional band
gaps are involved. However, Fig.2(b,c) show that it is difficult
to tune by hand the absolute band gap to a target band. In
order to achieve this goal, a numerical optimization procedure
is proposed below.

A Nelder-Mead local minimisation algorithm*? is used in
this work to provide the geometrical parameters of a PC pipe
with an absolute band gap defined from both a target central
frequency fy and a target band width Afy. The set of paramet-
ers subject to the optimisation is defined as X = [lor, 7, R1, B]-
It is worth noting here that the first unit cell segment will be
made of aluminium and the second one of nylon. The cost
function .# is defined as a weighted sum of two convergence
indicators and reads

F = Otfclfc-i-OCAfIAf. 3)

The weighting coefficients oy, and oay are adjustable such
that oy, + aay = 1 and the convergence indicators are defined
by
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min) edges of the band gap for the i-th wave where the
subindex i represents each type of wave type i = F,L,T for
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Figure 2. (Color online) Analysis of the dispersion relation of a bi-
material PC pipe with /;,; = 0.1 m; (a) Real part of the dispersion
relation with y = 0.2, Ry = 8 mm and 8 = 0.5 calculated by both
the semi-analytical model (coloured dots, (e) longidutinal, (e) flex-
ural and (e) torsional) and 3D full FEM simulation (open circles o);
(b-c) evolutions of the band gap widths (coloured patches) and mid
frequencies (lines) for the three wave types (same colour legend as in
(2)) as function of (b) B with y=0.5 and (¢) y with § =0.5. [,,; =0.1
m. The horizontal black line denotes the configuration leading to the
dispersion graph in (a).

flexural, longitudinal and torsional waves respectively. I, and
Iny evaluate the deviation between the band gap features f.
and Af and the target features fy and Afy, respectively. These
definitions are chosen so that the cost function is unitary
O<ZF <.

This optimisation procedure is applied to the solution of the
semi-analytical eigenvalue problems described above with a
target absolute band gap [3-6] kHz, which is a typical range
of interest for injection applications in the context of automot-
ive industry®3. A detailed study of the optimisation is given
as supplementary material and concludes that to ensure both
accuracy and fast convergence, the best choice for the weight-
ing coefficient of the cost function is [y, 0a¢] = [5/6,1/6].
The optimal geometry of the 1D PC pipe obtained under
these conditions and without considering material losses is
X = [87 mm,0.44,7.5 mm,0.5]. From the optimised geo-
metry in the conservative case, the final complex dispersion
relation of the PC pipe shown in Fig.3(a) is calculated consid-
ering the viscoelastic losses for both aluminium and nylon via
the complex Young modulus Ef = E;(1 +m;) with s = le-
4 and ny = 4e-2. Each wave type displays band gaps where
the real part of the wavenumber is low while imaginary part
is high (see coloured patches in Fig.3(b)). In the target range
of frequencies, band gaps are well overlapping, the obtained
absolute band gap is [3.2-5.7] kHz (grey patch in Fig.3(a)),
which is slightly narrower than the target, due to the losses.

In order to experimentally evaluate the vibration mitiga-
tion performances due to the absolute band gap of the infinite
PC pipe, a finite pipe demonstrator with 6 unit cells is man-
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Figure 3. (Color online) Numerical analysis and experimental characterisation of the optimal PC pipe: (a) real part and (b) imaginary part of
the optimised complex dispersion relation obtained by the Floquet-Bloch method and considering the viscoelastic losses (see main text). (e)
longidutinal, (e) flexural and () torsional; measured (light line) and simulated (dark line) acceleration transfer functions in the (c) flexural, (d)
longitudinal, (e) full loading cases; 3D views of the simulated total displacement in the full loading case at (f) 900 Hz where all wave types
propagate, (g) 2500 Hz where only flexural band gap is opened and (h) 4500 Hz whithin the absolute band gap.

ufactured (Fig.1(a)). In the experimental set-up the demon-
strator is suspended vertically from a rigid gallows mounted
on an optical breadboard. A shaker (LDS V201) excites the
demonstrator at its bottom end with a harmonic point force
F =F,.x+F,.y+ F,.z (see axis definition in Fig.1(e-f)) with
a step-by-step sine in the range [0-10] kHz with a frequency
step of 5Hz. 3 cases are considered : "flexural loading" such
as F; # 0 and F, = F, = 0 (the shaker is perpendicular to the
pipe x-axis, only flexural waves are excited), "longitudinal
loading" such as F; # 0 and F, = F; = 0 (shaker aligned with
the pipe x-axis, only longitudinal waves are excited), and "full
loading” such as F ,,; # 0 as in Fig.1(d) where the force of the
shaker is applied obliquely on a cut plane and off-centre with
respect to the pipe x-axis so that all wave types are generated.
The acceleration response a = ay.T + a,.y + a;.z is meas-
ured at the upper end by 2 three-axial accelerometers (PCB
356A01) that face each other (Fig.1(b)). This experimental
situation is also numerically simulated from a full wave 3D
FEM model in order to compare transfer functions.

Figure 3(c) represents both numerical and experimental
transfer functions |a,/F| in the flexural loading case. The
transfer functions show an attenuation of about 70dB in the
frequency range corresponding to the predicted flexural band
gap. The same trend is exhibited in Fig.3(d) which plots the
transfer functions |a,/F| in the longitudinal loading case. Fi-
nally, the full loading case is shown in Fig.3(e) evidencing a
strong attenuation in the transfer function |a/F| in the range
corresponding to the predicted absolute band gap. It is also
worth noting that finite size effects can be seen at low fre-
quencies with peaks of the transfer function corresponding to
the Fabry-Pérot resonances of the system.

To complete the analysis, 3D views of the simulated
total displacement field in the full loading case are shown
in Fig.3(f-h). At 900Hz where all wave types propagate
(Fig.3(f)), the superposition of all motions results in a
complex total displacement field. At 2.5kHz (Fig.3(g)) the
field mainly exhibits the longitudinal component, the flexural
component being strongly attenuated due to band gap effect.

At 4.5kHz (Fig.3(h)) the total field vanishes close to the
excitation due to the total filtering effect associated to the
absolute band gap.

To summarize, we apply the concept of absolute band gap
to a bi-material PC pipe. Three 1D analytical Floquet-Bloch
models giving the dispersion of both longitudinal, flexural and
torsional waves considering losses are combined in an optim-
isation procedure to reach a unit cell design that exhibit ab-
solute band gaps with target features. The hand-ability and
reliability of such design methodology is shown through a set
of cases detailed in the supplementary material, which brings
a first main insight. On the top of that, the study of a 6-cells
demonstrator shows both numerically and experimentally dips
of the transfer functions corresponding to the absolute band
gap analytically predicted, bringing a second main insight.
These results illustrate how absolute band gaps in the high
frequency domain can be applied to mitigate vibrations that
may result in structure borne sound in some industrial sys-
tems. In further works, the design and optimisation of such
PC pipes would be extended considering an enclosed pressur-
ized liquid, hence considering couplings between acoustic and
elastic waves.

SUPPLEMENTARY MATERIALS

The supplementary material details both the analytical
wave dispersion models, the numerical optimization proced-
ure and its application to a set of optimization cases.
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