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ABSTRACT

Active research is ongoing to improve the designdidferent patterns of aircrafts
including innovative devices of noise reductioreafassessed during experiments conducted
with scaled models in wind tunnels or in situ widal aircrafts. Source localization methods
play a fundamental role to identify the source tmoces which are at the origin of the
annoyance. Another topic for these experimenthesestablishment of theoretical models,
requiring a fine picture of the Power Spectral Diges (PSDs) of the main sound sources.
The topic is to extract the PSDs of the primaryreewsignals from, the PSDs of the measured
mixtures. Blind signal separation techniques seefbet suited for this problem. Among the
numerous existing methods, the Bayesian separatjpproach has the advantage of
incorporating relevant information about the PSD¢he sources, and the mixing systems to
help the separation process. This approach is eedoto the separation of the PSDs of
primary source signals recorded by an array of apicones during tests performed in an
anechoic chamber with tonal, narrow-band and braadbacoustic sources. The Signal-to-
Distortion Ratio (SDR) allows to show that the gapian results are better when sparsity
priors are used to describe the source PSDs rdtherGaussian ones for all the scenarios of
mixtures considered in the article. We demonstthtd the SRD decreases in a similar
manner as the measure of the sparseness of thed®8i2sacoustic sources.



1 INTRODUCTION

The reduction of the flyover noise footprint geriedaby the aircraft is a priority for the
civilian aeronautic industry, which in the next dde will be faced with more restrictive noise
regulation in urban regions. To deal with theseuass active research by engine
manufacturers is ongoing in improving the desigmddts [1], fan [2] and compressor blades
[3], and nozzles [4], while airframe builders atadying landing gears [5] and flap design
[6].

In order to study the efficiency of aircraft noissluction tools the Computational Aero-
Acoustics (CAA) algorithms [7] are frequently use@AA offers a means to get an
understanding of the physics of the origin in nogeneration. However, aero-acoustics
problems typically require a broad range of frequien Hence the numerical resolution to
treat problems of waves with extremely short wavgles may become a great obstacle to
obtain accurate simulations with CAA.

It is likewise to apply semi-empirical models [8]hieh are less sophisticated than
numerical methods, but induce a great advantagegdeide immediate information on the
acoustic behavior of acoustic sources during demént of a new aircratft.

Another important step in the apprehension of tleelmnisms at the origin of the noise
produced by the aircrafts concerns the experimeatslucted with scaled models in the
anechoic wind tunnels or in situ with real aircsaftn these practical situations, source
localization methods using sensor arrays [9, 1D otién play a fundamental role to identify
the locations of the more noisy sources. Anothar af the experiments is to permit the
validation of theoretical models based on knowled§ethe PSDs characteristics of the
original sound sources. In this case, the problerbe solved is different from the source
localization, since the issue is to extract the ®®Dthe source signals from PSDs of the
mixtures measured with the microphones.

Blind Signal Separation (BSS) [12] techniques séerhe suited to handle this problem.
The term blind is intended to imply that such meghoan separate mixed information, into
unmixed ones, even if very little is known aboug¢rth Independent Component Analysis
(ICA) [12] belongs to a class of BSS methods fopasating data into underlying
informational components, where such data can thiee form of images, sounds, or
telecommunication channels.

ICA assumes that the observations are instantan@wes combinations of the source
signals and that the sources are pairwise staiistimdependent. The mixing matrix is taken
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for granted to be invertible which gives the posisjbto define a separating matrix. ICA
methods estimate the separation matrix which israed near to the inverse of the true one,
up to a permutation and a scaling ambiguity. In #ieations where the number of
microphones can be considered greater than the ewoflsources ICA based techniques are
quite desirable. In contrast, the Nonnegative Maffactorization (NMF) [13, 14] has
attracted a great deal of attention in recent yedusn the number of sources is greater than
the number of microphones and the data are nonmegét.g. the Spectrum Squared
Magnitudes of the acoustic source signals). NMla@es that observation data is available in
matrix form V which can be factorized into two ukyn nonnegative matriced and

H (i.e.V =WH). The matrix W is a dictionary of recurring patterns, assumedbé&
characteristic of the data, aHfl is defined as the activation matrix aiming at agpnate
every pattern itV with appropriate weight, onto the dictionary. Qrighe major fields where
NMF has been used, concerns the music transcriftisnl6]. In this sort of application, the
nonnegative decomposition of the spectrogram afteerved signal is done onto a dictionary
of elementary spectral components representativeiitding sound patterns. However, NMF
in its standard setting is entirely suited to staghannel data. An extension of this approach
to a Multichannel NMF (MNMF) case has been devealbpeowns the advantage to allow the
employment of spatial information making the sepanamore tractable compared to NMF
[17, 18, 19].

Despite success of ICA in separating with simulaggghals or in applications such as
electrocardiogram, image separation, it is probtemwhen applied to acoustic source
separation because the mixing system is not simm@yantaneous, but convolutive and
sometimes with interferences caused by the reflestof the primary sources. ICA can be
applied to separate convolutive mixtures in theudency domain, because the convolution is
equivalent to multiplication at each frequency b¥et, this solution involves solving an
additional problem called the permutation alignmamatblem. Therefore, the permutations of
separating matrices at each frequency should hestadj so that the separated signal in the
time domain is restored properly. Various algorishimave been proposed to solve the
permutation problem [20, 21, 22]. Among them, ait fhlace a very popular technique called
Independent Vector Analysis (IVA) bears a major aadege compared to ICA since it
simultaneously solves the separation and permataiioblems [23, 24]. Nevertheless, it is
recognized that the generative source model in #dAs not include any specific information

on the spectral structures of sources, meaningitticah be mostly used for various types of
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acoustic sources. In practical situations of tharabterization of aircraft noise, some sources
have specific spectral structures. Typically, thegority of propulsion-system noise falls into
tonal (or discrete frequency) and broadband categolt is, for example the case for the
acoustic sources radiated by helicopters, whichtamos broadband and tonal noise
components. This is also true for a supersonicsgiing which generates a noise spectrum
invariably consists of discrete and broadband carapts. Thus, the introduction of a suitable
source model may be a solution to improve the soseparation performance. This solution
is explored in methods based on Independent LovkRé&atrix Analysis (ILRMA) [25, 26]
that exploit NMF decomposition to capture the sgadtructures on each primary source to
use them as generative model sources in IVA.

We can point out here that in practical situatiadhg, unobserved source components that
occur in aircraft noise may be not simply reallymgex but also partially or totally
correlated. Moreover, often these components maynbdelled as being a mixture of a
deterministic signal “embedded” in unwanted randdisturbances (i.e. background noise).
Thus, it is helpful to regard all the particulaachcteristics of the source signals and the noise
when they are known. This leads naturally to theaidf Informed PSD Separation (ISS),
where the algorithm design based on Bayesian appradows incorporating the prior
knowledge in the form of the Probability Densityrietion (PDF) [27, 28] for the PSDs of the
sources, the unwanted noise, and the mixing mati®,the separation process. An adequate
selection of prior PDFs, generally improves theasapon accuracy. This is the main
motivation of the choice of the Bayesian approactesolve the problem of the separation of
the PSDs of the primary sources, starting from,RB®s of the mixtures of acoustic sources
radiated by loudspeakers on an array of microphones

In the experiment considered in this study, theuatio sources measured during an
experiment conducted in an anechoic chamber aome rtoise, a narrowband noise and a
broadband noise. The scenarios examined are lintetoustic sources pairwise mixed to
verify that the separation method of their PSDisastable when applied to sound disturbance
generated by a simplified propulsion-system comgosé broadband and narrowband
components.

The purpose of this article is to examine the gdeto use a sparse prior distribution [29]
compared to a Gaussian one to perform the separatithe power spectral densities of the
primary sources. Section 2 introduces briefly thetane model for convolutive applications.
Bayesian separation approach with a particularligigth on the Joint Maximum A Posteriori
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(JMAP) used for solving out the separation probtdithe PSDs is detailed in Section 3. The
experiment ran out with loudspeakers to evaluateetificiency of the Bayesian separation
approach is described in Section 4. The real ssgnaittificially mixed and their statistical and
spectral analyses are presented in Section 5ptiirged out here, that the hybrid simulations
will make it possible to control the different calation steps implemented in the algorithms
before applying the Bayesian separation approadadPSDs of real mixtures. Section 6
describes the priors attributed to the mixing matihe PSDs of the acoustic signals and the
likelihood that are required to solve the sepamapooblem. JMAP solutions for the mixing
scenarios considered in the article are present&ection 7. The separation results obtained
starting from, the PSDs of unreal and real mixtuaes described in Section 8. The
performance of PSDs separation is also assesseahiyyuting the distortion between original
PSDs and those obtained after the separation @acesg the Source-to-Distortion Ratio
(SDR) [30] when the priors for the PSDs are alh@if Gaussian or, Gaussian and Sparse. The
best results are achieved when Laplace and Gaugsiars are affected to the PSDs,
compared to the cases where only Gaussian prierasad. The characteristics (more or less
sparsely) of the PSD affected with the sparse i@y a role in the quality of the separation
measured with SDR. This effect is studied with arspness measure based onftheorm,
which allows to reliably quantify the sparsenesshe PSD of a source, compared to the
wideness of the frequency band of interest of t8® Bf another source when they are both

mixed in the observations.

2 MIXTURE MODELS

The difficulty of the blind source separation tastongly depends on the way in which the
signals are mixed within the physical environmdrite simplest mixing scenario is termed
instantaneous mixing [31], for which most early B&§orithms were designed. However, in
acoustical source separation problem we are facadonvolutive mixing [32], because there
are propagation delays between the sources anthitrephones. In such applications, the
degree of mixing can be very complex when propagatiedium is not anechoic. Indeed, the
primary sources measured by the microphones ar¢éarmamated by echoes created on
reverberant surfaces which thus must be brouglat @amcount in the separation problem.
However, this situation will be not dealt with thésudy, because the data which we will
analyze are measured in an anechoic medium. Thekdive model is briefly presented in

the following sections.
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2.1 Convolutive model in time domain and ICA

While many algorithms have been developed for matzeous mixing models, in many
real-world applications, such as acoustic testsiezhiout in anechoic chamber, the mixing
process is more complex. In such situation, cortixadumixing arises due to time delays
resulting from sound propagation over space.

We consider the scenario where tiWe sources radiate acoustic wavas(t) =
[Sy, (©) ... 5, (©)]" from the locationsy = [v; vy], and are impinging o microphones
placed at positiong" = [r; ...7y] to produce the observationgr,t). These latter are
generally corrupted with background noise so thatdutput of then®® microphone can be

defined as:

Nt
x(hy, t) = Z f Ay, v, Sy, (t —T)AT + ey () (1)

n=
wherea, . are coefficients at time of the mixingmatrix a,.,, characterizing the impulse
responses of the propagation medium between theesand the microphones. Hereinafter,
in order to simplify the notations;(r,, t), a,,_,, ands, are replaced with,,(t), amn,
s, (t) respectively.

We assume now, that the impulse responses can Hellew by aFIR (Finite Impulse

Response) filter of length and the observations sampled at the Nyquist fregyuf,. In this

case x,, (t) modelled at the discrete timmg = ; takes the form:
N

N L
x,, (k) = Z 2 A (O5p (k= py) + e (k); m=12,..,M
n=1 I=1

4 (@)

N

500 = D () © 5,0 + €, (1)

n=1

\
where k is the time indexk,,,, denotes the propagation delay between sourcand
microphonem, a,, , = (@ n,0s - Amn,) ANA® is the convolution operator.

Eq. (2) models the acoustic mixing as a Multiplptih Multiple-Output (MIMO) linear
system (Fig.1).
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Fig.1. Block diagram of the convolutive BSS task.

The aim of multichannel blind source separatiorcamvolutive situations is to recover the
unknown primary source signasgk) from the observationg(k), without any knowledge
about the mixing filters. This task is usually ahlad using a matrix of unmixing filters

bmn = (bmnos - » bmn.) allowing to obtain the®™ source signal, of the form:

L M
yn(k) = Z Z bm,n,lxm(k - km,n,l) ; n=1,..N 3)
=0 m=1

It is possible to writey,, (k) in terms of the source signals by substituting k) Eq. (2)
into Eq. (3), and by considering also that the s#pmn algorithm may introduce
artifacts y 4,5, thus:

Yn (k) = ys,n + Yipsn T YeNn T Yartif (4)
where:
M
9on() = ) (b ® iy @ 5 () ©)
m=1
contains the desired primary sourcgégk);
N M
Yirsn () = D D by @ oy @ 5)(K) 6)
n'=1 m=1
n'#n

is Interfering Point Sources$HS);

M
Vo) = ) (b @ em) () ™
m=1

denotes the Background Noi&&N) components.
Eqg. (4) shows that in the case of noisy convolutivigtures, the separation filtets, ,,
must remove both th&PS introduced by the mixing process, tBN and the artifacty,.;s.

In general, BSS algorithms focus on the suppressfointerfering point sources and have
7 -10/01/2020



only a limited capability of attenuating backgroumaise and the artifacts. In order to help to
evaluate and compare algorithms applied to blindc®separation problems, it is designed in
[30], three numerical performance criteria. Thestfione is the Source-to-Distortion Ratio
(SRD):

19511

SDR = 10[0910 2 (8)
|yips + Yen + Yareis|
The second one is the Source-to-Artifact RaidR):
Ps + + 2
SAR = 10l0gy |95 + yips ZBN” ©)
[yarei|
The third one is the Source-to-Interference R&#i®):
5112
SIR = 10l0g10£|2 (10)
lyesll

Among these three criteri8DR measures the overall performance of the algorithms

chosen in the framework of this article to investegthe quality of the separation results.

2.2 Forward model for the PSDs of the observations

Time-domain algorithms can be trained to do thEasstion task. Nevertheless, they can be
difficult to code primarily due to the multichannanvolution operations involved. There is
another difficulty related to source separatioroatgms based on a convolution model (Eq.
(2)), which have tend to be very costly in compotattime. One way to simplify the
conceptualization of convolutive BSS algorithms dindt the computation costs is to solve
the separation problem in the frequency domain e/kiee linear convolution (Eq. (2)) can be
written as separate multiplications for each fremye

L CEN
()= EmalD5n() +ém()

n=1
Where eachx,,(f) can be computed from measureg(t). The Finite Fourier transform
Xm (f) for single records of lengfth of x,,, (t) is:

A (12)
T (f) = f Xom(t)e It dt

0

In a same wayg,, ,(f), 3,(f) andé,,(f) are the Finite Fourier transform @f, ,,(t).
The main objective of this paper is to perform segaration of the PSO81, 32] of the primary
sources starting from the PSBs, (f) of the observations,,(t) (m = 1, 2, ..., M) defined by:
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Xm(f) = Tlgrgo%IE [1Zn ()] (13)

whereE[] is the expected value of [].

Ideally, Eqg.(13) involve a limit ag — oo, but the limit notation, like the frequency
dependence notation, is omitted for clarity. Inqgte, with finite records, the limiting
operation is never performed.

By substitutingk,,,(f) (Eq.(11)) in Eq. (13), one obtains &, (f):

2 N N N (14)
X, (f) = 7{2 Z G ESn5] + Z G nE[5n0]
n=1 n'=1 n=1

N
+Z i nE[EmSi] + E[6néil)

n=1

where * denotes the complex conjugate.

The resolution of the separation problem dealt e farticle is based on several
assumptions involving the primary sources and thekfround noise which are both
supposed to be centered variables. It is considbeetnportant special case where:

a) é,(f) im=1,2,..,M) is uncorrelated with each of the(t), (n = 1,...,N), then

E[é,,5;] = 0, Vm,n,
b) the N acoustic sources are mutually uncorrelated, eadhmero then
E[3,5/] = Sp8nn , Sn is the PSD 0f,,(t) ands,, v the Kronecker delta.
The assumptions (a) and (b) allow to reduce Eq#%3pllows:

N (15)
Xm = Z ApnSn+ Ep
n=1
~ 2 - -
whered,,, = 2 E [|am,n| ] S = 2E[18412]  Em = S E[12[?]
One considers here that the noise is spatiallyewoit the same variance on all the
microphones, then:
En=0%(m=1,2,..,M) (16)
Let X, S andE are the column vectors representing the PSD©0f s(t), e(t), andA
the mixing matrix:

Xl A11 AlN Sl (17)

x=|:| A= S=|:| E=02lL

Xu Sn

From these definitions, it follows that the Forwanddel of the PSDs of the observations can

AMl AMN

be written in a matrix form, as:
9 -10/01/2020



X=AS+E (18)

2.3 Estimation of the PSDs of the observations

In practice, each element, (f) of X is obtained by computing an ensemble of estimates
|x;’}l(t)|2 from n, continuous segments,(t) of durationT, (({— DT <t <+T, m =
1,2,..M; £ =1,2,..,n,). Eachx}(t) (m=1,..,M) is sampled at timet, = gAt

(At =% = 0.00381ms, q = ,1,..., Q. In the experiment described further, the Nyquist
frequencyfy = 262144 Hz and the number of samples in each data bt@ek 2048. The
frequency transformation is typically computed gsinDiscrete Fourier Transform (DFT) of
xf}l(tq), within a time frame of the prescribed lengthto provide thex?,((f,) (f; = IAf,

Af =1/(QAt)= 128,1=0,1,...,Q —1). The PSDs of thex,,(t) (n= 1,2,..,M) are

obtained by the ensemble averages:
o 2 n
2, = z ‘ |%f;12,m=1,...,M. (19)

3 BAYESIAN APPROACH FOR THE PSDs SEPARATION

The problem of PSDs separation described by EQ. i€lBarticularly difficult to solve
when it concerns acoustic sources. One of the wajacilitate the separation is to take into
account any information previously available on BfeDs and the mixing coefficients [33].
Bayesian methods are quite suitable, since thayralt integrate information. Moreover, in
contrast from ICA methods, the Bayesian approatdwal to remove unwanted noise into
account in its formulation [33 - 35] to solve theparation problem from noisy observations.
Thus, Bayesian methods have a remarkable aspech wieir robustness to noise.

3.1 Formulation

The Bayesian PSDs separation is developed in aapiidiic framework by treating the
mixing matrix, the PSDs of the sources and obsemstas unknown random variables.
Using Bayes’ rule, we have:

p(X|A,8$)p(4,S)
p(4,SIX) = (20)
p(X)
wherep(X|A,S), called the likelihood is in fact related to theise E in X = AS+ E

(Eq.(18)):

r(X|4,5) = p(X — AS) (21)

10 - 10/01/2020



When the noise can be assumed to be Gaussian, then
p(X|A,S) = N (X|AS, ¥g) (22)
where Y is the covariance matrix of the noig which is generally assumed to be
diagonal}.; = oZl.
In that case, we can write:

1
P(X|4,5) o exp {—Z—ZIIX —Asné} @3)
Of

p(A4,S) is the prior on(4, S) which a priori can be assumed independent. bl that:

p(4,8) = p(A)p(S) (24)
wherep(4) andp(S) the prior probability distribution c andsS respectively.

Thus,the Bayes’ rule (Eq.(20)) can be written as:
p(X|4,8)p(A)p(S)
p(X)

p(X) in the denominator does not depend(dns) and is considered as the normalization

p(4,51X) = (25)

factor allowing to write:
p(A, S|X) x p(X|A,S)p(A)p(S) (26)
Let us denote by = (0,4, 065, 0g) the set of the hyperparameters associated regplgcti
with the variable#\ ands$ andE of the mixing model (Eq. (18)). Thus, we haveHaoy.(26):
p(4,5|X,0) x p(X|A,S,0:)p(A10,)p(S|65) (27)
Simple Bayesian inference for PSDs separation meangsise the joint posterior
p(4A,S|X, 6) to infer on both4 andS given the datX and the hyperparametefis A wide
literature exists about Bayesian separation methdgpical separation methods are the
Maximum A posteriori (MAP) [36, 37] and the Minimultean Square Error (MMSE) [38].
It derives from the expression ptA, S|X, @), that there are, at least two main approaches
allowing the PSDs separation.
1) The first one is based on the Joint Maximum A Raste (JMAP) which allows

obtaining estimate@ﬁ, §) of (4, S) using the following cost function:
(4,8) = argr(rj?f{p(A,S X, 0)} (28)

2) The second one consists in integratim@, S|X) with respect toS to obtain the
marginal distributiorn(4|X), then estimatd using:

A= argr?/%x{p(AIX)} (29)

11 - 10/01/2020



WhenA is estimated, we can use it to estingtga:

p(S|4,Xx) o« p(X|4,S)p(S) (30)
thus,
S= argrr(lsa)x{p(S|X,ﬁ)} (31)

In the advanced processes, the estimation of thperpgirameter® is also examined.
However, in this work, we consider the simple cateref are fixed manually. Then from

here, we do not mention it more.

3.2 Joint Maximum A Posteriori (JMAP) Estimation

The approach considered in this study is baseti@ddint Maximum A Posterior (JMAP)

to solve the separation problem of the PSD$&.ofhe JMAP estimator Eq.(28) can be also

defined as:

A,95) = A,5|X,0)) = in{/(A,S

(4,5) = argmax(p(4, 51X, 6)} argmin{/ (4, 5)) (32)
where:
and

Q: = —In(p(X14,5,6y))
Q2 = —In(p(416,)) (34)
Q3 = —1n(P(5|95))

The first termQ; of the criterion (Eq. (33))

is related to the noise probability law and thevard modelE = X — AS. Its expression is

given byQ; = #ux — AS||3. The two other term@, andQ; depend on the priogs(A) and
E

p(S). One of the easiest means to obtain the solutigngsing the cost functiof(4, S) is
based on an alternate optimization with respedtand then tcs [39], thus:
A = argmin{J(4,5)}
o (35)
S = arg;nin{](A, S)}

Studying the convergence properties of such algmst in general, is not easy. There is no
guaranty that they converge toward the global JMARtions, but may converge toward any
local minimum. However, acceptable results can li@ined by choosing appropriate priors
p(A) andp(S) or by imposing constraints on the mixing matribxdamn the PSDs of the

sources [27].
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4 EXPERIMENT WITH LOUDSPEAKERS

In the framework of this study, an experiment hesrbcarried out in an anechoic chamber
(Fig.2) to assess the ability of the Bayesian agpgndo separate successfully the PSDs of the
acoustic sources that may be involved in practisgbations encountered in the
characterization of aircraft noise.

More precisely, we are concerned to get a solutioa major problem of interest. Starting
from X the PSDs of the observations composed of a tonakced(i.e.S;), a narrowband
source (i.eS,) occurring in propulsion devices of aircrafts, armdunwanted broadband noise
(i.e. §3) We want to truly separate out the PSDsSof S, and S;. These latter are three
loudspeakers,, S,, andS; radiating a sine wave at 4 kHz, an acoustic waube frequency
range [3 kHz, 5 kHz] and another on in the interf&alkHz, 10 kHz] respectively. The
acoustic measurements are performed with a lineay @aomposed of fifteen equally-spaced
microphones. Moreover, three reference microphaa#iedRef1, Ref2 andRef3 are also
installed near the output of the loudspeaker. Tomustic wavess; (t), s,(t) and s;(t)
emitted respectively bg,, S,, andS; are individually measured with both the array and
reference microphones. According to the previousudisions on the noise generated by
propulsion devices, we only consider the three @ges, when the pairs of loudspeakess, (
S,), (51, S3) and §,, §3) are active. In the present situation, we are re@rberation-free
environment with propagation delays so that themgixnodel (Eg. (2)) of the three scenarios
can be simplified:

xH() = am,l(t)sl(t — Tm,l) + am,n(t)sn(t — Tm,n) +e,(t); m=12,..,.M (36)
where

[,Ln=1,2whenS; and S, are active
[, n=1,3whenS; and S; are active (37)
[,n=2,3whenS, and S; are active

Tm; and t,, are the propagation delays between microphoneand sourced and n
respectivelya,,, anda,,, are the mixing coefficients including attenuatfactors (due to

propagation effects) between micropham@nd sourcesandn respectively.

13 - 10/01/2020



m
GA'--

10cm

phones

,,/fu

Mixture measurements with 15 micro

o
Fall o o o0 a0 N s
'1‘;1“'%12"109876 ERANESED

\
\
-~
1

Fig. 2. Experimental set-up in an anechoic chamberassess the PSDs Bayesian
separation approach.

For the three scenarios considered in this artibke objective is to separate the PSDs due
to S,, S, andS; starting from, the PSDs of the mixture§®(t), x> (t) andx=3(t) (Egs.
(36), (37)) measured by the microphones of theyatraorder to simplify the reading of the
article, the following notations are adopted;s})(n = 1 to 3) is associated to both to source
numbern and to its PSDS,,; 2) (5, +S, ) represents the PSDs of the mixtur(¢)
(l=1 to2andn =2 to 3 withl # n) measured from the array.

The PSDs of;, S, andS; are distributed in a frequency band®] which can be given
by this relation:

FB; = fHy — fLg (38)

It is the difference betweeffH_ and fLg, the upper and lower cutoff frequencies
respectively. The frequency bands of the PSDsefliree acoustic sources considered in this
article are limited as follows:

FB, = 4128 Hz — 3872 Hz = 256 Hz = 2Af
FB, = 5000 Hz — 3000 Hz = 2000 Hz = 15.625Af
FB,; = 10000 Hz — 2000 Hz = 8000 Hz = 62.5Af

Clearly, the problem of PSDs separation is ardumeause the frequency bands of the
three sources are included the ones in the otlsesti@vn in Fig. 3. Indeed, t#&B of S, is
included in theFB of S,, which is itself included in thEB of S;.
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Fig. 3. Sketch showing the width of the frequeranyds of the PSDs of the acoustic waves

» Frequency(kHz)
12

radiated by the three loudspeakers.

The PSDs separation based on a Bayesian apprdeeh da its full meaning since prior
information on the primary source PSDs can be atquldo help the their separation from the
PSDs of the observations. Indeed, as it is indecatd=ig. 4, we havé, andS, which radiate
in frequency ranges much narrower ti$anands; in a much narrower frequency range than
S,. This naturally leads to use a sparsity priorhie frequency domain fa$; when it is

mixed withS, or S5 and forS, when it is mixed witt§; to solve the separation problem.

A
FB,
FB
» Frequency(kHz
0 fL, fL,fH fH,, 12 a y(khz)
A
FB,
FB,
fL. fH
: 2 » Frequency(kHz)
0 fly fH,, 12
3
FB,
FB
fL. fH
2 » F kH
: — 3 requency(kHz)

Fig. 4. From top to bottom, comparison of the widttihe frequency bands of the PSDs when
the sources(S, S3), (S,,83) and §,, S,) are active to justify the use of sparsity prior.

It is pointed out that in the experiment, the mptrones of the array are in the far-field of
the acoustic source®, S, andsS,, in the frequency range [1 kHz, 15 kHz] where tinee

following criteria are satisfied [40]:

R >» nD?%/(22) (39)
R>»D (40)
R > 1/(2m) (41)
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whereR = 0.316 m is the shortest distance from the sources to t@sarement positions,

A the wavelength of radiated sound dhe- 0.03 m, is the loudspeaker diameter.

Indeed, the second criterion ((Eq. (40)) is alwagssfied sinceR = 0.316 » D = 0.03m.
Moreover, the higher frequency f = 15 kHz of theission range, leads t,,;,, = 0.022 m ..
Thus, the two criteria (Egs. (39) - (41)) give:

0.032
(2)(0.022)

0.022
(2)(3.14)

2
R =0.316 > - = (3.14) = 0.064m ;R = 0.316 » % = = 0.0035 m;

In the same way, the lower frequency f = 1 kHz leé emission range, leads 19Q,,, =
0.34 m, thus we the two criteria (Egs. (39) - (41)) thate:

2
003" _ 0.0041m :R = 0316 » & = 3¢

(2)(0.34) 2n . DG = 0.054 m.

2
R =0.316 > - = (3.14)

This simple verification allows to confirm that th@crophones of the array are in the farfield

of S;, S, andS; where the sound pressure decreases inverselyheittiistance.

In contrast, the reference microphones used tal bod simulated data are in the nearfield,
adjacent to the hydrodynamic field (a region velgse to the vibrating surface of the
sources). In this area, measurements of the acopigssure amplitude give an inaccurate
indication of the sound power radiated by the sesifd0] due of the presence of interferences
between contributing waves from various parts efsburces. Thus, it is difficult to forecast
the sound pressure levels in this area becausee# dot necessarily decrease monotonically

at the rate of 6 dB for each doubling of the distafitom the sources.

5 TESTS WITH ARTIFICIAL MIXTURES

Before proceeding with the PSDs separation startiomy, the PSDs of the measured
mixtures, a preliminary step was performed witlifiaial mixtures of the real source signals.
Thus, the signals at the output of the referenoceraphones Bf1, Ref2 and Ref3 were
filtered in frequency bands [3.8 kHz, 4.2 kHz], kHz, 8 kHz] and [0.3 kHz, 14 kHz]
respectively. The results of the filtering conggtthe primary source signalgt), s,(t) and
s3(t). These latter were numerically mixed pairwise agicwy to the model described by (Eq.
(36)).

As explained at the conclusion of the previousisectmeasurements performed in near-

field with the reference microphones give an inaatiindication of the sound power levels
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radiated bys,, S,, andS;. Therefore, the magnitudes of the PSDs of theassgat the output

of the microphones in farfield cannot be deducednfthese measurements. Thus, we have
adapted the mixing coefficients in Eq.(36) in ortteiobtain the same magnitudes that those
computed with real mixtures measured with the étdfimicrophones during the experiment

presented in Section 5.

5.1 Analysis of artificial mixtures

The upper plots in Fig.5 show the time series pthe tonal source§, the narrowband
source and; the broadband source measured with the microphRegs, Ref2 andRef3.
The plots in the center present the histograry afhere two regions are dominant for which
the amplitude of; is either the lowest or the highest. The histografs, andS; exhibit a
bell shape (center and right graphs) corresponding Gaussian distribution. Scatters
displayed in the lower plots depict joint distrilauts of the primary sources. It appears $at
ands, (left graph),§; andS; (center graph) are independent with uniform dsition on a
parallelogram. However, the scatter plots $grand S; show, this time, two independent

Gaussian distributions which are rotationally syrial (right graph).

Analysis of the Simulated Source Signals
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Fig. 5. Primary source signalS,, S, and S; measured with filtering oRef1, Ref2, and
Ref3 shown in Fig.2 (top) - Histograms 8f, S, andS; (center) - Joint distributions d8,,
S,), (51, S3) and(S,, S3) (bottom).
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The upper graphs in Fig.6 present the time sefiéiseartificial mixturesc?(t), x> (t)
andx2>(t) (Eq. (36)) obtained when the sourd@s + S,), (S, + S5) and (S, + S;) are
respectively active, and measured by th& (m = 1 or 2) microphone of the array. It
appears that the histograms of the mixtures terfietbell-shaped (center graphs in Fig. 6).
The scatter plots in the lower graphs show thamiheuresx,;*(t) andx2?(t) are no longer
independent from each other. However, it is notewt to give the same conclusion for the

mixturex,l,f(t) , Which looks like an independent Gaussian distiiou

Analyse of the Simulated Source Mixtures
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Figure 6. Artificial mixtures(S; + S,), (S; +S3) and (S, + S3) of the primary source

signals in the upper plots in Fig.5 (top) - Histagr of the mixtures (center) - Joint

distributions of the mixtures (bottom).
The upper graphs in Fig.7 exhibit tR&€Dsof the primary source signals shown in Fig.5
(upper graphs). In the center, it is superimposenhfleft to right, the PSDs o8{, §,), (S,

S;) and §,, S;), while the lower graphs display the PSDs of thgtunes x,;”(t), x> (t)

andx2>(t). These latter will be used as input data of thEasstion methods proposed in the
article to obtain the unmixed PSD¥% (S,), (S, S3) and §,, S3).
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PSDs of the Simulated Source Signals
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Fig.7. PSDs of primary source signals shown inupper plots of Fig.5 (top) - Superposition
of source signal PSDs{, S,), (51, S3) and §,, S3) (center) — PSDs of the primary source
signals  mixed artificially (where S, + S, = PSD of (s,(t) + s,(t)) with (I,n) =
(1,2); (1,3); (2,3)) (bottom).

6 PRIORS FOR THE SOURCE PSDs AND THE MIXING MATRIX -
LIKELIHOOD DESCRIPTION

The approach considered in this study is basett@ddint Maximum A Posterior (JMAP)
to solve the separation problem of the PSDs okthacesS. The JMAP estimator (Eq.(29))
requires to define the prioggA), p(S) and the likelihoogh(X|A, S) composing the posterior
probability p(4, $|X) (Eqg. (26)). The forward model fo¥ (Eq. 18)) is used to describe the

observations considered in Section 8.

6.1 PSDs priors

We have different possible priors for the PSDshef sources,, S, andS;, depending on
many design choices, and each combination of ttlesiees, giving a different algorithm. We
assess the Bayesian separation capability of ties P& two kinds of priors described in the

next sections.
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6.1.1 Gaussian priors for the PSDs$Sf

We first consider that there is no specific knowledf the acoustic PSDs. This leads to
adopting a Gaussian distribution as prior law, veiéiho-mean, and of dispersion Ia@l (n=1

to 3) forS;, §, ands;, so that:

1
Su~N(8,]0,021) o exp {—Fnsnu%} (42)
Sn

where||.||3 is the Frobenius norm.

6.1.2 Sparsity prior and Gaussian priors for the PSD$ of

In this second case one assumes that some knowtsighe acoustic PSDs «f is
available whensS; is mixed withS, or §; and whers, is mixed withS;. It is shown in Fig. 4
that thePSDsof §, or S, can be defined, sparse (i.e. has only few nongknments in the
frequency domain) compared to tA8Ds of S5 and the PSD ofS, sparse compared to the
PSD of §;. The sparsity of the PSD can be translated viddcapdensity:

S, ~L(S,|a,) ex'p{—anllsnll1 }, n=1o0r2 (43)

where||.]|; is theL; norm.

Moreover, when a sparsity prior is affected toR&D of §,, a Gaussian one is considered
for the PSDs of, andS; because it is again assumed that we have no gplecdwledge on
the PSDs of, andS;. For the same reason, when a sparsity prior é&ctfl to the PSD f,

a Gaussian one is attributed to the PSB;0f

6.2 Mixing matrix prior

The elements of the mixing matrkreflect the coupling between the acoustic souares
the observations achieved by the microphones. Nesless, the time signatures of the
primary sourcesS,, §, andS; needed to obtain their PSDs, cannot be accuratebsured
by using the reference microphonesfR, Ref2 andRef3 for the reasons explained at the
end of Section 4. Therefore, the coefficients @f thixing matrix are not available. It is why;
we consider here, that the mixing process may beeitexl generically because it is not well
understood. In order to represent our state ofreymee, a Gaussian distribution of zero-mean

with a diagonal covariance mati/ is applied to the mixing matrix. Thus:

1
A~ (A10,031) exp{—ﬁ ||A||%} (44)
A
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6.3 Likelihood
The PSD of the noise associated to the experimenégsurements can reasonably be
represented as a centered Gaussian process:

1
E~N (E|0,021) o exp {—ﬁ ||E||%} (45)
E

The choice of the noise covariance indicates tlaahecomponent of in Eq. (18) is
contaminated by independent identically distributaddom noise. The likelihood can be
therefore written in the following form:

1
p(X|A,S,05) < exp {—FIIX—ASII%} (46)
E

7 JMAP SOLUTIONS FOR THE DATA ANALYSIS

We have defined in Section 3.2 the principle of dmimization method for obtaining
generic JMAP solutiond and$ for the mixing matrixA andS the PSDs of the primary
sources. In the following, we examine the possdaiitions for the mixing cases defined by
Egs.(36) and (37), by using Egs.(42), (43), (44) éib) for the PSDs priors, the matrix prior
and the likelihood respectively.

7.1 JMAP - Gaussian priors for the PSDs ofS

In this first situation, we consider that the PSiD$he three acoustic source&y, S, and
S have Gaussian priors defined by Eq. (42). By tgkimio account the prior fok (Eq. (44))
and the likelihood (Eq.(45), the JMAP estimatordyaes (Eq.(33)):

(A,S) = —— X — 4,5, — AnSyll2 + —s 14112 + — 1,12 + —- 15,112
] ’ - 20_5 21 nInll2 20‘2 2 20_521 L2 Zo_szn nil2 (47)

As it is indicated in Section 3.2, the solutionstloé cost functioj (4, S) is based on an
alternate optimization with respect4oand then t&s. During the iterative process (Eq. (35)),
closed-form solutions are used to compute estinatdg§when S; and §,, are assumed to be
known,l andn defined in Eq. (37)) and of; (whenA and S,, are assumed to be known) and
of S, (when4 and §; are assumed to be known). This leads to a thegeAternating Least
Squares (ALS) algorithm [39]:

(4 =x$7($ST +a,0)""
4 S, =(ATA + Asll)_l(AzTX — ATAS)) (48)
(S = (ATA, + 25,1) (ALK — AT4,5)
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where:

(AA _ a_bi
04
of
) A= a2 (49)
of
As, = =3
\

7.2 JMAP SPARSE - Sparsity prior for the PSD of §; and Gaussian for the PSDs of
S, and S;

In the second scenario corresponding to the cassews, is mixed with §, or S5
(Eq.(36)), one considers that the PSDSfis sparse and has a Laplace prior Eqg. (43). It is
also assumed that the PSDs &f and S; have Gaussian priors (Eq. (34)). By taking into

account the prior foA (Eq.(44)) and the likelihood (Eq.(45)), the JMA&imator (Eq.(33))
becomes:

1 1 1
J(AS) = 202 IX — 4,8, — A;S,115 + 202 lAll5 + ?521 INER AR (50)
where the subscripgt= 2 orl = 3 are used wheis, or S5 is respectively active.

Thus, according to Eq. (35), the estimatesldndsS can be obtained using a three step
algorithm ALS:

A =arg/flnin {IIX — A;S; — A; 51113 + 241113 }

|’
S =argmin {IIX - A4S — ASiII3 + A5 ISl )

(51)
S
L§1 = argngin {”X — A8, — A1S1||% + 241184111 }
1
where:
( o'g
Aq = a_f
2
O
Ao = —
! 0521 (52)
/11 = 0(10'5

Closed-form solutions are applied to compute esgmafA (when S, or S5 is assumed to

be known) andS, or S; (whenA and §; are assumed to be known) during the iterative
process:
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A =XST(SST +A,0) "

< oT A -1, TR A 53
S, = (474, + A1) (ATX — ATA,S,) (53)

In contrast, the non-differentiability of the petyafunction 1,|[S|l; in the objective
functionJ($,) = [|IX — A;S; — A; 5,115 + 1,11S,]l; deriving from Eq.(50) so that there is no
closed-form solution fof(S,) that can be used in the update rule for obtaifingn the ALS
algorithm (Eq. (53)). Therefore, we necessitateegploy an optimization scheme for this
step. TheL; norm regularized least squares LASSO (Least Albs@hrinkage and Selection
Operator) [41] that seeks the minimizer f§,) is chosen in the optimization process

because it provides the best performance in theeseinthe sparsity/measurement trade-off.

7.3 JMAP SPARSE - Sparsity prior for the PSD of §, and Gaussian for the PSD of
S3

This last example is quite similar to the scenaxamined in Section 7.2, but here a
sparsity prior is applied for the PSD 8§ and a Gaussian for the PSD $f (the subscriptg
and! are replaced witt2 and 3 respectively in Eqgs. (49), (50) and (51)). Agdime non-
differentiability of the penalty functiond,||S,||; in the objective function/(S,) =
IX — A,S, — 4385113 + 1,]1S,1l; , prevents to have closed-form solutions Ji¢§,) that can
be used in the update rule for the solut®n This step is again done with regularized least
squares LASSO.

7.4 Initialization of ALS algorithm

The ALS solutions given by Egs. (47) and (50) dejseon the parametekg andAg in
the Eqgs.(48) and (51) initialized to positive, &y values for the three scenarios presented
in Section 8. However, the determination of thoseameters is not easy, in this work we
tried to obtain optimal the values ®f (in a range\, . <A, <2, ) andAs (in a range
As . < Ax < Ag_ . ) by fixing the optimality criterion to be a goodparation of the PSDs of
the acoustic sources.

As in all iterative algorithms, the initializaticstep is needed in the ALS algorithm (Eqs
(48) and (51)). A good initialization can improveetspeed and accuracy of the algorithm, as
it can produce faster convergence an improved muimimWe have achieved satisfactory
results by initializingA with ones values\, andAg in the following way:

1. Scenario # 1 — Gaussian priors for the PSDS of
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The PSDs ofS;, S, and S5 are initialized with the signal PSDs of the signal
the outputs of the three first microphones of thhayaand the parameter values of
Aa andAg obtained during the ALS iterative processing are:

Aa = 100 is kept with the same value for the two other aces;

As, = As, =Ag, = 0.0001 when the PSDs have Gaussian priors of equal
variances;

As, = 0.1 and A, = 0.4 (the subscriptd = 1; n = 2 or 3, Eq. (37)) when the
PSDs have Gaussian priors of non equal variances.

. Scenario # 2 — Sparsity prior fohe PSD of §; and Gaussian priors for the
PSDs ofS, and S5

The PSD of S, is initialized with ones everywhere, the PSDs $f and S,
directly by using the PSDs of the signals at thdpwis of the two first
microphones of the array and the parameter valgesbtained during the ALS
iterative process are:

As, = 0.1 and4;, = 0.35 (the subscripté=1; n = 2 or 3).

. Scenario # 3 — Sparsity prior for the PSD $f and Gaussian one for the PSD of
S3

The PSD ofS, is initialized with ones everywhere and the PSDs¢fdirectly by
using the PSD of the signal at the output of th& fnicrophone of the array and
the parameter valu@g obtained during the ALS iterative process are:

As, = 0.1 and4g, = 0.35 (the subscripts=2; n = 3).

8 SEPARATION RESULTS

The PSDs Bayesian separation algorithms present&gtion 7 are applied here on the

data recorded during the experiment described ati®@e4. In the first part, we examine the

separation results of the PSDs of the primary sosignals obtained starting froi (Eq.

(18)), the vector of the PSDs of the observationsed artificially (see Section 5). In the

second part, the results are analyzed when theowvéctis computed with the mixtures

measured with the array of microphones (see Sed)idror both kinds of trials:

- the mixing matrix (Eq. (44)) and the likeliho{q. (45)) have Gaussian priors;
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- all PSDs priors are first considered Gaussiaentbparse and Gaussian, when the
observations are mixed artificially, but the pria=e only sparse and Gaussian when the

observations are measured.
8.1 Separation results obtained from PSDs of observatns mixed artificially

8.1.1 Results based on Gaussian priors for the PSSs of
8.1.1.1 Gaussian priors of same variance

In this scenario, one considers that the PSDs efptimary sources have all a Gaussian
prior of same the varianced = g = ¢ in Eq. (47)). As specified in Sec. 7.4, we have fo
Aa =100 andig, = A5, = Ag, = 0.0001.

The PSDsof the observations mixed artificially pairwiseosin in the lower graphs in
Fig.7, are unmixed in the right part in Fig.8 basadEqs.(47), (48) and (49). We observe that
S, (upper and center plots) ar&}, (bottom plot) are very noisy. By comparing theusions
(S,, S,) and (5;, S;) to the original sourceSDs(S;, S,) and (S;, S5) (left plots in Fig.8),
we realize that it is non obvious to conclude tSatcharacterizes the PSD of a tone source at
4kHz. In contrast,S, and S; are very similar than the original PSI¥ and S. Finally,
separation results for the PSDs of the mixtu§g € S5) show thatS, reproduces the spectral
shape of the PSD o$5, but the same conclusion cannot be appliedSipwhich does not
clearly exhibit that the PSD df, is spread in the frequency range [2 kHz, 5 kHz].
8.1.1.2 Gaussian priors of not equal variances

This time the variances of the Gaussian priors idensd for the PSDs of the primary
sources are not equal 4. aszl #* aszn in Eq. (49)). As defined in Sec. 7.4};, = 0.1 and
As, = 0.4 (the subscriptd,n are defined in Eq. (37) antk, and As in Eq. (49)). The
separation results of the PSDs based on Eqgs.@8).ahd (49) are presented in Fig. 9 (right
plots). The results seem better compared to theetlsbown in Fig.8 (right plots), obtained
when the variances of the Gaussian priors wereideresl equal. It clearly appears that the
background noise has decreased, so that the §)S# tone source at 4 kHz appears more
clearly both whenS$; is mixed with §, or §;. In contrast, the separation of the PSD of the
mixture (S, +83) is again, not totally well achieved. Indeedsihibt obvious to conclude that
S, characterizes of a narrow band in the frequenogea[3kHz, 5kHz] source comparing to

S, which exhibits a broadband source.
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Separation results of the PSDs for the Simulated Mixtures
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Fig.8. Separation results when the observationsmapeed artificially — Left plots: PSDs${,
S,), (51, §3) and §,, S3) of the primary sourcesS;, S, and §; — Center plots PSDs
(S, +S,) of the mixturesx.”(t) in Eq. (36) {
measured with the®Imicrophone of the array. Right plots: Unmixed P$Bs S,), (51, S3)

and §,, S;) by using Gaussian priors of equal variances f@ PSDs ofs,, S, and S;.
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Fig.9. Separation results when the observationsmapeed artificially — Left plots: PSDsS{,
S,), (51, §3) and §,, S3) of the primary sourcess;, S, and §; — Center plots PSDs
(S, +S,) of the mixturesx’™(t) in Eq. (36) {= 1 to2 and n =2 to3withl # n)
measured with the®Imicrophone of the array — Right plots: Unmixed B8}, S,), (51, S5)

and (§,, §3) using Gaussian priors of non-equal variancesthw PSDs ofS;, S, and S5.

8.1.2 Results with sparsity and Gaussian priors for tBB$of S

In this Section, we are again interested to sepdh&tPSDsof the primary source signals
which are mixed in the PSDs of the observationsvshio the lower plots in Fig.7. A sparsity
prior is affected at the PSD &, and a Gaussian one at the PSDsgfor S5. This time, the
separation is based on Eqgs. (50), (51) and (52jefised in Section 7.4, we havg; = 100
, As; = 0.1 andAg, = 0.35 (the subscripté = 1, n = 2 or 3). The separation of the PSDs of
the mixtures §; +8,) and (§; +S3) is presented in the right part in Fig. 10. Thieliast of
sparsity prior, clearly appears compared to theltesbtained with Gaussian priors plotted in
the right part in Figs. 8 and 9. Indee8}, shows only a peak at 4 kHz for the tonal source.
The characteristics (i.e. shape and frequency st)ppb the narrowband and broadband

sources are again well found wify, and S respectively.
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Fig.10. Separation results when the observatiomsnaixed artificially — Left plots: PSDS$
S,) and ¢4, S3) of the primary source$,, S, and S; — Center plots PSDs(+ S,, ) of the
mixturesx}™(t) in Eq. (36) {= 1 and n = 2 or 3) measured with theImicrophone of the
array — Right plots: Unmixed PSDS;( S,) and §;, S3) using a Laplace prior for the PSD

of §; and a Gaussian priors for the PSDs$f and S;.
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The separation of the PSDs of the mixtusg ¢ S3) presented in the right part in Fig. 11
is obtained ford, =100 , 45, = 0.1 and 4;, = 0.35 (the subscriptd =2, n= 3). A
sparsity prior is affected at the PSD 8 and a Gaussian one at the PSDSgf Again, the
interest of sparsity prior appears clearly. Indegdands; are well separatewith S, and ;.
It was not really the case with the separationlteshown in Figs.8 and 9 where Gaussian

prior was affected at the PSDs &f ands.
Separation results of the PSDs for the Simulated Mixture
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Fig.11. Separation results when the observatiomsraixed artificially — Left plots: PSDS{,
S;) of the primary sources, and S; — Center plots PSDs(+ S, ) of the mixtures:c}'2 (t)
(Eq.(36)) measured with thé' Inicrophone of the array — Right plots: Unmixed BS[S,,
S3) using a Laplace prior for the PSD &f, and a Gaussian prior for the PSD §f.

8.1.3 Evaluation of the results

In order to evaluate Bayesian algorithms, appliedtite observations computed with
artificial mixtures, we use the signal-to-distorticatio (SDR) defined in [30], expressed in
decibels based on Eg. (8), as follows:

Sk Zn=1 (S (K))?
S S (8u(K) — 8, (1))’
whereS,, andS,, are the true and separated PSDs referring tatheource respectively,
and the indexk stands for the frequency indeg, (n =1,...,N). The PSDs of the true

SDR[dB] = 10log,, (54)

signals are obtained in a similar manner descréidgtie end of Section 2.3, but in Eq. (19),

%%, is substituted witlF? to give

2 Z:d |§ﬁ|2,n=1,...,N (55)
=1

Sn = ngAt
In each case in Table 1, the best results are \shiehen Laplace and Gaussian priors are
affected to the PSDs, compared to the cases wingré€saussian priors are used.
It also appears that sparsity plays a role in tedity of the separation measured with SDR.

Indeed, SRD is maximum for the separation of th®$Es,; +S55), then weakly decreases
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for the separation of the PSDs &,(+S,) and is minimum for the separation of the PSDs of
(S2 +53).

Finally, one notices that the Gaussian priors whih same variances give higher SRDs than
when Gaussian priors with non equal variances sed.u

Mixtures

S;+85(1i=1j=2) [Si+S(i=1j=3) |S;+S5(i=2j=3)

Gaussian fos; and

L, 5 SDR =-4.40725 SDR =-2.16497 SDR =-0.926623
S] Wlth O-Si = O-S]'

Gaussian fos; and

Source priors . SDR =-7.48531 SDR = -8.58410 SDR =-0.273513
S; with 6 # 052].

Laplace fors;and
SDR = 10.8997 SDR = 12.5466 SDR = 1.90496

Gaussian fos;

Table 1. Source separation performance measurdd SGiR

It is important to be able to measure how the P8i@ssparse or dense, one versus the
other to explain the results obtained with spargityors. This can be done by using a
sparseness measure based o gheorm [42], that can reliably quantify the sparsenef the
PSDS; of theit" source, compared to the length of the frequenacyl baB; (Eq.38)) of the
PSDS; of thej*" source. Indeed, consider the PSD of #ftesource computed for discrete
frequencies; (I =0,1,...,Q — 1):

8§ = [SiF) Sif ) s Si(fy_ D] # 0 (56)
Then, define the function:

1forS;(f)) #0 (57)
fS:()) =
0 for S;(fi) =0

The norm¢,, of S; is:
& (58)
Isillo = )" £
=0

Basically, the?, norm of the vectos; is equal to the number of its non-zero components.
ForS; # 0, we have always:

0<lsillo <@ (59)
The most obvious sparness measure based dh tham is defined as:
. Q IS:1lo (60)
o(S:) = ﬁ(l - T)
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We see that closer the measygé€s;) is to 1, the sparser is ti$g. On the contrary, the
closer the measure is to 0, the denser or lessesjmthes;.

One can deduce tHg norm of the PSDS;, S, andS; by basing on the Egs. (57) and (58)
and by using the frequency bands of the PSDs ahtfee acoustic sources presented after Eq.
(38), thus:

(IS11lo = 2 (61)
”52”0 - 15.625
IS3llo = 62.5

Table 2 shows the comparison of the sparsenesed®$DS; compared to the length of the
frequency band' B; (Eq.38)) of the PSIS; obtained with Eq. (60) but wheeis substituted

with Q;; = %" (the indexi stands for the PSD 6f"* source whose we want to compare the

sparsity versus the wideness of the frequency béttte PSD of the source of indgx As it
was foreseeable, the measure of the sparsefifsss,) is greaterZ,°2(Sy) which itself
greater tharzTng‘(Sz), respectively obtained for the PSDs of the mixkui®, +S3), (5, +5,)

and (S, +S3).

Laplace prior for the PSD ¢f;and Gaussian one for the PSDSpf
Si+S8(i=1j=2) Si+S8;(i=1j=3) S;+S8;(i=2;j=3)
FB FB; FB;
Q12 = A—fz = 15.625 Q= v 62.5 Qs = i 62.5
Q12 151110 FB Q 141l FB Q IS 1lo
FB2(g ) — 1- 3(S.) = 13 q_ 3(S.) = 23 1 _
QU =Gt | GG =gt | () =gty
7oP2(s,) = 0933333 {07 (S)) = 0.983607 {7 (S,) = 0.754098

Table 2. Measure of the sparseness of the PSDeafttsource compared to the frequency
bandF B; of thePSD of thg™" source.
The results depicted in Table 2 tend to show thatrhean SDR presented in Table 1,

decreases in a similar manner that the measubedarseness(S;).

8.2 Experimental results

The Bayesian PSDs separation method previously@mglin Section 7 on PSDs of the
observations artificially mixed is applied now teetPSDs of the mixturesS{ +S5,), (S,
+S;) and (§,+S3;) measured with the microphones of the array dutimy experiment

described in Section 4 (Fig. 2). The reference @gRef1, Ref2, and Ref3 due to the
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loudspeakerss;, S, and S5 respectively (upper plots in Fig.12) are not fiig compared to
the cases studied with the artificial mixtures (@pplots in Fig.5). The result, is that the
histogram (center plots in Fig.12) ¢f;, characterize a Gaussian distribution and not a sin
wave as it was previously presented in the meditifdiigh 5. As anticipated, the histograms
for S, and S5 characterize Gaussian distributions. The scattas f the joint distributions
displayed in the lower part in Fig.12, are simttathose of independent Gaussian sources, for
(81, S2), (81, S3) and (S,, S3).

Real Source Signals Analysis
Original source signal S1 Original source signal 2 Original source signal S3

—~4 .
§ 0.06/ “ 5 . T 11
L 004 | | 'N =5 w <
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Fig.12. Real data — Source signals 8f, S, and S; measured without filtering atef1,
Ref2, and Ref3 shown in Fig.2 (top); Histograms of the primaryusmes (center); Joint
distributions of the primary sources (bottom).

The time series of the mixtures o§{ + S,), (§; + §3) and (S, + §3) measured with the
microphones 1 and 2 of the linear array are presemt the upper graphs in Fig.13. The
corresponding histograms of the mixtures measurgd wmicrophone 1, show Gaussian
distributions (center graphs). Like for the testsried out with artificial mixtures (Fig.6
bottom), it appears that the scatter plots in tvgel graphs in Fig. 13 show that the mixtures
(S, +S,), (S, + S3) are no longer independent from each other. Irtrast) the mixture §;

+ §5) looks like independent Gaussian distribution.
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Real Mixtures Analysis
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Figure 13. Real mixturegS; + S,), (8§, + S3) and (S, + §5) of the primary source signals
shown in the upper plots in Fig.12 (top) — Histagraf mixtures (center), Joint distributions
of mixtures (bottom).

The upper plots in Fig.14 exhibit tiRSDsof the reference source sign&lsf1, Ref2, and
Ref3 due toS,, radiating a sine wave at 4 kHg%;, a narrowband wave in the frequency
range [3 kHz, 5 kHz] anfi; a broadband wave in the interval [2 kHz, 10 kkHgpectively.

It is not surprising that the PSD of the signal tlueS; is more noisier than its filtered version
(upper plots in Fig.7). However, it is not the césethe PSDs of source signals measured
with Ref2 andRef3 which are very similar than their filtered verssoihePSDsof (§; and
S,), (S, and §;) and (S, and S;) measured with microphone 1 of the array are
superimposed in the center of the Fig.14, and ®sof mixtures §, +5,), (§; +53) and
(S,+S3) in the bottom graphs.
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PSDs of the Real Source Signals and of the Mixtures
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Fig.14. Real mixtures - PSDs of the reference smwignals shown in the upper plots in
Fig.12 (top)- PSDs §4, S,), (S1, S3) of the primary sources,, S, and S5 (center) - PSDs
of the mixtureq §; +S5,), (S, +S3) and (S,+S3) displayed in the upper plots in Fig.13
(bottomn).

The results obtained with data mixed artificiallgvie clearly shown the interest to use,
both sparsity and Gaussian priors, (Figs. 10 andirithe improvement of the separation
quality, compared to the scenarios where only Gangwriors are used (Fig. 8 and 9). This
justifies that we limit the application of the Bayen separation of the PSDs in the cases
where specialty and Gaussian priors are both ceresid The Gaussian priors for the mixing
matrix (Eqg. (44)) and the likelihood (Eq. (45)) again preferred, for the reasons already
explained in Sections 6.2 and 6.3. The separatidheoPSDs of the mixturess¢ +S,) and
(5, +53) and ($,+S5) obtained withl, = 800, A5, = 0.09 andAs, =19 (I = 1 to 2 and
n =2 to3withl # n) is presented in Fig. 15. It clearly appears that use of sparsity
prior is quite relevant in solving the acoustic RSiemixing problem dealt in the present

article.
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Separation results of the PSDs for the Real Mixtures
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Fig.15. Separation results with real mixtures —tljgbts: PSDs §;; S,), (S;; S3) of the
primary sourcesS;, S, and S; — Center plots PSDsS(+ S,, ) of the mixturesi(= 1 to 2
andn = 2 to 3with | # n) measured with the®Imicrophone of the array — Right plots:
Unmixed PSDs i)§,, S,) using Laplace prior for the PSD &, and a Gaussian one for the
PSD of §, (top) ; i) (8, S3) using Laplace prior for the PSD &, and a Gaussian one for
the PSD ofS; (center) and iii) (§,; $3) using Laplace prior for the PSD of, and a
Gaussian one for the PSD 6% (bottom).

9 CONCLUSIONS

In this paper, we considered the Power Spectrakiles (PSDs) separation of the primary
source signals from, the PSDs of the measured restwith an array of microphones, in a
Bayesian framework. The mixtures were obtained ndutiests performed in an anechoic
chamber with three loudspeakers radiating a tonatrow-band and broadband acoustic
waves. The acoustic sources were mixed pairwisettadeparation of their PSDs achieved
by considering a Gaussian prior for the PSD ofteadband source, a Laplace or a Gaussian
prior for the PSD of the narrowband source and pldee prior for the PSD of the tonal
source. We compared the separation results basdd1a® method applied to the PSDs of
mixtures mixed artificially and on the PSDs obtaindth real mixtures for several scenarios.
For each test example, first, the expression of jtet posterior lawp(A,S|X,0) was

obtained and then optimized via an alternatingnogition algorithm.
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The main conclusions of this paper are as follows:

- first, the Bayesian approach could be used efitty on PSDs of mixtures mixed

artificially, or obtained with measured mixtures,

- second, the measurement of the quality of tharséipn of the PSDs provided by the mean
Signal-to-Distortion Ratio (SDR) has clearly shote interest to use, at the same time,
sparsity and Gaussian priors for the tests considar the article. Indeed, this choice has
given the best results compared to the tests wdrdyeGaussian priors are used.

- third, it is demonstrated by using a measurehefdparseness of the PSDs based oH the
norm, that the quality of the separation given BRSlecreases in a similar than the degree of
sparsity of the PSDs of the acoustic sources.
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