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Abstract 27 

 28 

The identification of sea turtle behaviours is a prerequisite to predicting the activities and 29 

time-budget of these animals in their natural habitat over long term. However, this is 30 

hampered by a lack of reliable methods that enable the detection and monitoring of certain 31 

key behaviours such as feeding. This study proposes a combined approach that automatically 32 

identifies the different behaviours of free-ranging sea turtles through the use of animal-borne 33 

multi-sensor recorders (accelerometer, gyroscope and time-depth recorder), validated by 34 

animal-borne video-recorder data. We show here that the combination of supervised learning 35 

algorithms and multi-signal analysis tools can provide accurate inferences of the behaviours 36 

expressed, including behaviours that are of crucial ecological interest for sea turtles, such as 37 

feeding and scratching. Our procedure uses multi-sensor miniaturized loggers that can be 38 

deployed on free-ranging animals with minimal disturbance. It provides an easily adaptable 39 

and replicable approach for the long-term automatic identification of the different activities 40 

and determination of time-budgets in sea turtles. This approach should also be applicable to a 41 

broad range of other species and could significantly contribute to the conservation of 42 

endangered species by providing detailed knowledge of key animal activities such as feeding, 43 

travelling and resting.  44 
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1 Introduction 62 

It is essential to assess the feeding behaviours of free-ranging animals in order to estimate 63 

their time budgets, and thus understand how these animals maximise their fitness [1,2]. 64 

However, investigating the foraging behaviour of sea turtles in their natural environment 65 

remains a significant challenge as it is impossible to obtain long-term behavioural data 66 

through visual observations alone. Although some studies have provided relevant information 67 

on sea turtle diet through post-mortem stomach content analysis or the deployment of animal-68 

borne video-recorders [3–5], the proportion of time that sea turtles allocate to feeding 69 

activities on the long term remains unknown. Time-depth recorders (TDR) have been used to 70 

record the dive profiles and durations of free-ranging sea turtles and have provided insights 71 

into their underwater activities [6–8]. However, a number of authors have underlined the 72 

limits of focussing on dive profile, as foraging activity cannot be distinguished from transit or 73 

resting phases [9,10]. The joint use of TDR and video recorders revealed that the typical dive 74 

types described in [11,12] could not be associated with specific activities such as travelling, 75 

resting or foraging [13,14].  76 

Devices combining miniaturised tri-axial accelerometers and TDR were described as a 77 

powerful tool to improve the identification of fine-scale behaviours in animals that cannot be 78 

easily monitored by visual observation [15–17]. Such devices have been deployed to study the 79 

behaviour and dive patterns of loggerheads (Caretta caretta, 18),  green turtles (Chelonia 80 

mydas,19) and leatherbacks (Dermochelys coriacea, 20) during the inter-nesting period. 81 

However, the interpretation of the acceleration signals used in these studies to identify sea 82 

turtle behaviours in water was not validated by simultaneous visual observation, possibly 83 

resulting in misidentification and significant biases in the interpretation of the data. 84 

A new approach was therefore necessary to reliably identify the underwater behaviours 85 

of free-ranging sea turtles without using direct visual observation (which is usually 86 

impossible) or video recordings, which are limited to short-term studies (a few hours) because 87 

of their high power consumption. Accelerometers permit the identification of feeding activity 88 

and time budget in marine animals such as seals and penguins by recording head movements 89 

that are likely to correspond to prey captures [21–23]. For the same purpose, accelerometers 90 

have been placed on the beak [24–27] or the top of the head [28] of sea turtles to record beak-91 

openings and capture attempts. However, the position of the device was a significant 92 

disturbance for the individuals and could not be considered for long-term use (up to several 93 



weeks). It was therefore crucial to develop a protocol for the long-term recording and 94 

identification of sea turtle feeding activities that minimizes disturbance to the animals whilst 95 

making optimal use of the subtle variations in data acquired by loggers that are mounted on 96 

the carapace rather than the head. 97 

Further work is needed to validate the identification of sea turtle underwater behaviours 98 

by data acquired by animal-borne sensors. In particular, before attempting to provide new 99 

insights about the at-sea behaviours of sea turtles in natural conditions, one needs is to 100 

automatically and correctly identify these behaviours, including those that are hard to detect 101 

but play a key role such as feeding, from data acquired in a way that minimizes the 102 

disturbance of equipped animal. The aim of our study is therefore to develop a new approach 103 

fulfilling this need. In this framework, we will use the results we obtained about turtles' 104 

behaviours only to illustrate the output of our approach without giving them any biological 105 

significance. Although sea turtle behaviours have mainly been inferred from combined 106 

acceleration and depth data, the additional use of a gyroscope (which records angular 107 

velocity) can provide further relevant information in remote behavioural identification [29–108 

31]. Thus, we deployed loggers combining an accelerometer, a gyroscope and a TDR on the 109 

carapace of free-ranging immature green turtles. This equipment was linked to a video-110 

recorder that was mounted in the logger device to provide visual evidence that could validate 111 

logger interpretations of behaviours, given that our approach ultimately aims to infer 112 

behaviours solely through logger use. Surface behaviours were identified separately from 113 

depth data. The study tested a set of methods to infer diving behaviours from the signals 114 

provided by the accelerometer, gyroscope and TDR, including automatic segmentation and 115 

supervised learning algorithms. The validity of our approach was tested through the use of 116 

confusion matrices and by comparing the inferred activity budgets with those obtained from 117 

video recordings. 118 

 119 

2 Material and Methods 120 

2.1 Ethics statements 121 

This study meets the legal requirements of the countries in which the work was carried out 122 

and follows all institutional guidelines. The protocol was approved by the “Conseil National 123 

de la Protection de la Nature” (http://www.conservation-nature.fr/acteurs2.php?id= 11), and 124 

the French Ministry for Ecology, Sustainable Development and Energy (permit number: 125 



2013154-0037), which acts as an ethics committee in Martinique. The fieldwork was carried 126 

out in strict accordance with the recommendations of the Prefecture of Martinique in order to 127 

minimize the disturbance of animals (Authorisation n°201710-0005). 128 

 129 

2.2 Data collection from free-ranging green turtles 130 

The field work was carried out from February 2018 to May 2019 in Grande Anse d’Arlet 131 

(14°50’N, 61°09’W), Martinique, France. We deployed CATS (Customized Animal Tracking 132 

Solutions, Germany) devices for periods ranging from several hours to several days on free-133 

ranging immature green turtles. A CATS device is comprised of a video-recorder (1920 x 134 

1080 pixels at 30 FPS) combined with a tri-axial accelerometer, a tri-axial gyroscope and a 135 

TDR (Supplementary Material, Fig. 1). The maximum battery capacity was considered to 136 

provide a recording capacity of 18 h of video footage and 48 h for other data. These devices 137 

were programmed to record acceleration and angular velocity (gyroscope) at a frequency of 138 

20 or 50 Hz according to the recording capacity of the logger (the 50 Hz data were 139 

subsampled at 20 Hz using a linear interpolation to homogenise the sample). Depth was 140 

recorded at 1 Hz using a pressure sensor with a range from 0 to 2000 m and 0.2m accuracy.  141 

The relatively shallow depths of the area allowed free divers to capture the turtles 142 

manually, as described in Nivière et al. (2018) [32]. Once an individual had been caught, it 143 

was placed on a boat and identified by scanning its PIT (Passive Integrated Transponder) or 144 

tagged with a new PIT if it was unknown. It was then weighed and its carapace length was 145 

measured (Supplementary Material, Table S1). The device was attached to the carapace using 146 

four suction cups.  Air was manually expelled from the cups, which were held in place by the 147 

use of a galvanic timed release system. The eventual dissolving of these releases by sea water 148 

and the positive buoyancy of the device (23.3 x 13.5 x 4 cm for 0.785 kg) led to the remote 149 

release of the device several hours later. Devices were recovered by geolocation of their 150 

Argos SPOT-363A tag (MK10, Wildlife Computers Redmond, WA, USA) with a goniometer 151 

(RXG-134, CLS, France). Instruments were deployed on 37 individuals, but complete datasets 152 

including video, acceleration, gyroscope and depth values were only recovered for 13 153 

individuals (Supplementary Material, Table S1).  154 

 155 

2.3 Processing of video data and behavioural labelling 156 



The video footage was watched to identify the various behaviours and determine their starting 157 

and ending times to the closest 0.01 s. Acceleration, angular velocity and depth data 158 

corresponding to each behavioural phase were visualized using R software (version 3.5.3) and 159 

the package rblt (Fig 1 & 2; 33). The 46 resulting behaviours were clustered into categories 160 

according their similarities (the definition of the various behaviours is available in 161 

Supplementary Material, Table S2). We retained seven main expressed categories for the 162 

multi-sensor signals, namely “Breathing”, “Feeding”, “Gliding”, “Swimming”, “Resting”, 163 

“Scratching” and “Staying at the surface”. All other behaviours were very infrequent and 164 

were grouped in an eighth category labelled “Other”. 165 

 166 

2.4 Analysis of the angular velocity and acceleration data  167 

The device was installed on the carapace in a tilted position along a longitudinal axis to obtain 168 

video images of the head. This results in biased values of accelerations and angular speeds for 169 

the surge (i.e. back-to-front) and heave (bottom-to-top) body axes, which therefore had to be 170 

corrected (see R-script in Supplementary Material). The static acceleration vector (i.e. the 171 

component due to gravity) ),,( zyx aaaa was obtained by separately averaging the 172 

acceleration values (ax, ay and az) on the surge, sway (right-to-left) and heave axes, 173 

respectively, over a centred running temporal window set to t = 2 s. which was the smallest 174 

window resulting in a norm, a  that remains close to 1 g (9.98 m/s2) for almost all measures. 175 

The Dynamic Body Acceleration was then computed as DBA = d2, where  d a a  is the 176 

dynamic acceleration vector [34]. Similarly the Rotational Activity was computed as RA = 177 

g2, where g = (gx, gy, gz) is the angular velocity (gx, gy, and gz correspond respectively to the 178 

values of roll, pitch and yaw per unit time provided by the gyroscope). 179 

 180 

2.5 Segmentation of the multi-sensor dataset 181 

The automatic identification of the labelled behaviours from the multi-sensor signals required 182 

the segmentation of the dataset into homogenous behavioural bouts with respect to a given 183 

variable. We started by relying on the depth data to distinguish the dives, defined as depths 184 

exceeding 0.3 m for at least 5 s, from the surface periods. We attributed the surface periods to 185 

either "Breathing” or “Staying at the surface”, according to whether the turtle remained at the 186 

surface for less or more than 6 s, respectively. We then distinguished between the various 187 



possible diving behaviours by using a changepoint algorithm, the Pruned Exact Linear Time 188 

(PELT) algorithm (R package changepoint; 35), in which the "pen.value" parameter, which 189 

corresponds to the additional penalty in the cost function for each additional partition of the 190 

data, can be manually adjusted. We tested different values and retained those which resulted 191 

in the best balance between obtaining homogenous behavioural bouts and limiting over-192 

segmentation. We first detected depth changes over 3 s of each dive (function cpt.mean, 193 

penalty = "Manual”, pen.value = 5) to obtain segments which were labelled as "ascending", 194 

"descending" or "flat" depending on whether the vertical speed was > 0.1 m.s-1, <–0.1 m.s-1 or 195 

between these two values, respectively. These ascending and descending segments were 196 

further segmented based on the DBA mean and variance (function cpt.meanvar, penalty = 197 

"Manual”, pen.value = 50) in order to distinguish between the swimming and gliding phases 198 

of these segments. The green turtle is a grazing herbivore which mainly feed on seagrass and 199 

algae [36]. The head movements occurring during feeding activities are easily detected by 200 

gyroscopes and/or accelerometers set directly on the head, but are rarely detected when these 201 

sensors are placed on the carapace. We did however note that the carapace tended to display 202 

pitch oscillations when the turtle pulled on the seagrass, an activity that we refer to hereafter 203 

as “Grabbing” (Fig 2). Accordingly, we further segmented the "flat" segments based on the 204 

variance of gy (angular speed in the animal's sagittal plane; function cpt.var, penalty = 205 

"Manual”, pen.value = 20) to pinpoint this behaviour. Each segment was then labelled as 206 

either the behavioural category that was expressed for at least 3/5 of its duration, or as 207 

“Transition” if several behaviours were involved with none of them occurring for 3/5 of the 208 

behavioural bout. Thus, the overall procedure classified multi-sensor signals into nine 209 

categories comprised of  surface behaviours (“Breathing” and “Staying at the surface”) which 210 

were identified using  depth data alone, diving behaviours (“Feeding, “Gliding”, “Resting”, 211 

“Scratching” and “Swimming”) and also “Other” and “Transition”, for which supervised 212 

learning algorithms were required.   213 

 214 

2.6 Identification of the diving behaviours by supervised learning algorithms 215 

We trained five supervised machine learning algorithms – (1) Classification And Regression 216 

Trees (CART), (2) Random Forest (RF), (3) Extreme Gradient Boosting (EGB), (4) Support 217 

Vector Machine (SVM), and (5) Linear Discriminant Analysis (LDA) – to associate the eight 218 

diving behaviour categories with the corresponding patterns of different input variables. They 219 

are the most commonly used classifiers in behaviour recognition and are considered to be 220 



relevant in ecology studies [17,37,38]. These algorithms were applied to our data using the R 221 

packages rpart [39] for CART, randomForest [40] for RF (n=300, mtry=14), xgboost [41] for 222 

EGB (num_class=8, eta=0.3, max_depth=3), e1071 [42] for SVM  and MASS [43] for LDA. 223 

For each segment, the algorithms were fed with four descriptive statistics (mean, 224 

minimum, maximum, and variance) computed for the three linear acceleration values (ax, ay 225 

and az), for the three angular speeds values (gx, gy and gz), and for DBA and RA. We also 226 

included the difference between the last and first depth values, and the duration of each 227 

segment. The fact that "Feeding" was characterised by high-frequency oscillations, in 228 

particular in terms of pitch speed (Fig 2), but also (although less obviously) in terms of roll 229 

speed and surge/sway accelerations, enabled us to distinguish this behaviour from the others. 230 

To do so, we filtered the raw values of gx, gy, ax and ay through a running window of 1 s and 231 

subtracted the obtained smoothed values from the respective raw values, then calculated the 232 

local mean of the obtained high frequency signals. We then computed the squared differences 233 

between the high frequency values and their respective local means in order to characterize 234 

these oscillations. The mean and the maximum value of these squared differences for each 235 

segment were then added to the list of variables used to feed the algorithms, i.e. 42 variables 236 

for each segment. Such a number of variables may be characterised numerous correlations. 237 

However, machine learning algorithms are less sensitive than classical regression methods to 238 

correlation in the explanatory variables. Nevertheless, for a simpler interpretation purpose, we 239 

looked for some possible reduced set of variables that may reach the same accuracy as the full 240 

data set, but we did not find any convincing one that had a close performance to the full data 241 

set. As the focus was more on predictability than interpretability (as is usual the case in 242 

machine learning), we kept all the 42 variables. 243 

 244 

2.7 Validation of the automatic behavioural inferences 245 

To estimate the ability of our procedure to correctly infer the behaviours of sea turtles based 246 

on acceleration, angular velocity and depth data, we repeatedly performed 2/3:1/3 splits of the 247 

sample of 13 individuals, with nine individuals retained for the learning phase and the 248 

remaining four individuals used to validate the outcome. From the 715 possible combinations, 249 

we retained the 358 combinations in which “Feeding” and “Scratching” were not under-250 

represented in the training dataset (i.e. when more than 60% of total feeding and scratching 251 

segments were present, i.e. 1145 and 868, respectively). Nevertheless, the number of 252 

“Feeding” and “Scratching” segments was much lower than those attributed to “Resting” and 253 



“Swimming” (17325 and 9795 segments, respectively). As an unbalanced training dataset can 254 

hinder the performance of supervised learning algorithms [44], we set an upper limit at 1000 255 

segments per behaviour for the training dataset. These segments were randomly selected for 256 

the over-expressed categories at each training trial. 257 

For each trial, we evaluated the efficiency of the different methods by computing the 258 

number of well-identified behaviours (true positive, TP, and true negative, TN) and of 259 

behaviours considered to be misclassified (false negative, FN, and false positive, FP) into a 260 

confusion matrix. We calculated three indicators for each behaviour: (1) "Sensitivity" = 261 

TP/(TP+FN), also called true positive rate, hit rate or recall, measures the ability of a method 262 

to detect the target behaviour among other behaviours; (2) "Precision" = TP/(TP+FP), also 263 

called positive predictive value, measures the ability of a method to correctly identify the 264 

target behaviour; and (3) "Specificity" = TN/(TN+FP), also called selectivity or true negative 265 

rate, measures the ability of a method to avoid wrongly considering other behaviours as the 266 

target behaviour. We also computed "Accuracy" = (TP+TN)/(TP+TN+FP+FN), which 267 

measures the ability of a method to correctly identify all behaviours as a whole.  268 

Furthermore, to possibly improve the performance and/or minimise the variance of 269 

behavioural inferences, we also relied on the "Ensemble Methods" [45,46], which consisted of 270 

combining the results obtained with the five supervised machine learning algorithms. We 271 

tested two such methods. The first was the "Voting Ensemble" (VE), which retained the most 272 

frequently predicted behaviour. The second involved a "Weighted Sum" (WS), where weights 273 

were given to the different predicted behaviours, based on "Precision" (weighting based on 274 

Sensitivity and Specificity was also tested but gave poor results). In order to highlight the best 275 

method to automatically identify the diving behaviours and particularly the feeding 276 

behaviours, we used Anova to compare the mean global accuracy obtained for the 375 277 

combinations of the seven classifiers (CART, SVL, LDA, RF, EGB, VE and WE). As the 278 

result of the Anova showed significant effects, we ran pairwise comparisons of mean 279 

performance using the Tukey HSD test. 280 

 Finally, the individual activity budgets were inferred by computing the proportion of 281 

time involved in the various surface behaviours (“Breathing” and “Staying at the surface”) 282 

inferred from depth data, and the proportion of time dedicated to diving behaviours 283 

(“Feeding”, “Gliding”, “Other”, “Resting”, “Scratching”, and “Swimming”), inferred using 284 

the best classifier (Fig. 3). The inferred activity budgets were compared to those observed in 285 

video recordings.   286 

 287 



3 Results 288 

A total of 66.2 hours of video were recorded, with a maximum of 14.6 hours for one 289 

individual (Table 1). The seven specific behavioural categories retained for the analysis 290 

(“Breathing”, “Feeding”, “Gliding”, “Resting”, “Scratching”, “Staying at the surface” and 291 

“Swimming”) represented 99% of the total duration. Only the two shortest deployments were 292 

not associated with a feeding event while the maximum duration of feeding represented only 293 

8% of the recording time of the individual. The catching of jellyfish was observed only 294 

occasionally in three individuals. This behaviour represented only 0.1% of the total feeding 295 

duration of the thirteen individuals, whilst the rest of the feeding time for those individuals 296 

was used for grazing on seagrass. For the others, feeding consisted only of grazing on 297 

seagrass. “Scratching” was particularly expressed by one turtle, and represented 13% of its 298 

observed time.  299 

The seven classifiers identified the five specific behavioural categories on which we 300 

focused (“Feeding”, “Gliding”, “Resting”, “Scratching” and “Swimming”) and two additional 301 

categories, “Transition” and “Other”, with an accuracy ranging from 0.91 to 0.95. The highest 302 

score was obtained with WS and the lowest one with SVM. The Tuckey HSD test indicated 303 

that the RF, VE and EGB outputs were not significantly different (0.935, 0.932 and 0.932, 304 

respectively). All classifiers identified the behavioural category with a low false positive rate 305 

(< 0.1 for the best classifiers; Fig.4). Few segments were wrongly identified as “Feeding” 306 

with the WS method, which thus obtained the lowest false positive rate (with respect to other 307 

classifiers) for this behaviour. The best true positive rates, for the seven classifiers, were 308 

obtained in the “Scratching” category despite its low occurrence in the dataset, meaning that 309 

this behaviour was relatively well identified when it occurred. 310 

The activity budget, representing the percentage of the total mean time allocated to each 311 

behavioural category, showed similar proportions between the predictions and the 312 

observations (Fig. 5 & 6). This result highlights the ability of our method and the WS model 313 

to predict the behaviours of immature green turtle in natural conditions. The main differences 314 

between the observed and predicted activity budgets were seen in the “Resting” and 315 

“Swimming” behaviours (Fig. 5 & 6). These differences were small and represented less than 316 

3% of the total observed time (Table 2). “Feeding” and “Scratching” were under-represented 317 

in our models and consequently their difference between predicted–actual time represent 318 

roughly 1% of the total observed time. Their low expression for some individuals led to an 319 

important percentage difference with respect to the observed time of the behaviour even if 320 

they were predicted in small proportion. The results obtained for each individual are available 321 



in supplementary material (Supplementary Material, Table S3). With a very low true positive 322 

rate, the predicted time of “Transition” represented on average 0.2% of the total observation 323 

time. Thus the overall procedure was able to reliably infer the seven mainly expressed 324 

behaviours of the immature green turtles.  325 

 326 

4 Discussion 327 

This is the first study to validate the use of acceleration, gyroscope and TDR signals for 328 

inferring free-ranging green turtle behaviours. In previous studies, carapace-mounted 329 

accelerometers were used to describe swimming behaviours and buoyancy regulation in sea 330 

turtles [19,20,47,48] in specific contexts where signals associated to “Swimming” and 331 

“Gliding” could be visually identified, or were used to estimate sea turtle activity levels in 332 

terms of DBA [18,49]. The possibility to rely on accelerometers and other carapace-mounted 333 

sensors such as TDRs and gyroscopes to infer behaviours of free-ranging sea turtles had not 334 

been explored in detail until now due to the lack of a validation process, which is critically 335 

important for this kind of approach [50]. The validation process described in the present study 336 

has enabled us to provide an overall procedure permitting the reliable inference of the seven 337 

most commonly expressed behaviours of the free-ranging green turtle (namely “Breathing”, 338 

“Feeding”, “Gliding”, “Resting”, “Scratching”, “Staying at the Surface” and “Swimming”), 339 

and thus inferring the fine-scale activity budgets of animals whose populations are currently 340 

under anthropogenic pressures which jeopardize their future [51,52]. This inference is 341 

essential if we wish to compare how these animals allocate their time between different 342 

activities according to natural and anthropogenic pressures such as available resources, 343 

environmental changes or tourism. When combined with GPS data, this protocol could 344 

identify the areas where sea turtles concentrate their activities and thus help to delineate 345 

protected areas in order to limit human disturbances.    346 

We tested seven classifiers (LDA, SVM, CART, RF, EGB, VE and WS) to compare 347 

their strengths and weaknesses in automatic behavioural identification based on TDR, 348 

acceleration and gyroscopic data. The classifiers identified the seven behavioural classes with 349 

a global accuracy ranging from 0.91 to 0.95, which is comparable to the accuracy reached in 350 

other similar studies [17,53,54].  The WS classifier performed better than the base and VE 351 

classifiers: clearly, assigning precision-based weights to the base classifier’ predictions 352 

improved the behavioural classification. The decrease we observed in the false positive rate 353 

for rare behaviours through the use an ensemble method for "Feeding" in this study has also 354 



been highlighted by Brewster et al. (2018) [37]. Ensemble methods are mainly used because 355 

they reduce the variance of behaviour classification [53,55] and thus increase the global 356 

accuracy. However, they involve a higher computational cost and require a reliable setting up 357 

of base learners.  358 

The use of supervised machine-learning has become common to automatically identify 359 

behaviours from data provided by animal-borne loggers [17,50,56]. Indeed, the development 360 

of fast personal computers and of free user-friendly computing libraries made it possible to 361 

easily apply these ‘black box’ algorithms to huge amounts of data. The machine-learning 362 

approach has thus turned out to be a very powerful tool for identifying well-characterized  363 

behaviours (in terms of signal) such as locomotion [56–58] and resting [59–61]. However, it 364 

appears to be rather inefficient when seeking to identify behaviours with confusing signal 365 

characteristics. Examples include feeding and grooming in pumas [62], pecking in plovers 366 

[63] or foraging in fur seals [64]. Although one could expect that feeding machine-learning 367 

algorithms with big data should provide the most accurate predictive rules [16,65,66], Wilson 368 

et al. (2018) [67] showed that a classification method based on a good understanding and 369 

careful examination of the acceleration signal actually gives better results in terms of 370 

computational time and of accuracy than non-optimized machine learning. Accordingly, the 371 

mixed approach developed in this study fed machine-learning algorithms with a number of 372 

derived signals which were specifically elaborated to pinpoint specific hard-to-detect 373 

behaviours when alternative simpler means based on a single or a few parameters appeared to 374 

be effective. This method allowed us to identify key behaviours such as feeding and 375 

scratching, which had previously been either misidentified or not identified at all due to the 376 

lack of discriminative signals in the raw data obtained from raw acceleration and/or 377 

gyroscopic data obtained with loggers fixed to the carapace of the turtle. Although our choice 378 

of derived signals makes our approach specific to sea turtles, this principle can be applied to 379 

numerous species if the different signals are considered with care before the study. 380 

When carrying out automatic behavioural identification from multi-sensor data using 381 

supervised learning algorithms, one of the main difficulties is the segmentation of the multi-382 

sensor data to obtain homogeneous segments that are representative of the various 383 

behavioural categories. To date, most studies divided the multi-sensor data into segments 384 

using fixed-time segments [68–70] or a sliding sample window with a fixed length [38,71]. 385 

However, several studies testing the size of the window showed that it influences 386 

classification accuracy and the identification of short behaviours [53,72–74]. Indeed, an 387 

individual can express both short and long behaviours, such as burst swimming in lemon 388 



sharks or a prey capture in Adélie penguins compared to normal swimming behaviour [37,75]. 389 

Whilst the use of long fixed segments dramatically increases the proportion of 390 

inhomogeneous segments, using short segments may prevent the detection of certain key 391 

signals such as low-frequency oscillations. A hierarchical, adapted segmentation procedure 392 

therefore seems to be a more judicious choice. This consists of splitting behaviours into 393 

groups based on signals that are easily interpretable in a dichotomic way (variables such as 394 

depth were used to attain this in our study). A change-point algorithm can be used to achieve 395 

a more specific segmentation based on other signals, with a possible ad hoc adjustment of the 396 

contrast is required to evaluate whether two successive values do or do not belong to the same 397 

segment (such as the manual penalty of the PELT algorithm). In this paper, we demonstrate 398 

this approach for the green turtle (Fig. 3, R-script in Supplementary Material), but there is no 399 

reason it could not be easily adapted for other species. This will certainly necessitate the 400 

identification of the optimal hyper-parameters as well as the informative signals for the 401 

segmentation according to the species, but the approach of combining automated 402 

segmentation and machine learning methods with well thought out descriptive variables 403 

should apply as well. 404 

The approach we proposed thus offers promising perspectives for inferring behaviours 405 

of animals that cannot be easily observed in the wild though the automatic analysis of large 406 

amounts of raw data acquired over long periods by miniaturised (low disturbance) loggers 407 

such as high-frequency tri-axial accelerometers and gyroscopes. It provides a number of 408 

adaptable principles that enable the efficient use of machine learning algorithms to 409 

automatically identify fine-scale behaviours in sea turtles, and may be used for a wide range 410 

of species. The automated and reliable identification of the various behaviours permits a rapid 411 

inference of the time budget of the animals under study. Identifying how much time the 412 

studied animals dedicate to activities such as feeding, travelling and resting can be of 413 

relevance when seeking to understand how individuals attempt to maximise their fitness in a 414 

given environment. This approach could therefore be a key tool in understanding the ecology 415 

of endangered species and make a significant contribution to their conservation. 416 

 417 

5 Data accessibility statement 418 

The R-script to visualize the raw acceleration, gyroscope and depth profile associated with the 419 

observed behaviours of the immature green turtles have been uploaded as part of the 420 

supplementary material. The same is true for the R-script to automatically identify sea turtle 421 



behaviour from the labelled data. The datasets containing the acceleration, gyroscope and 422 

depth recordings of the 13 immature green turtles as well as their observed behaviours are 423 

available within the Dryad Digital Repository:  https://doi.org/10.5061/dryad.hhmgqnkd9.  424 

URL for reviewer: 425 

https://datadryad.org/stash/share/j3x2UusNTI1OWqLsJ1mUOq7wMm3t3PAGMzwAMuYM426 

FO0 427 
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10 Tables 690 

 691 

Table 1: Total duration (seconds) of the observed sequences of behavioural categories for the thirteen free-ranging immature green 692 

turtles 693 

 694 

Behaviour #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 TOTAL 
Relative 

Importance 
(%) 

Breathing 36 301 37 20 66 87 89 6 57 27 132 75 293 1226 0.51 
Feeding - 1499 162 540 152 1955 70 - 1030 661 6 28 178 6281 2.64 
Gliding - 896 366 524 211 284 1054 102 1257 129 609 372 2271 8075 3.39 
Resting - 10134 7747 4760 5807 11302 19502 711 7190 602 17579 3814 27441 116590 48.95 

Scratching - 512 574 1789 8 903 136 - 64 21 177 94 218 4496 1.89 
Staying at the surface - 898 1396 1546 1394 2541 2955 573 1032 818 1485 582 3246 18465 7.75 

Swimming 5279 6522 3801 4082 6421 6005 4800 2026 6354 5493 7739 2760 18895 80178 33.66 
Other - 258 169 283 148 818 136 45 261 209 233 140 188 2887 1.21 



Table 2: Average duration of each behaviour shown by the 13 immature green turtles) 695 

predicted time vs. observed time. The percentages are expressed with respect to the total 696 

individual recorded video duration or to the time the behaviour in question was expressed. 697 

The predicted durations of the diving behaviours were obtained using the WS method, and the 698 

surfacing behaviours were predicted using depth values.  699 

 700 

Behaviour  predicted (s) observed (s) difference (s) %_total %_behaviour 
Breathing 99 94 32* 0.2* 46.9 
Feeding 432 497 207 1,1 180.1 
Gliding 936 651 326 1.0 39.1 
Other 92 235 143 0.8 60.2 
Resting 9175 9640 747** 2.7** 6.6 
Scratching 437 354 118 0.7 311.8** 
Staying at the surface 1435 1477 151 0.8 10.8 
Swimming 6206 6256 441 2.4 6.9* 
Transition 48 - 48 0.2* - 

 701 

* The lowest difference obtained among the nine behavioural categories 702 

** The highest difference obtained among the nine behavioural categories 703 

704 
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11 Figures 706 

 707 

 708 

Figure 1. Raw acceleration, gyroscope and depth profiles for several behaviours 709 

expressed by turtle #12. 710 

 711 



  712 

Figure 2: Raw acceleration and gyroscope signals obtained for the feeding behaviours 713 

expressed by turtle #6. The definitions of the behaviours are available in Supplementary 714 

Material (Table S2). 715 



 716 

Figure 3. Workflow of automatic behavioural identification using acceleration, angular 717 

speed and depth data, as adapted to the green turtle.  The hyper-parameters set up 718 

specifically for green turtle data are highlighted in purple. The application of this workflow 719 



for other marine species would necessitate the identification of the optimal hyper-parameter 720 

values for each species.  721 

 722 

 723 

 724 

 725 

Figure 4. True positive rate vs. the false positive rate obtained with the seven classifiers 726 

for the seven diving categories. The symbols show the mean values obtained from 371 727 

combinations of splitting the sample of thirteen individuals into two sub-groups (one of nine 728 

individuals for learning and one of four individuals for testing).  729 

 730 



 731 

Figure 5. Pie chart of the observed (determined from the video) vs. predicted mean 732 

durations of the various behaviours displayed by three free-ranging immature green 733 

turtles. The predicted durations of the diving behaviours were obtained using the WS 734 

classifier.  735 

 736 



 737 

 738 

Figure 6. Comparison of the nine main inferred behavioural categories (in red) and of 739 

the actually observed ones (in blue) for a few hours for immature green turtle #1. The 740 

predicted occurrences of the diving behaviours were obtained using the WS classifier. 741 
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