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Introduction

It is essential to assess the feeding behaviours of free-ranging animals in order to estimate their time budgets, and thus understand how these animals maximise their fitness [START_REF] Stephens | Foraging Theory[END_REF][START_REF] Stephens | Foraging : behavior and ecology[END_REF].

However, investigating the foraging behaviour of sea turtles in their natural environment remains a significant challenge as it is impossible to obtain long-term behavioural data through visual observations alone. Although some studies have provided relevant information on sea turtle diet through post-mortem stomach content analysis or the deployment of animalborne video-recorders [START_REF] Colman | Diet of Olive Ridley Sea Turtles, Lepidochelys olivacea, in the Waters of Sergipe, Brazil[END_REF][START_REF] Arthur | Using animal-borne imaging to assess green turtle (Chelonia mydas) foraging ecology in Moreton Bay, Australia[END_REF][START_REF] Wildermann | First Report of Callinectes sapidus (Decapoda: Portunidae) in the Diet of Lepidochelys olivacea[END_REF], the proportion of time that sea turtles allocate to feeding activities on the long term remains unknown. Time-depth recorders (TDR) have been used to record the dive profiles and durations of free-ranging sea turtles and have provided insights into their underwater activities [START_REF] Lennox | Envisioning the Future of Aquatic Animal Tracking: Technology, Science, and Application[END_REF][START_REF] Hussey | Aquatic animal telemetry: A panoramic window into the underwater world[END_REF][START_REF] Houghton | Diving behaviour during the internesting interval for loggerhead turtles Caretta caretta nesting in Cyprus[END_REF]. However, a number of authors have underlined the limits of focussing on dive profile, as foraging activity cannot be distinguished from transit or resting phases [START_REF] Chambault | Inter-nesting behavioural adjustments of green turtles to an estuarine habitat in French Guiana[END_REF][START_REF] Chambault | The influence of oceanographic features on the foraging behavior of the olive ridley sea turtle Lepidochelys olivacea along the Guiana coast[END_REF]. The joint use of TDR and video recorders revealed that the typical dive types described in [START_REF] Hays | The diving behaviour of green turtles at Ascension Island[END_REF][START_REF] Hochscheid | Reptilian diving: Highly variable dive patterns in the green turtle Chelonia mydas[END_REF] could not be associated with specific activities such as travelling, resting or foraging [START_REF] Seminoff | Underwater behaviour of green turtles monitored with video-time-depth recorders: What's missing from dive profiles?[END_REF][START_REF] Thomson | Informing the interpretation of dive profiles using animal-borne video: A marine turtle case study[END_REF].

Devices combining miniaturised tri-axial accelerometers and TDR were described as a powerful tool to improve the identification of fine-scale behaviours in animals that cannot be easily monitored by visual observation [START_REF] Laich | Identification of imperial cormorant Phalacrocorax atriceps behaviour using accelerometers[END_REF][START_REF] Graf | The use of acceleration to code for animal behaviours; a case study in free-ranging Eurasian beavers Castor fiber[END_REF][START_REF] Nathan | Using tri-axial acceleration data to identify behavioral modes of free-ranging animals: general concepts and tools illustrated for griffon vultures[END_REF]. Such devices have been deployed to study the behaviour and dive patterns of loggerheads (Caretta caretta, 18), green turtles (Chelonia mydas, [START_REF] Yasuda | Changes in flipper beat frequency, body angle and swimming speed of female green turtles Chelonia mydas[END_REF]) and leatherbacks (Dermochelys coriacea, 20) during the inter-nesting period.

However, the interpretation of the acceleration signals used in these studies to identify sea turtle behaviours in water was not validated by simultaneous visual observation, possibly resulting in misidentification and significant biases in the interpretation of the data.

A new approach was therefore necessary to reliably identify the underwater behaviours of free-ranging sea turtles without using direct visual observation (which is usually impossible) or video recordings, which are limited to short-term studies (a few hours) because of their high power consumption. Accelerometers permit the identification of feeding activity and time budget in marine animals such as seals and penguins by recording head movements that are likely to correspond to prey captures [START_REF] Viviant | Prey capture attempts can be detected in Steller sea lions and other marine predators using accelerometers[END_REF][START_REF] Watanabe | Testing optimal foraging theory in a penguinkrill system[END_REF][START_REF] Gallon | Identifying foraging events in deep diving southern elephant seals, Mirounga leonina, using acceleration data loggers[END_REF]. For the same purpose, accelerometers have been placed on the beak [START_REF] Fossette | Dive and beak movement patterns in leatherback turtles Dermochelys coriacea during internesting intervals in French Guiana[END_REF][START_REF] Hochscheid | Gulps, wheezes, and sniffs: How measurement of beak movement in sea turtles can elucidate their behaviour and ecology[END_REF][START_REF] Myers | Do leatherback turtles Dermochelys coriacea forage during the breeding season? A combination of data-logging devices provide new insights[END_REF][START_REF] Okuyama | Monitoring beak movements with an acceleration datalogger: A useful technique for assessing the feeding and breathing behaviors of sea turtles[END_REF] or the top of the head [START_REF] Okuyama | Ethogram of Immature Green Turtles : Behavioral Strategies for Somatic Growth in Large Marine Herbivores[END_REF] of sea turtles to record beakopenings and capture attempts. However, the position of the device was a significant disturbance for the individuals and could not be considered for long-term use (up to several weeks). It was therefore crucial to develop a protocol for the long-term recording and identification of sea turtle feeding activities that minimizes disturbance to the animals whilst making optimal use of the subtle variations in data acquired by loggers that are mounted on the carapace rather than the head.

Further work is needed to validate the identification of sea turtle underwater behaviours by data acquired by animal-borne sensors. In particular, before attempting to provide new insights about the at-sea behaviours of sea turtles in natural conditions, one needs is to automatically and correctly identify these behaviours, including those that are hard to detect but play a key role such as feeding, from data acquired in a way that minimizes the disturbance of equipped animal. The aim of our study is therefore to develop a new approach fulfilling this need. In this framework, we will use the results we obtained about turtles' behaviours only to illustrate the output of our approach without giving them any biological significance. Although sea turtle behaviours have mainly been inferred from combined acceleration and depth data, the additional use of a gyroscope (which records angular velocity) can provide further relevant information in remote behavioural identification [START_REF] Wilson | Changes of loggerhead turtle ( Caretta caretta ) dive behavior associated with tropical storm passage during the internesting period[END_REF][START_REF] Tyson | 2017 Novel Bio-Logging Tool for Studying Fine-Scale Behaviors of Marine Turtles in Response to Sound[END_REF][START_REF] Noda | Monitoring attitude and dynamic acceleration of free-moving aquatic animals using a gyroscope[END_REF]. Thus, we deployed loggers combining an accelerometer, a gyroscope and a TDR on the carapace of free-ranging immature green turtles. This equipment was linked to a videorecorder that was mounted in the logger device to provide visual evidence that could validate logger interpretations of behaviours, given that our approach ultimately aims to infer behaviours solely through logger use. Surface behaviours were identified separately from depth data. The study tested a set of methods to infer diving behaviours from the signals provided by the accelerometer, gyroscope and TDR, including automatic segmentation and supervised learning algorithms. The validity of our approach was tested through the use of confusion matrices and by comparing the inferred activity budgets with those obtained from video recordings.
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Material and Methods

Ethics statements

This study meets the legal requirements of the countries in which the work was carried out and follows all institutional guidelines. The protocol was approved by the "Conseil National TDR (Supplementary Material, Fig. 1). The maximum battery capacity was considered to provide a recording capacity of 18 h of video footage and 48 h for other data. These devices were programmed to record acceleration and angular velocity (gyroscope) at a frequency of 20 or 50 Hz according to the recording capacity of the logger (the 50 Hz data were subsampled at 20 Hz using a linear interpolation to homogenise the sample). Depth was recorded at 1 Hz using a pressure sensor with a range from 0 to 2000 m and 0.2m accuracy.

The relatively shallow depths of the area allowed free divers to capture the turtles manually, as described in Nivière et al. (2018) [START_REF] Nivière | Identification of marine key areas across the Caribbean to ensure the conservation of the critically endangered hawksbill turtle[END_REF]. Once an individual had been caught, it was placed on a boat and identified by scanning its PIT (Passive Integrated Transponder) or tagged with a new PIT if it was unknown. It was then weighed and its carapace length was measured (Supplementary Material, Table S1). The device was attached to the carapace using four suction cups. Air was manually expelled from the cups, which were held in place by the use of a galvanic timed release system. The eventual dissolving of these releases by sea water and the positive buoyancy of the device (23.3 x 13.5 x 4 cm for 0.785 kg) led to the remote release of the device several hours later. Devices were recovered by geolocation of their Argos SPOT-363A tag (MK10, Wildlife Computers Redmond, WA, USA) with a goniometer (RXG-134, CLS, France). Instruments were deployed on 37 individuals, but complete datasets including video, acceleration, gyroscope and depth values were only recovered for 13 individuals (Supplementary Material, Table S1).

Processing of video data and behavioural labelling

The video footage was watched to identify the various behaviours and determine their starting and ending times to the closest 0.01 s. Acceleration, angular velocity and depth data corresponding to each behavioural phase were visualized using R software (version 3.5.3) and the package rblt (Fig 1 & 2; 33). The 46 resulting behaviours were clustered into categories according their similarities (the definition of the various behaviours is available in Supplementary Material, Table S2). We retained seven main expressed categories for the multi-sensor signals, namely "Breathing", "Feeding", "Gliding", "Swimming", "Resting", "Scratching" and "Staying at the surface". All other behaviours were very infrequent and were grouped in an eighth category labelled "Other".

Analysis of the angular velocity and acceleration data

The device was installed on the carapace in a tilted position along a longitudinal axis to obtain video images of the head. This results in biased values of accelerations and angular speeds for the surge (i.e. back-to-front) and heave (bottom-to-top) body axes, which therefore had to be corrected (see R-script in Supplementary Material). The static acceleration vector (i.e. the component due to gravity)
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was obtained by separately averaging the acceleration values (ax, ay and az) on the surge, sway (right-to-left) and heave axes, respectively, over a centred running temporal window set to t = 2 s. which was the smallest window resulting in a norm, a that remains close to 1 g (9.98 m/s 2 ) for almost all measures.

The Dynamic Body Acceleration was then computed as DBA = d 2 , where   d a a is the dynamic acceleration vector [START_REF] Wilson | Estimates for energy expenditure in free-living animals using acceleration proxies: A reappraisal[END_REF]. Similarly the Rotational Activity was computed as RA = g 2 , where g = (gx, gy, gz) is the angular velocity (gx, gy, and gz correspond respectively to the values of roll, pitch and yaw per unit time provided by the gyroscope).

Segmentation of the multi-sensor dataset

The automatic identification of the labelled behaviours from the multi-sensor signals required the segmentation of the dataset into homogenous behavioural bouts with respect to a given variable. We started by relying on the depth data to distinguish the dives, defined as depths exceeding 0.3 m for at least 5 s, from the surface periods. We attributed the surface periods to either "Breathing" or "Staying at the surface", according to whether the turtle remained at the surface for less or more than 6 s, respectively. We then distinguished between the various possible diving behaviours by using a changepoint algorithm, the Pruned Exact Linear Time (PELT) algorithm (R package changepoint; 35), in which the "pen.value" parameter, which corresponds to the additional penalty in the cost function for each additional partition of the data, can be manually adjusted. We tested different values and retained those which resulted in the best balance between obtaining homogenous behavioural bouts and limiting oversegmentation. We first detected depth changes over 3 s of each dive (function cpt.mean, penalty = "Manual", pen.value = 5) to obtain segments which were labelled as "ascending", "descending" or "flat" depending on whether the vertical speed was > 0.1 m.s -1 , <-0.1 m.s -1 or between these two values, respectively. These ascending and descending segments were further segmented based on the DBA mean and variance (function cpt.meanvar, penalty = "Manual", pen.value = 50) in order to distinguish between the swimming and gliding phases of these segments. The green turtle is a grazing herbivore which mainly feed on seagrass and algae [START_REF] Reich | The 'lost years' of green turtles: using stable isotopes to study cryptic lifestages[END_REF]. The head movements occurring during feeding activities are easily detected by gyroscopes and/or accelerometers set directly on the head, but are rarely detected when these sensors are placed on the carapace. We did however note that the carapace tended to display pitch oscillations when the turtle pulled on the seagrass, an activity that we refer to hereafter as "Grabbing" (Fig 2). Accordingly, we further segmented the "flat" segments based on the variance of gy (angular speed in the animal's sagittal plane; function cpt.var, penalty = "Manual", pen.value = 20) to pinpoint this behaviour. Each segment was then labelled as either the behavioural category that was expressed for at least 3/5 of its duration, or as "Transition" if several behaviours were involved with none of them occurring for 3/5 of the behavioural bout. Thus, the overall procedure classified multi-sensor signals into nine categories comprised of surface behaviours ("Breathing" and "Staying at the surface") which were identified using depth data alone, diving behaviours ("Feeding, "Gliding", "Resting", "Scratching" and "Swimming") and also "Other" and "Transition", for which supervised learning algorithms were required.

Identification of the diving behaviours by supervised learning algorithms

We trained five supervised machine learning algorithms -(1) Classification And Regression Trees (CART), (2) Random Forest (RF), (3) Extreme Gradient Boosting (EGB), (4) Support

Vector Machine (SVM), and (5) Linear Discriminant Analysis (LDA) -to associate the eight diving behaviour categories with the corresponding patterns of different input variables. They are the most commonly used classifiers in behaviour recognition and are considered to be relevant in ecology studies [START_REF] Nathan | Using tri-axial acceleration data to identify behavioral modes of free-ranging animals: general concepts and tools illustrated for griffon vultures[END_REF][START_REF] Brewster | Development and application of a machine learning algorithm for classification of elasmobranch behaviour from accelerometry data[END_REF][START_REF] Ladds | Seeing it all: Evaluating supervised machine learning methods for the classification of diverse otariid behaviours[END_REF]. These algorithms were applied to our data using the R packages rpart [START_REF] Therneau | rpart: Recursive Partitioning and Regression Trees[END_REF] for CART, randomForest [START_REF] Liaw | Classification and Regression by randomForest[END_REF] for RF (n=300, mtry=14), xgboost [START_REF] Chen | xgboost: Extreme Gradient Boosting[END_REF] for EGB (num_class=8, eta=0.3, max_depth=3), e1071 [START_REF] Meyer | Misc Functions of the Department of Statistics, Probability Theory Group[END_REF] for SVM and MASS [START_REF] Venables | Modern Applied Statistics with S. Fourth[END_REF] for LDA.

For each segment, the algorithms were fed with four descriptive statistics (mean, minimum, maximum, and variance) computed for the three linear acceleration values (ax, ay and az), for the three angular speeds values (gx, gy and gz), and for DBA and RA. We also included the difference between the last and first depth values, and the duration of each segment. The fact that "Feeding" was characterised by high-frequency oscillations, in particular in terms of pitch speed (Fig 2), but also (although less obviously) in terms of roll speed and surge/sway accelerations, enabled us to distinguish this behaviour from the others.

To do so, we filtered the raw values of gx, gy, ax and ay through a running window of 1 s and subtracted the obtained smoothed values from the respective raw values, then calculated the local mean of the obtained high frequency signals. We then computed the squared differences between the high frequency values and their respective local means in order to characterize these oscillations. The mean and the maximum value of these squared differences for each segment were then added to the list of variables used to feed the algorithms, i.e. 42 variables for each segment. Such a number of variables may be characterised numerous correlations.

However, machine learning algorithms are less sensitive than classical regression methods to correlation in the explanatory variables. Nevertheless, for a simpler interpretation purpose, we looked for some possible reduced set of variables that may reach the same accuracy as the full data set, but we did not find any convincing one that had a close performance to the full data set. As the focus was more on predictability than interpretability (as is usual the case in machine learning), we kept all the 42 variables.

Validation of the automatic behavioural inferences

To estimate the ability of our procedure to correctly infer the behaviours of sea turtles based on acceleration, angular velocity and depth data, we repeatedly performed 2/3:1/3 splits of the sample of 13 individuals, with nine individuals retained for the learning phase and the remaining four individuals used to validate the outcome. From the 715 possible combinations, we retained the 358 combinations in which "Feeding" and "Scratching" were not underrepresented in the training dataset (i.e. when more than 60% of total feeding and scratching segments were present, i.e. 1145 and 868, respectively). Nevertheless, the number of "Feeding" and "Scratching" segments was much lower than those attributed to "Resting" and "Swimming" (17325 and 9795 segments, respectively). As an unbalanced training dataset can hinder the performance of supervised learning algorithms [START_REF] Japkowicz | The Class Imbalance Problem: Significance and Strategies[END_REF], we set an upper limit at 1000 segments per behaviour for the training dataset. These segments were randomly selected for the over-expressed categories at each training trial.

For each trial, we evaluated the efficiency of the different methods by computing the number of well-identified behaviours (true positive, TP, and true negative, TN) and of behaviours considered to be misclassified (false negative, FN, and false positive, FP) into a confusion matrix. We calculated three indicators for each behaviour: (1) "Sensitivity" = TP/(TP+FN), also called true positive rate, hit rate or recall, measures the ability of a method to detect the target behaviour among other behaviours; (2) "Precision" = TP/(TP+FP), also called positive predictive value, measures the ability of a method to correctly identify the target behaviour; and (3) "Specificity" = TN/(TN+FP), also called selectivity or true negative rate, measures the ability of a method to avoid wrongly considering other behaviours as the target behaviour. We also computed "Accuracy" = (TP+TN)/(TP+TN+FP+FN), which measures the ability of a method to correctly identify all behaviours as a whole.

Furthermore, to possibly improve the performance and/or minimise the variance of behavioural inferences, we also relied on the "Ensemble Methods" [START_REF] Opitz | Popular Ensemble Methods: An Empirical Study[END_REF][START_REF] Rokach | Ensemble-based classifiers[END_REF], which consisted of combining the results obtained with the five supervised machine learning algorithms. We tested two such methods. The first was the "Voting Ensemble" (VE), which retained the most frequently predicted behaviour. The second involved a "Weighted Sum" (WS), where weights were given to the different predicted behaviours, based on "Precision" (weighting based on Sensitivity and Specificity was also tested but gave poor results). In order to highlight the best method to automatically identify the diving behaviours and particularly the feeding behaviours, we used Anova to compare the mean global accuracy obtained for the 375 combinations of the seven classifiers (CART, SVL, LDA, RF, EGB, VE and WE). As the result of the Anova showed significant effects, we ran pairwise comparisons of mean performance using the Tukey HSD test.

Finally, the individual activity budgets were inferred by computing the proportion of time involved in the various surface behaviours ("Breathing" and "Staying at the surface") inferred from depth data, and the proportion of time dedicated to diving behaviours ("Feeding", "Gliding", "Other", "Resting", "Scratching", and "Swimming"), inferred using the best classifier (Fig. 3). The inferred activity budgets were compared to those observed in video recordings.

A total of 66.2 hours of video were recorded, with a maximum of 14.6 hours for one individual (Table 1). The seven specific behavioural categories retained for the analysis ("Breathing", "Feeding", "Gliding", "Resting", "Scratching", "Staying at the surface" and "Swimming") represented 99% of the total duration. Only the two shortest deployments were not associated with a feeding event while the maximum duration of feeding represented only 8% of the recording time of the individual. The catching of jellyfish was observed only occasionally in three individuals. This behaviour represented only 0.1% of the total feeding duration of the thirteen individuals, whilst the rest of the feeding time for those individuals was used for grazing on seagrass. For the others, feeding consisted only of grazing on seagrass. "Scratching" was particularly expressed by one turtle, and represented 13% of its observed time.

The seven classifiers identified the five specific behavioural categories on which we focused ("Feeding", "Gliding", "Resting", "Scratching" and "Swimming") and two additional categories, "Transition" and "Other", with an accuracy ranging from 0.91 to 0.95. The highest score was obtained with WS and the lowest one with SVM. The Tuckey HSD test indicated that the RF, VE and EGB outputs were not significantly different (0.935, 0.932 and 0.932, respectively). All classifiers identified the behavioural category with a low false positive rate (< 0.1 for the best classifiers; Fig. 4). Few segments were wrongly identified as "Feeding" with the WS method, which thus obtained the lowest false positive rate (with respect to other classifiers) for this behaviour. The best true positive rates, for the seven classifiers, were obtained in the "Scratching" category despite its low occurrence in the dataset, meaning that this behaviour was relatively well identified when it occurred.

The activity budget, representing the percentage of the total mean time allocated to each behavioural category, showed similar proportions between the predictions and the observations (Fig. 5 &6). This result highlights the ability of our method and the WS model to predict the behaviours of immature green turtle in natural conditions. The main differences between the observed and predicted activity budgets were seen in the "Resting" and "Swimming" behaviours (Fig. 5 &6). These differences were small and represented less than 3% of the total observed time (Table 2). "Feeding" and "Scratching" were under-represented in our models and consequently their difference between predicted-actual time represent roughly 1% of the total observed time. Their low expression for some individuals led to an important percentage difference with respect to the observed time of the behaviour even if they were predicted in small proportion. The results obtained for each individual are available in supplementary material (Supplementary Material, Table S3). With a very low true positive rate, the predicted time of "Transition" represented on average 0.2% of the total observation time. Thus the overall procedure was able to reliably infer the seven mainly expressed behaviours of the immature green turtles.

Discussion

This is the first study to validate the use of acceleration, gyroscope and TDR signals for inferring free-ranging green turtle behaviours. In previous studies, carapace-mounted accelerometers were used to describe swimming behaviours and buoyancy regulation in sea turtles [START_REF] Yasuda | Changes in flipper beat frequency, body angle and swimming speed of female green turtles Chelonia mydas[END_REF][START_REF] Fossette | Behaviour and buoyancy regulation in the deepestdiving reptile: the leatherback turtle[END_REF][START_REF] Hays | Flipper beat frequency and amplitude changes in diving green turtles, Chelonia mydas[END_REF][START_REF] Okuyama | The regularity of dive performance in sea turtles: A new perspective from precise activity data[END_REF] in specific contexts where signals associated to "Swimming" and "Gliding" could be visually identified, or were used to estimate sea turtle activity levels in terms of DBA [START_REF] Fossette | Acceleration data reveal the energy management strategy of a marine ectotherm during reproduction[END_REF][START_REF] Enstipp | Energy expenditure of adult green turtles (Chelonia mydas) at their foraging grounds and during simulated oceanic migration[END_REF]. The possibility to rely on accelerometers and other carapace-mounted sensors such as TDRs and gyroscopes to infer behaviours of free-ranging sea turtles had not been explored in detail until now due to the lack of a validation process, which is critically important for this kind of approach [START_REF] Brown | Observing the unwatchable through acceleration logging of animal behavior[END_REF]. The validation process described in the present study has enabled us to provide an overall procedure permitting the reliable inference of the seven most commonly expressed behaviours of the free-ranging green turtle (namely "Breathing", "Feeding", "Gliding", "Resting", "Scratching", "Staying at the Surface" and "Swimming"), and thus inferring the fine-scale activity budgets of animals whose populations are currently under anthropogenic pressures which jeopardize their future [START_REF] Koch | Estimates of sea turtle mortality from poaching and bycatch in Bahía Magdalena, Baja California Sur, Mexico[END_REF][START_REF] Wallace | Impacts of fisheries bycatch on marine turtle populations worldwide: Toward conservation and research priorities[END_REF]. This inference is essential if we wish to compare how these animals allocate their time between different activities according to natural and anthropogenic pressures such as available resources, environmental changes or tourism. When combined with GPS data, this protocol could identify the areas where sea turtles concentrate their activities and thus help to delineate protected areas in order to limit human disturbances.

We tested seven classifiers (LDA, SVM, CART, RF, EGB, VE and WS) to compare their strengths and weaknesses in automatic behavioural identification based on TDR, acceleration and gyroscopic data. The classifiers identified the seven behavioural classes with a global accuracy ranging from 0.91 to 0.95, which is comparable to the accuracy reached in other similar studies [START_REF] Nathan | Using tri-axial acceleration data to identify behavioral modes of free-ranging animals: general concepts and tools illustrated for griffon vultures[END_REF][START_REF] Ladds | Super machine learning: Improving accuracy and reducing variance of behaviour classification from accelerometry[END_REF][START_REF] Ellis | Identifying Active Travel Behaviors in Challenging Environments Using GPS, Accelerometers, and Machine Learning Algorithms[END_REF]. The WS classifier performed better than the base and VE classifiers: clearly, assigning precision-based weights to the base classifier' predictions improved the behavioural classification. The decrease we observed in the false positive rate for rare behaviours through the use an ensemble method for "Feeding" in this study has also been highlighted by [START_REF] Brewster | Development and application of a machine learning algorithm for classification of elasmobranch behaviour from accelerometry data[END_REF] [START_REF] Brewster | Development and application of a machine learning algorithm for classification of elasmobranch behaviour from accelerometry data[END_REF]. Ensemble methods are mainly used because they reduce the variance of behaviour classification [START_REF] Ladds | Super machine learning: Improving accuracy and reducing variance of behaviour classification from accelerometry[END_REF][START_REF] Ali | Error Reduction through Learning Multiple Descriptions[END_REF] and thus increase the global accuracy. However, they involve a higher computational cost and require a reliable setting up of base learners.

The use of supervised machine-learning has become common to automatically identify behaviours from data provided by animal-borne loggers [START_REF] Nathan | Using tri-axial acceleration data to identify behavioral modes of free-ranging animals: general concepts and tools illustrated for griffon vultures[END_REF][START_REF] Brown | Observing the unwatchable through acceleration logging of animal behavior[END_REF][START_REF] Resheff | AcceleRater: a web application for supervised learning of behavioral modes from acceleration measurements[END_REF]. Indeed, the development of fast personal computers and of free user-friendly computing libraries made it possible to easily apply these 'black box' algorithms to huge amounts of data. The machine-learning approach has thus turned out to be a very powerful tool for identifying well-characterized behaviours (in terms of signal) such as locomotion [START_REF] Resheff | AcceleRater: a web application for supervised learning of behavioral modes from acceleration measurements[END_REF][START_REF] Shepard | Identification of animal movement patterns using tri-axial accelerometry[END_REF][START_REF] Yoda | Precise monitoring of porpoising behaviour of Adélie penguins determined using acceleration data loggers[END_REF] and resting [START_REF] Moreau | Use of a tri-axial accelerometer for automated recording and classification of goats' grazing behaviour[END_REF][START_REF] Jeantet | Combined use of two supervised learning algorithms to model sea turtle behaviours from tri-axial acceleration data[END_REF][START_REF] Shuert | Assessing the utility and limitations of accelerometers and machine learning approaches in classifying behaviour during lactation in a phocid seal[END_REF]. However, it appears to be rather inefficient when seeking to identify behaviours with confusing signal characteristics. Examples include feeding and grooming in pumas [START_REF] Wang | Movement, resting, and attack behaviors of wild pumas are revealed by tri-axial accelerometer measurements[END_REF], pecking in plovers [START_REF] Bom | Optimizing acceleration-based ethograms: The use of variable-time versus fixed-time segmentation[END_REF] or foraging in fur seals [START_REF] Ladds | Using accelerometers to develop time-energy budgets of wild fur seals from captive surrogates[END_REF]. Although one could expect that feeding machine-learning algorithms with big data should provide the most accurate predictive rules [START_REF] Graf | The use of acceleration to code for animal behaviours; a case study in free-ranging Eurasian beavers Castor fiber[END_REF][START_REF] Bidder | Love thy neighbour: Automatic animal behavioural classification of acceleration data using the k-nearest neighbour algorithm[END_REF][START_REF] Campbell | Creating a behavioural classification module for acceleration data: using a captive surrogate for difficult to observe species[END_REF], Wilson et al. ( 2018) [START_REF] Wilson | Give the machine a hand: A Boolean time-based decision-tree template for rapidly finding animal behaviours in multi-sensor data[END_REF] showed that a classification method based on a good understanding and careful examination of the acceleration signal actually gives better results in terms of computational time and of accuracy than non-optimized machine learning. Accordingly, the mixed approach developed in this study fed machine-learning algorithms with a number of derived signals which were specifically elaborated to pinpoint specific hard-to-detect behaviours when alternative simpler means based on a single or a few parameters appeared to be effective. This method allowed us to identify key behaviours such as feeding and scratching, which had previously been either misidentified or not identified at all due to the lack of discriminative signals in the raw data obtained from raw acceleration and/or gyroscopic data obtained with loggers fixed to the carapace of the turtle. Although our choice of derived signals makes our approach specific to sea turtles, this principle can be applied to numerous species if the different signals are considered with care before the study.

When carrying out automatic behavioural identification from multi-sensor data using supervised learning algorithms, one of the main difficulties is the segmentation of the multisensor data to obtain homogeneous segments that are representative of the various behavioural categories. To date, most studies divided the multi-sensor data into segments using fixed-time segments [START_REF] Lagarde | Slowness and acceleration: a new method to quantify the activity budget of chelonians[END_REF][START_REF] Martiskainen | Cow behaviour pattern recognition using a three-dimensional accelerometer and support vector machines[END_REF][START_REF] Shamoun-Baranes | From sensor data to animal behaviour: An oystercatcher example[END_REF] or a sliding sample window with a fixed length [START_REF] Ladds | Seeing it all: Evaluating supervised machine learning methods for the classification of diverse otariid behaviours[END_REF][START_REF] Mcclune | Tri-axial accelerometers quantify behaviour in the Eurasian badger (Meles meles): Towards an automated interpretation of field data[END_REF].

However, several studies testing the size of the window showed that it influences classification accuracy and the identification of short behaviours [START_REF] Ladds | Super machine learning: Improving accuracy and reducing variance of behaviour classification from accelerometry[END_REF][START_REF] Lush | Classification of sheep urination events using accelerometers to aid improved measurements of livestock contributions to nitrous oxide emissions[END_REF][START_REF] Robert | Evaluation of three-dimensional accelerometers to monitor and classify behavior patterns in cattle[END_REF][START_REF] Allik | Optimization of physical activity recognition for real-timewearable systems: Effect ofwindow length, sampling frequency and number of features[END_REF]. Indeed, an individual can express both short and long behaviours, such as burst swimming in lemon sharks or a prey capture in Adélie penguins compared to normal swimming behaviour [START_REF] Brewster | Development and application of a machine learning algorithm for classification of elasmobranch behaviour from accelerometry data[END_REF][START_REF] Watanabe | Linking animal-borne video to accelerometers reveals prey capture variability[END_REF].

Whilst the use of long fixed segments dramatically increases the proportion of inhomogeneous segments, using short segments may prevent the detection of certain key signals such as low-frequency oscillations. A hierarchical, adapted segmentation procedure therefore seems to be a more judicious choice. This consists of splitting behaviours into groups based on signals that are easily interpretable in a dichotomic way (variables such as depth were used to attain this in our study). A change-point algorithm can be used to achieve a more specific segmentation based on other signals, with a possible ad hoc adjustment of the contrast is required to evaluate whether two successive values do or do not belong to the same segment (such as the manual penalty of the PELT algorithm). In this paper, we demonstrate this approach for the green turtle (Fig. 3, R-script in Supplementary Material), but there is no reason it could not be easily adapted for other species. This will certainly necessitate the identification of the optimal hyper-parameters as well as the informative signals for the segmentation according to the species, but the approach of combining automated segmentation and machine learning methods with well thought out descriptive variables should apply as well.

The approach we proposed thus offers promising perspectives for inferring behaviours of animals that cannot be easily observed in the wild though the automatic analysis of large amounts of raw data acquired over long periods by miniaturised (low disturbance) loggers such as high-frequency tri-axial accelerometers and gyroscopes. It provides a number of adaptable principles that enable the efficient use of machine learning algorithms to automatically identify fine-scale behaviours in sea turtles, and may be used for a wide range of species. The automated and reliable identification of the various behaviours permits a rapid inference of the time budget of the animals under study. Identifying how much time the studied animals dedicate to activities such as feeding, travelling and resting can be of relevance when seeking to understand how individuals attempt to maximise their fitness in a given environment. This approach could therefore be a key tool in understanding the ecology of endangered species and make a significant contribution to their conservation.

Data accessibility statement

The R-script to visualize the raw acceleration, gyroscope and depth profile associated with the observed behaviours of the immature green turtles have been uploaded as part of the supplementary material. The same is true for the R-script to automatically identify sea turtle behaviour from the labelled data. The datasets containing the acceleration, gyroscope and depth recordings of the 13 immature green turtles as well as their observed behaviours are available within the Dryad Digital Repository: https://doi.org/10.5061/dryad.hhmgqnkd9.

URL for reviewer: https://datadryad.org/stash/share/j3x2UusNTI1OWqLsJ1mUOq7wMm3t3PAGMzwAMuYM Material (Table S2). 
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Figure 1 .

 1 Figure 1. Raw acceleration, gyroscope and depth profiles for several behaviours expressed by turtle #12.

Figure 2 :

 2 Figure 2: Raw acceleration and gyroscope signals obtained for the feeding behaviours expressed by turtle #6. The definitions of the behaviours are available in Supplementary

Figure 3 .

 3 Figure 3. Workflow of automatic behavioural identification using acceleration, angular speed and depth data, as adapted to the green turtle. The hyper-parameters set up specifically for green turtle data are highlighted in purple. The application of this workflow

Figure 4 .

 4 Figure 4. True positive rate vs. the false positive rate obtained with the seven classifiers for the seven diving categories. The symbols show the mean values obtained from 371 combinations of splitting the sample of thirteen individuals into two sub-groups (one of nine individuals for learning and one of four individuals for testing).

Figure 5 .

 5 Figure 5. Pie chart of the observed (determined from the video) vs. predicted mean durations of the various behaviours displayed by three free-ranging immature green turtles. The predicted durations of the diving behaviours were obtained using the WS classifier.

Figure 6 .

 6 Figure 6. Comparison of the nine main inferred behavioural categories (in red) and of the actually observed ones (in blue) for a few hours for immature green turtle #1. The predicted occurrences of the diving behaviours were obtained using the WS classifier.

  ), which acts as an ethics committee in Martinique. The fieldwork was carried out in strict accordance with the recommendations of the Prefecture of Martinique in order to minimize the disturbance of animals (Authorisation n°201710-0005).

	2.2 Data collection from free-ranging green turtles
	The field work was carried out from February 2018 to May 2019 in Grande Anse d'Arlet
	(14°50'N, 61°09'W), Martinique, France. We deployed CATS (Customized Animal Tracking
	Solutions, Germany) devices for periods ranging from several hours to several days on free-
	ranging immature green turtles. A CATS device is comprised of a video-recorder (1920 x
	1080 pixels at 30 FPS) combined with a tri-axial accelerometer, a tri-axial gyroscope and a

de la Protection de la Nature" (http://www.conservation-nature.fr/acteurs2.php?id= 11), and the French Ministry for Ecology, Sustainable Development and Energy (permit number: 2013154-0037
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The predicted durations of the diving behaviours were obtained using the WS method, and the surfacing behaviours were predicted using depth values.