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Two-phonon structure of low-energy 1 + excitations of 130 In

I. INTRODUCTION

The hypothetical paths of astrophysical r-process nucleosynthesis within the nuclear chart run through very neutron-rich nuclei far-off the stability. The β-decay properties of canonical waiting-point nuclei in the vicinity of neutron N = 82 shell play an important role in defining the r-process time-scale for the matter flow from the r-process seed to super-heavy nuclei. The half-lives (T 1/2 ) and delayed multi-neutron emission probabilities directly influence the shape of the second abundance peak at its rising wing. Recent experiments at RIKEN highcurrent cyclotrons [1] using the β -γ coincidence technique have provided β-decay half-lives for many r-process nuclei which impacts the abundance calculations. In particular, the half-life of T 1/2 =127(2)ms measured for 130 Cd in Ref. [1] turns to be shorter than the previously reported in [START_REF] Kratz | and the ISOLDE collaboration[END_REF][3][4]. This fact may not only affect current rprocess modeling but also provide an additional piece of information for solving the long standing 130 Cd β-decay puzzle.

It has been well known that the β-decay of 130 Cd is dominated by the Gamow-Teller (GT) transition to the first 1 + state at the excitation energy of 2120 keV in the daughter odd-odd nucleus 130 In [4]. The puzzle has appeared when the state of art shell model calculations underestimated the energy of this state built on the simple {π1g 9/2 , ν1g 7/2 } configuration. Namely, in the calculations from Ref. [4,5] this state turned to be lower by 550-750 keV than the experiment. In order to cure such significant discrepancy, an empirical monopole term was introduced [6]. Another way to solve the puzzle was found in the so called shell quenching associated with neutron skin formation [7].

However, the more recent mass and β-decay half-lives measurements have shown rather robust N =82 neutron shells [1]. Further progress has been achieved by using a renormalized CD-Bonn interaction within the V low-q framework [8] in more recent shell-model calculations extended to the neutron (g -h), proton (f -g) model space [9]. Eventhough, the experimental 1 + state position turned to be reachable only if a significant arbitary renormalization is assumed of the proton-proton pairing, as well as neutron-neutron and neutron-proton (np) components of the leading shell-model configurations.

It is the aim of the present paper to investigate 130 Cd decay properties from the point of view of the quasiparticle random phase approximation (QRPA), using a larger configuration space than available within shell model and extending the variational space to include phononphonon coupling (PPC) effects. Such an approach may provide new insights on the structure involved. It has also several formal advantages: the Ikeda sum rule for GT transitions is naturally exhausted and no effective charge for electric transition probability calculation is required. Furthermore, by using a Skyrme interaction with inclusion of tensor terms no quenching factor is required. In this framework, phonon-phonon couplings are expected to play a significant role in the neutron-rich Cd decays. Indeed, for the 124-132 In isotopic chain, the ground-state spin-parities change from J π =3 + in 128 In to J π =1 -in 130 In in which the energy of the 3 + state is 388.3(2) keV [10]. As it has been shown in Refs. [11,12], the spin inversion impacts the β-decay properties producing a slower decrease or even a stabilization in mass dependence of the half-lives. The coupling with the chargeexchange 3 + phonons may substantially enrich the lowenergy 1 + spectrum of the daughter nucleus. Furthermore, the fact that the spin-parity of the 130 In ground state turns out to be 1 -indicates that one may expect the coupling with the charge-exchange 1 -phonons to also contribute with small components in the phonon structures of the low-lying 1 + states.

Two phonon structures have strong influence on elec-tric transition probabilities. For even-even heavy vibrational nuclei, the lowest known 1 -state comes from the two-phonon structure composed of the quadrupole and octupole phonons. At the same time first one-phonon 1 -state in the calculations within the QRPA appears above 5 MeV [13,14]. As shown in Ref. [15], there is an empirical correlation between B(E1; 1 - 1 →0 + g.s. ) and B(E1; 3 - 1 →2 + 1 ) values. This low-energy E1 transition forbidden in the ideal boson picture has been calculated in the quasiparticle-phonon model (QPM) [START_REF] Soloviev | Theory of Atomic Nuclei: Quasiparticles and Phonons[END_REF] taken into account the internal fermion structure of phonons [START_REF] Yu | [END_REF]18].

As shown in Refs. [19,20] for the self-conjugate nuclei (N = Z), "the nuclear shell-model calculations show a clear anticorrelation between the GT strength and the transition rate of the collective quadrupole excitation from the ground state in response to artificial changes of the spin-orbit splitting". For the case of 130 In, an influence of the PPC on the 1 + 1 description has been analysed within the microscopic model based on the QRPA with the Skyrme interaction in Ref. [21]. The [2 + 1 ] QRP A state of the parent nucleus 130 Cd is the lowest collective excitation which leads to the minimal two-phonon energy and the maximal matrix elements for coupling of the one-and two-phonon configurations. Finally, as it is pointed out in Refs. [21,22], the [1 + 1 ⊗ 2 + 1 ] QRP A configuration is the important ingredient for the calculation of the half-life and the P 2n /P 1n ratio.

In the present work, calculation details are identical to Ref. [21], however the two-phonon basis coupled to J π = 1 + is constructed from the charge-exchange QRPA phonons with the following multipolarities:

λ π =1 + , 1 -, 2 -, 3 + (1) 
and the vibrational QRPA phonons with the following multipolarities:

λ ′ π ′ =1 -, 2 + , 3 -, 4 + . (2) 
This means that the two-phonon configurational space is now enlarged by the phonon compositions

[λ π ⊗ λ ′ π ′ ] QRP A , i.e., [3 + ⊗ 2 + ] QRP A , [3 + ⊗ 4 + ] QRP A , [2 -⊗ 3 -] QRP A , [2 -⊗ 1 -] QRP A and [1 -⊗ 1 -] QRP A . II. QRPA RESULTS
The wave functions are constructed from a linear combination of one-and two-phonon configurations as

Ψ ν (JM ) = i R i (Jν)Q + JMi + λ1i1λ2i2 P λ1i1 λ2i2 (Jν) Q + λ1µ1i1 Q+ λ2µ2i2 JM |0 , (3) 
where λ denotes the total angular momentum and µ is its z-projection in the laboratory system. The ground state of 130 Cd is assumed to be the QRPA phonon vacuum | 0 . The wave functions 130 In are described as linear combinations of two-quasiparticle (2QP)neutron-proton configurations. The cut-off of the discretized continuous part of the single-particle spectra is performed at the energy of 100 MeV. This is sufficient for exhausting the Ikeda sum rule for GT transitions S --S + = 3(N -Z). The finite rank separable approximation [23][24][25] for the residual interactions facilitates the QRPA calculations in very large 2QP spaces. As the parameter set in the particle-hole (p-h) channel, we used the Skyrme interaction T43 with tensor components included [26]. The pairing correlations are generated by a zero-range surface force [21,27]. As proposed in Ref. [28], the E x (1 + i ) energies can be estimated by the following expression:

Q + λµi | 0 of the [1 + i ] QRP A , [3 + i ] QRP A , [1 - i ] QRP A and [2 - i ] QRP A states of
E x (1 + i ) ≈ E i -Ω, (4) 
where E i are the [1 + i ] QRP A eigenvalues of the QRPA equations, and Ω corresponds the lowest 2QP energy. The possible spin-parity of the lowest 2QP state {π1g 9/2 , ν1h 11/2 } is J π = 1 --10 -. The QRPA analysis within the one-phonon approximation results in the spinparity of the ground state, J π = 1 -. In Eq. ( 4), a more precise value for Ω is used which is equal to the [1 

TABLE I:

The calculated energies, log f t, transition probabilities, partial widths and dominant components of phonon structures of the low-lying 1 + states in 130 In.

1 + k →1 - g.s. 1 + k →2 - 1 1 + k →3 + 1 1 + k Energy Structure log f t B(E1) Γ(E1) B(E1) Γ(E1) B(E2) Γ(E2) (MeV) (W.u.) (eV) (W.u.) (eV) (W.u.) (eV) 1 + 1 2.4 99%[3 + 1 ⊗2 + 1 ] 4.7 4.2×10 -7 1.1×10 -5 4.5×10 -6 1.1×10 -4 5.8 7.2×10 -4 1 + 2 2.6 97%[3 + 1 ⊗4 + 1 ] 4.9 5.3×10 -7 1.7×10 -5 0.7×10 -6 2.3×10 -5 0.1 2.6×10 -5 1 + 3 2.8 77%[1 + 1 ] 3.1 0.9×10 -5 3.6×10 -4 1.2×10 -5 4.5×10 -4 0.1 4.8×10 -5 1 + 4 4.1 92%[2 - 1 ⊗3 - 1 ] 4.8 1.5×10 -5 1.9×10 -3 2.2×10 -5 2.7×10 -3 0.1 8.2×10 -4 1 + 5 4.7 57%[1 + 2 ]+ 2.8 0.7×10 -5 1.4×10 -3 2.0×10 -4 3.8×10 -2 1.0 2.0×10 -2 32%[3 + 1 ⊗2 + 2 ] E x =1.3 MeV (1.
6 MeV) has the {1g 9/2 , 1g 9/2 } π configuration domination 96% ( 98%) and the B(E2) (B(E4)) value is of 5.7 W.u (4.4 W.u.). Because of the large configurational space, we do not use effective charges. At the same time, the main part of the E2 strength exciting the 2 + 1 state is generated by the 2QP configurations of the giant quadrupole resonance (see Fig. 1). This effect has previously been observed in the case of 92 Zr [29] the doubly-magic nucleus 132 Sn. It is worth pointing out that they are related to core-excited configurations in the shell-model calculation [9]. Because the data for the Cd isotopes are very scarce, the properties of the 2 + 1 state of 132 Sn [30] is used for reference. The value of 8.3 W.u of the QRPA calculation [21] is overestimated by about 60%. One can expect an improvement if the two-phonon configurations are taken into account [31].

III. PPC EFFECTS ON β-DECAY RATES

As in the QPM [START_REF] Soloviev | Theory of Atomic Nuclei: Quasiparticles and Phonons[END_REF]32], the diagonalization of the Hamiltonian in the space of the one-and two-phonon configurations produces eigenvalues of 1 + k states (E k ) [22,33]. The E x (1 + k ) energies are obtained by the same ansatz (4). Because of the inclusion of the tensor correla-tion effects within the 1p -1h and 2p -2h configuration space, we do not need any quenching factor [34]. The β --decay rate is expressed by summing up the probabilities (in units of G 2 A /4π) of the energetically allowed GT transitions

(E x (1 + k ) < Q β ) weighted with the integrated Fermi function f 0 , T -1 1/2 = k λ k if = D -1 G A G V 2 × k f 0 (Z + 1, A, Q β -E x (1 + k ))B(GT ) k , (5) 
where 25 is the ratio of the weak axial-vector and vector coupling constants and D=6147 s (see Ref. [START_REF] Suhonen | From Nucleons to Nucleus[END_REF]). For the case of the N=82 isotone 130 Cd, one can neglect the first-forbidden (FF) β-decays. According to Ref. [START_REF] Borzov | Fission and Properties of Neutron-Rich Nuclei[END_REF], the contributions of the FF transitions to the half-life is 7.0%, and 11.755% in Ref. [START_REF] Marketin | [END_REF].

λ k if is the partial β-decay rate, G A /G V =1.
The partial β-decay rate has a strong energy dependence which approximately scales like (Q β -E x ) 5 . The partial β-decay rates calculated taking into account the two-phonon configurations [λ π ⊗ λ ′ π ′ ] QRP A with the different multipolarities (1) and ( 2) are given in Fig. 2 (panel (c)). The half-life T 1/2 =83 ms is found. The results of the microscopic calculation are compared with the experimental data from Refs. [9, 10] using the following expression:

λ k if = f 0 (Z + 1, A, Q exp β -E exp x (1 + k ))10 -log f t exp (1 + k ) . (6) 
Using the partial β-decay rates obtained from Eq. ( 6), we estimate the half-life of 140 ms, which is close to the experimental value. First, it is seen that the strength distribution is enriched compared to the pure QRPA one. Second, as it follows from Fig. 2 andTable I, the 1 + 1,2 states in our calculation has a prevailing two-phonon origin due to coupling of the 2 + 1 and 4 + 1 one-phonon excitations in the parent nucleus and the low-energy 3 + 1 excitation in its daughter. The strongest 1 + 3 state has predominantly 2QP nature {π1g 9/2 , ν1g 7/2 }. As one can see, the quantitative agreement with the experimental 1 + energy of 2120 keV is not satisfactory. Thus, only a qualitative description of the experimental strength distribution (log f t = 3.9 ± 0.1) [9] has been achieved. The inclusion of the four-quasiparticle configuration {π1g 9/2 π1g 9/2 π1g 9/2 ν2d 3/2 } plays the key role in the calculations of the 1 + 1,2 states. Third both calculated and experimental strength distributions have some strength concentration above the one-neutron emission threshold. The calculations reproduce satisfactory the centroid of this strength distribution. The 1 + 5 state with the β-transition rate of 1.8 s -1 is of mixed sructure (see Table I). The main two-phonon component of the 1 + 5 wave function is the [3 + 1 ⊗ 2 + 2 ] QRP A configuration. In all calculated 1 + states at excitation energies above 4.7 MeV, the β-transition rates with more than 0.02 s -1 originate from the two-phonon configurations composed of the 2 + 2 and 4 + 2 phonons. The present twophonon space [λ π ⊗ λ ′ π ′ ] QRP A incorporating the multipolarities ( 1) and ( 2) results in the substantial strength fragmentation compared to the calculation taking into account only the phonon composition [1 + ⊗ 2 + ] QRP A as proposed in Refs. [21,22]. It is worth mentioning that the first prediction of the core-excited configuration structure of the states above 3.5 MeV based on the shell-model calculation has been done in Ref. [9].

We now turn to the level density and show in Fig. 3 the impact of the extension of the two-phonon space on the low-energy part of the spectrum E x (1 + k ). The results of the calculation taking into account the phonon composition [1 + ⊗ 2 + ] QRP A [21] indicate only three 1 + states below 6 MeV. The inclusion of the rest of the two-phonon configurations leads to an increase of the level density and makes a downward shift of the low-energy spectrum E x (1 + k ). One can construct the staircase function N(E) which is defined as the state number below the energy E. The staircase function of calculated 1 + energies for 130 In is shown in Fig. 4. The function N(E) can be described by the following level density:

ρ(E) = α(E -E 0 ) β . (7) 
We find that E 0 =0.43 MeV, β=3.30 and α=2.6×10 -2 M eV -β-1 . Notice that in the Fermi-gas model with equidistant single-particle spectrum the exponent is 2n-1 for the density of np -nh excitations, and the value β = 3 for 2p -2h excitations, which is quite close to the fitted values of β.

IV. PPC EFFECTS ON ELECTRIC TRANSITION PROBABILITIES

The quadrupole collectivity of the parent even-even nucleus makes the two-phonon states interesting and unique objects for the study of low-lying E2 transitions in its daughter. We consider the electric transitions from five low-energy 1 + states to the first 3 + and 2 -excitations and the 1 -ground state of 130 In. The calculated excitation energies, the B(E1), B(E2) values and the partial widths of the 1 + states are shown in Table I. B(E1) values vary from 10 -7 to 10 -4 W.u.. The calculated transition probabilities represent important fingerprints for the phonon composition of the 1 + states. The 1 + 1 wave function of 130 In contains a dominant two-phonon configuration [3 + 1 ⊗ 2 + 1 ] QRP A and such contribution leads to the noticeable B(E2; 1 + 1 →3 + 1 ) value which has correlated to the B(E2; 2 + 1 →0 + gs ) value of 130 Cd. As expected, the B(E1;

1 + 1 →1 - g.s.
) value is negligibly small in our calculation. The 1 + 2 (1 + 4 ) state exhausts 97% (92%) of the [3

+ 1 ⊗ 4 + 1 ] QRP A ([2 - 1 ⊗3 - 1 ] QRP A ) configuration.
Therefore, small B(E1) and B(E2) values are obtained. For the 1 + 3 state, the dominance of the one-phonon configuration plays a key role in explaining of the transition probabilities. There is a satisfactory agreement with the B(E1) value in the case of the experimental 1 + 1 state [9], whose theoretical counterpart has a structure dominated by the 2QP configuration {π1g 9/2 , ν1g 7/2 }. Also, the experimental branching ratio [9] is well reproduced by our calculation, Γ(E2; 1

+ 3 →3 + 1 ) Γ(E1; 1 + 3 →1 - g.s. ) = 0.13. ( 8 
)
This fact indicates that indeed the calculated 1 + 3 state corresponds to the experimental level located at 2120 keV which was also reproduced by shell model [9]. For the 1 + 5 state, the main contribution to the B(E2) value comes from the configuration [3 + 1 ⊗ 2 + 2 ] QRP A , which outweighs the [3 + 1 ⊗ 2 + 1 ] QRP A contribution and results in a the noticeable B(E2) value.

It is of importance to investigate if the inclusion of the PPC improves the description of the experimental branching ratio of the γ-decay from the 1 + (2120 keV) state to the 2 - 1 and 1 - 1 states. The 1 - 1 ground state is populated in the experiment [9] nine times weaker than the 2 - 1 state. As far as we know neither the shell model nor other microscopic approaches have successfully solved this problem yet. Our calculations give the following ratio:

Γ(E1; 1 + 3 →2 - 1 ) Γ(E1; 1 + 3 →1 - g.s. ) = 1.25. (9) 
A qualitative description of the experimental data [9] is reached. It is noteworthy that the strong E3 transition is also of no help for explaining the puzzling branching ratio,

Γ(E3; 1 + 3 →2 - 1 ) Γ(E1; 1 + 3 →1 - g.s. ) = 0.003. (10) 
A possible reason may lie in an underestimation of the [2 - 1 ] QRP A collectivity and it results in a decrease of the E1 transition probability in the case of the Skyrme interaction T43. In any event the present framework allows us to simultaneously describe the basis features of collective excitation spectra both neutral and charge-exchange channels.

V. EXTENSION TO THE A=126,128 CASES

Using the same set of parameters, we examine the lowest two-phonon 1 + states of 126,128 In populated by the β-decay of 126,128 Cd. For 126,128 In, the spin-parity of the ground state is found to be 3 + . As a result, the first 1 + state contains a dominant configuration [3 + 1 ⊗ 2 + 1 ] QRP A and such contribution leads to the noticeable B(E2;

1 + 1 →3 + g.s.
) values (see Fig. 5). We find a nice agreement, with E x = 0.7 MeV and log f t = 4.1 for the 1 + state experimentally identified at 688 keV in 126 In [38]. As seen from Fig. 5, there exists a close correlation between the E2 2 + 1 →0 + gs and 1 + 1 →3 + 1 transition probabilities of the parent and daughter (respectively) isobaric companions. As proposed in Ref. [39], the 2 + 1 states of 126,128,130 Cd are obtained within the PPC calculation taking into account the Pauli principle corrections. It is worth mentioning that the calculated B(E2; 2 + 1 →0 + gs ) value of 126 Cd is also in reasonable agreement with the experimental data [40].

VI. SUMMARY AND CONCLUSION

The developed QRPA framework has been applied to the β-delayed γ-spectroscopy. It is shown that an extension of the phonon space allowing for the additional charge-exchange QRPA excitations substantially enriches the 1 + spectrum of 130 In. An important increase of the level density near the neutron threshold is achieved compared to the case of coupling to the charge-exchange 1 + phonons and the vibrational 2 + phonons only [21]. It is shown for the first time that the structure the additional 1 + states is mostly dominated by the two-phonon configuration built on the charge-exchange 3 + 1 phonon. The {π1g 9/2 , ν1g 7/2 } dominated 1 + excitation of 130 In was successfully described within the shell model [9]. Our initial motivation was attempting to describe the branching ratio of γ-decays and log f t values for this excitation. Our calculated partial widths and log f t values are in qualitative agreement with the data. We stress that they represent the first successful comparison between the experimental transition values and those calculated with the Skyrme interaction. We predict the presence of additional two-phonon 1 + states located below the wellknown one-phonon 1 + state. No experimental counterpart has been identified yet.

The two-phonon configurations are built on the chargeexchange 3 + 1 phonon and the 2 + 1 , 4 + 1 phonons. Notice that these states have large log f t values and small probabilities of the E1 transition to the 1 -ground state. Importantly, our results have shown the correlation between the low-lying E2 transition strengths of the parent and daughter isobaric companions as compared to the β-decay data of 126,128,130 Cd.

For the well experimentally established one-phonon 1 + state in 130 In, our calculations overestimate the excitation energy and the B(GT ) values, this probably points to a particular problem due to the effective interaction rather than to a deficiency of our variational space. Unperturbed B(GT ) = 3.6 value of the {π1g 9/2 , ν1g 7/2 } state (log f t=3.0) are too large to be properly renormalized by the inclusion of the QRPA correlation and the two-phonon fragmentation. An additional modification of the Skyrme functional was proposed earlier in order to stabilize the nuclear matter equation of state [41,42]. Our model would probably be improved by including all these ingredients, and to compare them to known experimental data, as done in this work. Nevertheless the existence of two-phonon 1 + states should be a generic feature of odd-odd nuclei in the vicinity of doubly magic nucleus 132 Sn and further experimental investigation in this region to check this prediction are probably necessary.
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 1 FIG.1:(color online) Running sum of the E2-transition strength as a function of the 2QP energy included in the QRPA calculation for 130 Cd.
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 2 FIG. 2: (color online) β-transition rates in 130 Cd. Panels (a) and (b): the calculations within the QRPA and taking into account the [1 + ⊗ 2 + ]QRP A configurations [21], respectively. Panel (c): the calculation taking into account the [λ π ⊗ λ ′π ′ ]QRP A configurations with the different multipolarities (1) and (2). Panel (d): β-transition rates are taken from the analysis of the experimental data: Q β and Ex(1 + ) energies, log f t values [9, 10]. The calculated and experimental Sn energies [10] are denoted by the arrows in the panels (a), (b), (c) and (d), respectively.
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 4 FIG. 4: (color online)The staircase function N(E) of the excitation 1 + energies of130 In calculated with the full two-phonon basis for this work (the solid line). The dotted line denotes the N(E) function obtained with the level density(7).
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 5 FIG.5: Comparison of calculated low-lying E2 transition strengths in126,128,130 49 In and 126,128,130 48 Cd. The calculations take into account the phonon-phonon coupling. B(E2) values are given in Weisskopf units (1 W.u. = 5.94×10 -2 A 4/3 e 2 fm 4 ).

  - 1 ] QRP A energy. The crucial contributions to the wave functions of the [1 + 1,2 ] QRP A states with energies E x , 3.6 and 5.6 MeV, come from the configurations {π1g 9/2 , ν1g 7/2 } and {π2d 5/2 , ν2d 3/2 }, respectively. The dominant configuration of the [3 + 1 ] QRP A state with E x =1.1 MeV is of {π1g 9/2 , ν2d 3/2 }. It is seen that the [3 + 1 ] QRP A energy is less than one-third of the [1 + 1 ] QRP A energy. Q+ λµi |0 are dipole, quadrupole, octupole and hexadecapole QRPA vibrations of 130 Cd. The closure of the neutron subshell 1h 11/2 in 130 Cd, leads to the vanishing of the neutron pairing. As the result the 2 +

1 (4 + 1 ) state with

  . For the 2 + 2 and 4 + 2 QRPA states with E x =4.1 and 4.6 MeV, the main components of the wave function are the configurations {2f 7/2 , 1h 11/2 } ν and {2d 5/2 , 1g 9/2 } π , which lead to the comparatively large values B(E2; 2 + Comparison of the low-energy 1 + spectrum of130 In calculated with the [1 + ⊗ 2 + ]QRP A configurations in Ref.[21] (the column A) and with the full two-phonon basis for this work (the column B).
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