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Introduction

In this paper we study the regularity of the solution of an obstacle problem for shallow shells, which was obtained as a result of a rigorous asymptotic analysis by Léger and Miara in the papers [START_REF] Léger | Mathematical justification of the obstacle problem in the case of a shallow shell[END_REF][START_REF] Léger | Erratum to: Mathematical justification of the obstacle problem in the case of a shallow shell[END_REF]. Since the solution of this fourth order problem is uniquely determined and takes the form of a Kirchhoff-Love field (cf., e.g., [START_REF] Ciarlet | Mathematical Elasticity[END_REF]), the problem in object is formulated as a set of variational equations for the tangential components of the solution, and a set of variational inequalities posed over a non-empty, closed and convex subset of the Sobolev space H 2 0 for the transverse component of the solution. It is also worth mentioning the following recent literature about obstacle problems [START_REF] Ciarlet | Un problème de confinement pour une coque membranaire linéairement élastique de type elliptique[END_REF][START_REF] Ciarlet | An obstacle problem for elliptic membrane shells[END_REF][START_REF] Ciarlet | A confinement problem for a linearly elastic Koiter's shell[END_REF][START_REF] Ciarlet | Obstacle problems for Koiter's shells[END_REF][START_REF] Léger | A linearly elastic shell over an obstacle: The flexural case[END_REF][START_REF] Rodríguez-Arós | Mathematical justification of the obstacle problem for elastic elliptic membrane shells[END_REF].

The augmentation of regularity for fourth order variational inequalities was first addressed by Frehse in the early Seventies [START_REF] Frehse | Zum Differenzierbarkeitsproblem bei Variationsungleichungen höherer Ordnung[END_REF][START_REF] Frehse | On the regularity of the solution of the biharmonic variational inequality[END_REF]. In the late Seventies and early Eighties, Caffarelli and his collaborators published the two papers [START_REF] Caffarelli | The obstacle problem for the biharmonic operator[END_REF][START_REF] Caffarelli | The two-obstacle problem for the biharmonic operator[END_REF], where they proved that the solution of an obstacle problem for the biharmonic operator (cf., e.g., Section 6.7 of [START_REF] Ciarlet | Linear and Nonlinear Functional Analysis with Applications[END_REF]) could not be too regular.

To our best knowledge, there is no record in the literature treating the augmentation of regularity of fourth order variational inequalities whose solution is a vector field. The purpose of this paper is to extend the result obtained by Frehse in the pioneering work [START_REF] Frehse | Zum Differenzierbarkeitsproblem bei Variationsungleichungen höherer Ordnung[END_REF] to the case where the fourth order obstacle problem devised by Léger and Miara is considered. The generalisation of the result obtained by Frehse to the vectorial case has been inspired by the recent paper [START_REF] Piersanti | Numerical methods for static shallow shells lying over an obstacle[END_REF], where such a higher regularity is entailed in the contrivance of a suitable finite element method for approximating the solution of the model devised by Léger and Miara in the aforementioned literature. The fact that the variational equations and variational inequalities appearing in such a model are coupled, makes the analysis substantially more complicated than in the scalar case.

This paper is divided into four sections (including this one). In section 2 we present some background and notation. In section 3 we prove an augmentation of regularity result for the tangential components of the solution of the problem under consideration, following somehow the ideas in the celebrated work of Nirenberg [START_REF] Nirenberg | Remarks on strongly elliptic partial differential equations[END_REF]. In particular, the proof concerning the augmentation of regularity for the tangential components of the solution will be conducted using an alternative approach from the one originally proposed by Nirenberg. The novelty in our proof consists in considering the boundary conditions associated with the problem under consideration, which are not considered in the literature (cf., the remarks preceding the proof of Theorem 1 in Section 6.3 of [START_REF] Evans | Partial Differential Equations[END_REF]). As we will see, such a feature will be fundamental in order to exploit the ellipticity of the bilinear form under consideration through a specific inequality of Korn's type with boundary conditions. Finally, in section 4, we generalise the improved regularity result in [START_REF] Frehse | Zum Differenzierbarkeitsproblem bei Variationsungleichungen höherer Ordnung[END_REF] for the transverse component of the solution of the problem under consideration.

Background and notation

For an overview about the classical notions of differential geometry used in this paper see, e.g., [START_REF] Ciarlet | Mathematical Elasticity[END_REF] or [START_REF] Ciarlet | An Introduction to Differential Geometry with Applications to Elasticity[END_REF] while, for an overview about the classical notions of functional analysis used in this paper see, e.g., [START_REF] Ciarlet | Linear and Nonlinear Functional Analysis with Applications[END_REF]. We let Latin indices, except h, take their values in the set {1, 2, 3} and we let Greek indices, except ρ, ν and ε, take their values in the set {1, 2} and, unless differently indicated, we use the Einstein summation convention with respect to repeated indices in conjunction with this rule. The notations δ i j , δ i j , δ i j and δ αβ designate the Kronecker symbol. Given an open subset Ω of R n , where n 1, we denote the usual Lebesgue and Sobolev spaces by L 2 (Ω), H 1 (Ω), H 1 0 (Ω), H 2 (Ω), or H 2 0 (Ω). We denote by D(Ω) the space of functions which are infinitely differentiable in Ω and whose support is contained in Ω. The Euclidean norm of any point x ∈ Ω is denoted by |x|. The special notation • m,Ω , where m 1 is an integer, denotes the norm of the space H m (Ω). If m = 0, then:

• 0,Ω := • L 2 (Ω) .
The special notation | • | m,Ω , where m 1 is an integer, denotes the standard semi-norm of the space H m (Ω). Spaces of vector-valued functions are denoted in boldface.

The boundary Γ of an open subset Ω in R n is said to be Lipschitz-continuous if the following conditions are satisfied (cf., e.g., Section 1.18 of [START_REF] Ciarlet | Linear and Nonlinear Functional Analysis with Applications[END_REF]): Given an integer s 1, there exist constants α 1 > 0 and L > 0, and a finite number of local coordinate systems, with coordinates φ r = (φ r 1 , . . . , φ r n-1 ) ∈ R n-1 and φ r = φ r n , and corresponding functions

θr : ωr := {φ r ∈ R n-1 ; |φ r | < α 1 } → R, 1 r s, such that Γ = s r=1
{(φ r , φ r ); φ r ∈ ωr and φ r = θr (φ r )}, We observe that the second last formula takes into account overlapping local charts, while the last set of inequalities express the Lipschitz continuity of the mappings θr .

An open set Ω is said to be locally on the same side of its boundary Γ if, in addition, there exists a constant α 2 > 0 such that {(φ r , φ r ); φ r ∈ ωr and θr (φ r ) < φ r < θr (φ r ) + α 2 } ⊂ Ω, for all 1 r s,

{(φ r , φ r ); φ r ∈ ωr and θr (φ r ) -α 2 < φ r < θr (φ r )} ⊂ R n \ Ω, for all 1 r s.
Let ω ⊂ R 2 be a domain, namely a non-empty bounded open connected subset of R 2 with Lipschitz continuous boundary γ := ∂ω and such that ω is all on the same side of γ.

Let ω 1 ⊂ ω; the special notation ω 1 ⊂⊂ ω means that ω 1 ⊂ ω and dist(γ, ∂ω 1 ) > 0. We denote by H m loc (ω) the space of measurable functions that are of class H m (ω 1 ), for all ω 1 ⊂⊂ ω. Let y = (y α ) denote a generic point in the set ω and let ∂ α := ∂/∂y α and ∂ αβ := ∂ 2 /∂y α ∂y β .

In what follows ν denotes the outer unit normal vector field to the boundary γ and ∂ ν denotes the outer unit normal derivative operator along γ.

As a model of the three-dimensional "physical" space R 3 , we take a real three-dimensional affine Euclidean space, i.e., a set in which a point O ∈ R 3 has been chosen as the origin and with which a real three-dimensional Euclidean space, denoted E 3 , is associated. We equip E 3 with an orthonormal basis consisting of three vectors e i , with components e i j = δ i j . The Euclidean inner product of two elements a and b of E 3 is denoted by a • b.

The definition of R 3 as an affine Euclidean space means that with any point x ∈ R 3 is associated an uniquely determined vector Ox ∈ E 3 . The origin O ∈ R 3 and the orthonormal vectors e i ∈ E 3 together constitute a Cartesian frame in R 3 and the three components x i of the vector Ox over the basis formed by e i are called the Cartesian coordinates of x ∈ R 3 , or the Cartesian components of Ox ∈ E 3 . Once a Cartesian frame has been chosen, any point x ∈ R 3 may be thus identified with the vector Ox = x i e i ∈ E 3 . As a result, a set in R 3 can be identified with a "physical" body in the Euclidean space E 3 .

For each ε > 0, we define the sets

Ω ε := ω × ]-ε, ε[ , Γ ε 0 := γ × [-ε, ε], Γ ε ± := ω × {±ε},
and we let x ε = (x ε i ) denote a generic point in the set Ω ε . We then have that

x ε α = y α and -ε x ε 3 ε.
Let us define the sets and let us denote by x = (x i ) a generic point in the set Ω. We observe that it is possible to define a bijection π ε : Ω → Ω ε as follows

Ω := ω×] -1, 1[, Γ 0 := γ × [-1, 1], Γ ± := ω × {±1},
π ε x = x ε , for all x ∈ Ω,
which means that x ε α = x α = y α and x ε 3 = εx 3 . Consequently, we have that ∂ ε α = ∂ α and ∂ ε 3 = ε -1 ∂ 3 . Define the surface ωε by ωε := {(y, θ ε (y)); y ∈ ω}, and define its corresponding outer unit normal vector field a ε 3 by

a ε 3 := 1 √ α ε (-∂ 1 θ ε , -∂ 2 θ ε , 1), with α ε := |∂ 1 θ ε | 2 + |∂ 2 θ ε | 2 + 1.
The reference configuration Ωε in Cartesian coordinates of the three-dimensional body under consideration is thus obtained from ωε via the following expression:

Ωε = {x ε = (x ε i ) ∈ E 3 ; xε = (y, θ ε (y)) + x ε 3 a ε 3 (y) for all x ε = (y, x ε 3 ) ∈ Ω ε }.
The latter expression thus defines a mapping

Θ ε : Ω ε → { Ωε } -⊂ E 3
. By resorting to the assumed smoothness of the mapping θ ε , it is possible to show (cf., e.g., [START_REF] Ciarlet | Mathematical Elasticity[END_REF]) that the mapping Θ ε is, for ε sufficiently small, a C 1 -diffeomorphism. We let xε = (x ε i ) denote a generic point of the set { Ωε } -, and we let ∂ε i := ∂/∂x ε i . Furthermore, we assume that the three-dimensional body in object is made of a isotropic homogeneous linearly elastic material. Its elastic behaviour is thus described in terms of its two Lamé coefficients λ ε 0 and µ ε > 0. As it is customarily (cf., e.g., [START_REF] Ciarlet | Mathematical Elasticity[END_REF] and [START_REF] Ciarlet | Mathematical Elasticity[END_REF]) assumed for many models in linearised elasticity, we hypothesise that there exist constants λ 0 and µ > 0, both independent of ε, such that λ ε ≡ λ and µ ε ≡ µ.

For such small parameter ε > 0 (the parameter ε is "small" compared to the dimensions of ω), the linearly elastic body whose reference configuration is { Ωε } -is thus called a linearly elastic shell with thickness 2ε and middle surface ωε = Θ ε (ω × {0}).

Besides, by virtue of the form of the surface ωε , we note that, up to an additive constant, the mapping θ ε : ω → R, measuring the deviation of the middle surface of the reference configuration of the shell from a plane, should be of the same order as the thinness of the shell, i.e., of order O(ε) -big "Oh" in Landau notation. In view of these geometrical properties, we say that the linearly elastic shell under consideration is shallow.

Referring to [START_REF] Ciarlet | Justification of the two-dimensional equations of a linearly elastic shallow shell[END_REF] (see also Section 3.1 of [START_REF] Ciarlet | Mathematical Elasticity[END_REF]), we recall the rigorous criterion for defining a linearly elastic shallow shell (from now on shallow shell). A linearly elastic shell is a shallow shell if and only if there exists a function θ ∈ C 3 (ω), independent of ε, such that θ ε (y) = εθ(y), for all y ∈ ω.

(

) 1 
We assume that the reference configuration of the shallow shell under consideration is subject to applied body forces, denoted by f ε , whose density per unit volume is defined by means of their components 

f ε i ∈ L 2 ( Ωε )
, and to applied surface forces on the upper surface of the reference configuration, denoted by ĝ+,ε , whose density per unit area is defined by means of their components ĝ+,ε i ∈ L 2 ( Γε + ). Since we do not take into account any friction, applied surface forces associated with the "lower" face of the shallow shell reference configuration are not to be taken into account.

We write the Cartesian components of a vector Ox ε -corresponding to a point xε -∈ Γε -as follows:

Ox ε -=            y 1 + ε ∂ 1 θ ε √ α ε y 2 + ε ∂ 2 θ ε √ α ε θ ε (y) -ε 1 √ α ε            =            x ε 1 + ε ∂ 1 θ ε √ α ε x ε 2 + ε ∂ 2 θ ε √ α ε x ε 3 -ε 1 √ α ε            , with y = (y α ) ∈ ω.
We can thus define the following mappings over the "lower" face of the reference configuration Γε -:

θε = θ ε • (Θ ε ) -1 and αε = α ε • (Θ ε ) -1 .
The unilateral contact feature is expressed in terms of the displacement ûε the shallow shell is subject to. Such a displacement ûε is firstly required to satisfy the following non-penetrability condition on the "lower" face Γε -of the reference configuration:

(Ox ε -+ ûε (x ε -)) • e 3 -ε, for all xε -∈ Γε -.
Since e 3 = (0, 0, 1), the latter equivalently reads:

θε - ε √ αε (x ε -) + ûε 3 (x ε -) -ε, for all xε -∈ Γε -.
In view of the non-penetrability condition, it is licit to assume that

θ ε > 0 in ω, (2) 
which, by virtue of the criterion defining a shallow shell, is equivalent to saying that θ > 0 in ω. The latter inequality (2) will play a fundamental role for defining the soundness of the two-dimensional limit model obtained as a result of the rigorous asymptotic analysis carried out in [START_REF] Léger | Mathematical justification of the obstacle problem in the case of a shallow shell[END_REF], which we introduce next.

We denote by  the fourth order three-dimensional elasticity tensor associated with the reference configuration in Cartesian coordinates. Such a tensor components take the following classical form (cf., e.g., [START_REF] Ciarlet | Mathematical Elasticity. Vol. I: Three-Dimensional Elasticity[END_REF] for the definition and additional properties) The linearised strain tensor associated with the displacement ûε is defined by

Âi jk := λδ i j δ k + µ(δ ik δ j + δ i δ jk ).
êε (û ε ) = (ê ε i j (û ε )) := 1 2 ∇û ε + [∇û ε ] T .
The second order linearised stress tensor associated with the reference configuration (cf., e.g., [START_REF] Ciarlet | Mathematical Elasticity. Vol. I: Three-Dimensional Elasticity[END_REF]) is denoted by σε and is defined by

σε := Âê ε .
The uni-laterality is described by adding the two following constraints, associated with the absence of friction, to the non-penetrability condition. The first constraint is that the no tensile forces, but only compressive forces, are exerted on the "lower" face of the shell by the obstacle. In formulas, we have

-( σε (x ε -) • a ε 3 ) • e 3 ≡ σε 3 (x ε -) 0, for all xε -∈ Γε -.
The second constraint is that either a point on the "lower" face is not in contact with the obstacle -so that the non-penetrability condition is strictly satisfied and the reaction of the obstacle at this point vanishes -or a point on the "lower" face is in contact with the obstacle and the non-penetrability condition is equal to zero, although the obstacle reaction is non-zero. In formulas, we have

σε 3 θε - ε √ αε + ûε 3 + ε = 0, on Γε -.
The prototypical physical example of the obstacle problem we are considering in this paper is the one of an inflated membrane placed close to a wall.

We are thus in a position to write, at least formally, the three-dimensional (in the sense that it is posed over a non-zero volume subset of the three-dimensional Euclidean space E 3 ) boundary value problem describing the equilibrium of a shallow shell subject to a planar horizontal obstacle at the level -ε.

Problem P( Ωε ). Find ûε satisfying: The natural functional framework for the equilibrium Problem P( Ωε ) is the non-empty, closed, and convex cone:

-div σε = f ε , in Ωε , ûε = 0, on Γε 0 , σε • a ε 3 = ĝ+,ε , on Γε + , θε - ε √ αε + ûε 3 + ε 0, on Γε -, σε 3 0, on Γε -, σε 3 θε - ε √ αε + ûε 3 + ε = 0, on Γε -.
Kε ( Ωε ) := vε = (v ε i ) ∈ H 1 ( Ωε ); vε = 0 on Γ ε 0 and vε 3 -θε -ε + ε √ αε on Γε -.
As a result, the boundary value Problem P( Ωε ) can be rigorously expressed in terms of a set of variational inequalities posed over the cone Kε ( Ωε ).

Problem P( Ωε ). Find ûε ∈ Kε ( Ωε ) satisfying the following variational inequalities:

Ωε Âi jk êε k (û ε )ê ε i j (v ε -ûε ) dx ε Ωε f ε • (v ε -ûε ) dx ε + Γε + ĝ+,ε • (v ε -ûε ) d Γε ,
for all vε ∈ Kε ( Ωε ).

The function space over which the two-dimensional problem constituting the object of interest of this paper shall be posed is the following:

V(ω) := {η = (η i ) ∈ H 1 (ω) × H 1 (ω) × H 2 (ω); η i = ∂ ν η 3 = 0 on γ}.
We equip the space V(ω) with the norm • V(ω) defined as follows:

ξ V(ω) := ξ 1 1,ω + ξ 2 1,ω + ξ 3 2,ω , for all ξ ∈ V(ω).
The corresponding semi-norm | • | V(ω) is defined by :

|η| V(ω) := |η 1 | 1,ω + |η 2 | 1,ω + |η 3 | 2,ω , for all η ∈ V(ω).
We define the space associated with the tangential components by:

V H (ω) := {η H = (η α ) ∈ H 1 (ω) × H 1 (ω); η α = 0 on γ}.
Observe that

V(ω) = V H (ω) × H 2 0 (ω).
More specifically, the transverse component of the displacement field belongs to the following nonempty, closed, and convex set of the space H 2 0 (ω) (see [START_REF] Léger | Mathematical justification of the obstacle problem in the case of a shallow shell[END_REF]):

K 3 (ω) := {η 3 ∈ H 2 0 (ω); θ + η 3 0 almost everywhere in ω}. (3) 
By virtue of the Rellich-Kondrachov theorem (cf., e.g., Theorem 6.6-3 of [START_REF] Ciarlet | Linear and Nonlinear Functional Analysis with Applications[END_REF]), the compact embedding H 2 (ω) → → C 0 (ω) holds (the symbol " → →" denotes a compact embedding and the space C 0 (ω) is equipped with the sup-norm). Hence, by virtue of the fact that θ ∈ C 3 (ω), the set K 3 (ω) defined in (3) also takes the following form:

K 3 (ω) = {η 3 ∈ H 2 0 (ω); θ + η 3 0 in ω}.
Moreover, by virtue of the assumption (2), we have that the function η 3 = 0 belongs to K 3 (ω). Define

f ε ∈ L 2 (Ω ε ) by f ε := f ε • Θ ε , and define g +,ε ∈ L 2 (Γ ε + ) by g +,ε := ĝ+,ε • Θ ε .
The vectors f ε and g +,ε , respectively corresponding to the applied forces f ε and ĝ+,ε the reference configuration { Ωε } -is subject to, enter the two-dimensional de-scaled model we shall introduce next.

We also assume that there exist functions f i ∈ L 2 (Ω) and g + i ∈ L 2 (Γ + ) independent of ε such that the following standard assumptions on the data hold (cf., e.g., [START_REF] Ciarlet | Mathematical Elasticity[END_REF]):

f ε α (x ε ) = ε 2 f α (x) at each x = (x i ) ∈ Ω, f ε 3 (x ε ) = ε 3 f 3 (x) at each x = (x i ) ∈ Ω, g +,ε α (x ε ) = ε 3 g + α (x) at each x = (x i ) ∈ Γ + , g +,ε 3 (x ε ) = ε 4 g + 3 (x) at each x = (x i ) ∈ Γ + .
We are now ready to state the scaled two-dimensional limit problem, obtained as a result of the rigorous asymptotic analysis carried out in [START_REF] Léger | Mathematical justification of the obstacle problem in the case of a shallow shell[END_REF] and [START_REF] Léger | Erratum to: Mathematical justification of the obstacle problem in the case of a shallow shell[END_REF], with Problem P( Ωε ) as a point of departure.

Problem P(ω). Find ζ = (ζ H , ζ 3 ) ∈ V H (ω) × K 3 (ω) satisfying the following variational inequalities: - ω m αβ (ζ 3 )∂ αβ (η 3 -ζ 3 ) dy + ω n θ αβ (ζ)(∂ α θ)∂ β (η 3 -ζ 3 ) dy ω p 3 (η 3 -ζ 3 ) dy - ω s α ∂ α (η 3 -ζ 3 ) dy for all η 3 ∈ K 3 (ω),
and the following variational equations:

ω n θ αβ (ζ)∂ β η α dy = ω p α η α dy for all η H = (η α ) ∈ V H (ω),
where The two-dimensional obstacle problem obtained in [START_REF] Léger | Mathematical justification of the obstacle problem in the case of a shallow shell[END_REF] and [START_REF] Léger | Erratum to: Mathematical justification of the obstacle problem in the case of a shallow shell[END_REF] is modelled by a set of variational equations and a set of variational inequalities and, besides, its solution is a Kirchhoff-Love field (see, for instance, Section 3.4 of [START_REF] Ciarlet | Mathematical Elasticity[END_REF]). As a result, we can "separate" the transverse component of the displacement vector field from the tangential components of the displacement vector field. Clearly, only the transverse component of the displacement is subject to the geometrical constraint associated with the obstacle.

                     m αβ (ζ 3 ) := - 4λµ 3(λ + 2µ) ∆ζ 3 δ αβ - 4 3 µ∂ αβ ζ 3 , n θ αβ (ζ) := 4λµ λ + 2µ e θ σσ (ζ)δ αβ + 4µe θ αβ (ζ), e θ αβ (ζ) := 1 2 (∂ α ζ β + ∂ β ζ α ) + 1 2 (∂ α θ∂ β ζ 3 + ∂ β θ∂ α ζ 3 ), p i := 1 -1 f i dx 3 + g + i , s α := 1 -1 x 3 f α dx 3 + g + α .
Likewise, since θ ε ∈ C 3 (ω), we define the non-empty, closed, and convex set K ε 3 (ω) by:

K ε 3 (ω) := {η 3 ∈ H 2 0 (ω); θ ε + η 3 0 in ω}.
The next step consists in de-scaling Problem P(ω). More specifically, the solution ζ = (ζ H , ζ 3 ) of Problem P(ω) is de-scaled as follows (cf. [START_REF] Ciarlet | Mathematical Elasticity[END_REF]):

ζ ε H = ε 2 ζ H in ω, ζ ε 3 = εζ 3 in ω.
Thanks to (1), if

ζ 3 ∈ K 3 (ω), then ζ ε 3 ∈ K ε 3 (ω).
The following two-dimensional de-scaled problem can be thus derived, and constitutes the point of departure of our analysis concerning the augmentation of regularity.

Problem P ε (ω). Find ζ ε = (ζ ε H , ζ ε 3 ) ∈ V H (ω)× K ε 3 (ω)
satisfying the following variational inequalities:

- ω m ε αβ (ζ ε 3 )∂ αβ (η 3 -ζ ε 3 ) dy + ω n θ,ε αβ (ζ ε )(∂ α θ ε )∂ β (η 3 -ζ ε 3 ) dy ω p ε 3 (η 3 -ζ ε 3 ) dy - ω s ε α ∂ α (η 3 -ζ ε 3 ) dy for all η 3 ∈ K ε 3 (ω), (4) 
and the following variational equations:

ω n θ,ε αβ (ζ ε )∂ β η α dy = ω p ε α η α dy for all η H = (η α ) ∈ V H (ω), (5) 
where Clearly, ( 4) and ( 5) can can be combined into a single system of variational equations, whose left hand side is associated with the symmetric bilinear form b(•, •) given by (cf. Sections 3.5, 3.6 and 3.7 of [START_REF] Ciarlet | Mathematical Elasticity[END_REF])

                       m ε αβ (ζ ε 3 ) := -ε 3 4λµ 3(λ + 2µ) ∆ζ ε 3 δ αβ + 4 3 µ∂ αβ ζ ε 3 , n θ,ε αβ (ζ ε ) := ε 4λµ λ + 2µ e θ,ε σσ (ζ ε )δ αβ + 4µe θ,ε αβ (ζ ε ) , e θ,ε αβ (ζ ε ) := 1 2 (∂ α ζ ε β + ∂ β ζ ε α ) + 1 2 (∂ α θ ε ∂ β ζ ε 3 + ∂ β θ ε ∂ α ζ ε 3 ), p ε i := ε -ε f ε i dx ε 3 + g +,ε i , s ε α := ε -ε x ε 3 f ε α dx ε 3 + εg +,ε α .
b(ζ ε , η) = - ω m ε αβ (ζ ε 3 )∂ αβ η 3 dy + ω n θ,ε αβ (ζ ε )(∂ α θ ε )∂ β η 3 dy + ω n θ,ε αβ (ζ ε )∂ β η α dy. A straightforward computation shows that b(η, η) := ω 4λµ λ + 2µ ε 3 3 (∆η 3 ) 2 + ε(e θ,ε σσ (η)) 2 dy + 4µ ε 3 3 α,β ∂ αβ η 3 2 0,ω + ε α,β e θ,ε αβ (η) 2 0,ω , for all η ∈ V(ω).
Likewise, we associate the sum of the right hand sides of ( 4) and ( 5) with a linear and continuous form defined as follows:

(η) := ω p ε i η i dy - ω s ε α ∂ α η 3 dy for all η ∈ V(ω).
The energy functional associated with the variational formulation in Problem P ε (ω) takes the following form:

J ε (η) = 1 2 b(η, η) -(η) for all η ∈ V H (ω) × K ε 3 (ω).
As a result, Problem P ε (ω) is equivalent to finding

ζ ε = (ζ ε H , ζ ε 3 ) ∈ V H (ω) × K ε 3 (ω) such that J ε (ζ ε ) = min{J ε (η); η ∈ V H (ω) × K ε 3 (ω)}.
The bilinear form b(•, •) is continuous, i.e., there exists a constant M > 0 such that:

b(ξ, η) M ξ V(ω) η V(ω) for all ξ, η ∈ V(ω). By Theorem 3.6-1 of [3], such a bilinear form b(•, •) is V(ω)-elliptic, i.e., there exists a constant α > 0 such that b(η, η) α η 2 V(ω)
for all η ∈ V(ω).

As a result, Problem P ε (ω) admits a unique solution or, equivalently, there exists a unique

ζ ε = (ζ ε H , ζ ε 3 ) which belongs to V H (ω) × K ε 3 (ω) and satisfies: b(ζ ε , η -ζ ε ) (η -ζ ε ) for all η = (η H , η 3 ) ∈ V H (ω) × K ε 3 (ω),
ζ ε = (ζ ε H , ζ ε 3 ) ∈ V H (ω) × K ε 3 (ω) such that J ε (ζ ε ) = min{J ε (η); η ∈ V H (ω) × K ε 3 (ω)}.
In what follows, we show that the solution ζ ε of Problem P ε (ω) enjoys higher regularity properties in the interior of the domain ω.

Improved interior regularity of the tangential components of the displacement field

Our first objective is to show that the tangential components of the solution ζ ε of Problem P ε (ω), i.e., the components ζ ε α of the vector field ζ ε H , are of class H 2 loc (ω) ∩ H 1 0 (ω). In order to establish such a property, we generalise a method developed by Nirenberg in the landmark paper [START_REF] Nirenberg | Remarks on strongly elliptic partial differential equations[END_REF] (see also [START_REF] Evans | Partial Differential Equations[END_REF]) by resorting to the ideas of [START_REF] Frehse | Zum Differenzierbarkeitsproblem bei Variationsungleichungen höherer Ordnung[END_REF].

Denote by D ρh the first order finite difference quotient of either a function or a vector field in the canonical direction e ρ of R 2 and with increment size h sufficiently small. The first order finite difference quotient of a function ξ in the canonical direction e ρ of R 2 and with increment size h is defined by:

D ρh ξ(y) := ξ(y + he ρ ) -ξ(y) h ,
for all (or, possibly, a.a.) y ∈ ω such that (y + he ρ ) ∈ ω.

The first order finite difference quotient of a vector field ξ = (ξ α ) in the canonical direction e ρ of R 2 and with increment size h is defined by

D ρh ξ(y) := ξ(y + he ρ ) -ξ(y) h ,
or, equivalently,

D ρh ξ(y) = (D ρh ξ α (y)).
We define the second order finite difference quotient of a function ξ in the canonical direction e ρ of R 2 and with increment size h by

δ ρh ξ(y) := ξ(y + he ρ ) -2ξ(y) + ξ(y -he ρ ) h 2 ,
for all y ∈ ω such that (y ± he ρ ) ∈ ω.

The second order finite difference quotient of a vector field ξ = (ξ α ) in the canonical direction e ρ of R 2 and with increment size h is defined by

δ ρh ξ(y) := ξ α (y + he ρ ) -2ξ α (y) + ξ α (y -he ρ ) h 2 ,
for all y ∈ ω such that (y ± he ρ ) ∈ ω. Note in passing that the second order finite difference quotient of a function ξ can be expressed in terms of the first order finite difference quotient via the following identity:

δ ρh ξ = D -ρh D ρh ξ. (6) 
Similarly, the second order finite difference quotient of a vector field ξ can be expressed in terms of the first order finite difference quotient via the following identity:

δ ρh ξ = D -ρh D ρh ξ. (7) 
Theorem 1. Each of the tangential components

ζ ε α of the solution of Problem P ε (ω) is of class H 2 loc (ω)∩ H 1 0 (ω).
Proof. Let ω 0 ⊂⊂ ω and let ω 1 ⊂ ω be such that

ω 1 ⊂⊂ ω 0 ⊂⊂ ω.
Let ϕ ∈ D(ω 0 ) be such that 0 ϕ 1, supp ϕ ⊂⊂ ω 0 , and ϕ ≡ 1 in ω 1 and assume, without loss of generality, that ω 0 is a domain; otherwise we carry out the procedure on a polygon Q such that supp ϕ ⊂⊂ Q ⊂⊂ ω 0 , instead of the set ω 0 .

Let us consider the variational equations ( 5), which we re-state for clarity here below:

ω n θ,ε αβ (ζ ε )∂ β η α dy = ω p ε α η α dy for all η H = (η α ) ∈ V H (ω).
Let us observe that the tensor (n θ,ε αβ ) is symmetric, i.e.,

n θ,ε αβ (ξ) = n θ,ε βα (ξ) for all ξ = (ξ H , ξ 3 ) ∈ V H (ω) × H 2 0 (ω). (8) 
In what follows, the components of the linearised strain tensor are denoted e αβ and are defined by:

e αβ (η H ) := 1 2 (∂ α η β + ∂ β η α ) for all η H ∈ V H (ω).
Hence, the following identity holds As a result of the symmetry (8) and the previous identity, the variational equations ( 5) take the following form

n θ,ε αβ (ξ) = ε 4λµ λ + 2µ e σσ (ξ H )δ αβ + 4µe αβ (ξ H ) + 2λµ λ + 2µ ∂ σ θ ε ∂ σ ξ 3 δ αβ + 2µ(∂ α θ ε ∂ β ξ 3 + ∂ β θ ε ∂ α ξ 3 ) , for all ξ = (ξ H , ξ 3 ) ∈ V H (ω) × H 2 0 (ω).
ε ω 4λµ λ + 2µ e σσ (ζ ε H )δ αβ + 4µe αβ (ζ ε H ) e αβ (η H ) dy = ω p ε α η α dy -ε 2λµ λ + 2µ ω ∂ σ θ ε ∂ σ ζ ε 3 δ αβ e αβ (η H ) dy -2µε ω (∂ α θ ε ∂ β ζ ε 3 + ∂ β θ ε ∂ α ζ ε 3 )e αβ (η H ) dy, (9) 
for all η H = (η α ) ∈ V H (ω).

Given two functions f 1 , f 2 ∈ L 2 (ω 0 ), we say that f 1 H f 2 if there exists a constant C > 0 independent of h and eventually dependent on ζ ε H 1,ω , ϕ and its derivatives such that:

ω 0 f 1 dy ω 0 f 2 dy + C(1 + D ρh (ϕζ ε H ) 1,ω 0 ).
The relation H is clearly reflexive and transitive. Specialise the test function by taking η H ∈ V H (ω) as the extension by zero outside ω 0 of the vector field (-ϕ 2 δ ρh ζ ε H ). Thanks to the results contained in [START_REF] Marcus | Absolute continuity on tracks and mappings of Sobolev spaces[END_REF] and the fact that supp ϕ ⊂⊂ ω 0 , we infer that such a function satisfies all the regularity requirements. Testing such a function in the variational equations [START_REF] Rodríguez-Arós | Mathematical justification of the obstacle problem for elastic elliptic membrane shells[END_REF] gives:

-ε ω 0 4λµ λ + 2µ e σσ (ζ ε H )δ αβ + 4µe αβ (ζ ε H ) e αβ (ϕ 2 δ ρh ζ ε H ) dy = - ω 0 p ε α (ϕ 2 δ ρh ζ ε α ) dy + ε 2λµ λ + 2µ ω 0 ∂ σ θ ε ∂ σ ζ ε 3 δ αβ e αβ (ϕ 2 δ ρh ζ ε H ) dy + 2µε ω 0 (∂ α θ ε ∂ β ζ ε 3 + ∂ β θ ε ∂ α ζ ε 3 )e αβ (ϕ 2 δ ρh ζ ε H ) dy. (10) 
To begin with, we estimate the right hand side of [START_REF] Frehse | Zum Differenzierbarkeitsproblem bei Variationsungleichungen höherer Ordnung[END_REF]. Since θ ε ∈ C 3 (ω), supp ϕ ⊂⊂ ω 0 , and ζ ε 3 ∈ H 2 0 (ω), an application of Green's formula, Cauchy-Schwarz inequality and Theorem 5.3(i) in Section 5.8.2 of [START_REF] Evans | Partial Differential Equations[END_REF] gives: 

ε 2λµ λ + 2µ ω 0 ∂ σ θ ε ∂ σ ζ ε 3 δ αβ e αβ (ϕ 2 δ ρh ζ ε H ) dy + 2µε ω 0 (∂ α θ ε ∂ β ζ ε 3 + ∂ β θ ε ∂ α ζ ε 3 )e αβ (ϕ 2 δ ρh ζ ε H ) dy = -ε λµ λ + 2µ ω 0 ∂ β (∂ σ θ ε ∂ σ ζ ε 3 δ αβ )ϕ 2 δ ρh ζ ε α dy
∂ β (∂ α θ ε ∂ β ζ ε 3 + ∂ β θ ε ∂ α ζ ε 3 )ϕ 2 δ ρh ζ ε α dy -ε λµ λ + 2µ ω 0 ∂ α (∂ σ θ ε ∂ σ ζ ε 3 δ αβ )ϕ 2 δ ρh ζ ε β dy -µε ω 0 ∂ α (∂ α θ ε ∂ β ζ ε 3 + ∂ β θ ε ∂ α ζ ε 3 )ϕ 2 δ ρh ζ ε β dy C D ρh (ϕζ ε H ) 1,ω 0 .
In conclusion, we have that the right hand side of ( 10) is H 0.

Let us now proceed to the study of the left hand side of [START_REF] Frehse | Zum Differenzierbarkeitsproblem bei Variationsungleichungen höherer Ordnung[END_REF]. Observe that, since

∂ α (ϕδ ρh (ϕζ ε H )) H ∂ α (ϕ 2 δ ρh ζ ε H ), and since ∂ α (D ρh (ϕζ ε H )) = D ρh (∂ α (ϕζ ε H )) (cf.
, e.g., [START_REF] Frehse | Zum Differenzierbarkeitsproblem bei Variationsungleichungen höherer Ordnung[END_REF]), the following chain of relations holds:

4µe αβ (D ρh (ϕζ ε H ))e αβ (D ρh (ϕζ ε H )) H - 4λµ λ + 2µ e σσ (ζ ε H )e αα (ϕδ ρh (ϕζ ε H )) -4µe αβ (ζ ε H )e αβ (ϕδ ρh (ϕζ ε H )) H - 4λµ λ + 2µ e σσ (ζ ε H )e αα (ϕ 2 δ ρh ζ ε H ) -4µe αβ (ζ ε H )e αβ (ϕ 2 δ ρh ζ ε H ).
To summarise, we have:

4µe αβ (D ρh (ϕζ ε H ))e αβ (D ρh (ϕζ ε H )) H 0.
An application of Korn's inequality with boundary conditions (cf., e.g., Theorem 6.15-4 of [START_REF] Ciarlet | Linear and Nonlinear Functional Analysis with Applications[END_REF]) gives:

4µε ω 0 e αβ (D ρh (ϕζ ε H ))e αβ (D ρh (ϕζ ε H )) dy C D ρh (ϕζ ε H ) 2 0,ω 0 . (11) 
A combination of [START_REF] Frehse | On the regularity of the solution of the biharmonic variational inequality[END_REF] and the fact that the right hand side of ( 10) is H 0 gives

D ρh (ϕζ ε H ) 2 1,ω 0 C(1 + D ρh (ϕζ ε H ) 1,ω 0 ),
which in turn implies that

D ρh ζ ε H 1,ω 1 is uniformly bounded with respect to h.
An application of Theorem 3 of Section 5.8.2 of [START_REF] Evans | Partial Differential Equations[END_REF] shows that each ζ ε α is also in H 2 loc (ω), as it was to be proved. 

ε 3 , is of class H 3 loc (ω) ∩ H 2 0 (ω).
The arising difficulty is owing to the fact that ζ ε 3 is required to satisfy a constraint in ω. The improved regularity for such a transverse component is obtained by generalising the method developed by Frehse in the seminal paper [START_REF] Frehse | Zum Differenzierbarkeitsproblem bei Variationsungleichungen höherer Ordnung[END_REF].

We first extend the results contained in two preliminary lemmas to the problem under consideration. Let ω 0 ⊂ ω and ω 1 ⊂ ω be such that

ω 1 ⊂⊂ ω 0 ⊂⊂ ω.
Following the ideas of [START_REF] Frehse | Zum Differenzierbarkeitsproblem bei Variationsungleichungen höherer Ordnung[END_REF], we assume that there exists a non-zero real number κ and a canonical direction e ρ of R 2 such that the non-negative quantity d := inf{|x -y|; x ∈ ∂ω 0 , y ∈ ∂ω 1 and xy = κe ρ } is strictly greater than zero. Let ϕ 1 ∈ D(ω) be such that supp ϕ 1 ⊂⊂ ω 1 and 0 ϕ 1 1.

Before proving the main result of this section, we establish two abstract preparatory lemmas.

Lemma 1. Assume that ψ ∈ C 0 (ω) is concave on ω 0 . Let η ∈ H 2 (ω) be such that η + ψ 0 in ω. Then, for each 0 < h < d and all 0 < < h 2 /2, the function

η := η + ϕ 1 δ ρh η, is such that η ∈ H 2 (ω 1 ) and η + ψ 0 in ω 1 .
Proof. The regularity immediately follows by the fact that η ∈ H 2 (ω) and ϕ 1 is smooth (cf., e.g., [START_REF] Marcus | Absolute continuity on tracks and mappings of Sobolev spaces[END_REF]). For all y ∈ ω such that (y ± he ρ ) ∈ ω we have that

η (y) = (η + ϕ 1 δ ρh η)(y) = η(y) + ϕ 1 (y) η(y + he ρ ) -2η(y) + η(y -he ρ ) h 2 = h 2 ϕ 1 (y)η(y + he ρ ) + 1 - 2 h 2 ϕ 1 (y) η(y) + h 2 ϕ 1 (y)η(y -he ρ ).
By virtue of the properties of ϕ 1 and , the functions c 1 (y) = c -1 (y) := h -2 ϕ 1 (y) and c 0 (y) := 1 -2 h -2 ϕ 1 (y) are non-negative in ω. Combining these properties with fact that η + ψ 0 in ω gives: The assumed concavity of ψ in ω 0 gives

η (y) -c 1 ψ(y + he ρ ) -c 0 ψ(y) -c -1 ψ(y -he ρ ) = -ψ(y) + ϕ 1 (y) ψ(y + he ρ ) -2ψ(y) + ψ(y -he ρ ) h 2 ,
δ ρh ψ = ψ(y + he ρ ) -2ψ(y) + ψ(y -he ρ ) h 2 < 0,
for all 0 < h < d and all y ∈ ω 1 . As a result, we derive η + ψ 0 in ω 1 , as it was to be proved. 2

For treating the case where the concavity assumption fails, we need the following lemma.

Lemma 2. Let the function ψ be of class C 2 (ω) and such that ψ > 0 in ω. Then, for every y 0 = (y 0,1 , y 0,2 ) ∈ ω, there exists a neighbourhood U of y 0 and numbers a ∈ R, a 0 , r > 0 such that the function (-ψ + a)g is convex in U, where:

g(y) := 1 - 1 2 2 ρ=1
exp(ry ρ -ry 0,ρ ), for all y = (y 1 , y 2 ) ∈ ω.

Moreover, it results g(y) a 0 , for all y ∈ U.

Proof. Fix y 0 ∈ ω. Owing to the fact that ψ ∈ C 2 (ω) and ψ > 0 in ω, we can find numbers a ∈ R and τ > 0, and a neighbourhood U 0 of y 0 such that -ψ(y) + a -τ < 0 for all y ∈ U 0 .

For all y ∈ ω, define the function:

Π(y) := 2 ρ=1
exp(ry ρ -ry 0,ρ ).

For a given α ∈ {1, 2}, we have:

1 Π ∂ αα [(-ψ + a)g] = 1 Π ∂ α (-g∂ α ψ + (-ψ + a)∂ α g) = 1 Π ∂ α -1 - Π 2 ∂ α ψ - r 2 (-ψ + a)Π = 1 Π -1 - Π 2 ∂ αα ψ + rΠ∂ α ψ - r 2 2 Π(-ψ + a) = - 1 Π - 1 2 ∂ αα ψ + r∂ α ψ - r 2 2 (-ψ + a).
Thanks to the global uniform boundedness of the first and second derivative of ψ in ω, and the properties of the numbers a and τ, we derive that there exists a positive number M such that: Since we have that ζε 3, = ζ ε 3 in U 1 \ supp ϕ, we are in a position to extend ζε 3, by ζ ε 3 outside U 1 ; we denote this extension by ζε 3, . Since ζε 3, ∈ H 2 (U 1 ) and satisfies the geometrical constraint, we can infer that ζε 3, ∈ K ε 3 (ω). Specialising η 3 = ζε 3, in (4) gives:

1 Π ∂ αα ((-ψ + a)g) -M 1 Π - 1 2 -rM + r 2 2 τ.
U 1 m ε αβ (ζ ε 3 )∂ αβ (g -1 ϕ 2 δ ρh [(ζ ε 3 + a)g]) dy - U 1 n θ,ε αβ (ζ ε )(∂ α θ ε )∂ β (g -1 ϕ 2 δ ρh [(ζ ε 3 + a)g]) dy - U 1 p ε 3 (g -1 ϕ 2 δ ρh [(ζ ε 3 + a)g]) dy + U 1 s ε α ∂ α (g -1 ϕ 2 δ ρh [(ζ ε 3 + a)g]) dy. ( 13 
)
Let us define the translation operator E in the canonical direction e ρ of R 2 and with increment size h for a smooth enough function v : U 1 → R by E ρh v(y) := v(y + he ρ ), E -ρh v(y) := v(yhe ρ ).

Moreover, the following identities can be easily checked out: 

D ρh (vw) = (E ρh w)(D ρh v) + vD ρh w, (14) 
Given two functions f 1 , f 2 ∈ L 2 (U 1 ), we say that f 1 3 f 2 if there exists a constant C > 0 independent of h and eventually dependent on g, g -1 , ζ ε 3 2,ω , ϕ and its derivatives such that:

U 1 f 1 dy U 1
f 2 dy + C(1 + D ρh (ϕζ ε 3 ) 2,U 1 ). 

|

  θr (φ r ) -θr (υ r )| L|φ r -υ r |, for all φ r , υ r ∈ ωr , and all 1 r s.

2

 2 

4 .

 4 Improved interior regularity of the transverse component of the displacement fieldOur second objective is to show that the transverse component of the solution, i.e., the function ζ

  y ∈ ω 1 .

  h and . Dividing[START_REF] Caffarelli | The obstacle problem for the biharmonic operator[END_REF] by g and then subtracting a from each member of[START_REF] Caffarelli | The obstacle problem for the biharmonic operator[END_REF] gives-θ ε ζ ε 3 + g -1 ϕ 2 δ ρh [(ζ ε 3 + a)g] =: ζε 3,in U 1 .

D

  -ρh (vw) = (E -ρh w)(D -ρh v) + vD -ρh w,(15)δ ρh (vw) = wδ ρh v + (D ρh w)(D ρh v) + (D -ρh w)(D -ρh v) + vδ ρh w.
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We obtain that, for r sufficiently large, we have that

Let us choose a neighbourhood U of y 0 such that U ⊂⊂ U 0 and

, for all y ∈ U and all ρ ∈ {1, 2}.

Then, we have

, for all y ∈ U, and

1, for all y ∈ U.

As a result, we have

for all y ∈ U, and also g(y) 1 -Π/2 1/4, for all y ∈ U. Letting a 0 := 1/4 completes the proof. 2

We are now ready to prove the main result of this section.

Proof. Let y 0 ∈ ω and let U be the neighbourhood of y 0 constructed in Lemma 2 in correspondence of θ ε . It results that the function

for some neighbourhood U 1 of y 0 , such that 0 ϕ 1, and such that ϕ ≡ 1 in a compact strict subset of its support. Without loss of generality, we can assume that U 1 is a domain; otherwise, we take a polygon Q such that supp ϕ ⊂⊂ Q ⊂⊂ U 1 instead of U 1 . Since, by Lemma 2, we have g a 0 > 0 in U and since

Thanks to the concavity of θε in U, we are in a position to apply Lemma 1 and obtain

By Lemma 2 we know that the derivatives of g and g -1 are uniformly bounded in U. As a result, we have that [START_REF] Caffarelli | The two-obstacle problem for the biharmonic operator[END_REF] implies:

An application of ( 16) and Hölder's inequality gives that there exists a constant C > 0 such that:

An application of ( 16) and Hölder's inequality, [START_REF] Ciarlet | A confinement problem for a linearly elastic Koiter's shell[END_REF], and the inequality (cf., formula (4.11) of [START_REF] Frehse | Zum Differenzierbarkeitsproblem bei Variationsungleichungen höherer Ordnung[END_REF])

gives that there exists a constant C > 0 such that:

Likewise, we infer that

for some C > 0.

By virtue of ( 18)-( 21), we deduce that the right hand side of (17) satisfies:

Using [START_REF] Nirenberg | Remarks on strongly elliptic partial differential equations[END_REF] in the left hand side of [START_REF] Evans | Partial Differential Equations[END_REF] gives

where the latter term corresponds to the left hand side of [START_REF] Evans | Partial Differential Equations[END_REF]. Let us now use ( 14)-( 16) for computing

3 ) and observe that [START_REF] Nirenberg | Remarks on strongly elliptic partial differential equations[END_REF] gives

We can then deduce that

Combining ( 17), ( 22), ( 23), and the fact that the terms appearing in A have order of differentiation less or equal than one, gives:

Exploiting the estimate [START_REF] Ciarlet | An Introduction to Differential Geometry with Applications to Elasticity[END_REF], we can interchange the symbols ϕ and ∂ αβ , thus getting:

Writing the second order finite difference quotient δ ρh appearing in (24) in the form [START_REF] Ciarlet | A confinement problem for a linearly elastic Koiter's shell[END_REF] and recalling the properties of supp ϕ, we are then in a position to apply the integration-by-parts formula for the first order finite difference quotient D -ρh (cf., e.g., equation ( 16) in section 6.3.1 of [START_REF] Evans | Partial Differential Equations[END_REF]) together with the same computations that led to [START_REF] Frehse | On the regularity of the solution of the biharmonic variational inequality[END_REF], thus getting:

In conclusion, the latter and (24) give:

An application of ( 19) and Theorem 6.8-4 of [START_REF] Ciarlet | Linear and Nonlinear Functional Analysis with Applications[END_REF] gives:

-

In conclusion, we have obtained that there exists a constant C > 0 for which:

).

An application of Theorem 3 of Section 5.8.2 of [START_REF] Evans | Partial Differential Equations[END_REF] together with the fact that ϕ ≡ 1 in a compact strict subset of its support shows that ζ ε 3 ∈ H 3 loc (ω), as it was to be proved. 2

As a conclusive remark, we observe that the results proved in Theorems 1 and 2 are independent.